UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE MECÂNICA CURSO DE ENGENHARIA MECÂNICA

MURILO AUGUSTO BARBUR

VALIDAÇÃO NUMÉRICA DO DESCRITOR INVARIANTE DO RESFRIAMENTO CONJUGADO POR CONVECÇÃO FORÇADA-CONDUÇÃO DE AQUECEDORES 3D PROTUBERANTES EM CANAIS

TRABALHO DE CONCLUSÃO DE CURSO

PONTA GROSSA 2014

MURILO AUGUSTO BARBUR

VALIDAÇÃO NUMÉRICA DO DESCRITOR INVARIANTE DO RESFRIAMENTO CONJUGADO POR CONVECÇÃO FORÇADA-CONDUÇÃO DE AQUECEDORES 3D PROTUBERANTES EM CANAIS

Trabalho de Conclusão de Curso, apresentado como requisito parcial à obtenção do título de Bacharel em Engenharia Mecânica, do Departamento Acadêmico de Mecânica da Universidade Tecnológica Federal do Paraná/*Campus* Ponta Grossa.

Orientador: Prof. Dr. Thiago Antonini Alves

Ministério da Educação Universidade Tecnológica Federal do Paraná Campus Ponta Grossa Diretoria de Graduação e Educação Profissional Departamento Acadêmico de Mecânica Bacharelado em Engenharia Mecânica

TERMO DE APROVAÇÃO

VALIDAÇÃO NUMÉRICA DO DESCRITOR INVARIANTE DO RESFRIAMENTO CONJUGADO POR CONVECÇÃO FORÇADA-CONDUÇÃO DE AQUECEDORES 3D PROTUBERANTES EM CANAIS

por

MURILO AUGUSTO BARBUR

Este Trabalho de Conclusão de Curso foi apresentado em 25 de fevereiro de 2014 como requisito parcial para a obtenção do título de Bacharel em Engenharia Mecânica. O candidato foi arguido pela Banca Examinadora composta pelos professores abaixo assinados. Após deliberação, a Banca Examinadora considerou o trabalho aprovado.

Prof. Dr. Thiago Antonini Alves Orientador

Prof. Dr. Jhon Jairo Ramirez-Behainne Membro Titular

Prof. Dr. Gerson Henrique dos Santos Membro Titular

Prof. Dr. Luiz Eduardo Melo Lima Responsável pelos Trabalhos de Conclusão de Curso Prof. Dr. Thiago Antonini Alves Coordenador do Curso de Engenharia Mecânica

- O Termo de Aprovação assinado encontra-se na Coordenação do Curso -

Dedico este trabalho a toda minha família, especialmente aos meus pais, *Luiz Carlos* e *Angelice*; aos meus irmãos, *Luiz Gustavo* e *Angeline*; e à minha sobrinha, *Mel*.

AGRADECIMENTOS

Indubitavelmente em apenas uma página não se pode resumir toda gratidão àqueles que me ajudaram e me deram apoio de alguma forma durante essa longa jornada tão importante em minha vida. Também não será o suficiente para citar todos aqueles que se fizeram presentes em cada momento de dificuldade, mas gostaria de ressaltar meus sinceros agradecimentos aos que não estão dentre os nomes aqui presentes.

Agradeço imensamente à *minha família* que me deu todo o apoio e condições necessárias para que eu chegasse até onde cheguei, que é a quem devo tudo, meu porto seguro.

Agradeço também ao meu orientador, Prof. Dr. *Thiago Antonini Alves*, pelo empenho, dedicação, por ter acreditado em meu potencial e pela amizade desenvolvida.

Aos Professores Drs. *Jhon Jairo Ramirez-Behainne* e *Gerson Henrique dos Santos* por aceitarem fazer parte da banca deste trabalho.

Aos amigos que criei durante esses cinco anos, *Adinaldo, Alemão, Crivelatti, Edi, Fodão, Guedes, Japa, Marcelo, Monique, Relander, Simão, Tiago, Together, Vivian, Well* e *Zina*, que me ajudaram pelo empenho juntos por um mesmo ideal.

Aos amigos de longa data, *Camelo*, *ET*, *Lei*, *Orelha*, *Paul*, *Preto*, *Samy*, *Suco* e *Zorba* pelo incentivo e companheirismo.

Ao Sport Club Corinthians Paulista, o Todo Poderoso Timão, pelos inúmeros títulos e alegrias a mim proporcionadas.

À Deus, fonte de vida, por tudo o que me proporciona.

A mente que se abre a uma nova ideia jamais voltará ao seu tamanho original.

Albert Einstein

RESUMO

BARBUR, Murilo A. Validação numérica do descritor invariante do resfriamento conjugado por convecção forçada-condução de aquecedores 3D protuberantes em canais. 2014. 81 f. Trabalho de Conclusão de Curso (Engenharia Mecânica) – Universidade Tecnológica Federal do Paraná. Ponta Grossa, 2014.

As temperaturas de aquecedores 3D protuberantes montados em um substrato condutivo em um canal retangular horizontal com escoamento laminar de ar foram relacionadas, independente da potência dissipada em cada aquecedor, por meio de uma matriz G^+ com coeficientes invariantes. Esses coeficientes, validados numericamente neste Trabalho de Conclusão de Curso, são adimensionais e foram chamados coeficientes de influência conjugados (g^+) devido à natureza conjugada convecção forçada-condução do resfriamento dos aquecedores. O aumento da temperatura de cada aquecedor no canal foi quantificado de tal forma que as contribuições devido ao auto-aquecimento e às dissipações de potência dos outros aquecedores (tanto à montante, quanto à jusante) fossem claramente identificadas. Para uma dada geometria, campo de escoamento, propriedades termofísicas do fluido e dos sólidos, os coeficientes conjugados são invariantes com a taxa de dissipação de calor na configuração dos aquecedores. Os resultados foram obtidos numericamente considerando uma coluna com três aquecedores 3D protuberantes utilizando o software ANSYS/Fluent[®] 14.5. As equações de conservação foram resolvidas através de um procedimento acoplado, dentro de um domínio único compreendendo as regiões sólidas e do fluido, considerando condições de regime permanente com propriedades constantes em escoamento laminar. Alguns exemplos foram mostrados, indicando os efeitos da condutividade térmica do substrato e do número de Reynolds nos coeficientes de influência conjugados.

Palavras-chave: Resfriamento conjugado. Descritor invariante. Coeficientes de influência conjugados. Predição de temperatura dos aquecedores. Análise numérica.

ABSTRACT

BARBUR, Murilo A. Numerical validation of the invariant descriptor of conjugate forced convection-conduction cooling of protruding 3D heaters in channel flow. 2014. 81 p. Final Course Assignment (Mechanical Engineering) – Federal University of Technology - Paraná. Ponta Grossa, 2014.

The temperatures of 3D protruding heaters mounted on a conductive substrate in a horizontal rectangular channel in laminar airflow were related to independent power dissipation in each heater by means of a matrix G^+ with invariant coefficients. These coefficients, validated numerically in this work, are dimensionless and they were called the conjugate influence coefficients (g^{+}) due to the forced convection-conduction nature of the heaters cooling. The temperature increase of each heater in the channel was quantified so that the contributions due to self-heating and to the power dissipation in the other heaters (both upstream and downstream) were clearly identified. For fixed geometry, fluid and flow rate, substrate and heater conductivities, the conjugate coefficients are invariant with the heat generation rate in the heaters' array. The results were obtained numerically considering three 3D protruding heaters on a two-dimensional array, using the ANSYS/FluentTM 14.5 software. The conservation equations were solved through a coupled procedure within a single calculation domain comprising the solid and fluid regions, considering steady state flow with constant properties in the laminar regime. Some examples were shown, indicating the effects of the substrate thermal conductivity and the Reynolds number on conjugate influence coefficients.

Keywords: Conjugate cooling. Invariant descriptor. Conjugate influence coefficients. Heaters temperature prediction. Numerical analysis.

LISTA DE FIGURAS

Capítulo 1 Figura 1.1. Figura 1.2.	Níveis de empacotamento eletrônico . Diversas disposições de aquecedores discretos no nível 2 de empacotamento eletrônico	017 018
Capítulo 2 Figura 2.1.	Determinação dos coeficientes g_{n1}^{-1} da função de <i>green</i> discreta inversa	025

Capítulo 3

Figura 3.1.	Configuração com uma coluna de aquecedores 3d protuberantes montados em uma pcb029
Figura 3.2.	Domínio com três aquecedores 3d montados no substrato de um canal retangular
	horizontal
Figura 3.3.	Caminhos térmicos considerando substrato adiabático031
Figura 3.4.	Domínio da modelagem matemática do problema031
Figura 3.5.	Diagrama esquemático do problema utilizado para realização da verificação numérica034
Figura 3.6.	Configurações das grades computacionais 3D uniformes utilizadas no estudo de refinamento
Figura 3.7.	Configurações das grades computacionais 3D não-uniformes utilizadas no estudo de refinamento
Figura 3.8.	Grade computacional 3D não-uniforme que foi utilizada na obtenção dos resultados (perspectiva 3D)
Figura 3.9.	Grade computacional 3D não-uniforme que foi utilizada na obtenção dos resultados

Capítulo 4

Figura 4.1.	Linhas de corrente sobre aquecedores 3D protuberantes (perspectiva 3D - detalhe))42
Figura 4.2.	Linhas de corrente sobre aquecedores 3D protuberantes (plano xy em $z = 0$))42
Figura 4.3.	Linhas de corrente sobre aquecedores 3D protuberantes (plano xz em $y = 0.05H$))43
Figura 4.4.	Comprimento L _{rec} em função de Reynolds)44
Figura 4.5.	Perfil de velocidade sobre aquecedores 3D protuberantes (plano xy em $z = 0$ – detalhe))45
Figura 4.6.	Perfil de velocidade sobre aquecedores 3D protuberantes (plano xz em $y = 0.05H$ –	
	detalhe))45
Figura 4.7.	Distribuição de pressão sobre aquecedores 3D protuberantes (plano xy em $z = 0$))46
Figura 4.8.	Distribuição de pressão sobre aquecedores 3D protuberantes (plano $xz \text{ em } y = 0,05H$))46
Figura 4.9.	Variação da queda de pressão total no canal em função de Re)47
Figura 4.10.	Nusselt adiabático médio considerando um substrato adiabático)49
Figura 4.11.	Coeficientes de influência g_{nn}^+ considerando um substrato adiabático)50
Figura 4.12.	Mapas de isotérmicas para $Re = 100$ considerando um único aquecedor ativo em um	
	substrato adiabático (plano xy em $z = 0$ – detalhe))51
Figura 4.13.	Mapas de isotérmicas para $Re = 100$ considerando um único aquecedor ativo em um	
	substrato adiabático (plano xz em $y = 0,05H$ – detalhe))52
Figura 4.14.	Coeficientes de influência g_{12}^+ , g_{13}^+ e g_{23}^+ considerando um substrato adiabático	053
Figura 4.15.	Coeficientes de influência g_{21}^+ , g_{31}^+ e g_{32}^+ considerando um substrato adiabático)54
Figura 4.16.	Mapa de isotérmicas para Re = 100 considerando Teste 1-1-1 em um substrato adiabático	056
Figura 4.17.	Mapa de isotérmicas para $Re = 100$ considerando Teste .532 em um substrato	
	adiabático)56
Figura 4.18.	Mapa de isotérmicas para $Re = 100$ considerando Teste .433 em um substrato	
	adiabático)57

Fração (q_s/q) considerando o substrato de acrílico	058
Fração (q_s/q) considerando o substrato de PCB	059
Fração (q_s/q) considerando o substrato de alumínio	059
Coeficientes de influência g_{nn}^+ considerando o substrato de acrílico	060
Coeficientes de influência g_{nn}^+ considerando o substrato de PCB	061
Coeficientes de influência g_{nn}^+ considerando o substrato de alumínio	061
Mapas de isotérmicas para $Re = 100$ considerando um único aquecedor ativo em um substrato de acrílico (plano xy em $z = 0$ – detalhe).	061
Mapas de isotérmicas para $Re = 100$ considerando um único aquecedor ativo em um substrato de acrílico (plano xz em $y = 0.05H$ – detalhe)	062
Mapas de isotérmicas para $Re = 100$ considerando um único aquecedor ativo em um substrato de PCB (plano xy em $z = 0$ – detalhe)	063
Mapas de isotérmicas para $Re = 100$ considerando um único aquecedor ativo em um substrato de PCB (plano xz em $y = 0.05H$ – detalhe).	063
Mapas de isotérmicas para $Re = 100$ considerando um único aquecedor ativo em um substrato de alumínio (plano xy em $z = 0$ – detalhe).	064
Mapas de isotérmicas para $Re = 100$ considerando um único aquecedor ativo em um substrato de alumínio (plano xz em $y = 0.05H$ – detalhe).	.065
Coeficientes de influência g_{12}^+ , g_{13}^+ e g_{23}^+ considerando o substrato de acrílico	066
Coeficientes de influência g_{12}^+ , g_{13}^+ e g_{23}^+ considerando o substrato de PCB	067
Coeficientes de influência g_{12}^+ , g_{13}^+ e g_{23}^+ considerando o substrato de alumínio	067
Coeficientes de influência g_{21}^+ , g_{31}^+ e g_{32}^+ considerando o substrato de acrílico	068
Coeficientes de influência g_{21}^+ , g_{31}^+ e g_{32}^+ considerando o substrato de PCB	069
Coeficientes de influência g_{21}^+ , g_{31}^+ e g_{32}^+ considerando o substrato de alumínio	069
Mapas de isotérmicas para $Re = 100$ considerando todos os aquecedores ativos em um substrato de acrílico.	071
Mapas de isotérmicas para $Re = 100$ considerando todos os aquecedores ativos em um substrato de PCB	071
Mapas de isotérmicas para $Re = 100$ considerando todos os aquecedores ativos em um substrato de alumínio.	072
Mapas de isotérmicas para $Re = 100$ considerando todos os aquecedores ativos (1-1-1) em diferentes substratos (plano xy em $z = 0$ – detalhe).	072
Mapas de isotérmicas para $Re = 100$ considerando todos os aquecedores ativos (1-1-1) em diferentes substratos (plano xz em $y = 0,05H$ – detalhe).	.073
	Fração (q_i/q) considerando o substrato de acrílico. Fração (q_i/q) considerando o substrato de PCB . Fração (q_i/q) considerando o substrato de alumínio. Coeficientes de influência g_{nn}^+ considerando o substrato de acrílico. Coeficientes de influência g_{nn}^+ considerando o substrato de alumínio. Mapas de isotérmicas para $Re = 100$ considerando um único aquecedor ativo em um substrato de acrílico (plano <i>xy</i> em <i>z</i> = 0 – detalhe). Mapas de isotérmicas para $Re = 100$ considerando um único aquecedor ativo em um substrato de acrílico (plano <i>xy</i> em <i>z</i> = 0 – detalhe). Mapas de isotérmicas para $Re = 100$ considerando um único aquecedor ativo em um substrato de acrílico (plano <i>xy</i> em <i>z</i> = 0 – detalhe). Mapas de isotérmicas para $Re = 100$ considerando um único aquecedor ativo em um substrato de acrílico (plano <i>xy</i> em <i>z</i> = 0 – detalhe). Mapas de isotérmicas para $Re = 100$ considerando um único aquecedor ativo em um substrato de PCB (plano <i>xz</i> em <i>y</i> = 0,05 <i>H</i> – detalhe). Mapas de isotérmicas para $Re = 100$ considerando um único aquecedor ativo em um substrato de PCB (plano <i>xz</i> em <i>y</i> = 0,05 <i>H</i> – detalhe). Mapas de isotérmicas para $Re = 100$ considerando um único aquecedor ativo em um substrato de alumínio (plano <i>xy</i> em <i>z</i> = 0 – detalhe). Mapas de isotérmicas para $Re = 100$ considerando um único aquecedor ativo em um substrato de alumínio (plano <i>xz</i> em <i>y</i> = 0,05 <i>H</i> – detalhe). Coeficientes de influência g_{12}^+ , g_{13}^+ e g_{23}^+ considerando o substrato de acrílico. Coeficientes de influência g_{12}^+ , g_{13}^+ e g_{23}^+ considerando o substrato de acrílico. Coeficientes de influência g_{21}^+ , g_{13}^+ e g_{23}^+ considerando o substrato de alumínio. Mapas de isotérmicas para $Re = 100$ considerando o substrato de acrílico. Coeficientes de influência g_{21}^{+} , g_{31}^+ e g_{32}^+ considerando o substrato de acrílico. Coeficientes de influência g_{21}^+ , g_{31}^+ e g_{32}^+ considerando o substrato de acrílico. Mapas de is

LISTA DE TABELAS

Capítulo 3		
Tabela 3.1.	Comparação dos resultados numéricos com ANSYS (2011)	34
Tabela 3.2.	Resultados numéricos do estudo de refinamento da grade computacional	36
a (1)		
Capítulo 4		
Tabela 4.1.	Comprimento L_{rec} da recirculação a jusante do aquecedor protuberante #304	44
Tabela 4.2.	Parâmetros fluidodinâmicos de interesse	47
Tabela 4.3.	Nusselt adiabático médio considerando um substrato adiabático	49
Tabela 4.4.	Coeficiente C e expoente m da Eq. (4.5)	49
Tabela 4.5.	Coeficientes de influência g_{nn}^+ considerando um substrato adiabático0	50
Tabela 4.6.	Coeficientes de influência g_{12}^+ , g_{13}^+ e g_{23}^+ considerando um substrato adiabático0	53
Tabela 4.7.	Coeficientes de influência g_{21}^+ , g_{31}^+ e g_{32}^+ considerando um substrato adiabático0	54
Tabela 4.8.	Temperatura média dos aquecedores 3D protuberantes nos Testes 1-1-1, .532 e .433	
	considerando substrato adiabático	55
Tabela 4.9.	Fração (q _s /q) considerando substratos condutivos	58
Tabela 4.10.	Coeficientes de influência g_{nn}^+ considerando diferentes substratos condutivos00	60
Tabela 4.11.	Coeficientes de influência g_{12}^+ , g_{13}^+ e g_{23}^+ considerando diferentes substratos condutivos 0	66
Tabela 4.12.	Coeficientes de influência g_{21}^+ , g_{31}^+ e g_{32}^+ considerando diferentes substratos condutivos 0	68
Tabela 4.13.	Temperatura média dos aquecedores 3D protuberantes no Teste 1-1-1 considerando os substratos condutivos	70

LISTA DE SIGLAS

DAMEC	Departamento Acadêmico de Mecânica
LPC	Laboratório de Pesquisa Computacional
РСВ	Placa de Circuito Impresso
PG	Ponta Grossa
PPGEM	Programa de Pós-Graduação em Engenharia Mecânica
RAM	Randon-Access Memory
SIMPLE	Semi-Implicit Method for Pressure Linked Equations
TCC	Trabalho de Conclusão de Curso
UTFPR	Universidade Tecnológica Federal do Paraná
VC	Volumes de Controle
2D	Bidimensional
3D	Tridimensional

LISTA DE SÍMBOLOS

Letras Latinas

A	Área Superficial de Troca de Calor [m ²]
С	Coeficiente, Eq. (4.5)
c_p	Calor Específico a Pressão Constante do Fluido [J/kg.K]
G	Função de <i>Green</i> Discreta [W/K]
G^+	Matriz que Agrupa os Coeficientes de Influência Conjugados, Eq. (2.9)
G^{-l}	Função de Green Discreta Inversa, Eq. (2.8)
g^+	Coeficiente de Influência Conjugado, Eq. (2.10)
g^*	Função de Superposição Discretizada, Eq. (2.4)
g^{-l}	Termo da Função de Green Discreta Inversa, Eq. (2.7)
Н	Altura do Canal [m]
H_h	Altura do Aquecedor [m]
h _{ad}	Coeficiente Adiabático de Transferência de Calor [W/m ² .K]
h _{ref}	Coeficiente de Transferência de Calor Baseado na Temperatura de
	Referência [W/m ² .K]
h_∞	Coeficiente de Transferência de Calor Baseado na Temperatura de
	Corrente Livre [W/m ² .K]
h_m	Coeficiente de Transferência de Calor Baseado na Temperatura Média de
	Mistura [W/m ² .K]
h_0	Coeficiente de Transferência de Calor Baseado na Temperatura de
	Entrada [W/m ² .K]
i	Número do Aquecedor Considerado, Eq. (2.4)
k	Condutividade Térmica do Fluido de Trabalho [W/m.K]
k_h	Condutividade Térmica do Aquecedor [W/m.K]
k_s	Condutividade Térmica do Substrato [W/m.K]
L	Comprimento do Canal [m]
L_h	Comprimento do Aquecedor [m]
L_s	Distância entre Aquecedor [m]
L_u	Comprimento Livre a Montante do Primeiro Aquecedor [m]
L_d	Comprimento Livre a Jusante do Terceiro Aquecedor [m]
L _{rec}	Comprimento da Recirculação a Jusante do Terceiro Aquecedor [m]

Ν	Número de Aquecedores, Fig. (2.1)
n	Número do Aquecedor Influenciado, Eq. (2.4)
ṁ	Vazão Mássica do Escoamento no Canal [kg/s]
$\overline{Nu}_{ad,n}$	Número de Nusselt Médio de um Aquecedor Baseado na Temperatura
	Adiabática, Eq. (4.5)
$\overline{Nu}_{0,n}$	Número de Nusselt Médio do Aquecedor Baseado na Temperatura de
	Entrada, Eq. (3.7)
р	Pressão [Pa]
Pe	Número de Peclet
q	Taxa de Transferência de Calor [W]
q_s	Taxa de Transferência de Calor Correspondente à Condução no Substrato
	[W]
q_f	Taxa de Transferência de Calor Calor Correspondente à Convecção [W]
q_{conv}	Taxa de Transferência de Calor Calor Trocado por Convecção [W]
Re	Número de <i>Reynolds</i> , Eq. (3.4)
S	Termo Fonte, Eq. (3.3)
T _{ad}	Temperatura Adiabática [K]
T_s	Temperatura Superficial [K]
T _{ref}	Temperatura de Referência [K]
T_∞	Temperatura de Corrente Livre [K]
T_m	Temperatura Média de Mistura [K]
T_0	Temperatura de Entrada [K]
T_h	Temperatura do Aquecedor [K]
t	Espessura do Substrato [m]
u_0	Velocidade de Entrada [m/s]
и	Componente da Velocidade na Direção x [m/s]
ν	Componente da Velocidade na Direção y [m/s]
W	Componente da Velocidade na Direção z [m/s]
W	Largura do Canal [m]
W_h	Largura do Aquecedor [m]
W_s	Distância entre o Aquecedor e a Borda Lateral do Canal [m]
x	Coordenada Cartesiana [m]
У	Coordenada Cartesiana [m]

z Coordenada Cartesiana [m]

Letras Gregas

δ	Delta de Kronecker, Eq. (3.3)
ζ	Coordenada Adimensional, Eq. (3.6)
μ	Viscosidade Dinâmica do Fluido [Pa.s]
ρ	Massa Específica do Fluido [kg/m ³]

Sobrescritos

R	Marca Registrada
ТМ	Trade Mark
т	Expoente, Eq. (4.5)
	Médio
'	Por Unidade de Comprimento [1/m]
"	Por Unidade de Área [1/m ²]
•	Por Unidade de Tempo [1/s]

Subscritos

ad	Adiabático
conv	Convecção
d	Jusante
f	Fluido
h	Aquecedor
i	Aquecedor Considerado
т	Média de Mistura
n	Aquecedor Influenciado
ref	Referência
rec	Recirculação
S	Substrato
u	Montante
0	Entrada
∞	Corrente Livre do Escoamento

SUMÁRIO

1 INTRODUÇÃO	016
1.1 MOTIVAÇÃO	016
1.2 JUSTIFICATIVA.	018
1.3 OBJETIVOS	020
1.3.1 Objetivos Gerais.	020
1.3.2 Objetivos Específicos.	020
1.4 ORGANIZAÇÃO DO TRABALHO	021
2 REFERENCIAL TEÓRICO	022
3 METODOLOGIA	029
3.1 MODELAGEM MATEMÁTICA	031
3.2 SOLUÇÃO NUMÉRICA.	033
3.2.1 Técnica de Resolução Numérica	033
3.2.2 Verificação Numérica	033
3.2.3 Refinamento da Grade Computacional	034
3.3 PARÂMETROS TERMOFLUIDODINÂMICOS DE INTERESSE	038
4 RESULTADOS E DISCUSSÃO	040
4.1 ESCOAMENTO LAMINAR	041
4.2 RESFRIAMENTO POR CONVECÇÃO FORÇADA	048
4.3 RESFRIAMENTO CONJUGADO POR CONVECÇÃO FORÇADA-CONDUÇÃO	057
5 CONCLUSÃO.	075
REFERÊNCIAS	076

1. INTRODUÇÃO

1.1. Motivação

Com o advento da eletrônica moderna, os equipamentos eletrônicos se tornaram mais rápidos, incorporaram maiores funcionalidades e foram miniaturizados, acarretando inevitavelmente um aumento significativo na densidade de potência, como no caso de *smartphones, notebooks, tablets* e computadores (NISHIDA, 2012). Outro ponto importante é o aumento no rendimento de processadores e placas de circuito impresso através de um procedimento conhecido como *overclocking* – processo que força um componente eletrônico a trabalhar em uma frequência mais alta do que aquela especificada pelo fabricante, consumindo mais energia, porém melhorando o seu desempenho. Essa técnica pode ser um tanto arriscada, pois com o aumento da frequência, pode-se desestabilizar o sistema, causando danos ao *hardware* (BARBUR, 2013).

Os componentes eletrônicos são compostos por placas e fios condutores de energia, que transmitem elétrons visando exercer suas respectivas funções e com isso há uma geração de calor. A esse fenômeno dá-se o nome de Efeito *Joule*. Caso o gerenciamento térmico não seja executado satisfatoriamente, altas temperaturas de operação dos componentes eletrônicos poderão comprometer o seu desempenho e confiabilidade (KRAUS & BAR-COHEN, 1983). O fator de falha do equipamento eletrônico aumenta quase que exponencialmente com a temperatura de operação, que não deve ultrapassar um valor entre 85°C e 100°C (PETERSON & ORTEGA, 1990). As possíveis causas das falhas são a difusão do material semicondutor, as reações químicas, a movimentação da colagem dos materiais e as tensões térmicas (ÇENGEL & GHAJAR, 2012).

As recentes tecnologias de empacotamento eletrônico requerem uma combinação de materiais e mecanismos de transferência de calor apropriados para manter as temperaturas dos componentes eletrônicos em um nível aceitável de operação (BAR-COHEN *et al.*, 2003). Por isso, há uma demanda crescente de projetos térmicos apropriados em todos os níveis de empacotamento. De acordo com Alves (2010), o controle térmico de um equipamento eletrônico pode ser caracterizado conforme com o nível de empacotamento relevante, conforme indicado na Fig. 1.1.

Figura 1.1. Níveis de empacotamento eletrônico. Fonte: Çengel & Ghajar (2012)

Os Níveis 0 e 1 de empacotamento eletrônico consistem no *chip* e em seu invólucro, respectivamente. Nestes níveis é considerada apenas a condução como transferência de calor, pois todos os componentes estão em contato direto. O Nível 2 engloba as placas de circuito impresso (PCB's), onde estão montados diversos componentes eletrônicos que dissipam calor. Tipicamente, a remoção do calor gerado neste nível ocorre tanto por condução na PCB como por convecção para o fluido de resfriamento. Nos Níveis 3 e 4, respectivamente, um conjunto de PCB's e sistema, o controle térmico engloba a utilização de técnicas ativas de transferência de calor, tais como ventilação forçada, sistemas de refrigeração e trocadores de calor.

Na Figura 1.2 são apresentadas diversas configurações encontradas no Nível 2 de empacotamento eletrônico. Elas englobam o aquecimento discreto de uma placa de circuito impresso e diversas configurações abrangendo: (a) aquecedor bidimensional – 2D rente à superfície, (b) aquecedor tridimensional – 3D rente à superfície, (c) aquecedor 2D protuberante, (d) aquecedores 2D protuberantes, (e) aquecedor 3D protuberante, (f) fileira de aquecedores 3D protuberantes, (g) coluna de aquecedores 3D protuberantes e (h) arranjo de aquecedores 3D protuberantes.

Figura 1.2. Diversas disposições de aquecedores discretos no Nível 2 de empacotamento eletrônico. Fonte: Adaptado Joshi & Nakayama (2003)

1.2. Justificativa

Na transferência de calor por convecção forçada, o coeficiente convectivo para escoamentos internos comumente é referido à temperatura média de mistura ou à temperatura do fluido na entrada do canal. Este importante parâmetro térmico depende notadamente das condições de contorno térmicas na superfície do canal e pode apresentar grandes variações e, até mesmo, descontinuidades quando as condições de contorno térmicas são não-uniformes (KAYS *et al.*, 2005). No caso de aquecedores discretos montados em um substrato adiabático de um canal retangular horizontal, uma variação da taxa de geração de calor em qualquer aquecedor altera a distribuição do coeficiente convectivo baseado nestas temperaturas de referência. Este comportamento do coeficiente de transferência de calor por convecção forçada motivou a busca por descritores que não fossem afetados por condições de contorno térmicas não-uniformes (MOFFAT, 1998).

Recorrendo à literatura disponível, dois descritores invariantes do processo de transferência de calor por convecção forçada foram encontrados. O primeiro foi o coeficiente adiabático de transferência de calor, h_{ad} (ANDERSON & MOFFAT, 1990), baseado na temperatura adiabática da superfície, T_{ad} (ARVIZU & MOFFAT, 1981). O segundo foi o tratamento através da função de *Green* discreta, *G* (HACKER & EATON, 1995). Ambos fazem uso do princípio de superposição, baseado na linearidade da equação da energia, proposto por *Jean-Marie Constant Duhamel* em 1834 (GRATTAN-GUINNESS, 1990), e de coeficientes de influência que são invariantes em relação a mudanças nas condições de universidade de *Stanford* nos Estados Unidos da América, foram aplicados com sucesso em problemas de convecção forçada de aquecedores discretos montados em substrato adiabático.

Para problemas complexos envolvendo mais do que um mecanismo de transferência de calor de aquecedores discretos montados em um substrato condutivo, como nenhum trabalho disponível na literatura consultada havia apresentado um descritor invariante do processo conjugado de transferência de calor por convecção forçada-condução, Alves (2010) propôs em sua Tese de Doutorado uma extensão da função de *Green* discreta como um descritor invariante dos problemas conjugados de transferência de calor por convecção forçada-condução. Este descritor foi apresentado por meio de coeficientes de influência conjugados g^+ agrupados em uma matriz conjugada G^+ . Com isso, para uma condição de aquecimento discreto não-uniforme em um substrato condutivo, a temperatura em cada aquecedor pôde ser determinada a partir do conhecimento das taxas arbitrárias de dissipação de calor nos aquecedores. Esta metodologia foi apresentada e validada numericamente em Alves & Altemani (2012) para configurações 2D considerando o escoamento laminar.

Apesar da simplicidade na aplicação dos coeficientes de influência conjugados g^+ , deve ser destacado que a metodologia empregada para obtenção da matriz conjugada G^+ requer um esforço significativo. Ressalta-se ainda que este tratamento exclui a necessidade de obtenção de descritores invariantes convectivos como o coeficiente adiabático de transferência de calor (h_{ad}) ou a função de *Green* discreta inversa (G^{-1}).

1.3. Objetivos

Neste Trabalho de Conclusão de Curso, serão considerados problemas motivados pela configuração (g) da Fig. 1.2, classificada no Nível 2 de empacotamento eletrônico associados ao controle térmico de uma coluna de aquecedores 3D protuberantes montados em uma placa de circuito impresso. O espaço disponível para estes aquecedores pode ser restrito e o resfriamento deve ser obtido por convecção forçada laminar. Sob estas condições, pode não haver espaço suficiente para a instalação de aletas nestes componentes com dissipação concentrada de calor. Neste caso, de acordo com Nakayama (1997) e Alves & Altemani (2010, 2012), o controle térmico dos aquecedores 3D protuberantes discretos será beneficiado pelo resfriamento conjugado por convecção forçada-condução.

1.3.1. Objetivo Geral

Executar a validação numérica do descritor invariante do processo conjugado de transferência de calor por convecção forçada-condução de aquecedores 3D protuberantes em canais, por meio da obtenção dos coeficientes de influência conjugados g^+ , agrupados em uma matriz conjugada G^+ . Com este descritor, a temperatura de cada aquecedor 3D protuberante montado em um substrato condutivo de um canal retangular horizontal com escoamento laminar poderá ser determinada a partir do conhecimento de taxas arbitrárias de dissipação de calor nos aquecedores.

1.3.2. Objetivos Específicos

Os objetivos específicos deste Trabalho de Conclusão de Curso são:

- Simular numericamente, através do *software ANSYS/Fluent*[®] 14.5, o resfriamento por convecção forçada de aquecedores 3D protuberantes montados em um substrato adiabático de um canal retangular horizontal;
- Simular numericamente, através do *software ANSYS/Fluent*[®] 14.5, o resfriamento conjugado por convecção forçada-condução de aquecedores 3D protuberantes montados em substratos condutivos de um canal retangular horizontal;
- Determinar o coeficiente adiabático de transferência de calor, h_{ad}, e da função de Green discreta inversa G⁻¹ – dois descritores invariantes do processo de transferência de calor por convecção forçada;

- Determinar a matriz conjugada G⁺ contendo os coeficientes de influência conjugados g⁺ – um descritor invariante do processo conjugado de transferência de calor por convecção forçada-condução;
- Validar numericamente a matriz conjugada G⁺ contendo os coeficientes de influência g⁺ nos diferentes problemas de resfriamento por convecção forçada ou conjugado por convecção forçada-condução.

1.4. Organização do Trabalho

Este Trabalho de Conclusão de Curso foi estruturado em cinco capítulos. Neste primeiro capítulo foram apresentados a motivação, a justificativa e os objetivos do trabalho. No segundo capítulo é apresentado o referencial teórico com uma revisão da literatura. O Capítulo 3 trata da metodologia do trabalho, englobando a modelagem matemática, a solução numérica (técnica de resolução numérica, verificação numérica e refinamento da grade computacional) e os parâmetros termofluidodinâmicos de interesse. No Capítulo 4 são apresentados os resultados e as discussões do escoamento laminar sobre os aquecedores 3D protuberantes, da transferência de calor por convecção forçada e da transferência de calor conjugada por convecção forçada-condução. No sexto e último capítulo são apresentadas as conclusões deste Trabalho de Conclusão de Curso, além de sugestões para trabalhos futuros.

2. REFERENCIAL TEÓRICO

Sir *Isaac Newton* (1622-1727), propôs em 1701 (NEWTON, 1701 *apud* GRIGULL, 1984), uma equação constitutiva para quantificar a taxa da transferência de calor por convecção. A Lei de Resfriamento de *Newton* é expressa por

$$h_{ref} = \frac{q_{conv}}{A(T_s - T_{ref})}, \qquad (2.1)$$

sendo que, q_{conv} é a taxa de transferência de calor por convecção, A é a área de troca de calor, T_s e T_{ref} são, respectivamente, a temperatura superficial e a temperatura de referência do fluido. A escolha da temperatura de referência caracteriza o coeficiente de transferência de calor por convecção correspondente (h_{ref}) .

Considerando condições de contorno térmicas uniformes, a temperatura de referência T_{ref} pode ser apropriadamente escolhida. Nos casos de escoamento externo, a temperatura de referência T_{∞} é a temperatura de corrente livre do escoamento e o coeficiente convectivo correspondente é h_{∞} . No escoamento interno, não há corrente livre, por isso utilizam-se outros parâmetros, como por exemplo, a temperatura média de mistura, T_m , fornecendo h_m . Outra referência é a temperatura de entrada T_0 , fornecendo h_0 .

Existem, entretanto, situações práticas com condições de contorno térmicas nãouniformes na superfície de transferência de calor. Nesses casos, as temperaturas de referência padrão, tais como T_m ou T_0 nos escoamentos internos, podem fornecer um coeficiente convectivo extremamente sensível a variações da temperatura da superfície do canal. Uma descontinuidade na distribuição da temperatura da superfície pode levar a uma descontinuidade do coeficiente local de transferência de calor (KAYS *et al.*, 2005).

No caso de substratos contendo aquecedores discretos montados em sua superfície, a taxa de calor dissipada em cada aquecedor pode variar arbitrariamente, causando distribuições distintas de temperatura no substrato e nas superfícies dos aquecedores. Como citado anteriormente, considerando as definições tradicionais, o coeficiente convectivo, mantido o escoamento fluido, apresentará uma distribuição distinta para cada condição de aquecimento discreto no substrato. Neste caso, a utilidade do coeficiente convectivo seria limitada, pois ele seria apropriado para uma única condição de contorno térmica (ALVES, 2010).

Esta restrição da utilidade dos coeficientes convectivos tradicionais sugeriu a busca por uma alternativa que fosse independente da condição de aquecimento discreto de um substrato. Conforme citado por Moffat (1998), a primeira solução encontrada para este problema foi apresentada por Anderson & Moffat (1992a,b), em um estudo do resfriamento de componentes eletrônicos discretos montados em um substrato adiabático. Ela surgiu na forma de um coeficiente convectivo cuja temperatura de referência foi a temperatura adiabática da superfície, T_{ad} (ARVIZU & MOFFAT, 1981). Por essa razão, ele é denominado coeficiente adiabático de transferência de calor, h_{ad} , sendo definido por

$$h_{ad} = \frac{q_{conv}/A}{\left(T_s - T_{ad}\right)}.$$
(2.2)

A temperatura adiabática de uma superfície é definida por Moffat (2004) como a temperatura que ela atingiria se fosse isolada termicamente enquanto todas as outras partes do sistema ainda dissipassem calor nas mesmas taxas e mantivessem suas temperaturas inalteradas. Com esta nova definição, os resultados obtidos indicaram que o coeficiente convectivo adiabático h_{ad} possui algumas propriedades importantes. Primeiro, ele é mensurável por um teste simples, considerando um único elemento aquecido no substrato de cada vez. Segundo, e talvez mais importante, h_{ad} é independente das condições de contorno térmicas, isto é, ele constitui um descritor invariante do processo de transferência de calor por convecção forçada. Seus valores são positivo-definidos, limitados e uma função somente da geometria, do campo de escoamento fluido e das propriedades termofísicas do fluido de resfriamento.

Este procedimento pode ser aplicado na transferência de calor por convecção forçada de uma configuração contendo N aquecedores 2D protuberantes montados em um substrato de um canal horizontal, como indicado na Fig. 1.2(d). Considerando um substrato adiabático, o aumento de temperatura no aquecedor discreto n pode ser descrito como a soma de duas contribuições. Uma, devido à esteira térmica causada pelo aquecimento dos outros aquecedores (aumento da temperatura adiabática) e a outra, devido ao seu próprio aquecimento (auto-aquecimento).

$$\Delta T_n = (T_h - T_0)_n = (T_{ad} - T_0)_n + (T_h - T_{ad})_n.$$
(2.3)

Na Equação (2.3), T_h indica a temperatura da superfície do aquecedor discreto *n* considerado, T_0 a temperatura do fluido na entrada do canal e T_{ad} a temperatura adiabática do aquecedor. Além disso, o primeiro termo do lado direito desta equação representa o efeito da esteira térmica causada pelo aquecimento a montante (assumindo um comportamento parabólico), enquanto o segundo termo representa o auto-aquecimento. Devido à linearidade da equação da energia, estes termos podem ser expressos por uma função de superposição discretizada g^* proposta por Anderson & Moffat (1992a,b), como

$$\Delta T_n = \left(T_h - T_0\right)_n = \sum_{i=1}^{n-1} \frac{q'_i}{\dot{m}' c_p} g_{ni}^* + \frac{q'_n}{\dot{m}' c_p} g_{nn}^*, \qquad (2.4)$$

sendo que, \dot{m}' é a vazão mássica do escoamento fluido por unidade de comprimento, c_p é o calor específico a pressão constante do fluido, q'_i e q'_n são, respectivamente, as taxas de dissipação de calor por unidade de comprimento nos aquecedores $i \in n$, $g^*_{ni} \in g^*_{nn}$ são, respectivamente, as funções de superposição discretizada esteira térmica e auto-aquecimento. Note que o aquecedor i está localizado a montante do aquecedor n.

A função de superposição discretizada g_{ni}^* relaciona o aumento da temperatura adiabática do aquecedor discreto *n* devido à taxa de dissipação de calor no aquecedor discreto *i*. Ela pode ser associada ao aumento da temperatura média de mistura $(\Delta T_m)_n$ como

$$g_{ni}^{*} = \frac{(T_{ad} - T_{0})_{ni}}{(\Delta T_{m})_{n}}.$$
(2.5)

Como os aquecedores discretos são montados somente em um substrato adiabático do canal horizontal, a distribuição de temperatura do escoamento fluido é não-uniforme devido à incompleta mistura e a função de superposição discretizada g_{ni}^* é sempre maior do que um.

A segunda função de superposição discretizada na Eq. (2.4), g_{nn}^* , representa o aumento da temperatura do aquecedor discreto *n* devido ao auto-aquecimento. Ela também pode ser expressa como a razão entre duas diferenças de temperatura,

$$g_{nn}^* = \frac{\left(T_h - T_{ad}\right)_n}{\left(\varDelta T_m\right)_n} \tag{2.6}$$

Na literatura existem diversos trabalhos que investigaram o coeficiente adiabático de transferência de calor e a função de superposição discretizada g^* para configurações de canais de placas paralelas contendo aquecedores discretos montados em um substrato adiabático. Dentre eles, destacam-se: Sparrow *et al.* (1980, 1982), Arvizu & Moffat (1981), Arvizu *et al.* (1985), Moffat *et al.* (1985), Lehmann & Wirtz (1985), Hollworth & Fuller (1987), Garimella & Eibeck (1990, 1991), Moffat & Anderson (1990), Anderson & Moffat (1990, 1991), Faghri & Sridhar (1991), Faghri *et al.* (1991), Wirtz & Chen (1991), Molki *et al.* (1993, 1995), Anderson (1994), Kang (1994), Nakayama & Park (1996), Moffat (1998), Molki & Faghri (2000), Rhee & Moffat (2006) e Alves & Altemani (2007, 2008a, 2010a, 2012).

Hacker & Eaton (1995) utilizaram uma função de *Green* discreta e sua inversa como uma generalização do conceito da função de superposição discretizada g^* . Neste novo procedimento, o conceito do coeficiente de transferência de calor por convecção não foi necessário, embora o conhecimento da função de *Green* para uma dada situação permita que h_{ad} e T_{ad} sejam obtidos.

A aplicação do conceito da função de *Green* inversa foi baseada na linearidade da equação da energia e utiliza a resposta térmica de fluxos uniformes de calor impostos em uma superfície de interesse. Este conceito pode ser ilustrado com auxílio da configuração 2D indicada na Fig. 2.1, representando um substrato adiabático contendo *N* aquecedores discretos rentes à superfície, que podem ser aquecidos de forma independente (taxas arbitrárias de dissipação de calor: condições de contorno térmicas não-uniformes).

Figura 2.1. Determinação dos coeficientes g_{n1}^{-1} da função de *Green* discreta inversa. Fonte: Alves (2010)

O aumento da temperatura média de um aquecedor discreto n foi expresso por Hacker & Eaton (1995) pela soma dos efeitos de todos os N aquecedores discretos montados no substrato adiabático, através de

$$\Delta T_n = (T_h - T_0)_n = \sum_{i=1}^N g_{ni}^{-1} q'_i.$$
(2.7)

Na Equação (2.7), g_{ni}^{-1} representa o termo da função de *Green* discreta inversa (G^{-1}), que relaciona a taxa de dissipação de calor por unidade de comprimento q'_i no aquecedor *i* ao aumento da temperatura média ΔT_n resultante no aquecedor *n*. Esta equação pode ser representada de forma compacta através da seguinte notação matricial

$$\Delta \boldsymbol{T} = \boldsymbol{G}^{-1} \boldsymbol{q}' \,, \tag{2.8}$$

ou ainda, na forma expandida,

$$\begin{bmatrix} \Delta T_1 \\ \Delta T_2 \\ \vdots \\ \Delta T_N \end{bmatrix} = \begin{bmatrix} g_{11}^{-1} & g_{12}^{-1} & \cdots & g_{1N}^{-1} \\ g_{21}^{-1} & g_{22}^{-1} & \cdots & g_{2N}^{-1} \\ \vdots & \vdots & \ddots & \vdots \\ g_{N1}^{-1} & g_{N2}^{-1} & \cdots & g_{NN}^{-1} \end{bmatrix} \begin{bmatrix} q_1' \\ q_2' \\ \vdots \\ q_N' \end{bmatrix}.$$
(2.9)

Nas Equações (2.8) e (2.9) ΔT representa um vetor contendo o aumento da temperatura média resultante em cada aquecedor discreto e q' é um vetor indicando as taxas de dissipação de calor por unidade de comprimento em cada aquecedor discreto. Nos escoamentos não-separados, o efeito do aquecimento de cada aquecedor discreto não afeta o aumento de temperatura média dos aquecedores posicionados a montante, de forma que a matriz quadrada G^{-1} de ordem N, torna-se triangular inferior ($g_{ni}^{-1} = 0$ para i > n).

Exemplos da aplicação da função de *Green* discreta para condições de contorno térmicas não-uniformes podem ser encontrados nos seguintes trabalhos disponíveis na literatura: Hacker & Eaton (1997), Batchelder & Eaton (2001), Mukerji & Eaton (2002, 2005), Mukerji *et al.* (2004), Booten & Eaton (2005, 2007) e Booten *et al.* (2006).

Alves (2010) propôs uma extensão da função de *Green* discreta inversa (HACKER & EATON, 1995) para englobar os problemas conjugados de convecção forçada-condução de aquecedores discretos montados em um substrato condutivo através do uso de coeficientes de influência conjugados g^+ , agrupados em uma matriz conjugada G^+ . Pelo princípio de superposição, baseado na linearidade da equação da energia, o aumento da temperatura média de um aquecedor discreto *n* em uma configuração 2D, como mostrada da Fig. 1.2(d), pode ser expresso pela soma dos efeitos de todos os *N* aquecedores discretos montados no substrato condutivo.

$$\Delta T_n = (T_h - T_0)_n = \frac{1}{\dot{m}' c_p} \sum_{i=1}^N g_{ni}^+ q_i'.$$
(2.10)

Na Equação (2.10), o coeficiente de influência conjugado g_{ni}^+ relaciona o aumento da temperatura média do aquecedor discreto *n* resultante de uma dissipação de calor por unidade de comprimento no aquecedor discreto *i*. Para problemas particulares de convecção forçada estes coeficientes de influência podem ser associados ao coeficiente adiabático de transferência de calor e à função superposição discreta (ANDERSON & MOFFAT, 1992a,b), ou à função de *Green* discreta inversa (HACKER & EATON, 1995).

Na forma matricial, a Eq. (2.10), pode ser escrita como

$$\Delta \boldsymbol{T} = \frac{1}{\dot{m}' \boldsymbol{c}_p} \boldsymbol{G}^+ \boldsymbol{q}', \qquad (2.11)$$

ou na forma expandida,

$$\begin{bmatrix} \Delta T_1 \\ \Delta T_2 \\ \vdots \\ \Delta T_N \end{bmatrix} = \frac{1}{\dot{m}' c_p} \begin{bmatrix} g_{11}^+ & g_{12}^+ & \cdots & g_{1N}^+ \\ g_{21}^+ & g_{22}^+ & \cdots & g_{2N}^+ \\ \vdots & \vdots & \ddots & \vdots \\ g_{N1}^+ & g_{N2}^+ & \cdots & g_{NN}^+ \end{bmatrix} \begin{bmatrix} q_1' \\ q_2' \\ \vdots \\ q_N' \end{bmatrix}.$$
(2.12)

A matriz conjugada G^+ , proposta em Alves (2010), contendo os coeficientes de influência conjugados g^+ , é um descritor invariante do processo de transferência de calor conjugada por convecção forçada-condução. Desta forma, uma vez definida a matriz quadrada G^+ de ordem N, o aumento da temperatura média de um aquecedor discreto, resultante de uma distribuição arbitrária da taxa de dissipação de calor em todos os aquecedores discretos, pode ser predito pela Eq. (2.10).

Considerando uma configuração 3D, o aumento da temperatura média de um aquecedor discreto n, Fig. 1.2(h), pode ser representado pelo somatório dos efeitos de todos os N aquecedores discretos montados no substrato condutivo.

$$\Delta \overline{T}_{n} = (\overline{T}_{h} - T_{0})_{n} = \frac{1}{\dot{m}c_{p}} \sum_{i=1}^{N} g_{ni}^{+} q_{i} , \qquad (2.13)$$

Na forma matricial, a Eq. (2.13) pode ser escrita como:

$$\Delta \overline{T} = \frac{1}{\dot{m}c_p} G^+ q , \qquad (2.14)$$

ou na forma expandida,

$$\begin{bmatrix} \Delta \overline{T}_{1} \\ \Delta \overline{T}_{2} \\ \vdots \\ \Delta \overline{T}_{N} \end{bmatrix} = \frac{1}{\dot{m}c_{p}} \begin{bmatrix} g_{11}^{+} & g_{12}^{+} & \dots & g_{1N}^{+} \\ g_{21}^{+} & g_{22}^{+} & \dots & g_{2N}^{+} \\ \vdots & \vdots & \ddots & \vdots \\ g_{N1}^{+} & g_{N2}^{+} & \dots & g_{NN}^{+} \end{bmatrix} \begin{bmatrix} q_{1} \\ q_{2} \\ \vdots \\ q_{N} \end{bmatrix}$$
(2.15)

Os termos diagonais g_{nn}^+ estão associados aos efeitos de auto-aquecimento, ou seja, a resposta da temperatura de um aquecedor *n* à potência dissipada por ele mesmo. Os termos g_{ni}^+ fora da diagonal principal representam o efeito de esteira térmica, ou seja, o efeito da potência dissipada nos demais aquecedores na temperatura de um aquecedor *n* da configuração. Sendo que os termos que estão acima da diagonal principal representam a influência da esteira térmica de um aquecedor com relação aos que estão à montante dele. E os termos abaixo da diagonal principal demonstram o coeficiente de influência com relação a aquecedores à jusante do mesmo.

Exemplos de aplicação desta metodologia considerando apenas um aquecedor 3D protuberante podem ser encontrados nos seguintes trabalhos disponíveis na literatura: Loiola (2011), Loiola & Altemani (2012, 2013a, 2013b), Barbur (2013) e Alves & Barbur (2014).

3. METODOLOGIA

No desenvolvimento deste Trabalho de Conclusão de Curso – TCC foram considerados problemas associados ao controle térmico de uma coluna de aquecedores 3D protuberantes montados em uma placa de circuito impresso, como indicado na Fig. 3.1. Estes problemas são motivados pela configuração (g) da Fig. 1.2, classificada no Nível 2 de empacotamento eletrônico. O espaço disponível para os aquecedores pode ser limitado e o resfriamento deve ocorrer por convecção forçada com baixas velocidades devido a limitações operacionais e redução de ruídos.

Figura 3.1. Configuração com uma coluna de aquecedores 3D protuberantes montados em uma PCB.

A configuração básica consistiu em um canal retangular horizontal com três aquecedores 3D protuberantes montados em um substrato condutivo, que se encontra na parede inferior do canal, como mostrado na Fig. 3.2. Neste caso, os aquecedores protuberantes, com uma condutividade térmica k_h , são paralelepípedos com altura H_h , comprimento L_h e largura W_h e estão espaçados entre si por uma distância L_s . A borda à montante do primeiro aquecedor está posicionada em L_u da entrada do canal, a borda à jusante do terceiro aquecedor está a L_d da saída do canal e as bordas laterais dos aquecedores encontram-se a uma distância W_s das paredes laterais do canal. O canal retangular possui comprimento L, altura H e largura W. O substrato possui a mesma largura e mesmo comprimento que o canal, porém sua espessura é t e ele apresenta uma condutividade térmica k_s .

Figura 3.2. Domínio com três aquecedores 3D montados no substrato de um canal retangular horizontal.

O resfriamento dos aquecedores 3D protuberantes ocorreu por meio de um escoamento laminar forçado com propriedades constantes sob condições de regime permanente. Uma taxa uniforme de geração de calor foi assumida nos aquecedores protuberantes. Na entrada do canal, os perfis de velocidade (u_0) e de temperatura (T_0) foram considerados uniformes. As superfícies superior e inferior do canal foram adiabáticas. O substrato pode ser adiabático ou condutivo.

Considerando um substrato adiabático, o resfriamento ocorre apenas por convecção forçada. Para um substrato condutivo, o problema é caracterizado por um resfriamento conjugado por convecção forçada-condução. Neste caso, existem dois caminhos térmicos para a transferência de calor q dos aquecedores 3D protuberantes para o escoamento fluido (Fig. 3.3). Um por convecção forçada, diretamente das superfícies dos aquecedores em contato com o escoamento, transferindo calor em uma taxa q_f , e outro, por condução através das interfaces entre os aquecedores e o substrato condutivo, transmitindo q_s . Como a superfície inferior do substrato é adiabática, a taxa de transferência de calor por condução q_s , é, então, transferida novamente ao escoamento por convecção forçada na superfície do substrato (ALVES, 2010).

Figura 3.3. Caminhos térmicos considerando substrato condutivo. Fonte: Alves (2010)

3.1. Modelagem Matemática

A modelagem matemática do problema será efetuada para um domínio único, compreendendo as regiões sólidas (aquecedores 3D protuberantes e substrato) e o escoamento fluido. Devido à simetria do problema, as equações de conservação foram formuladas para o domínio de comprimento *L*, largura W/2, e altura (H+t), como mostrado da Fig. 3.4.

Figura 3.4. Domínio da modelagem matemática do problema.

As equações governantes englobam os princípios de conservação de massa, de *momentum* e de energia no domínio considerado, sob condições de regime permanente, propriedades constantes e dissipação viscosa desprezível. Os eventuais efeitos de convecção natural, de radiação térmica e de oscilação do escoamento não serão considerados nesta modelagem, um procedimento adotado em problemas similares, por exemplo, Alves & Barbur (2014), Alves & Altemani (2012), Zeng & Vafai (2009), Davalath & Bayazitoglu (1987) e Ramadhyani *et al.* (1985).

Conservação da Massa (Equação da Continuidade)

$$\nabla \cdot \boldsymbol{u} = 0 \tag{3.1}$$

Conservação do *Momentum* (Equação de *Navier-Stokes*)

$$\rho(\boldsymbol{u}\cdot\nabla)\boldsymbol{u} = -\nabla p + \mu\nabla^2\boldsymbol{u}$$
(3.2)

Conservação da Energia (Equação do Calor)

$$\rho c_p \left(\boldsymbol{u} \cdot \nabla \right) T = k \nabla^2 T + \delta S \tag{3.3}$$

Na equação da energia, $\delta = 1$ na região dos aquecedores 3D protuberantes e $\delta = 0$ nas regiões do substrato e do fluido.

As condições de contorno fluidodinâmicas consideradas foram perfil de velocidade uniforme (u_0) na entrada do canal e velocidade nula na interface sólido-fluido (condição de não-deslizamento). Na saída do canal, o escoamento foi tratado com uma difusão desprezível na direção *x* para as três componentes de velocidade.

As condições térmicas foram perfil de temperatura uniforme (T_0) na entrada do canal e na sua saída a difusão térmica na direção x foi desprezada. As superfícies superior, inferior e lateral do domínio foram consideradas adiabáticas. Nas interfaces aquecedores 3D protuberantes-substrato foi admitido contato térmico perfeito.

A condição de contorno de simetria (condição periódica) é aplicada para os campos de velocidade e de temperatura (mesmas geometria e dissipação de calor em cada um dos aquecedores 3D protuberantes) no plano *xy* central.

3.2. Solução Numérica

3.2.1. Técnica de Resolução Numérica

As equações governantes com suas condições de contorno foram resolvidas numericamente utilizando o Método dos Volumes de Controle (PATANKAR, 1980) através do *software ANSYS/Fluent*[®] 14.5. O algoritmo *SIMPLE* foi utilizado para tratar do acoplamento pressão-velocidade nas Equações da Continuidade e do *Momentum*. A discretização dos termos difusivo-convectivos foi feita através do Esquema *Upwind* de Segunda Ordem. Devido às não-linearidades na Equação do *Momentum*, as componentes de velocidade e a correção da pressão foram sub-relaxadas para prevenir instabilidade e divergência. O critério de parada do processo iterativo de resolução foi estabelecido para mudanças absolutas das variáveis primitivas menores do que quatro algarismos significativos entre duas iterações consecutivas, enquanto a conservação global de massa no domínio foi satisfeita em todas as iterações.

As simulações numéricas foram executadas em um microcomputador com processador *Intel*[®] *Core*[®] *i*7 3,6 GHz com 16 GB de RAM e placa de vídeo de 4 GB pertencente ao Laboratório de Pesquisa Computacional, vinculado ao Programa de Pós-Graduação (Mestrado) em Engenharia Mecânica do Departamento Acadêmico de Mecânica da UTFPR/*Campus* Ponta Grossa (LPC/DAMEC/UTFPR/Ponta Grossa). O tempo de processamento computacional de uma solução típica, considerando o resfriamento conjugado por convecção forçada-condução dos aquecedores 3D protuberantes, foi de aproximadamente 15 (quinze) minutos.

3.2.2. Verificação Numérica

A verificação dos procedimentos numéricos adotados neste Trabalho de Conclusão de Curso foi realizada através da comparação dos resultados numéricos dos parâmetros termofluidodinâmicos com os apresentados em ANSYS (2011). O problema analisado consistiu do resfriamento conjugado por convecção forçada-condução de uma fileira de aquecedores 3D protuberantes montados em uma placa de circuito impresso, esquematicamente ilustrado na Fig. 3.5.

Figura 3.5. Diagrama esquemático do problema utilizado para realização da verificação numérica. Fonte: Adaptado de ANSYS (2011).

A grade computacional não-uniforme empregada para obtenção destes resultados da verificação numérica foi igual à utilizada em ANSYS (2011). A comparação dos parâmetros termofluidodinâmicos é mostrada na Tab. 3.1. Para todos os parâmetros investigados, não existiu diferença entre os valores dos resultados das simulações numéricas.

Tabela 5.1. Comparação dos resultados númericos com Alis 15 (2011).				
Resultado das Simulações Numéricas	\bar{T}_h [K]	Δ <i>p</i> [Pa]	(q_f/q)	(q_s/q)
Presente Trabalho	435,22	0,1662	0,8442	0,1558
ANSYS (2011)	435,22	0,1662	0,8442	0,1558

Tabela 3.1. Comparação dos resultados numéricos com ANSYS (2011).

3.2.3. Refinamento da Grade Computacional

Um estudo específico foi realizado com o intuito de garantir resultados numéricos independentes do refinamento da grade computacional. Neste estudo, oito grades computacionais foram testadas para selecionar aquela que seria empregada no domínio de cálculo computacional para a obtenção dos resultados numéricos. As Grades Computacionais #1, #2, #3, #4, #5 e #6 são uniformes, como ilustrado na Fig. 3.6, e as Grades Computacionais #7 e #8 (Fig. 3.7) são não-uniformes. Para obtenção das grades computacionais não-uniformes um recurso de adaptação de grade computacional disponível no *software ANSYS/Fluent*[®] 14.5 foi utilizado para refiná-las em regiões críticas do escoamento (maiores gradientes das variáveis primitivas – próximas às interfaces sólido-fluido). O número de volumes de controle no domínio de cálculo computacional foi aumentado até que refinamentos adicionais da grade computacional praticamente não alteravam os resultados obtidos.

Figura 3.6. Configurações das grades computacionais 3D uniformes utilizadas no estudo de refinamento.

(a) Grade Computacional #7: 180.343 VC

(b) Grade Computacional #8: 202.498 VC

Figura 3.7. Configurações das grades computacionais 3D não-uniformes utilizadas no estudo de refinamento.

Os testes envolvendo o estudo de refinamento de grade computacional foram executados considerando o resfriamento por convecção forçada (substrato adiabático) para Re = 200. Os resultados numéricos obtidos são apresentados na Tab. 3.2.

Grade	VC	Δ <i>p</i> [Pa]	$T_{h,1}$ [K] ([°C])	$T_{h,2}$ [K] ([°C])	$T_{h,3}$ [K] ([°C])
#1	11.016	0,9457	486,60 (213,45)	511,51 (238,36)	529,16 (256,01)
#2	22.848	1,0020	454,32 (181,17)	490,38 (217,23)	508,76 (235,61)
#3	43.587	1,0570	436,13 (162,98)	475,76 (202,61)	496,21 (223,06)
#4	70.000	1,0697	425,19 (152,04)	471,62 (198,47)	493,47 (220,32)
#5	86.240	1,0756	420,31 (147,16)	471,16 (198,01)	492,79 (219,64)
#6	143.572	1,0887	416,82 (143,67)	470,74 (197,59)	492,39 (219,24)
#7	180.343	1,0918	411,21 (138,06)	466,09 (192,94)	488,39 (215,24)
#8	202.498	1,0945	412,32 (139,17)	466,87 (193,72)	489,51 (216,36)

Tabela 3.2. Resultados numéricos do estudo de refinamento da grade computacional.

Como mostrado na Tab. 3.2, os resultados obtidos para a queda de pressão total no canal e para as temperaturas médias dos aquecedores 3D protuberantes considerando a Grade Computacional #7 diferem no máximo em aproximadamente 0,25% dos resultados obtidos para a Grade Computacional #8.

Desta forma, a grade computacional que foi utilizada para a obtenção dos resultados numéricos no presente Trabalho de Conclusão de Curso foi a Grade Computacional #7. Ela é uma grade 3D não-uniforme no domínio de solução contendo 180.343 volumes de controle, mostrada nas Figs. 3.8 e 3.9.

Figura 3.8. Grade Computacional 3D não-uniforme que foi utilizada na obtenção dos resultados (perspectiva 3D).

Figura 3.9. Grade Computacional 3D não-uniforme que foi utilizada na obtenção dos resultados.

3.3. Parâmetros Termofluidodinâmicos de Interesse

As distribuições de velocidade, de pressão e de temperatura no domínio considerado são provenientes da resolução das equações governantes. Os resultados obtidos para as variáveis primitivas (u, v, w, p e T) foram utilizados para a definição das grandezas derivadas ou secundárias (parâmetros termofluidodinâmicos de interesse).

O número de *Reynolds* no canal foi baseado na altura H_h dos aquecedores 3D protuberantes e expresso por

$$Re = \frac{\rho \, u_0 \, H_h}{\mu} \,. \tag{3.4}$$

O balanço de energia em cada um dos aquecedores 3D protuberantes é expresso por

$$q = q_f + q_s. aga{3.5}$$

O coeficiente convectivo local, $h(\xi)$, foi definido baseado na diferença entre a temperatura local da superfície do aquecedor, $T_h(\xi)$, e a temperatura de entrada do fluido no canal T_0 ,

$$h_0(\xi) = \frac{q_f''(\xi)}{T_h(\xi) - T_0}.$$
(3.6)

sendo que, $q''_{f}(\xi)$ representa o fluxo térmico local da superfície do aquecedor para o escoamento fluido.

Com a definição do coeficiente convectivo local, Eq. (3.6), o comprimento L_h dos aquecedores foi selecionado como o comprimento característico para o número de *Nusselt* local de cada aquecedor,

$$Nu_{0}\left(\xi\right) = \frac{h_{0}\left(\xi\right)L_{h}}{k}.$$
(3.7)

O coeficiente convectivo e o número de *Nusselt* médios dos aquecedores foram respectivamente definidos como

$$\bar{h}_{0} = \frac{q_{f}}{A_{cv}(\bar{T}_{h} - T_{0})},$$
(3.8)

$$\overline{Nu}_0 = \frac{\overline{h}_0 L_h}{k}.$$
(3.9)

sendo que, A_{cv} é a área das superfícies do aquecedor em contato com o escoamento fluido.

4. RESULTADOS E DISCUSSÃO

Os resultados numéricos do escoamento laminar sobre os aquecedores protuberantes, da transferência de calor por convecção forçada e da transferência de calor conjugada por convecção forçada-condução serão apresentados neste capítulo. Para a obtenção destes resultados, foram utilizados valores típicos de geometria, propriedades e taxas de dissipação de calor encontrados nas aplicações de resfriamento de componentes eletrônicos montados em uma placa de circuito (BAR-COHEN et al., 2003). As configurações geométricas ilustradas na Fig. 3.2, foram baseadas considerando uma altura do canal retangular horizontal de H = 0.01 m. O fluido de resfriamento considerado foi o ar, os aquecedores 3D protuberantes foram considerados como sendo de alumínio puro e o substrato condutivo como sendo uma placa de circuito impresso, acrílico ou alumínio puro. As propriedades dos fluidos e dos sólidos foram consideradas constantes, obtidas à temperatura de 300 K (INCROPERA et al., 2008). As condutividades térmicas da placa de circuito impresso, do acrílico e do alumínio puro foram de 2,2 W/m.K ($k_s/k = 84,3$), 0,19 W/m.K ($k_s/k = 7,3$) e 240 W/m.K ($k_s/k = 9195,4$), respectivamente. A taxa de dissipação de calor em cada aquecedor foi de 1 W (3,33 MW/m³). Os efeitos do número de *Reynolds* foram investigados para Re = 100, 150, 200, 250 e 300,correspondendo a velocidades médias do ar de 0,53 m/s até 1,58 m/s no canal. De acordo com Morris & Garimella (1996), nesta faixa de investigação de Re o regime do escoamento no canal é laminar. Como mencionado anteriormente, os efeitos de convecção natural e de radiação não foram incluídos na modelagem.

A Equação (2.13), que descreve o aumento da temperatura média de um aquecedor n em uma configuração 3D, é expressa para uma coluna de três aquecedores 3D protuberantes, Fig. 3.2, por

$$\Delta \overline{T}_{n} = (\overline{T}_{h} - T_{0})_{n} = \frac{1}{\dot{m}c_{p}} \sum_{i=1}^{3} g_{ni}^{+} q_{i}, \qquad (4.1)$$

ou na forma expandida,

$$\begin{bmatrix} \Delta \overline{T}_{1} \\ \Delta \overline{T}_{2} \\ \Delta \overline{T}_{3} \end{bmatrix} = \frac{1}{\dot{m}c_{p}} \begin{bmatrix} g_{11}^{+} & g_{12}^{+} & g_{13}^{+} \\ g_{21}^{+} & g_{22}^{+} & g_{23}^{+} \\ g_{31}^{+} & g_{32}^{+} & g_{33}^{+} \end{bmatrix} \begin{bmatrix} q_{1} \\ q_{2} \\ q_{3} \end{bmatrix}.$$
 (4.2)

A maneira mais simples de obtenção dos coeficientes de influência conjugados g^+ da matriz quadrada G^+ foi através dos resultados das temperaturas médias e da taxa de dissipação de calor provenientes das simulações numéricas com um único aquecedor ativo por vez. Com o intuito de demonstrar os benefícios da utilização dos coeficientes de influência conjugados g^+ na predição de temperatura, simulações adicionais foram executadas com os três aquecedores ativos no canal, visando a comparação dos resultados numéricos das temperaturas médias dos aquecedores com aquelas preditas pela Eq. (4.1).

4.1. Escoamento Laminar

As características do escoamento fluido sobre os aquecedores 3D protuberantes foram analisadas primeiramente, pois tiveram um papel importante no comportamento do número de *Nusselt* e dos coeficientes de influência conjugados g^+ .

Na Figura 4.1, as linhas de corrente sobre os aquecedores 3D protuberantes, em uma vista em perspectiva 3D, são apresentadas para números de *Reynolds* iguais a 100, 200 e 300. As principais características do escoamento laminar consistem de vórtice(s) ferradura(s) que inicia(m) sua formação à montante do primeiro aquecedor e se desenvolvem ao redor das superfícies laterais dos aquecedores; da formação de uma pequena recirculação à montante do primeiro aquecedores protuberantes adjacentes e de uma região de recirculação à jusante do terceiro aquecedor devido ao recolamento da camada-limite fluidodinâmica do escoamento. Nota-se que com o aumento de *Reynolds*, o escoamento laminar torna-se mais complexo.

Nas Figuras 4.2 e 4.3 são apresentadas as linhas de corrente em detalhe para os planos *xy* e *xz*, respectivamente, considerando diferentes números de *Reynolds*. As características do escoamento sobre os aquecedores 3D protuberantes podem ser melhor observadas.

Figura 4.1. Linhas de corrente sobre aquecedores 3D protuberantes (perspectiva 3D - detalhe).

Na Figura 4.2 pode ser notada uma pequena recirculação à montante do primeiro aquecedor no sentido horário; que as linhas de corrente na região do escoamento principal (acima dos aquedores 3D protuberantes) estavam em uma direção quase paralela ao substrato e que as recirculações formadas entre dois aquecedores adjacentes formaram uma cavidade. Além disso, na região à jusante do terceiro aquecedor, devido ao recoamento do escoamento, uma recirculação no sentido horário foi formada.

Figura 4.2. Linhas de corrente sobre aquecedores 3D protuberantes (plano xy em z = 0 – detalhe).

Na Figura 4.3 observa-se notadamente a formação de vórtice(s) ferradura(s), que se inicia(m) à montante do primeiro aquecedor protuberante e recola(m) à jusante do terceiro aquecedor. Na região entre dois aquecedores protuberantes adjacentes, podem ser visualizadas recirculações (cavidades). Ressalta-se que o comportamento das linhas de corrente se torna mais complexo com o aumento do número de *Reynolds*.

Figura 4.3. Linhas de corrente sobre aquecedores 3D protuberantes (plano xz em y = 0.05H - detalhe).

O comprimento da recirculação (L_{rec}) à jusante do terceiro aquecedor protuberante, ou ainda, a distância entre a aresta da superfície trazeira do aquecedor #3 até o ponto de recolamento da camada-limite fluidodinâmica, é apresentado em função de *Re* na Tab. 4.1 e na Fig. 4.4. O comprimento da recirculação varia linearmente com *Reynolds* ficando mais distante do último aquecedor com o aumento da velocidade. Uma correlação com desvios menores do que 0,05% é apresentada na Eq. (4.3).

Tabela 4.1. Comprimento L_{rec} da recirculação a jusante do aquecedor protuberante #3.

Figura 4.4. Comprimento L_{rec} em função de Reynolds.

$$(L_{rec}/H) = 0,0016 \, Re + 0,7750$$
. (4.3)

Em todos os resultados apresentados neste Trabalho de Conclusão de Curso, o maior comprimento de L_{rec} foi de aproximadamente 1,26*H*, garantindo assim que esta recirculação ficasse sempre dentro do domínio do problema. Além disso, o comprimento à montante do primeiro aquecedor (L_u) foi grande o suficiente para evitar que regiões de recirculação à montante do aquecedor #1 se formassem antes da entrada do canal. A largura do canal também foi mais que suficiente para que a formação de vórtice(s) ferradura(s) não atingisse(m) os limites laterais do canal retangular horizontal.

Nas Figuras 4.5 e 4.6 são apresentados os perfis de velocidade do escoamento laminar de ar para os planos xy e xz, respectivamente, com o intuito da analisar as magnitudes da velocidade e o sentido das recirculações nas diferentes regiões do escoamento. Observa-se o mesmo comportamento fluidodinâmico quando comparadas com as Figs. 4.2 e 4.3.

Figura 4.5. Perfil de velocidade sobre aquecedores 3D protuberantes (plano xy em z = 0 – detalhe).

Figura 4.6. Perfil de velocidade sobre aquecedores 3D protuberantes (plano xz em y = 0.05H – detalhe).

Nas Figuras 4.7 e 4.8 são apresentadas as distribuições de pressão do escoamento laminar de ar para os planos xy e xz, respectivamente.

Figura 4.8. Distribuição de pressão sobre aquecedores 3D protuberantes (plano xz em y = 0,05H).

Como esperado, a pressão na entrada do canal é superior à da saída. As maiores pressões estão localizadas próximas a superfície frontal do primeiro aquecedor 3D protuberante devido ao ponto de estagnação. Além disso, quanto maior o número de *Reynolds*, maiores serão os gradientes de pressão próximos à estagnação e a queda de pressão total no canal retangular horizontal.

Os principais resultados obtidos os parâmetros fluidodinâmicos de interesse, velocidade média, vazão mássica e queda de pressão total no canal, são apresentados na Tab. 4.2.

Re	u_0 [m/s]	<i>m</i> [kg/s]	Δ <i>p</i> [Pa]
100	0,53	0,00043	0,4231
150	0,79	0,00064	0,7314
200	1,06	0,00086	1,0918
250	1,32	0,00107	1,4977
300	1,58	0,00129	1,9450

Tabela 4.2. Parâmetros fluidodinâmicos de interesse.

A Figura 4.9 mostra a queda de pressão total no canal em função do número de *Reynolds*. A queda de pressão aumenta com o aumento de *Re*.

Figura 4.9. Variação da queda de pressão total no canal em função de Re.

Os resultados da queda de pressão total no canal foram correlacionados com desvios menores do que 0,9% por

$$\Delta p = 0,0007 \, Re^{1,389} \,. \tag{4.4}$$

4.2. Resfriamento por Convecção Forçada

Como mencionado anteriormente, primeiramente são mostrados os resultados obtidos de simulações numéricas utilizando o *software ANSYS/Fluent*[®] 14.5 com um aquecedor ativo por vez – determinação dos coeficientes de influência conjugados g^+ . Feito isso, os resultados de simulações adicionais efetuadas com os três aquecedores ativos no canal foram utilizados para comparar as temperaturas médias dos aquecedores com as temperaturas preditas pela Eq. (4.1).

Particularmente no caso com substrato adiabático ($k_s = 0$), quando somente um aquecedor está ativo, a temperatura adiabática média do aquecedor, $\overline{T}_{ad,n}$, coincide com a temperatura de entrada do fluido no canal, T_0 , e, consequentemente, $\overline{Nu}_{ad,n} = \overline{Nu}_{0,n}$. Com isso, os coeficientes de influência g_{nn}^+ , que quantificam o efeito de auto-aquecimento do aquecedor n, e os coeficientes de influência g_{ni}^+ , que indicam a influência térmica de um aquecedor i em um aquecedor n, foram obtidos a partir dos resultados numéricos das temperaturas médias dos aquecedores e da Eq. (4.1).

Nas simulações efetuadas com um único aquecedor ativo, os resultados do número de *Nusselt* adiabático médio de cada aquecedor, $\overline{Nu}_{ad,n}$, são mostrados em função de *Reynolds* na Tab. 4.3 e na Fig. 4.10. Pode ser observado que \overline{Nu}_{ad} depende de *Reynolds* e da posição do aquecedor no canal. Para um mesmo *Re*, a distribuição do *Nusselt* adiabático médio foi maior no primeiro aquecedor, devido às maiores velocidades do escoamento em relação aos demais aquecedores. O terceiro aquecedor apresentou um *Nusselt* adiabático médio intermediário, devido ao fato de que ele possui a superfície à jusante em contato com uma recirculação e, consequentemente, a velocidade do escoamento nessa região é mais lenta. Considerando somente o segundo aquecedor ativo, os valores encontrados para $\overline{Nu}_{ad,2}$ foram os de menores intensidades, pois o aquecedor está situado entre as duas cavidades e, consequentemente, a transferência de calor por convecção forçada será menor implicando maiores temperaturas médias do aquecedor. Em cada aquecedor, \overline{Nu}_{ad} aumenta com *Re*, indicando a queda da temperatura média do aquecedor com o aumento da vazão mássica de fluido no canal.

Re	$\overline{Nu}_{ad,1}$	$\overline{Nu}_{ad,2}$	Nu _{ad,3}
100	11,20	9,78	9,99
150	13,59	11,59	11,88
200	15,66	13,14	13,56
250	17,43	14,52	15,09
300	19,02	15,79	16,53

Tabela 4.3. Nusselt adiabático médio considerando um substrato adiabático.

Figura 4.10. Nusselt adiabático médio considerando um substrato adiabático.

Os resultados do número de *Nusselt* adiabático médio apresentados na Tab. 4.3 foram correlacionados com desvios menores do que 1,0% por

$$Nu_{ad.n} = C R e^m, \tag{4.5}$$

com o coeficiente C e o expoente m mostrados na Tab. 4.4.

 Parâmetro
 Nuad,1
 Nuad,2
 Nuad,3

 C
 1,208
 1,310
 1,208

 m
 0,483
 0,436
 0,458

Tabela 4.4. Coeficiente C e expoente m da Eq. (4.5).

Os resultados para os coeficientes de influência g_{nn}^+ , associados ao autoaquecimento, são mostrados na Tab. 4.5 e na Fig. 4.11. Estes coeficientes aumentam principalmente com *Re*, devido ao aumento da vazão mássica no canal. Eles também dependem da posição do aquecedor 3D protuberante, diminuindo consideravelmente no primeiro aquecedor, em razão da velocidade elevada nesta região e aumentando ligeiramente no aquecedor intermediário, devido às regiões de baixa velocidade decorrentes de recirculações nas cavidades.

Tabela 4.5. Coeficientes de influência g_{nn}^+ considerando um substrato adiabático.

Re	${m g}_{11}^+$	$oldsymbol{g}_{22}^+$	g_{33}^{+}
100	67,1225	76,8459	75,1929
150	82,9397	97,2917	94,8645
200	95,9529	114,4104	110,8445
250	107,7829	129,3623	124,4754
300	118,5245	142,8052	136,4122

Figura 4.11. Coeficientes de influência g_{nn}^+ considerando um substrato adiabático.

Em todas as simulações executadas, apesar da condução axial no meio fluido ter ser tornado desprezível (Pe > 100) e do substrato ser adiabático, a influência térmica na região a montante do aquecimento foi notada. Isto ocorreu em razão das recirculações presentes no escoamento. Este fato é ilustrado nos mapas de isotérmicas nos planos xy e xz considerando Re = 100 mostrados nas Figs. 4.12 e 4.13, respectivamente. Estes resultados indicam que para o caso de um único aquecedor 3D protuberante ativo no canal, a temperatura média de mistura do escoamento na borda a montante do aquecedor, $T_{m,n}$, é maior do que a temperatura de entrada do fluido no canal, T_0 . Para este mesmo caso, a temperatura adiabática média do aquecedor em questão coincide com a temperatura de entrada do fluido no canal, isto é, $\overline{T}_{ad} = T_0$ para cada aquecedor.

Figura 4.12. Mapas de isotérmicas para Re = 100 considerando um único aquecedor ativo em um substrato adiabático (plano xy em z = 0 – detalhe).

Figura 4.13. Mapas de isotérmicas para Re = 100 considerando um único aquecedor ativo em um substrato adiabático (plano xz em y = 0.05H – detalhe).

Os coeficientes de influência g_{ni}^+ da diagonal superior $(g_{12}^+, g_{13}^+, e_{23}^+)$ são apresentados em função do número de *Reynolds* na Tab. 4.6 e na Fig. 4.14. A influência das recirculações geradas nas regiões entre dois aquecedores 3D adjacentes refletiu nos resultados destes coeficientes. g_{ni}^+ aumentaram com *Re*. Os valores de g_{12}^+ e g_{23}^+ são maiores do que g_{13}^+ porque eles representam a influência térmica de um aquecedor 3D protuberante mais próximo do aquecedor a montante.

 g_{12}^+ g_{13}^+ g_{23}^+ Re 0,5908 0,0044 0,6203 100 0,9114 0,0132 0.9571 150 200 1,2396 0,0263 1,3020 0,0437 250 1,5735 1,6531 300 1,9121 0,0655 2,0090

Tabela 4.6. Coeficientes de influência g_{12}^+ , g_{13}^+ e g_{23}^+ considerando um substrato adiabático.

Figura 4.14. Coeficientes de influência g_{12}^+ , g_{13}^+ e g_{23}^+ considerando um substrato adiabático.

Os resultados para os coeficientes de influência g_{ni}^+ da diagonal inferior (g_{21}^+, g_{31}^+) e g_{32}^+) são apresentados em função de *Reynolds* na Tab. 4.7 e na Fig. 4.15. Estes coeficientes aumentam com *Reynolds* porque a vazão mássica aumenta no canal. Os valores de g_{21}^+ e g_{32}^+ são maiores do que g_{31}^+ porque eles representam a influência térmica de um aquecedor 3D protuberante mais próximo do aquecedor a jusante.

Re	g_{21}^{+}	g_{31}^{+}	g_{32}^{+}
100	19,8808	12,2946	21,6663
150	24,6445	15,2779	27,5208
200	28,4155	17,8385	32,2420
250	31,1372	19,3800	36,2350
300	33,4955	20,9182	39,6794

Tabela 4.7. Coeficientes de influência g_{21}^+ , g_{31}^+ e g_{32}^+ considerando um substrato adiabático.

Figura 4.15. Coeficientes de influência g_{21}^+ , g_{31}^+ e g_{32}^+ considerando um substrato adiabático.

Os coeficientes de influência g^+ considerando o substrato adiabático podem ser relacionados com a função de *Green* discreta inversa G^{-1} proposta por Hacker & Eaton (1995) por

$$g^{+} = \dot{m}c_{p}g^{-1}. \tag{4.6}$$

Os testes numéricos apresentados a seguir tiveram a finalidade de verificação da validade do princípio de superposição nos casos com substrato adiabático. Com estes testes adicionais, as temperaturas obtidas das simulações utilizando o *software ANSYS/Fluent*[®] 14.5 considerando os três aquecedores 3D protuberantes ativos no canal foram comparadas com as preditas pela Eq. (4.1).

As simulações envolvendo os três aquecedores ativos incluíram um teste com a mesma taxa de dissipação volumétrica de calor nos aquecedores e dois testes com taxas distintas de dissipação volumétrica de calor em cada aquecedor. A distribuição da dissipação volumétrica de calor no primeiro teste, Teste 1-1-1, foi $q_1 = q_2 = q_3 = 1$ W, uma taxa de dissipação volumétrica uniforme nos três aquecedores 3D protuberantes. Para os outros dois testes, com taxas de dissipação volumétrica distintas, as taxas correspondentes foram proporcionais a 0,5W-0,3W-0,2W (Teste .5-.3-.2) e a 0,4W-0,3W-0,3W (Teste .4-.3-.3) nos aquecedores #1, #2 e #3, respectivamente.

Os resultados das simulações numéricas executadas no *software ANSYS/Fluent*[®] 14.5 dos três testes considerados para a temperatura média de cada aquecedor são mostrados na Tab. 4.8. Em todos os casos analisados, os valores da temperatura média do aquecedor 3D protuberante diminuíram com o aumento de *Reynolds*. Isto indica uma maior transferência de calor por convecção forçada no aquecedor com o aumento da vazão mássica de ar no canal.

Re	1	Teste 1-1-1	1	T	Teste .532			Teste .433		
	$\overline{T}_{h,1}$ [°C]	$\overline{T}_{h,2}$ [°C]	$\overline{T}_{h,3}$ [°C]	$\overline{T}_{h,1}$ [°C]	$\overline{T}_{h,2}$ [°C]	$\overline{T}_{h,3}$ [°C]	$\overline{T}_{h,1}$ [°C]	$\overline{T}_{h,2}$ [°C]	$\overline{T}_{h,3}$ [°C]	
100	181,71	255,26	286,61	109,46	105,93	96,41	84,86	98,60	106,07	
150	154,25	219,23	243,12	95,05	93,39	85,32	74,96	87,43	93,53	
200	138,06	192,94	215,24	86,20	85,16	77,97	68,79	80,09	85,30	
250	126,80	176,25	193,33	80,14	79,26	72,54	64,55	74,77	79,21	
300	118,48	163,68	178,46	75,65	74,69	68,35	61,51	70,76	74,56	

Tabela 4.8. Temperatura média dos aquecedores 3D protuberantes nos Testes 1-1-1, .5-.3-.2 e .4-.3-.3 considerando substrato adiabático.

Os resultados numéricos da temperatura média de cada aquecedor, $\overline{T}_{h,n}$, apresentados na Tab. 4.8 foram comparados com as predições da Eq. (4.1) através da utilização dos valores dos coeficientes de influência g^+ apresentados nas Tabs. 4.5, 4.6 e 4.7. Para todos os testes considerados, os resultados preditos apresentaram uma diferença menor do que 0,6% com àqueles mostrados na Tab. 4.8.

Nas Figuras 4.16, 4.17 e 4.18 são apresentados os mapas de isotérmicas considerando o substrato adiabático e Re = 100, para o Teste 1-1-1, Teste .5-.3-.2 e Teste .4-.3-.3, respectivamente.

Figura 4.16. Mapa de isotérmicas para *Re* = 100 considerando Teste 1-1-1 em um substrato adiabático.

Figura 4.17. Mapa de isotérmicas para *Re* = 100 considerando Teste .5-.3-.2 em um substrato adiabático.

Figura 4.18. Mapa de isotérmicas para Re = 100 considerando Teste .4-.3-.3 em um substrato adiabático.

4.3. Resfriamento Conjugado por Convecção Forçada-Condução

Os resultados numéricos obtidos através do *software ANSYS/Fluent*[®] 14.5 para o problema de resfriamento conjugado por convecção forçada-condução em diferentes substratos condutivos são apresentados a seguir.

Para estes casos, a taxa volumétrica de dissipação de calor q gerada em cada aquecedor é subdividida em duas parcelas. Uma parte diretamente da superfície do aquecedor 3D protuberante para o escoamento fluido por convecção forçada, denominada q_f . A outra parcela é transferida por condução para o substrato condutivo, através da interface aquecedorsubstrato, sendo denominada q_s . Como mencionado anteriormente, da conservação de energia, a soma das frações (q_f/q) e (q_s/q) é sempre unitária.

Novamente, a metodologia adotada consistiu de simulações iniciais com um único aquecedor ativo no canal visando à obtenção dos coeficientes de influência conjugados g^+ da matriz quadrada G^+ . Feito isso, os resultados de simulações adicionais efetuadas com os três aquecedores 3D protuberantes ativos no canal retangular foram efetuadas para comparar as temperaturas médias dos aquecedores com as temperaturas preditas pela Eq. (4.1). Nas simulações efetuadas com um único aquecedor 3D protuberante ativo de cada vez, os resultados encontrados para a fração (q_s/q) em função do número de *Reynolds* são apresentados na Tab. 4.9 e nas Figs. 4.19, 4.20 e 4.21 considerando o substrato de acrílico, de placa de circuito impresso (PCB) e de alumínio, respectivamente. A fração (q_s/q) aumenta com (k_s/k) , devido à menor resistência térmica condutiva do substrato e diminui com o aumento de *Reynolds* devido a uma maior transferência de calor por convecção forçada.

Re	$(q_{s,1}/q)$			$(q_{s,2}/q)$			$(q_{s,3}/q)$				
	Acrílico	РСВ	Alumínio	Acrílico	РСВ	Alumínio	Acrílico	РСВ	Alumínio		
100	0,1820	0,6151	0,9622	0,1934	0,6490	0,9671	0,2005	0,6507	0,9680		
150	0,1610	0,5735	0,9576	0,1725	0,6106	0,9632	0,1827	0,6163	0,9641		
200	0,1495	0,5448	0,9543	0,1590	0,5824	0,9604	0,1704	0,5895	0,9613		
250	0,1427	0,5247	0,9517	0,1498	0,5607	0,9583	0,1618	0,5680	0,9592		
300	0,1384	0,5101	0,9496	0,1432	0,5437	0,9566	0,1555	0,5506	0,9574		

Tabela 4.9. Fração (q_s/q) considerando substratos condutivos.

Figura 4.19. Fração (q_s/q) considerando o substrato de acrílico.

Figura 4.20. Fração (q_s/q) considerando o substrato de PCB.

Figura 4.21. Fração (q_s/q) considerando o substrato de alumínio.

Os resultados dos coeficientes de influência conjugados g_{nn}^+ , associados ao autoaquecimento, g_{11}^+ , g_{22}^+ e g_{33}^+ , em função de *Reynolds* são mostrados na Tab. 4.10 e nas Figs. 4.22, 4.23 e 4.24 considerando o substrato de acrílico, PCB e de alumínio, respectivamente. Estes coeficientes dependem de *Reynolds*, da posição do aquecedor 3D protuberante no canal e da condutividade térmica do substrato. O aumento com *Re* ocorre principalmente devido ao aumento da vazão mássica no canal. g_{nn}^+ diminuem com o aumento de (k_s/k) .

Re		${m g}_{11}^+$		$oldsymbol{g}_{22}^+$			g_{33}^{+}		
	Acrílico	РСВ	Alumínio	Acrílico	РСВ	Alumínio	Acrílico	РСВ	Alumínio
100	54,0089	27,0295	3,8358	60,7331	28,6385	3,8873	60,3540	28,7957	3,9046
150	67,3859	35,9313	4,9381	77,1502	38,7959	5,0148	76,9504	38,9505	5,0269
200	78,4936	43,6715	5,9075	90,8296	47,7206	6,0079	90,1125	47,7946	6,0138
250	88,2896	50,6680	6,7885	102,9258	55,8785	6,9118	101,4795	55,6861	6,9108
300	97,4664	57,1924	7,6051	114,0138	63,4857	7,7505	111,4755	62,9251	7,7423

Tabela 4.10. Coeficientes de influência g_{nn}^+ considerando diferentes substratos condutivos.

Figura 4.22. Coeficientes de influência g_{nn}^+ considerando o substrato de acrílico.

Figura 4.23. Coeficientes de influência g_{nn}^+ considerando o substrato de PCB.

Figura 4.24. Coeficientes de influência g_{nn}^+ considerando o substrato de alumínio.

Em todas as simulações efetuadas para o resfriamento conjugado por convecção forçada-condução, apesar da condução axial no meio fluido ter se tornado desprezível, foi observada uma influência térmica na região à montante de cada aquecedor ativo. Isto ocorreu devido à condução no substrato na região à montante do aquecedor ativo e também devido às recirculações presentes no escoamento. Este fato é ilustrado para os aquecedores 3D protuberantes, através dos mapas de isotérmicas considerando Re = 100, nas Figs. 4.25 e 4.26 para o substrato de acrílico, nas 4.27 e 4.28 para o substrato de PCB e nas Figs. 4.29 e 4.30 para o substrato de alumínio.

Figura 4.25. Mapas de isotérmicas para Re = 100 considerando um único aquecedor ativo em um substrato de acrílico (plano xy em z = 0 – detalhe).

Figura 4.26. Mapas de isotérmicas para Re = 100 considerando um único aquecedor ativo em um substrato de acrílico (plano xz em y = 0.05H – detalhe).

Figura 4.27. Mapas de isotérmicas para Re = 100 considerando um único aquecedor ativo em um substrato de PCB (plano xy em z = 0 – detalhe).

(b) aquecedor #2

Figura 4.28. Mapas de isotérmicas para Re = 100 considerando um único aquecedor ativo em um substrato de PCB (plano xz em y = 0.05H – detalhe).

Figura 4.29. Mapas de isotérmicas para Re = 100 considerando um único aquecedor ativo em um substrato de alumínio (plano xy em z = 0 – detalhe).

Figura 4.30. Mapas de isotérmicas para Re = 100 considerando um único aquecedor ativo em um

substrato de alumínio (plano xz em y = 0.05H – detalhe).

Os resultados para os coeficientes de influência conjugados g_{ni}^+ da diagonal superior $(g_{12}^+, g_{13}^+ e g_{23}^+)$, em função do número de *Reynolds*, são mostrados na Tab. 4.11 e nas Figs. 4.31, 4.32 e 4.33 considerando o substrato de acrílico, PCB e de alumínio, respectivamente. Estes coeficientes dependem de *Reynolds*, da posição dos aquecedores 3D protuberantes no canal e da condutividade térmica do substrato. Para os casos de substratos de acrílico e PCB, os valores de g_{12}^+ e g_{23}^+ são maiores do que g_{13}^+ porque eles representam a influência térmica de um aquecedor 3D protuberante mais próximo do aquecedor a montante. Para o caso do substrato de alumínio, isso não pode ser afirmado, pois devido à alta condutividade do material, que proporciona um resfriamento predominantemente por condução, os coeficientes de influência g_{12}^+ , g_{13}^+ e g_{23}^+ assumam valores muito próximos.

Tabela 4.11. Coeficientes de influência g_{12}^+ , g_{13}^+ e g_{23}^+ considerando diferentes substratos condutivos.

Re		g_{12}^{+}			g_{13}^{+}		g_{23}^{+}		
	Acrílico	PCB	Alumínio	Acrílico	РСВ	Alumínio	Acrílico	РСВ	Alumínio
100	1,0219	3,9843	3,0427	0,0655	0,5866	3,3817	1,1339	4,1694	3,5455
150	1,5229	4,8281	3,7420	0,1017	0,6836	4,2773	1,7210	5,0895	4,5205
200	2,0212	5,3293	4,4241	0,1249	0,6718	5,1080	2,2428	5,6722	5,4492
250	2,5175	5,7801	4,8632	0,1531	0,5656	5,7252	2,7267	6,1189	6,1483
300	3,0122	6,2153	5,2224	0,0950	0,5119	6,1280	3,1538	6,5377	6,6262

Figura 4.31. Coeficientes de influência g_{12}^+ , g_{13}^+ e g_{23}^+ considerando o substrato de acrílico.

Figura 4.32. Coeficientes de influência g_{12}^+ , g_{13}^+ e g_{23}^+ considerando o substrato de PCB.

Figura 4.33. Coeficientes de influência g_{12}^+ , g_{13}^+ e g_{23}^+ considerando o substrato de alumínio.

Os resultados para os coeficientes de influência conjugados g_{ni}^+ da diagonal inferior $(g_{21}^+, g_{31}^+ e g_{32}^+)$ são apresentados em função do número de *Reynolds* na Tab. 4.12 e nas Figs. 4.34, 4.35 e 4.36 considerando o substrato de acrílico, PCB e de alumínio, respectivamente. Estes coeficientes aumentam com *Reynolds* porque a vazão mássica aumenta no canal. Eles também dependem da posição dos aquecedores 3D protuberantes no canal e diminuem com o

aumento da condutividade térmica do substrato. Para os casos de substratos de acrílico e PCB, os valores de g_{21}^+ e g_{32}^+ são maiores do que g_{31}^+ porque eles representam a influência térmica de um aquecedor 3D protuberante mais próximo do aquecedor a montante. Para o caso do substrato de alumínio, isto não pode ser afirmado, pois devido à alta condutividade do substrato, que proporciona um resfriamento predominantemente por condução, os coeficientes de influência g_{21}^+ , g_{31}^+ e g_{32}^+ assumam valores muito próximos.

Tabela 4.12. Coeficientes de influência g_{21}^+ , g_{31}^+ e g_{32}^+ considerando diferentes substratos condutivos.

Re		g_{21}^{+}		g_{31}^{+}			g_{32}^{+}		
	Acrílico	PCB	Alumínio	Acrílico	PCB	Alumínio	Acrílico	PCB	Alumínio
100	16,5791	9,7112	3,4688	10,1932	5,7867	3,3155	17,9053	10,1041	3,3545
150	20,7527	12,4234	4,3849	12,9902	7,3759	4,1576	22,8526	13,2983	4,1985
200	23,9566	14,7495	5,1781	15,0900	8,8184	4,8818	27,0454	15,9603	4,9233
250	26,5851	16,7237	5,8909	16,8668	9,9724	5,5294	30,5290	18,3553	5,5705
300	28,7619	18,5206	6,5456	18,3112	11,1314	6,1218	33,3872	20,4428	6,1620

Figura 4.34. Coeficientes de influência g_{21}^+ , g_{31}^+ e g_{32}^+ considerando o substrato de acrílico.

Figura 4.35. Coeficientes de influência g_{21}^+ , g_{31}^+ e g_{32}^+ considerando o substrato de PCB.

Figura 4.36. Coeficientes de influência g_{21}^+ , g_{31}^+ e g_{32}^+ considerando o substrato de alumínio.

Os testes numéricos apresentados a seguir tiveram a finalidade de verificação da validade do princípio de superposição nos diferentes casos com substratos condutivos. Com estes testes, as temperaturas obtidas das simulações numéricas utilizando o *software ANSYS/Fluent*[®] 14.5 considerando os três aquecedores 3D protuberantes ativos no canal foram comparadas com as preditas pela Eq. (4.1).

As simulações envolvendo os três aquecedores ativos incluíram um teste com a mesma taxa de dissipação volumétrica de calor nos aquecedores. A distribuição da dissipação volumétrica de calor no teste, denominado de Teste 1-1-1, foi $q_1 = q_2 = q_3 = 1$ W, correspondendo a uma taxa de dissipação volumétrica uniforme nos três aquecedores 3D protuberantes.

Os resultados das simulações numéricas executadas no *software ANSYS/Fluent*[®] 14.5 do teste considerado para a temperatura média de cada aquecedor são mostrados na Tab. 4.13. Em todos os casos analisados, os valores da temperatura média do aquecedor 3D protuberante diminuíram com o aumento de *Reynolds*. Isto indica uma maior transferência de calor no aquecedor com o aumento da vazão mássica de ar no canal.

Re		Acrílico			РСВ			Alumínio		
	$\overline{T}_{h,1}$ [°C]	$\overline{T}_{h,2}$ [°C]	$\overline{T}_{h,3}$ [°C]	$\overline{T}_{h,1}$ [°C]	$\overline{T}_{h,2}$ [°C]	$\overline{T}_{h,3}$ [°C]	$\overline{T}_{h,1}$ [°C]	$\overline{T}_{h,2}$ [°C]	$\overline{T}_{h,3}$ [°C]	
100	154,47	209,11	231,77	100,45	125,89	130,74	51,73	52,77	52,87	
150	133,55	181,22	201,26	90,86	114,16	119,24	47,96	49,00	49,12	
200	120,40	163,05	180,55	84,47	106,22	111,22	45,42	46,47	46,58	
250	111,30	149,83	165,17	79,95	100,31	105,03	43,69	44,73	44,84	
300	104,56	139,98	153,20	76,50	95,63	100,04	42,31	43,34	43,45	

Tabela 4.13. Temperatura média dos aquecedores 3D protuberantes no Teste 1-1-1 considerando os substratos condutivos.

Os resultados numéricos da temperatura média de cada aquecedor, $\overline{T}_{h,n}$, apresentados na Tab. 4.13 foram comparados com as predições da Eq. (4.1) através da utilização dos valores dos coeficientes de influência g^+ apresentados nas Tabs. 4.10, 4.11 e 4.12. Para todos os testes considerados, os resultados preditos apresentaram uma diferença menor do que 1,0% com aqueles mostrados na Tab. 4.13.

Nas Figuras 4.37, 4.38 e 4.39 são apresentados os mapas de isotérmicas nos planos xy e xz com os diferentes substratos condutivos e Re = 100, para o Teste 1-1-1. Nota-se a influência da esteira térmica nos aquecedores e que a temperatura dos aquecedores diminui com o aumento de (k_s/k) .

Figura 4.37. Mapas de isotérmicas para Re = 100 considerando todos os aquecedores ativos em um substrato de acrílico.

Figura 4.38. Mapas de isotérmicas para Re = 100 considerando todos os aquecedores ativos em um substrato de PCB.

Figura 4.39. Mapas de isotérmicas para Re = 100 considerando todos os aquecedores ativos em um substrato de alumínio.

As Figuras 4.40 e 4.41 demonstram os mapas de isotérmicas nos planos xy e xz, respectivamente, para Re = 100, para o substrato adiabático, de acrílico, de PCB e de alumínio. O controle térmico dos aquecedores 3D protuberante foi beneficiado pelo resfriamento conjugado por convecção forçada-condução.

Figura 4.40. Mapas de isotérmicas para Re = 100 considerando todos os aquecedores ativos (1-1-1) em diferentes substratos (plano xy em z = 0 – detalhe).

(a) substrato adiabático

(b) substrato de acrílico

(c) substrato de PCB

Figura 4.41. Mapas de isotérmicas para Re = 100 considerando todos os aquecedores ativos (1-1-1) em diferentes substratos (plano xz em y = 0,05H – detalhe).

5. CONCLUSÃO

O objetivo deste Trabalho de Conclusão de Curso foi a validação numérica do descritor invariante do processo conjugado de transferência de calor por convecção forçadacondução de aquecedores 3D protuberantes em canais, por meio da obtenção dos coeficientes de influência conjugados g^+ , agrupados em uma matriz conjugada G^+ .

As temperaturas dos aquecedores protuberantes discretos montados em um substrato condutivo em um canal retangular horizontal com escoamento laminar de ar foram relacionadas com coeficientes invariantes independente da dissipação de potência em cada aquecedor através da matriz G^+ . Esses coeficientes são adimensionais e eles foram chamados de coeficientes de influência conjugados (g^+) devido à natureza do resfriamento dos aquecedores por convecção forçada-condução. O acréscimo de temperatura de cada aquecedor no canal é quantificado e então as contribuições devido ao auto-aquecimento e à dissipação de potência nos outros aquecedores (tanto a montante quanto a jusante) são claramente identificadas. Para uma dada geometria, fluido de resfriamento, vazão mássica, condutividades térmicas dos aquecedores e do substrato, os coeficientes conjugados são invariantes com a taxa de dissipação de calor nos aquecedores. Alguns exemplos foram ilustrados, indicando os efeitos nos coeficientes de influência conjugado da condutividade térmica do substrato e do número de Revnolds. Os resultados foram obtidos numericamente utilizando o software ANSYS/Fluent® 14.5 considerando uma coluna com três aquecedores 3D protuberantes em um canal retangular horizontal. O procedimento descrito é, contudo, geral e extensões para maior número de aquecedores são simples, embora computacionalmente mais exigente.

Para trabalhos futuros sugere-se uma extensão deste estudo numérico para o caso de escoamento turbulento. Também há a possibilidade de alteração no arranjo dos aquecedores, como um arranjo alternado, ou a mudança nas propriedades físicas do meio. Uma análise experimental pode ser realizada para comparação dos resultados com este trabalho.

REFERÊNCIAS

ALVES, Thiago A. **Resfriamento Conjugado de Aquecedores Discretos em Canais.** 2010. 129p. Tese (Doutorado em Engenharia Mecânica) – Faculdade de Engenharia Mecânica, Universidade Estadual de Campinas, Campinas, 2010.

ALVES, Thiago A. & ALTEMANI, Carlos Alberto C. An Invariant Descriptor for Heaters Temperature Prediction in Conjugate Cooling. International Journal of Thremal Sciences, v. 58, p. 92–101, 2012.

ALVES, Thiago A. & ALTEMANI, Carlos Alberto C. **Conjugate cooling of a discrete heater in laminar channel flow**. Belo Horizonte, MG, BRA: 12th Brazilian Congress of Thermal Engineering and Sciences (Encit 2008), 2008a. Code 7-5063.

ALVES, Thiago A. & ALTEMANI, Carlos Alberto C. Laminar convective cooling of discrete heaters in channel flow. Brasília, DF, BRA: 19th International Congress of Mechanical Engineering (Cobem 2007), 2007. Code 2463.

ALVES, Thiago A. & ALTEMANI, Carlos Alberto C. **Resfriamento conjugado convectivocondutivo de um aquecedor discreto num canal de placas paralelas com escoamento laminar**. Mecánica Computacional, XXIX: 5429-5447, 2010a.

ALVES, Thiago A. & ALTEMANI, Carlos Alberto C. **Thermal design of a protruding heater in laminar channel flow**. Washington, DC, USA: 14th International Heat Transfer Conference (IHTC'14), 2010. Code IHTC14-22906.

ALVES, Thiago A. & BARBUR, Murilo A. An Invariant Descriptor for conjugate forced convection-conduction of 3D protruding heaters in channel flow. Kyoto, Japan: 15th International Heat Transfer Conference (IHTC'15), 2014. Code IHTC15-9599.

ANDERSON, Ann M. Decoupling convective and conductive heat transfer using the adiabatic heat transfer coefficient. Journal of Electronic Packaging, v.116, p.310–316, 1994.

ANDERSON, Ann M. & MOFFAT, Robert J. Convective Heat Transfer from Arrays of Modules with non-Uniform Heating: Experiments and Models. Stanford University, Stanford, CA, USA: Thermosciences Division Research Report HMT–43, 1990.

ANDERSON, Ann M. & MOFFAT, Robert J. Direct air cooling of electronic components: reducing component temperatures by controlled thermal mixing. Journal of Heat Transfer, v.113, p.56-62, 1991.

ANDERSON, Ann M. & MOFFAT, Robert J. The adiabatic heat transfer coefficient and the superposition kernel function: part 1 – data for arrays of flatpacks for different flow conditions. Journal of Electronic Packaging. 114:14-21, 1992a.

ANDERSON, Ann M. & MOFFAT, Robert J. The adiabatic heat transfer coefficient and the superposition kernel function: part 2 – modeling flatpack data as a function of channel turbulence. Journal of Electronic Packaging. 114:22-28, 1992b.

ANSYS/Fluent[®]. Tutorial: Solving a Conjugate Heat Transfer Problem using *ANSYS/Fluent*[®]. 30p, 2011.

ARVIZU, Dan E. & MOFFAT, Robert J. **Experimental heat transfer from an array of heated cubical elements on an adiabatic channel wall.** Stanford University, Stanford, CA, USA: Thermosciences Division Research Report HMT–33, 1981.

ARVIZU, Dan E., ORTEGA, Alonso & MOFFAT, Robert J. Cooling electronic components: forced convection experiments with an air-cooled array. In: OKTAY, S.; MOFFAT, Robert J. (Eds.). **Electronics Cooling.** New York, NY, USA: ASME, 1985.

BARBUR, Murilo A. Estudo numérico do resfriamento conjugado por convecção forçada-condução de um aquecedor 3D protuberante em um canal de placas paralelas com escoamento laminar. 2013. 18p. Programa de Iniciação Científica – Universidade Tecnológica Federal do Paraná, Ponta Grossa, PR, Brasil. 2013.

BAR-COHEN, Avram; WATWE, Abhay A.; PRASHER, Ravi S. Heat transfer in electronic equipment. In: BEJAN, A.; KRAUS, A.D. (Eds.). **Heat transfer handbook**. New Jersey, NJ, USA: John Wiley & Sons, 2003. chap.13, p.947-1027.

BATCHELDER, Keith A. & EATON, John K. **Practical experience with the discrete Green's function approach to convective heat transfer**. Journal of Heat Transfer, v.123, p.70–76, 2001.

BOOTEN, Charles & EATON, John K. Discrete Green's function measurements in a serpentine cooling passage. Journal of Heat Transfer, v.129, p.1686-1696, 2007.

BOOTEN, Charles & EATON, John K. Discrete Green's function measurements in internal flows. Journal of Heat Transfer, v.127, p.692-698, 2005.

BOOTEN, Charles, ELKINS, Chris & EATON, John K. **Rapid heat transfer measurements in complex internal flow.** Stanford University, Stanford, CA, USA: Thermosciences Division Research Report TF–99, 2006.

ÇENGEL, Yunus A. & GHAJAR, Afshin J. **Resfriamento de equipamento eletrônico. In: Çengel, Y.A. (Ed.). Transferência de calor e massa.** São Paulo, Brasil: McGraw-Hill, 15:69p, 2012. (disponível na internet, acesso em 15 mai. 2013). DAVALATH, Janardhan & BAYAZITOGLU, Yildiz. Forced convection cooling across rectangular blocks. Journal of Heat Transfer, v. 109, p. 321–328, 1987.

FAGHRI, Mohammad & SRIDHAR, S. Entrance heat transfer correlation for air cooling of array of rectangular blocks. Heat transfer enhancement in electronic cooling, ASME HTD, v. 183, p.7-11, 1991.

GARIMELLA, Suresh V. & EIBECK, Pamela A. Enhancement of single phase convective heat transfer from protruding elements using vortex generators. International Journal of Heat and Mass Transfer, v.34, p.2431–2433, 1991.

GRATTAN-GUINNESS, I. Convolutions in French Mathematics, 1800-1840, from the calculus and mechanics to mathematical analysis and mathematical physics. Berlin, Deutschland: Birkhäuser Verlag Basel, 1315p, 1990.

GRIGULL, Ulrich. **Heat Conduction**. New York, NY, USA: Hemisphere Publishing Corporation, 1987. 187p.

HACKER, James M.; EATON, John K. Heat transfer measurements in a backward-facing step flow with arbitrary wall temperature variations. Stanford University, Stanford, CA, USA: Thermosciences Division Research Report MD–71, 1995.

HACKER, James M. & EATON, John K. Measurements of heat transfer in separated and reattaching flow with spatially varying thermal boundary conditions. International Journal of Heat and Fluid Flow, v.18, p.131-141, 1997.

HOLLWORTH, Bruce R. & FULLER, H.A. Heat transfer and pressure drop in a staggered array of air-cooled components. Honolulu, HI, USA: International Symposium on Cooling Technology for Electronic Equipment, 1987, 732-748.

INCROPERA, Frank P., DEWITT, David P., BERGMAN, Theodore L. & LAVINE, Adrienne S. **Fundamentos de transferência de calor e de massa.** Rio de Janeiro, RJ, Brasil: Livros Técnicos e Científicos Editora, 2008. 644p.

KANG, Sung-Sik. The thermal wake function for rectangular electronic modules. Journal of Electronic Packaging, v.116, p.55–59, 1994.

KAYS, William M. & CRAWFORD, Michael E. Convective heat and mass transfer. New York, NY, USA: McGraw-Hill, 1993. 651p.

KAYS, William M., CRAWFORD, Michael E. & WEIGAND, Bernhard. Convective heat and mass transfer. New York, NY, USA: McGraw-Hill, 546p, 2005.

KRAUS, Allan.D. & BAR-COHEN, Avram. Thermal analysis and control of electronic equipment. New York, NY, USA: McGraw-Hill, 620p, 1983.

LEHMANN, Gary L. & WIRTZ, Richard A. The effect of variations in stream-wise spacing and length on convection from surface mounted rectangular components. Heat transfer in electronic equipment, ASME HTD, v.48, p.39-48, 1985.

LOIOLA, Bruna R. Análise Térmica Experimental do Resfriamento Conjugado de um Aquecedor em um Duto Retangular. 2011. 54p. Trabalho de Graduação – Universidade Estadual de Campinas, Campinas, SP, Brasil, 2011.

LOIOLA, Bruna R. & ALTEMANI, Carlos Alberto C. **Comparative Numerical and Experimental Results for the Conjugate Cooling of a Discrete Heater in a Duct**. 2013. COBEM. Comparative Numerical and Experimental Results for the Conjugate Cooling of a Discrete Heater in a Duct. 2013b.

LOIOLA, Bruna R. & ALTEMANI, Carlos Alberto C. An Invariant Descriptor for the Conjugate Cooling of Discrete Heaters in a Duct. 2013. IMECE. An Invariant Descriptor for the Conjugate Cooling of Discrete Heaters in a Duct. 2013a.

LOIOLA, Bruna R. & ALTEMANI, Carlos Alberto C. **Experimental Evaluation of the Convective and the Conjugate Cooling of a Protruding Heater in a Duct**. 2012. ENCIT. Experimental Evaluation of the Convective and the Conjugate Cooling of a Protruding Heater in a Duct. 2012.

MOFFAT, Robert J. h_{adiabatic} and u'_{max}. Journal of Electronic Packaging, v.126, p.501–509, 2004.

MOFFAT, Robert J. What's new in convective heat transfer? International Journal of Heat and Fluid Flow, v.19, p.90–101, 1998.

MOFFAT, Robert J. & ANDERSON, Ann M. Applying Heat Transfer Coefficient Data to Electronics Cooling. Journal of Heat Transfer, v. 112, p. 882–890, 1990.

MOFFAT, Robert J., ARVIZU, Dan E. & ORTEGA, A. Cooling Electronic Components: Forced Convection Experiments with an Air-Cooled Array. Heat transfer in electronic equipment, ASME HTD, v. 48, p. 17-27, 1985.

MOLKI, Majid & FAGHRI, Mohammad. **Temperature of in-line array of electronic components simulated by rectangular blocks.** Electronics Cooling, v.6, p.26–32, 2000.

MOLKI, Majid, FAGHRI, Mohammad. & OZBAY, O. A correlation for heat transfer and wake effect in the entrance region of an in-line array of rectangular blocks simulating electronic components. Journal of Heat Transfer, vol.117, p.40-46, 1995.

MOLKI, Majid, FAGHRI, Mohammad. & OZBAY, O. A new correlation for pressure drop in arrays of rectangular blocks in air-cooled electronics units. Journal of Fluids Engineering, v.116, p.856-886, 1993.

MOORE, George E. Cramming More Components onto Integrated Circuits. Electronics, v. 38, p. 1-4, 1965.

MORRIS, G. K. & GARIMELLA, Suresh V. Thermal Wake Downstream of a Three-Dimensional Obstacle. Experimental Thermal and Fluid Science, v.12, p. 65-74, 1996.

MUKERJI, Debjit & EATON, John K. Discrete Green's function measurements in a single passage turbine model. Journal of Heat Transfer, v.127, p.366-377, 2005.

MUKERJI, Debjit; EATON, John K. **Spatially-resolved measurements of heat transfer in turbomachinery applications.** Stanford University, Stanford, CA, USA: Thermosciences Division Research Report TDS–145, 2002.

MUKERJI, Debjit, EATON, John K. & MOFFAT, Robert J. Convective heat transfer near one-dimensional and two-dimensional wall temperature steps. Journal of Heat Transfer, v.126, p.202-210, 2004.

NAKAYAMA, Wataru & PARK, S.H. Conjugate heat transfer from a single surfacemounted block to forced convective air flow in a channel. Journal of Heat Transfer, v.118, p.301-309, 1996.

NISHIDA, Felipe B. Análise Numérica do Escoamento Laminar e da Transferência de Calor de Aquecedores 3D Protuberante Utilizando Diferentes Fluidos de Resfriamento. 2012. 118p. Trabalho de Conclusão de Curso – Universidade Tecnológica Federal do Paraná, Ponta Grossa, PR, Brasil, 2012.

PATANKAR, Suhas V. Numerical heat transfer and fluid flow. New York, NY, USA: Hemisphere Publishing Corporation, 1980. 197p.

PETERSON, G. P. & ORTEGA, A. **Thermal control of electronic equipment and devices.** In: HARTNETT, J. P.; IRVINE, T. F. (Eds.). Advances in heat transfer. Oxford, Oxon, England: Academic Press, chap. 4, p. 181–314, 1990.

RAMADHYANI, S., MOFFAT, D.F. & INCROPERA, Frank P. Conjugate heat transfer from small isothermal heat sources embedded in a large substrate. International Journal of Heat and Mass Transfer, v.28, p.1945-1952, 1985.

RHEE, Jinny & MOFFAT, Robert J. **Experimental estimate of the continuous onedimensional kernel function in a rectangular duct with forced convection.** Journal of Heat Transfer, v.128, p.811-818, 2006.

SPARROW, Ephraim M., RAMSEY, J. W. & ALTEMANI, Carlos Alberto C. Experiments on in-Line Pin Fin Arrays and Performance Comparisons with Staggered Arrays. Journal of Heat Transfer, v. 102, p. 44-50, 1980.

SPARROW, Ephraim M., NEITHAMMER, J. E. & CHABOKI, A. Heat Transfer and **Pressure Drop Experiments in Air-Cooled Electronic-Component Arrays.** Journal of Thermophysics, v. 25, p. 961-973, 1982.

WIRTZ, R.A. & CHEN, W. Laminar-transitional convection from repeated ribs in a channel. Heat Transfer in Electronic Equipment, ASME HTD, 171:89-94, 1991.

ZENG, Yong & VAFAI, Kambiz. An Investigation of Convective Cooling of an Array of Channel-Mounted Obstacles. Numerical Heat Transfer, Part A, v. 55, p. 967–982, 2009.