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ABSTRACT. The space and time discretization of the finite element method was optimized
for following application in multicompon ent diffusion simulation during Prato cheese salting,
a traditional and much consumed foodstuff in Brazil originated from the European Gouda
cheese. It was ascertained that the correct choice of the time intervals and mesh is fundame ntal
in applying the method. After optimization the simulated result s were in agreement with the
experimental and calculated results by the analytical method, showing that the method is a
promising tool for simulation of diffusive processes when two solutes are considered, and is
also a much less restrictive technique than  the analytical method.
Key words: response surface methodology, simplex optimization, desirability functions, prato cheese salting.

RESUMO. Otimização da discretização espaço -temporal do método de
elementos finitos aplicado a simulação da difusão multicom ponente. Neste
trabalho foi realizada a otimização da discretização espaço -temporal do método de
elementos finitos para sua posterior aplicação na simulação da difusão multicomponente
durante a salda de queijo prato, um alimento tradicional e muito consumi do no Brasil e
similar ao queijo Gouda. Foi verificado que a escolha correta dos intervalos de tempo e da
malha é fundamental para a aplicação do método. Após a otimização os resultados
simulados concordaram com os experimentais e estimados pelo método ana lítico.
Mostrando que o método é uma ferramenta promissora para a simulação de processos
difusivos quando dois solutos são considerados, além de ser uma técnica muito menos
restritiva que o método analítico.
Palavras-chave: metodologia de superfície de res postas, otimização simplex, funções de

desejabilidade, salga de queijo prato.

Introduction

Many people have avoided consuming Prato
cheese to reduce sodium chloride ingestion, and
consequently reduce problems related to arterial
hypertension (Rapacci, 1989). Sodium consumption
is one of the main factors that have been proven to
cause increase in arterial pressure (He and
MacGregor, 1999). Several substitutes for sodium
chloride have been studied, especially potassium
chloride, because it presents similar ph ysical
properties (Lynch, 1987). Therefore, brine containing
NaCl/KCl mixture in adequate proportions, to avoid
sensorial problems, is used to produce a cheese with
reduced sodium content (Rapacci, 1989; Zorrilla and
Rubiolo, 1994; Katsiari et al., 1998). The
NaCl/KCl/water system is classified as ternary

(Nauman and Savoca, 2001) and the flow of
potassium chloride and its influence on the flow of
sodium chloride should be considered. Thus, a more
extensive mathematical modeling is needed to
simulate the diffusion process that occurs in this
multicomponent system. Prato cheese is an example
of a food with high nutritional value and common in
the Brazilian diet, where the quantity and
homogeneous distribution of sodium chloride are
relevant for its final quality. Thus, studies involving
sodium chloride diffusion, in the presence of a
substitute (KCl) are fundamental in estimating
parameters (such as salting and maturation time)
essential for its industrial scale manufacture. The finite
element method (FEM) has already been successfully
used in simulating sodium chloride diffusion in Prato
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cheese, using the Fick’s second law as a theoretical
basis for the phenomenon (Silva et al., 1998; 1999).
However, as far as it is known, there are no studies in
the literature using FEM to simulate multi-
component diffusion in solid foods by the generalized
Fick equation.  According to Wang and Sun (2003),
there are few publications in food area that have used
FEM to simulate three-dimensional conditions as
proposed in the present study.

The objective of this study was to optimize the
discretization used for three-dimensional simulation
of multicomponent diffusion during mixed salting of
Prato cheese in brine at rest.

Material and methods

Experimental procedure

Seven cheeses samples (Queijo Prato Lanche Di
Carlo, Laticínios Campina Alta, Manoel Ribas , Estado
do Paraná) were salted for 11 hours in a brine at rest
containing 15.0 g NaCl/100 g NaCl + KCl + water and 5.6 g
KCl/100 g NaCl + KCl + water at 10º 1ºC. Periodically two
cylindrical samples were removed to estimate the
NaCl and KCl concentrations (Figure 1) using a
CELM FC-280 atomic emission photometer. The
moisture, fat content and initial quantity of sodium
chloride and potassium chloride were also determine d
in a sample that was not salted (Bona et al., 2005).
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Figure 1. Dimensions of the Prato cheese used (axis X, hidden
in the Figure, measured 4cm) and sampling adopted to study
multicomponent diffusion.

Three-dimensional modeling of the mult icomponent
diffusion during salting by the finite element method

The following considerations or simplifying
hypotheses were used to formulate the simultaneous
diffusion in finite elements:

The diffusion of two solutes was modeled in a
three-dimensional cheese that occupied the volume 

 R3,   [-R1, R1]x[-R2, R2]x[-R3, R3], associated to
a system of Cartesian coordinates x, y, z with origin
located in geometric center of the Prato cheese.

The system under study was considered not
reactional, bearing in mind that the most significant
chemical reactions occurred during the maturation
period (Zorrilla and Rubiolo, 1998).

The diffusion coefficient or mass diffusivity was
considered constant in relation to the concentration
(regardless of time and position).

The external resistance was equal for the two
solutes, because they are very similar ionic
compounds (Zorrilla and Rubiolo, 1994).

The sample contraction was considered negligible,
because according to the literature the variation in
volume is minimal during cheese salting (Silva et al.,
1998; Gerla and Rubiolo, 2003).

The process is done under very approximately
isothermal conditions.

Under these conditions it was proposed to analyze
the cheese salting process considering it immersed in
an unstirred aqueous solution containing NaCl and
KCl in the mass proportion recommended by Rapacci
(1989) to ensure good sensorial acceptability. The
C1(x,y,z,t) and C2(x,y,z,t), concentration of the NaCl
and KCl solutes, respectively, at a point P(x,y,z)  
and at instant t, can be described by Onsager (1945)
equations for the solute concentrations:
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where Dii are the main coefficients, Dij crossed
coefficients, that combine the flows and 2(.) =
.(.), is the Laplacian operator.

In the salting process, the initial conditions are
given by
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where C1,0 and C2,0 are known. The Cauchy boundary
condition for no stirred brine were (Luna and
Bressan, 1986):
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where  is the set of points on the surface that wraps
the Prato cheese; C1,s and C2,s are the solutes
concentrations in brine; hm (g cm-2 h) is the mass
transfer coefficient; λm (g cm-1 h) is the mass
conductivity and ∂/∂η is the normal derivative
operator. The hm and m coefficients are related to
Biot mass-exchange number by

m

im Rh
Bi




 ; i = 1,2,3. (4)

where Ri is the characteristic length (cm).
The diffusion coefficients and the Biot mass-

exchange number (Bona et al., 2005) were estimated
(Table 1) from the experimental data obtained and by
a one-dimensional analytical model for
multicomponent diffusion in a brine at rest.

Table 1. Fitted values for the parameters of the analytical
solution (Bona et al., 2005).

NaCl KCl
Main coefficients (cm2/day) 0.225 (D11) 0.240 (D22)
Cross coefficients (cm2/day) 0.027 (D12) 0.045 (D21)
Biot mass-exchange number 40.660*
hm/λm (cm-1) 20.330
* Related to X axis.

The system of partial differential equations  formed
by equation (1) and by the conditions (2) and (3), even
with the simplifying hypotheses adopted in the

process, it is difficult to be resolved analytically. In this
situation a transformation obtained with the
eigenvalues and eigenvectors of the ma trix of the
differential operator that appears on the right side of
equation (1) was used (Bona et al., 2005).  The
disadvantages of this method are the restrictions in the
geometry, in the process and further the fact that the
transformed variables have no physical meaning.  An
alternative that does not have these restrictions that
can be applied in more general problems like this
situation is the numerical solution of the system by
the finite element method (FEM). Therefore the
generalized Galerkin formulation was used (Huebner
et al., 1995) to obtain the expression to be descritized
by finite elements whose main steps are summarized
as follows:

For system (1) the expression of weighted residues
formed is:
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where Φ and Ψ are weighting functions that are
null in ∂Ω

b) The right side of the equation (5) is integrated
in parts, obtaining, after considering the boundary
conditions (3), the following:
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(6)

where ∂Ω is the boundary of Ω and C1,s, C2,s are
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known values.   df )( and  
dssf )( are,

respectively, integrals of volume over the dominion
and boundary.

The discretization continued and the next steps
were identified as follows (Singh, 1983):

c) Partition of the domain () in subdomains
called finite elements is adopted.

d) In each finite element (with N nodes and two

degrees of freedom per node) the variables of the
problem were locally interpolated. Therefore,
equation (6) can be rewritten, in matrix form, for each
element as:

2N2N2N2N2N2N2N2N2N2N2N GCFCBCA  
 (7)

where,
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e) The global interpolation is formed by combining the elements, resulting in a system of
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ordinary differential equations.
f) The solution of this system is obtained by an

implicit process of finite differences, supplying the
values of the concentrations in the element nodes.
The concentration profiles in any part (point) of the
Prato cheese at any time could be determined by local
interpolation.

Spatial discretization

The spatial domain was represented by a set of
serendipity hexahedron elements of the C0, type. Each
element had twenty nodes with two degrees of
freedom (one for each solute), distributed at the edges
and vertices of its external surface, totalizing forty
degrees of freedom (Brebbia and Ferrante, 1975; Silva
et al., 1998). The element, defined in standard
Cartesian coordinates -1 ≤ ξ, η, ζ ≤ 1 (Chung, 1978),
the arrangement of the nodes and their local
enumeration are shown in Figure 2.

The interpolation functions preserve the
continuity between the elements and ar e deduced
from an incomplete quadratic polynomial, following
the same procedure to obtain the Lagrange functions
(Chung, 1978; Akin, 1982). In the formulation
proposed i = ψi was used.
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Figure 2. (a) Standard hexahedron element, with 20 nodal
points. (b) Orientation of the standard hexahedron element and
enumeration of the surfaces.

Time discretization

The Crank-Nicholson scheme or central
difference method was used for the dominion (Ω) and
boundary (∂Ω) (Bickford, 1990). In this problem the
vectors 2NC and 2NC , equation (7), were discretized

as follows
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where, Δt is a discrete increase in time, 0
2NC  is the

solute concentration vector, already known, of the
element before the adding of Δt and 1

2NC  represents

the concentration vector that will be calculated, after
adding time (Δt). Organizing the terms of the
equation (8) it can be shown that:
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Resolution of the linear equation system

The LU decomposition method (Sperandio et al.,
2003) was used to solve the proposed system of linear
equations.  The computational implementation of the
method was carried out by a set of subroutines
(DLSLRB and DLFCRB) based on the LINPACK
package (Cline et al., 1979; Dongarra et al., 1979).  The
DLSLRB subroutine was used to solve the linear
equation system stored in band without using
interactive refinement. This procedure uses the
subroutines: DLFCRB that estimates the matrix
condition number and performs the LU
decomposition; DLFSRB that solves the system
formed by the matrixes L and U.

Mesh

A mesh generating subroutine was used because in
practical applications the finite element method
requires many input data. The global enumeration
and the node coordinates of the mesh were obtained
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automatically for rectangular domains. This procedure
facilitates the identification of each node position at
the element enabling sampling at any point or region
of the mesh (Silva et al., 1998).

Integration and interpolation of the simulation results

The experimental values obtained represented the
mean NaCl and KCl concentration for the cylindrical
sample (Figure 1). However, the finite element
method supplies point concentrations, therefore, the
simulated points had to be interpolated onto the
imaginary axis located at the center of the sample. The
mean was calculated by integrating these points
according to equation (10).
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The integral was calculated numerically by a Gauss
formula (Sperandio et al., 2003) with the abscissas and
weights obtained according to Davis and Polonsky
(1965).

The computer program

The computational program for simulation of
multicomponent diffusion, called Simul 3.0, was
developed in Fortran language. The minimal
requirement for his use is a Pentium III processor and
256 Mb of RAM memory.

Statistical test

The concentrations calculated by FEM, the
analytical method (Bona et al., 2005) and the
experimental method were compared by percentage
deviation (Heldman, 1974) to assess the quality of fit.
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where,
calcC is the mean concentration estimated by

the numerical solution;
expC is the experimental

mean concentration and N is the number of
observations considered.

Optimization of the space and time discretization

The objective of optimization was to determine
values for the discrete time and space intervals that
permit to minimize the deviations without significant
increase in computer time. Some tests were
performed for time discretization (Table 2) with
different time intervals. The set of time intervals that

produced the best combination between deviation and
computer time was chosen.  At this stage all the
simulations were carried out using a mesh of seven
elements on each axis (totaling 343 elements).

Table 2. Assessment of the intervals tested for time
discretization.

Number of loops in each
Percent

deviation in Computer

Time interval (h)
Relation to

experimental data Time
0.05 0.20 0.30 0.50 1.00 2.00 NaCl KCl (minutes)*
- - - - 11 - 21.47% 11.28% 12.70
- - - 22 - - 17.26% 10.06% 26.79
- 5 - - 10 - 17.23% 10.23% 19.04
2 - 3 - 10 - 17.29% 10.24% 18.45
2 - 3 - 2 4 17.30% 10.25% 14.52
*For a microcomputer with Pentium III 800MHz processor and 256 Mbytes RAM
memory.

To assess the efficiency of the spatial discretization,
which depends on the quantity of elements and their
distribution, preliminary tests were carried out. This
previous evaluation indicated that at least six elements
per axis are necessary to simulate the proposed system.
Otherwise, the results are far away from the
experimental values. Further, due to the restrictions
imposed by the microcomputer used, a t most ten
elements per axis could be used. An experimental
design (conveniently randomized) of the Box-
Behnken type with a central point (Table 3) was
applied to determine the quantity of elements to be
used on each axis, to minimize the deviations and
computer time.

Table 3. Results obtained using the Box-Behnken design.

Factors or inputs Responses or outputs

Elements per axis*
% Deviation relative to

experimental data Computer
X Y Z NaCl (%) KCl (%) time (min)**
6 (-1) 6 (-1) 8 (0) 12.26 7.60 10.67
10 (1) 6 (-1) 8 (0) 7.62 6.87 17.53
6 (-1) 10 (1) 8 (0) 8.32 7.63 40.17
10 (1) 10 (1) 8 (0) 3.54 6.79 76.88
6 (-1) 8 (0) 6 (-1) 22.11 12.12 11.01
10 (1) 8 (0) 6 (-1) 16.11 10.00 17.64
6 (-1) 8 (0) 10 (1) 7.83 7.19 39.44
10 (1) 8 (0) 10 (1) 3.33 6.29 72.30
8 (0) 6 (-1) 6 (-1) 19.74 11.47 7.63
8 (0) 10 (1) 6 (-1) 16.23 11.01 28.09
8 (0) 6 (-1) 10 (1) 6.28 7.01 24.66
8 (0) 10 (1) 10 (1) 2.54 7.11 117.97
8 (0) 8 (0) 8 (0) 3.43 7.15 30.43
*The codified levels are in parenthesis. **For a microcomputer with Pentium III 800
MHz processor and 256 Mbytes RAM memory. A time discretization with two 0.05h,
three 0.30h, two 1.00h and four 2.00h intervals were adopted.

The replications at the central point were not
included, because the responses are computer
calculation and thus would be the same. This type of
design was chosen because only three levels of variation
were needed for the independent variables and is
possible to fit a quadratic model (Box and Draper,
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1987). From the results obtained for the design,
regression models were fitted relating the number of
elements on each axis with the dependent variables :
computer time and deviation among the calculated
and experimental results (StatSoft, 2005). The models
obtained were then submitted to simultaneous
optimization by the Simplex method (Bona et al.,
2000) using the desirability functions (Derringer and
Suich, 1980) to determine the best quantity of
elements on each axis of the mesh.

Results and discussion

Table 2 shows the most promising results selected
from the different tests to assess the best time
discretization.

The deviation compared to the experimental
values was greater than 10% in all the attempts made
because a poor mesh was used (with 343 elements).
However, at this stage, the objective was to assess only
the influence of time discretization. Table 2 shows
that shorter time intervals are necessary at the start of
the simulation, but after the first step, the intervals can
be increased (Lyra, 1993).  An indication of the
importance of using short time intervals at the start of
the simulation can be obtained from the profile of s alt
distribution along X axis (Figure 3).

Figure 3. Influence of the time discretization on the simulation
of the salt distribution profile, in function of distance.  The solid
curve (—) represents the simulation of the first hour by a single
time interval.  In the dotted curve ( ---) two 0.05h loops and three
0.30h loops were used for the same simulation.

For the simulations showed in Table 2, it was
observed that, except for the attempt with eleven one-
hour loops, all the others presented a similar profile.
One can see in Figure 3, which depict the simulation
curves for the first and the last line showed in Table 2,
that the initial oscillatory phenomenon in the results,
that is inherent to the finite element method (Britz

et al., 2002), was damping when short time intervals
were used in the beginning of the simulation. This
fact was justified by the great salt concentration
gradient between the brine and the cheese in the
beginning of the process. Also, when short time
intervals were used, the increase in concentration is
reduced for each loop of the simulation. In addition,
the results obtained (Table 2) indicated that the
increase in the number of discretization intervals did
not ensure a continuous reduction in the deviation. In
fact, a convergence to values of around 17%  was
observed for NaCl and 10% for KCl. A greater
reduction in the deviations could only be obtained by
modifying the mesh. Therefore, discretization time
was chosen with refinement in the initial time
intervals and less computer time (last line of Table 2)
and, it was used to optimize the mesh (Table 3).

The regression models were attained (Table 4) from
the results obtained to the proposed design (Table 3) in
function of the number of elements per axis

Table 4. Quadratic regression models fitted to the data obtained
by the Box-Behnken design.

% Deviation from NaCl
experimental dataa

(Computer time)-1/2 b

Model Coefficients Standard error Coefficients Standard error
Intercept 223.6300 5.5618 1.8680 0.0711
X -13.3000 0.6197 -0.0680 0.0077
Y -7.6694 0.5798 -0.1383 0.0077
Z -28.4931 0.6197 -0.1346 0.0077
X2 0.7066 0.0362 0.0020 0.0004
Y2 0.4197 0.0362 0.0037 0.0004
Z2 1.5222 0.0362 0.0037 0.0004
X*Y - - 0.0015 0.0003
X*Z 0.0937 0.0273 0.0014 0.0003
Y*Z - - 0.0040 0.0003
R2 (adjusted) 0.9989 0.9950
aThe model in relation to deviations of potassium experiments were not considered
because they were highly correlated with the sodium deviations. b The computer time
response was presented as a Box Cox transformation to stabilize variance.

Deviation relative to experimental data for NaCl
and KCl were highly correlated (r=0.98), and
therefore the use of only one of these dependent
variables is recommended in the simultaneous
optimization (Peterson, 2004). Thus, when one is
minimized the other one will consequently be
minimized as well. As the deviation in relation to the
experimental NaCl values resulted in a better model,
this response was adopted to carry out the
simultaneous optimization. Regarding the computer
time, it was observed this model violated one of the
assumptions of the variance analysis. A Box-Cox
power transformation was used to stabilize the
variance (Box and Draper, 1987). The quality of the
fitted models can be assessed in Figure 4. It can also be
observed by the fitted coefficients that the deviation
for the experimental values underwent greater
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reduction with the increase in the number of elements
on the X and Z axis. This observation is in line with
the characteristics of the mesh adopted. Since the
concentrations calculated and used for comparison
with the experimental values were taken along the X
axis, a greater refinement on this was important to
reduce the deviations. The number of elements on Z
axis, due to the characteristics of the subroutine used
to generate the mesh, is mainly responsible for the
matrix dimension of the linear equation system. Thus,
increasing the number of elements on this axis  also
increases both numbers of equations used as the
precision of the method. Regarding computer time, it
was observed that an increase in the number of
elements, increased the computing time, especially for
Y and Z axis. This performance was also explained by
the characteristics of the mesh generator subroutine.

Figure 4. Observed versus predictive values by the regression
models.

As can be observed from the characteristics  of the
fitted equations, the system led to an interesting
problem of optimization. An increase in the number
of elements led to a reduction  in deviation
(desirable), but also implied  an increase in computer
time (undesirable). This problem was solved using
the Derringer and Suich desirability functions
(Derringer and Suich, 1980) , which were adjusted to
a maximum computer time value (30 minut es) and
to minimize the deviation compared to the
experimental results of sodium chloride. The
general desirability was then optimized by the
Simplex method (Bona et al., 2000). As a result of
the optimization, a mesh was obtained with eight
elements on X axis, seven on Y axis and nine on Z
axis, totaling 504 elements  (Table 5).

Comparison of the dotted curve in Figure 5 and
the solid curve in Figure 3 (for NaCl and KCl) shows
the evident damping of the oscillation obtained by the

optimization of the space and time discretization. The
oscillatory damping during the salting first hour
simulation could be observed in Figure 5.

Table 5. Results obtained for optimized mesh with 8 elements
on X axis, 7 on Y axis and 9 on Z axis.

Model
Response Deviation from experimental

NaCl concentration
Computer time

(min)
Predict 2.94 28.61
Observed 2.86 28.31
Error (%) 2.80 1.06

Figure 5. Influence of the spatial discretization on the simulation
of the salt distribution profile, in function of distance.  The solid
curve (—) represents the simulation of the salting first hour
using a mesh with seven elements in each axis. In the dotted
curve (---) was used optimized mesh with eight elements along
X axis, seven along Y and nine along Z axis.

A comparison between the results obtained by the
analytical method (AM) and experimental values
(Bona et al., 2005) and those from finite element
method (FEM) are shown in Figure 6.
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Figure 6. Comparison of the experimental results (dots),
analytical method (dotted line) and the finite element method
(solid line) after optimization of the spatial and time
discretization.

It was verified that after optimization, the FEM
obtained a good agreement with the experimental
results (deviations of 2.86% for NaCl and 7.09% for
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KCl) and the simulated results by AM (deviations of
3.14% for NaCl and 2.74% for KCl). Comparing the
deviations between the optimized mesh with 504
elements (see the deviations above) and the starting
mesh with 343 elements (see the last line of Table 2)
there was a substantial reduction. It makes clear the
importance of the optimization performed.

Conclusion

The proper choice of the time intervals and the
mesh permitted the optimization of the results
obtained by the finite element method ( FEM) by
damping the oscillation without significant increase in
computer time. Once again the importance of these
parameters was confirmed in the application of FEM.
The use of short time intervals was important to damp
the inherent oscillation in the first loops of the
simulation. However, this reduction was restricted
and should be accompanied by a correct fit of the
mesh. After optimizing the results simulated by the
FEM, these were very close to the experimental  values
or values estimated by the analytical method (AM).
Therefore, the use of FEM is recommended to
simulate multicomponent diffusion because it
presents three-dimensional characteristics (that makes
it more appropriate for the cheese maturation stage)
and also permits the use of various boundary
conditions without great changes in the basic
formulation. Furthermore, it enables study with the
other geometry and permits simultaneous simulation
of other parameters (for example, heat transfer).
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