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RESUMO

ZIELINSKI, Kallil M. C.. Controle Flexível de Sistemas a Eventos Discretos Utilizando
Simulação de Ambiente e Aprendizado por Reforço. 2021. 65 f. Dissertação (Mestrado em
Engenharia Elétrica) – Universidade Tecnológica Federal do Paraná. Pato Branco, 2021.

Sistemas a Eventos Discretos (SEDs) são modelados classicamente com Máquinas de Estados

Finitos (MEFs), e possuem máxima permissividade, controlabilidade e não bloqueabilidade uti-
lizando a Teoria de Controle Supervisório (TCS). Enquanto a TCS é poderosa para lidar com
eventos de um SED, ela falha ao processar eventos em que o controle é baseado em premis-
sas probabilísticas. Neste documento, mostramos que alguns eventos podem ser tratados co-
mumente na TCS, enquanto outros podem ser processados utilizando Inteligência Artificial.
Primeiro apresentamos uma ferramenta para converter controladores da TCS em simulações de
ambientes de Aprendizado por Reforço (AR), em que eles se tornam suscetíveis a processa-
mento inteligente. Em sequência, propomos uma abordagem baseada em AR que reconhece o
contexto em que um conjunto de eventos estocásticos ocorre e os trata de acordo, buscando uma
tomada de decisões como complemento dos caminhos determinísticos da TCS. O resultado é
uma eficiente combinação de um controle flexível e seguro, que tende a maximizar o desem-
penho de um SED que evolui de maneira probabilística. Dois algoritmos de AR são testados:
SARSA e N-STEP SARSA, sobre uma planta automotiva controlada flexível. Os resultados
sugerem um aumento de 9 vezes no desempenho utilizando a combinação proposta em com-
paração com decisões não inteligentes.

Palavras-chave: Sistemas a Eventos Discretos. Sistemas de Manufatura. Suporte a Decisões.
Controle de Processos. Aprendizado por Reforço.



ABSTRACT

ZIELINSKI, Kallil M. C.. Flexible Control of Discrete Event Systems using Environment
Simulation and Reinforcement Learning. 2021. 65 p. Dissertation (MSc in Electrical
Engineering) – Universidade Tecnológica Federal do Paraná. Pato Branco, 2021.

Discrete Event Systems (DESs) are classically modeled as Finite State Machines (FSMs), and
controlled in a maximally permissive, controllable, and nonblocking way using Supervisory

Control Theory (SCT). While SCT is powerful to orchestrate events of DESs, it fail to pro-
cess events whose control is based on probabilistic assumptions. In this research, we show that
some events can be approached as usual in SCT, while others can be processed apart using
Artificial Intelligence. We first present a tool to convert SCT controllers into Reinforcement
Learning (RL) simulation environments, from where they become suitable for intelligent pro-
cessing. Then, we propose a RL-based approach that recognizes the context under which a
selected set of stochastic events occur, and treats them accordingly, aiming to find suitable de-
cision making as complement to deterministic outcomes of the SCT. The result is an efficient
combination of safe and flexible control, which tends to maximize performance for a class of
DES that evolves probabilistically. Two RL algorithms are tested, State-Action-Reward-State-
Action (SARSA) and N-step SARSA, over a flexible automotive plant control. Results suggest a
performance improvement 9 times higher when using the proposed combination in comparison
with non-intelligent decisions.

Keywords: Discrete Event Systems. Manufacturing Systems. Decision Support. Process Con-
trol. Reinforcement Learning.
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1 INTRODUCTION

Industrial systems have a high demand for flexibility, whether to minimize cost, maxi-

mize production, or synchronize actuators to finish or speed up manufacturing. The idea is to

transform raw material into consumable products by integrating people, equipment, and technol-

ogy (Groover 2011). For that, the engineering relies on models, methods, and tools that together

integrate physical and virtual worlds through logical control structures that respond to the envi-

ronment automatically, in time, and with the expected precision.

From the factory automation perspective, systems can be described by the way they

evolve over time. In general, factory devices are event-driven, i.e., they are guided by the oc-

currence of asynchronous, time-independent, events that map physical signals. Systems that

share these features are called Discrete Event Systems (DESs) (Cassandras and Lafortune 2009)

and they can be modeled mathematically as Finite State Machines (FSMs). For the pur-

pose of control, FSMs can be further processed by Supervisory Control Theory (SCT)

(Ramadge and Wonham 1989) algorithms that coordinate the whole factory in a controllable,

maximally permissive, modular, and nonblocking way.

While the SCT is recognized as an efficient method to synthesize industrial controllers,

its application over emerging industrial scenarios is limited. Modern factories have moved from

static to customizable control architectures that detect and react at real-time to changes in the

physical layer, which also operates under multiple modes (Park and Febriani 2019). Flexible

Manufacturing Systems (Manu et al. 2018), for example, are expected to produce simultane-

ously multiple types of products, using the same plant and distinct operations. When combined

with modern computation technology, such as Big Data, Artificial Intelligence, and Internet

of Things, flexible manufacturing aligns with Industry 4.0 policies (Harrison et al. 2016). The

price to be paid is a substantial increasing on the complexity to program context-sensitive con-

trollers subject to reconfiguration. In this case, neither usual software development paradigms

nor formal methods (like SCT) are fully appropriate.

The literature has tried to align SCT capabilities and emerging flexible man-

ufacturing, converging efforts towards the industry of the future. Event distinctions

(Cury et al. 2015), variables (Teixeira et al. 2015), and context recognition (Silva et al. 2017),

for example, add to FSMs capabilities to handle multi-contexts over single same com-

munication channels; access and identity preserving against intruders are addressed in
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(Mohajerani and Lafortune 2020); large-scale and context-aware SCT problems are approached

modularly in (Teixeira et al. 2018), or incrementaly in (Mohajerani et al. 2017), helping to re-

duce computational complexity either to synthesize or implement controllers.

Despite extensions and improvements, the SCT essence is still not aligned with op-

timization, flexibility, and self-adaptation properties, in addition to safety. The main difficulty

is the integration of solid, deterministic, event decision under which a DES is exposed and

treated (including modeling, synthesis, and implementation steps), with intelligent algorithms

capable of discovering variable meanings for events whose control depends on stochastic deci-

sions. Without this combination, the controller has to be replaced after each context switching

of a flexible system, which can be quite often.

In this work, (static) safety properties are still ensured deterministically, by event dis-

abling assumptions as usual in SCT, while (flexible) customization properties are calculated by

processing artificial intelligence. It is shown that some events of a DES can be chosen and kept

apart from the SCT synthesis, to be processed using Reinforcement Learning (RL) techniques

with the purpose of deciding which and when they are more appropriate to be allowed under

control, in conjunction with the SCT decisions. The intelligent decisions are derived by an oper-

ating RL-based agent that observes the system under control and gathers to it experiences about

its interaction through the environment. This agent acts like a recommender for events that are

eligible to occur under the SCT control, but whose order or feasibility are unknown. Based on

the experiences accumulated by the agent, it is capable of adapting its behavior, letting compo-

nents to be controlled safely and with some level of unplanned optimization.

Our contributions can be summarized as follows: (i) a formal method that integrates

SCT and RL techniques with a step guide to apply it; (ii) a tool that converts DES controllers

into Markov Decision Process (MDP) that accepts RL processing with reward markings; (iii) a

case study involving a flexible automotive plant.

Structurally, Section 1.1 presents some related works, and where our approach fits

in relation to it; Section 2 introduces and exemplifies DES and SCT; Section 3 presents the

background on RL; Section 4 presents the results of the method while Section 5 shows a real

automotive example and finally perspectives and conclusions are presented in Sections 6 and 7.
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1.1 RELATED LITERATURE

This section summarizes the state-of-art related with this work, which is organized

as in Fig. 1. The dashed arrow identifies a research domain possible, but not taken in this re-

search. The gray block identifies our main contributions and their internal relationship, which

is explained as follows.

Contributions

Probabilistic
Event Nature

Modeling
Not Event-Driven

Industrial
Process

Continuous-time
Domain DES

FSM SCT Comparison

Set of Probabilistic
Events

Set of non
Probabilistic

Events

Event-Driven

RL

Algorithms

SARSA
N-Step SARSA

MDP
Yes

No

Figure 1 – Classes of processes, state-of-the-art, and their relation with this work.

We initially consider to split industrial processes into two main groups: the ones that

are event-driven (DESs) (Cassandras and Lafortune 2009), and the ones that are not. Since

manufacturing systems are classically seen as DESs, we focus this discussion on the first

group, although sometimes it may be convenient to handle them in the continuous time domain

(Roman et al. 2019; Turnip and Panggabean 2020; Precup et al. 2020).

When a system is seen as DES, it can be modeled by formal methods such as Petri Nets

(Murata 1989), queue theory (Tiwari S. 2021), or FSMs (Ben-Ari and Mondada). The choice is

not consensual in the literature, but a good measure is to observe the nature of the occurrence

of events in the system, which can be probabilistic, or not. In general, probabilistic events are

handled by timed versions of Petri Nets or Automata, or exposed as Markov Decision Processes

(MDPs) (Puterman 1994) to be processed further using Fuzzy Logic (Gomes et al. 2021), Re-

inforcement Learning (RL) (Sutton and Barto 2018), Deep Learning (Mnih et al. 2015), or sim-

ilar. Differently, non-probabilistic events are preferably modeled as FSMs to facilitate the

specification (Mohajerani et al. 2021), synthesis (Ramadge and Wonham 1989), and verifica-

tion (Malik and Ware 2020) processing.

In our approach, non-probabilistic events are handled by using FSMs, and specifica-

tions are enforced by processing SCT synthesis, as usual. The resulting controller, and the set

of probabilistic events, are then joined and converted into MDP representations for further RL
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processing.

It is possible to apply other machine learning algorithms than RL (Ahmed et al. 2019),

but this implies that a predefined dataset has to be available, which removes part

of the flexibility possibly learned by simulating an agent through the environment. It

is also possible to handle SCT and RL separately. For example, SCT can be used

for throughput optimization (Putten et al. 2020), context recognition (Silva et al. 2017),

order preserving (Nooruldeen and Schmidt 2020) and synthesize successful hacker at-

tacks (Matsui and Lafortune 2021), while RL studies focus on production scheduling

(Waschneck et al. 2018), order dispatching (Stricker et al. 2018), and pricing optimization

(Krasheninnikova et al. 2019).

However, this separation implies that each study returns different benefits for the auto-

matic control practices, and leads to variable performance indexes. For example, SCT is well

known by its efficiency for safety, but not for flexibility, while RL is appropriate to handle

dynamic environments, but not for safety guarantees. As each approach adds specific advan-

tages to the process control and is structured over a distinct framework, their combination is not

straightforward. Therefore, this document is dedicated to combine them into a single framework

that gathers their best features and supports in parallel the safe, flexible, and expert control of

industrial process.
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2 OVERVIEW ON EVENT-DRIVEN SYSTEMS

While part of the behavior of an industrial systems can be continuous in time,

some events (e.g., sensing, actuation, faults) have a discrete nature, and variations (e.g.,

customer, production, cost profiles) are essentially stochastic. Systems that evolve accord-

ing to the asynchronous occurrences of events are called Discrete Event System (DESs)

(Cassandras and Lafortune 2009), and they can be modeled by Finite State Machines (FSMs).

Formally, an FSM is a tuple G = 〈Σ ,Q,q◦,Qω,−→〉 where: Σ is finite set of events; Q

is a finite set of states; Qω ⊆ Q is a subset of marked states (in general associated with the idea

of completing tasks); q◦ ∈ Q is the initial state; and −→ ⊆ Q ×Σ×Q is the transition relation.

Events are taken from Σ and used to compose strings. The set Σ∗ includes all finite

strings, including the empty string ε. The transition relation between any two states q,q′ ∈ Q

with the event σ ∈ Σ is exposed as q
σ
−→ q′, and extended to strings in the standard way, i.e.,

q
s
−→ q′, for s ∈ Σ∗. Then, notation q

σ
−→ means q

σ
−→ q′ for some state q′ ∈ Q; G

σ
−→ means

q◦
σ
−→ q for some state q ∈ Q; and q

σ
9 and G

σ
9 mean the respective event disabling.

As an industrial DES is usually formed by a set J = {1, · · · ,m} of components, it is

convenient to design each component as an FSMGj, j ∈ J , and combine them by synchronous

composition (denoted ‖). Given two FSMs, G1 = 〈Σ1,Q1,q
◦

1,Q
ω
1 ,−→1〉 and G2 = 〈Σ2,Q2,q

◦

2,

Qω
2 ,−→2〉, define G1‖G2 = 〈Σ1 ∪ Σ2,Q1 × Q2,(q

◦

1,q
◦

2),Q
ω
1 × Qω

2 , −→〉, where −→ is constructed

as follows:

(i) (q1,q2)
σ
−→ (q′1,q

′

2) if σ ∈ Σ1 ∩ Σ2,q1
σ
−→ q′1, q2

σ
−→ q′2 ;

(ii) (q1,q2)
σ
−→ (q′1,q2) if σ ∈ Σ1 \ Σ2,q1

σ
−→ q′1 ;

(iii) (q1,q2)
σ
−→ (q1,q

′

2) if σ ∈ Σ2 \ Σ1,q2
σ
−→ q′2 ;

(iv) undefined.

That is, events enabled by both G1 and G2 (case (i)) are merged into a single tran-

sition; events enabled by only one FSM and unknown by the other (cases (ii) and (iii)) are

interleaved in any order; and all other cases are undefined (case (iv)), e.g., an event may be

enabled by one FSM, and known but not enabled by the other. In this case, it is considered un-

defined and disabled by composition. Other examples are presented as supplementary material

(Zielinski et al. 2021).
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2.1 MODELING

When using FSMs to design a set of DESs components, the system plant

(Cassandras and Lafortune 2009; Ramadge and Wonham 1989) (also known as open-loop

plant) can be exposed by the composition

G = ‖j∈J Gj.

This model maps how the system evolves in parallel, without restrictions. In practice,

however, the plant is expected to be coordinated, so that components can interact with each other

as intended. For this purpose, an additional structure called specification can be composed with

the plant. A specification can be seen as a prohibitive action that restricts the system behavior,

adjusting it to cope with some expected standard.

Similarly to the plant, the specification E, for

E = ‖i∈I Ei ,

with i ∈ I = {1, · · · ,n}, can also be expressed by a set of FSMs and composed automatically

to G. The result is a composition

K = G‖E

that expresses the behavior of the system under control exactly as projected by the engineer,

which may require further software verification. Another option is to process supervisor synthe-

sis (Ramadge and Wonham 1989) to extract from K its largest sub-model that includes quality

guarantees by construction, without the need for further checking, which is discussed as follows.

2.2 CONTROL SYNTHESIS

In general, a controller for a DES is expected to have quality and performance prop-

erties before it is implemented. “Performance", here, refers to the ability for the controller to

allow the entire system behavior, except prohibitive actions. And by “quality" we mean mainly

that a controller should recognize the nature of events enablement in the system, which may be

uncontrollable, and does not ever lead the system under control to block.

By processing supervisor synthesis (Ramadge and Wonham 1989), those three proper-

ties are ensured by construction, without further checking, and they can be defined as follows.
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Definition 1. An FSM G = 〈ΣG ,QG ,q
◦

G ,Q
ω
G ,−→G〉 is nonblocking if, for all s ∈ [G], G

s
−→

q implies that ∃ t ∈ [G] such that q
t
−→ q’, for some q′ ∈ Qω

G .

Differently, controllability deals with the impossibility of disabling some events in the

system. For a DES G, let ΣG be partitioned into ΣG = Σc[G]∪Σu[G], where Σc [G ] is the set

of controllable and Σu [G ] is the set of uncontrollable events in G. Then, controllability can

be defined as follows.

Definition 2. Let G = 〈ΣG ,QG ,q
◦

G ,Q
ω
G ,−→G〉 and K = 〈ΣK ,QK ,q

◦

K ,Q
ω
K ,−→K〉 be two FSMs. K

is said to be controllable with respect to G if, for all s ∈ [G] and all µ ∈ Σu[G], if

K
s
−→ qK and G

s
−→ qG

µ
−→ q′G

then there exists q′K ∈ QK , such that

K
s
−→ qK

µ
−→ q′K .

That is, if after any string s, an uncontrollable event µ is possible in the plant G, then

it is also possible in K.

The operation that computes from K its largest sub-model that respects the impossibil-

ity of disabling events in Σu[G] is called control synthesis, and it is the kernel of the Supervisory

Control Theory (SCT) (Ramadge and Wonham 1989) and its several extensions. The synthesis

result is also called supremal and denoted supC(K,G). In practice, supC(K,G) models the most

permissive behavior possible to be imposed to G, while complying with controllability and sat-

isfying the specification K. If supC(K,G) is also nonblocking, it is called an optimal controller,

and will play an essential role in the results to be derived later in Section 5, involving RL.

2.3 COMPLEXITY ANALYSIS

In SCT, complexity issues emerge at three distinct steps: modeling, synthesis, and

implementation. During the modeling phase, complexity is difficult to be measured, as it is

associated with unsystematic engineering tasks. So, in the following, we assume it to be well

defined from the engineering point of view.

After modeling, complexity can be well measured in terms of computational cost to

process plant and specification models, given respectively as FSMs

G = ‖mj=1Gj and E = ‖ni=1Ei.
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If Gj has in the worst case p states, then the composed plant G has pm states. Similarly,

if Ei has q states, then the specification E has qn states. Therefore, the computation of the

supremal sub-model supC(K,G) grows on the order of O[(pm.qn)2] in time.

In summary, any computation over G and E can be processed polynomially in their

number of states. However, G and E may grow exponentially in the number of models that

they compose. While in practice this should limit the SCT to be applied over large DESs, the

computational cost can be mitigated by using modular frameworks (Teixeira et al. 2018) in the

literature.

As for the implementation phase, complexity can be assessed by the number of states

(indicating memory usage) and transitions (indicating communication channels) of the synthe-

sized controller. In this work, we do not go through the implementation step, but its analysis is

important as the RL training is processed over the state-space of the SCT controller. By defini-

tion, supC(K,G), input to the RL, is always a sub-model of K = G ‖E, so that the state-space

used for RL training is always expected to be ≤ than the state-space of K.
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3 OVERVIEW ON REINFORCEMENT LEARNING

Reinforcement Learning (RL) is a computational paradigm in which an agent aims to

increase its performance based on rewards received upon interacting through an environment,

learning a policy or a sequence of actions (Kaelbling et al. 1996; Sutton and Barto 2018). At

each time step t, this agent observes its current state st ∈ S and chooses an action at ∈ A to

be executed following a policy π, which will take it to state st+1. Each state-action pair (st,at)

returns a reinforcement signal, R(st,at) → R, given by the environment to the agent in return

for its actions.

Formally, the RL method can be exposed as a Markov Decision Process (MDP)

(Puterman 1994), defined as a quadruple M = 〈S,A,T,R,γ〉, where:

• S = {s1, · · · ,sn} is the finite set of states of the environment;

• A = {a1, · · · ,an} is the finite set of actions that the agent can perform;

• T : S ×A→ Π(S) is a state transition function where: Π(S) is a probability distribution

over the set of states S; and T (st+1, st|at) is the probability of a transition from st to st+1

occur with an action at;

• R : S × A → R is a function that defines the reward received by the agent for selecting

an action at in a state st at instant t;

• γ ∈ [0,1] is a discount factor that determines how far in the future an RL agent looks for

rewards in comparison with its immediate future.

A single episode eMDP can be described as a sequence of states, actions, and rewards

(i.e. the experience) acquired by an agent from the initial state of the environment to a terminal

state, and can be defined as:

eMDP = s0,a0,r0,s1,a1,r1, · · · ,sn−1,an−1,rn−1,sn , (1)

where si represent the ith state, ai the ith action, and ri the ith reward. Then, the amount of

future reward, at any time point t, is given by:

Rt = rt + γrt+1 + γ2rt+2 + · · ·+ γn−trn · (2)
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Note that the discount factor γ ∈ [0,1] expresses how seriously the agent takes future

rewards into account. Values close to 0 represent a short-sighted strategy, as higher-order terms

for rewards in the distant future become negligible. If the environment is deterministic, γ can

be set to 1 as the same actions always result in the same reward (Lapan 2018).

An RL agent implements, at each time step, a function that maps an action for every

state in the environment. This function is called the agent’s policy and is denoted by π. Although

there are a large number of possible policies to be followed by the agent, we can say that

the optimal policy π∗ represents the actions to perform in each state which aims for the best

possible reward that can be acquired by the agent and is better or equal to all other policies π

(Sutton and Barto 2018).

In the literature, there is a wide variety of RL algorithms that aim on learn-

ing the optimal policy π∗, such as Q-Learning (Watkins and Dayan 1992), H-Learning

(Tadepalli and Ok 1994), Dyna (Sutton 1991), SARSA (Sutton and Barto 2018), and Deep Q

(Mnih et al. 2015). In this work, without loosing generality, we test our approach using SARSA

and n-step SARSA, assessing the practical evolution of n-step SARSA compared with its or-

dinary version. Details are provided in Section 5. Also, it is important to note that the con-

version of FSMs to MDPs results in a Gym Wrapper (Brockman et al. 2016), over which

it is possible to apply any RL algorithm for optimization. This is discussed in details in

(Zielinski et al. 2020).

3.1 SARSA

The algorithm State–Action–Reward–State–Action (SARSA) (Sutton and Barto 2018)

has attracted attention for its simplicity and effectiveness. The basic idea of SARSA is to es-

timate a Q function Qπ(st,at) for the current behavior policy π and for all states st and actions

at. This function is implemented in the form of a map Q that assigns to S × A a value V that

represents the return for performing an action at in a state st. Since the agent’s state and action

space do not omit relevant information, once the optimal function is learned, the agent knows

which action results in a better future reward, which is true for all states.

As SARSA uses a on-policy method to update the action values, that is, it chooses the

actions at each time step upon looking at π, the Q-function update can be formulated as:

Qπ
t+1(st,at)=̇Qπ

t (st,at) + α
(

r + γQπ
t (st+1,at+1)−Qπ

t (st,at)
)

, (3)
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where Qπ
t (st,at) is the execution of an action at in a state st, both taken at a time step t and

following a policy π; α is the learning rate of the training; and Qπ
t (st+1,at+1) is the quality

value of executing action at+1 in state st+1 following a policy π. Equation 3 aims to find a local

maximum value, since it is a gradient ascent based approach. The Q function represents the

discounted expected reward for taking an action a when visiting a state s, and following an

optimal policy since then. Algorithm 1 shows the procedural form of SARSA.

Algorithm 1 – SARSA procedure

Ensure: S, A, Q as input
1: For each st,at, set Q(st,at) = 0
2: Select action at under policy π

3: while Stop Condition = False do
4: Executes at
5: Receive immediate reward r(st,at)
6: Observe new state st+1

7: Select action at+1 under policy π

8: Update Q(st,at) according to Equation 3
9: a← at+1

10: s← st+1

11: end while
12: Return Q

The stop condition at line 3 can be defined, for example, by executing a specific number

n of steps in a single episode, reaching a terminal state. Once all state-action pairs are visited a

finite number of times, termination is guaranteed and the method generates Q and converges to

a value Q∗ in a finite amount of time.

However, selecting an action under a policy in many cases means choosing the action

with the highest Q-value for a given state si. Suppose, for example, that the agent is in the initial

state (s0) of the MDP and takes an action a1, which gives a good reward. Thus, upon updating

the Q-table, there is a value higher than 0 in Q(s0,a1). The agent is unaware that the action

a0 in s0 returns a better reward than a1. Yet, it always chooses a1 because it is the maximum

value in the Q-table. Improvements can be obtained by using epsilon-greedy as a policy π of

line 7 in Algorithm 1, forcing the agent to explore all state-action pairs in table Q. The policy

epsilon-greedy is detailed in Algorithm 2.

Algorithm 2 – Epsilon greedy policy

Ensure: st, Q,ǫ as input
1: Generate random number x between 0 and 1
2: if x > ǫ then
3: Choose action with highest Q-value in Q(st)
4: else
5: Choose random action
6: end if
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The objective here is to switch between exploration (choose random actions) and ex-

ploitation (choose the best action) according to a value ǫ between 0 and 1, which defines the

probability of choosing a random action to explore the environment. Upon receiving as input

the current state st, the Q-table Q, and ǫ, the algorithm generates a random value between 0 and

1. If it is higher than ǫ, then the action with the highest Q-value is chosen in state st according

to Q. Otherwise (≤ ǫ) a random action is taken.

Despite useful, the effectiveness of SARSA is limited to simple environments with a

reduced number of states and actions. This is because Equation 3 processes the action value

Q(st,at) by looking only one step forward in the environment, i.e., Q(st+1.at+1). Although this

allows knowing the Q value for the next step, many steps ahead change with the learning rate

α, and may vanish over time. For example, let A and B be two paths in an environment, such

that A returns reward 10 after 4 steps, while B returns an immediate reward of 1. In SARSA,

as the profit received after 4 steps decreases with time, it chooses path B. Improvements can be

obtained from a variant of SARSA, called n-step SARSA (Sutton and Barto 2018), which is the

base for the results to be presented in this document.

3.2 N-STEP SARSA

Multi-step (or n-step) tabular methods can be seen as the result of processing many step

of different lengths (Asis et al. 2017). While the SARSA algorithm presented in the previous

section considers 1-step further, its n-step version considers n steps further, and their comparison

is better shown in Fig. 2.

...
...

1-step 2-step 3-step n-step

action
state

Figure 2 – Backup diagrams for n-step SARSA algorithms
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The n-step returns can be defined in terms of estimated action values:

Gt:t+n=̇Rt+1 + γRt+2 + ...+ γn−1Rt+n + γnQt+n−1(st+n,at+n)

n ≥ 1, 0 ≤ t < T − n ·
(4)

Then, the update function in Equation 3 can be replaced to:

Qπ
t+n(st,at)=̇Qπ

t+n−1(st,at) + α
[

Gt:t+n −Qπ
t+n−1(st,at)

]

0 ≤ t < T ·
(5)

Algorithm 3 implements the n-step method. The SARSA variables are initialized on

lines 1, 2, and 3. The difference this time is that an integer n identifies how many steps further

are to be considered. Also, three lists are defined to store states, actions, and rewards of the path

to be processed. The lowercase t (line 10) is the current timestamp of the agent, starting from

0 and reaching the end of the episode; the uppercase T (line 9) is the number of steps that the

current episode has, and its value is assigned on line 16; τ is the timestamp of the Q value that

is being updated.

When entering the loop (line 11), an action At is taken following the policy π. The tuple

(At, Rt+1, St+1) is stored until the next state is not terminal. When it is terminal, the algorithm

stops. On line 23, τ is used to sum the discounted reward G for n steps forward. If the nth step

is the last timestamp of the episode (line 24), then it picks up the value Q(Sτ+n,Aτ + n) as the

last term to the sum. Finally, line 27 updates the Q-value using the reward G.

In summary, the n-step SARSA brings the advantage of looking multiple steps further.

Its disadvantage is an increasing in the computational cost and memory to record information

about previous timestamps. Yet, this seems to be a reasonable price to be paid for escaping

from limited single time-step methods (Sutton and Barto 2018). Examples using both 1 and n

step SARSA are presented in (Zielinski et al. 2021).

3.3 COMPLEXITY ANALYSIS

The RL input is an FSM that models a SCT controller computed as in section 2. As

it includes only the part of the system behavior that survives under control, its state-space is, in

general, much smaller in comparison with the entire system, which favors the RL processing.

In case SARSA is processed, its stop condition is given by the number of episodes E,

i.e., by the loop content on line 4 running E times. Notice that, on line 8, the action a′ is selected
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Algorithm 3 – N-step SARSA

1: Initialize Q(s,a)
2: Initialize policy π with respect to Q (normally ǫ-greedy)
3: Parameters: step size α, γ and ǫ between 0 and 1
4: A positive integer n
5: Initialize list of States, Actions and Rewards
6: while Stop Condition == False do
7: Initialize and store S0 6= Terminal

8: Select and store an Action A0 following π

9: T ←∞
10: t← 0
11: while τ 6= T − 1 do
12: if t < T then
13: Take action At

14: Observe and store Rt+1 and St+1

15: if St+1 is terminal then
16: T ← t+ 1
17: else
18: Select and store At+1 following π

19: end if
20: end if
21: τ ← t− n+ 1
22: if τ ≥ 0 then
23: G← Σ

min(τ+n,T )
i=τ+1 γi−τ−1Ri

24: if τ + n < T then
25: G← G+ γnQ(Sτ+n,Aτ+n)
26: end if
27: Q(Sτ ,Aτ )← Q(Sτ ,Aτ ) + α

[

G−Q(Sτ ,Aτ )
]

28: end if
29: end while
30: end while

under the policy π, which is the ǫ-greedy policy. This means that the ǫ-greedy policy itself is

executed E times, and its code is therefore also used to determinate SARSA complexity.

Notice (line 4) that the ǫ-greedy chooses the action with the highest Q-value from the

table, which means that it has to iterate through the entire table to find the highest value from all

possible actions in that state. Hence, the number of iterations of the ǫ-greedy policy is limited

by the number of actions of the MDP (A). Therefore, the complexity of the SARSA procedure

should be O(A ·E), but it is clear that E is far bigger than A, so that the asymptotic complexity

of the SARSA procedure can be summarized as O(E).

Differently, the n-step SARSA is more complex than its 1-step version. The loop on

line 11 is executed T + n times: T times due to the condition on line 12, that is executed until

the value of t reaches T ; and n times because of the condition on line 23, where n is the number

of steps, i.e., the hyperparameter for the n-step. Asymptotically, the execution of the ǫ-greedy

policy into this loop on lines 13 and 19 can be ignored. As the stop criteria is also the number

of episodes (E), this should multiply the argument T + n, i.e., leading to O(E · (T + n)).
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4 METHODOLOGICAL PROCEDURES

This section shows how a SCT controller can be translated to MDP (Section 4.1); how

event controllability can be extended to RL treatment (Section 4.2); and how the entire approach

can be applied in practice.

4.1 RELATIONSHIP BETWEEN AN FSM AND AN MDP

In order to train a DES with RL, the structure of an MDP has to be combined with

FSMs, as they are slightly different. To fairly compare them, let us start with the simplest

Markov family representation: the Markov Chain (MC). An MC is a tuple (Q, T ), where Q is

the set of states and T is the transition matrix, which informs the probabilities for moving from

a state to another (Ashraf 2018).

This evidences the main difference between FSMs and MCs: FSMs are fully deter-

ministic, i.e., if the current state and the event to be triggered are known, the next state can be

anticipated. Differently, MCs are stochastic, i.e., there are randomness about the outcome from

a given state, provoked by the transition probability matrix.

Whenever convenient, MCs can be extended with a set of actions, so that the agent no

longer observes passively to states and transitions, but also chooses actions to be taken at every

time-step (Lapan 2018). This alters probabilities of target states, which is a useful ability. By

enriching an MC with this feature, it becomes partially deterministic, i.e., the outcome from a

given state is no longer fully random. A particular case appears when, for all states of an MC,

there is 100% probability that an action leads to a next state. This defines the Deterministic

Markov Chains (DMCs), which are finally quite similar to FSMs structures and represent the

base for our conversion method that follows.

In order to convert DMCs back into MDPs, one has to add a value to the set of tran-

sitions, to represent the reward matrix, and a discount factor, i.e., a number between 0 and 1

(Lapan 2018) (see definition in Section 3. As we also want to allow some stochasticity in the

MDP behavior, we consider complementing the matrix T with transition probabilities, trans-

forming the DMC into a stochastic MDP. A methodology that summarizes how FSMs are

translated into MDPs is presented as follows:

(i) FSM to DMC: translate the FSM 〈Σ ,Q,q◦,Qω,−→〉 into the DMC (S,A,T ), where S is
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the state set, A is the action set and T is the deterministic transitions of the DMC. Here,

we assume that S ≡ Q, A ≡ Σ and T ≡ −→.

(ii) DMC to deterministic MDP: transform the DMC into an MDP by adding a reward func-

tion R. This is done by allocating rewards for every a ∈ A. Also, it is necessary to add

a discount factor γ to the DMC. As a result, the tuple (S,A,T ), of the previous step, is

transformed into the MDP tuple 〈S,A,T,R,γ〉.

(iii) Deterministic MDP to stochastic MDP: add transition probabilities to the transition ma-

trix T .

The result of the translation process is an MDP environment over which it is possible

to apply RL algorithms in order to add flexibility to a DES. Yet, some controllability issues

remain to be discussed in order to semantically harmonize the integration of MDP and the

controller resulting from the SCT step.

4.2 CONTROLLABILITY CONSIDERATIONS

From the partitioned set of events Σ = Σc ∪ Σu, the SCT approach in Section 2.2

calculates controllers that respect the impossibility of disabling events in Σu. In this section, we

enrich a RL agent with the same notion of controllability, which allows us to preserve the nature

of event occurrences, an important feature for the consistency of the flexible control system to

be derived.

Following the translation step-guide in the previous section, the FSM set of events

becomes the MDP set of actions, which is equivalently split into A = Ac ∪ Au, also meaning

controllable and uncontrollable actions, respectively. Their type is now considered by the RL

agent when measuring the quality value Q. As the RL agent cannot decide to choose among

uncontrollable actions (as they are free to occur), it only chooses actions: (i) eligible by the

SCT controller; and (ii) belonging to the set of controllable actions.

This reflects on the ǫ-greedy policy used by both algorithms 1 and 3. The following

remarks help to understand the controllability issues that need to be considered by the RL

action policy.

Remark 1. In case of choosing exploitation, pick up the action with the highest Q-value in that

state, as long as the action is controllable.
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Remark 2. Triggering or not uncontrollable actions, based on probabilities or exploration, is

a matter only during the training phase. Upon training, the agent chooses only controllable

actions with the highest Q-value.

Remark 3. Controllable actions are not triggered by probabilities, as the control agent decides

whether or not to take them. Thus, the transition probabilities are only valid for uncontrollable

actions. In this way, the RL agent learns an optimal policy on training, and chooses the action

to take in a given state based on the best possible reward, as long as the selected action is

controllable.

Now, we are in position to complement the ǫ-greedy policy in Algorithm 2 with con-

trollability, as shows the Algorithm 4. This approach is called Controllable ǫ-greedy policy, and

it aims to harmonize controllability issues when integrating SCT and MDP, allowing for an

agent to search only through the set of possible actions A, in a given state i (Ai).

Algorithm 4 – Controllable Epsilon greedy policy

1: Receives si, Q, ǫ, Ai, P , Au, Ac as input
2: Ai

u = Ai ∩Au

3: Ai
c = Ai ∩Ac

4: Create empty list L
5: if Ai

u 6= ∅ then
6: Create empty list ∆
7: while Iterate over Ai

u such that Ai
u[j] = aiuj do

8: if P (aiuj) > 0 then
9: ∆← aiuj

10: Remove aiuj from Ai

11: else
12: Stores aiuj in L

13: end if
14: end while
15: end if
16: if ∆ 6= ∅ then
17: Select action ap from ∆ based on probabilities of P
18: Stores ap in L

19: end if
20: if Ai

c 6= ∅ then
21: Generate random number x between 0 and 1
22: if x > ǫ then
23: Stores action of Ai

c with highest Q-value Q(si) in L

24: else
25: Stores random action of Ai

c in L

26: end if
27: end if
28: Select random action in L

On line 2, the algorithm stores all possible uncontrollable actions of Ai in a list of

uncontrollable transitions called Ai
u, i.e., Ai

u = Ai ∩ Au. Similar idea applies for controllable
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transitions on line 3, i.e., Ai
c = Ai ∩ Ac. If Ai

u 6= ∅, then an empty list L of liable actions to

be taken is created on line 4. On line 6, another empty list ∆ is created to store all probabilis-

tic actions. On line 7, the algorithm iterates through Ai
u, in which Ai

u[j] = aiuj , and verifies

if P [aiuj] > 0. If so (line 9), the probabilistic action aiuj is stored in ∆. If the action is not

probabilistic, the uncontrollable action is stored in L.

On line 16, if the list ∆ is not empty, then (line 17) one action is selected from the list,

based on the triggering probabilities of each action, and stored in L. If Ai
c is not empty (line 20),

a random number between 0 and 1 is generated. If this number is less than ǫ, the agent chooses

the action with the highest Q-value in Ai
c to append in L. Otherwise it chooses a random action.

Finally, a random action in L is chosen on line 28. At this point, the list has one controllable

action that was chosen by the epsilon-greedy method, one uncontrollable action with triggering

probability, and all the uncontrollable actions without probabilities.

The diagram in Fig. 3 summarizes a step-guide for using RL in DESs.

1- Model DES plants and specifications.

2- Synthesize an FSM controller using the SCT.

3- Translate the FSM to an MDP (methodology in Section 4.1).

4- Split the Action set A in Au and Ac.

5- Apply RL using the controllable ǫ-greedy policy as in Algorithm 4.

Figure 3 – General methodology to apply RL on DESs.
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5 CASE STUDY ON AN INDUSTRY APPLICATION

Consider the partial version of a flexible automotive manufacturing system shown in

Fig. 4, where multiple robots perform distinct operations, over distinct cars, that pass through

the line. In automotive manufacturing, different car models are expected to be assembled using

the same plant, but each model has its own set of components. Therefore, cars are assembled

differently, may require different actuation setups, and may follow particular workflows. For

these reasons, controlling systems like these is in general associated with complex engineering

tasks and sensitive decision making.

A more viable alternative is using modular FSMs to approach engineering tasks, over

which control synthesis can be processed automatically. In this way, programming is never actu-

ally faced by the engineer, while the control logic still coordinates the manufacturing tasks with

the required precision. We further show how RL can optimize decision making and complement

the logic control with artificial perception.
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Figure 4 – Partial version of a flexible automotive manufacturing system. Squares represent machines; cir-
cles model buffers; arrows represent flow. Blue labels mean controllable, while red labels mean
uncontrollable events. Block X is responsible for receive and redirect cars to other blocks, block
Y adds an optional to the car and block Z sends a car to rework or out of the production line.

The example is split into 3 blocks, X, Y, and Z. Each block is responsible for a specific

task to complement the production. It is assumed that:

(i) Cars may enter or not block Y, which leads to a different manufacturing;

(ii) An unlimited number rework cycles is allowed for each car. The decision on whether

leaving or not the line is not in charge of the controller, but of an intelligent agent that

calculates whether or not a car is worth to be reworked, based on costs and profit rates;

Cars enter the system through the block X. In B1, a decision is required: a car may be

selected for customization (e.g., painting, air conditioning, or safety devices) in block Y (event
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sRi) before moving towards block Z; or it may follow directly to block Z without customization.

Two events of machine MO, s1O and s2O, detect the type (1 or 2) of car, respectively with or

without customization. This leads us to the first question we try to answer.

Question 1. Entering or not the block Y is a decision that does not depend on the process

control, but on what is better for the company production and expected profit, so that the con-

troller has only to allow each path. Thus, how this choice could be provided to the automatic

controller?

The two types of cars then enter block Z, where the remaining manufacturing is con-

ducted. Upon reaching the station B4, two outcomes are possible in the test machine MQ: (i) the

car leaves the system, independently on whether or not it is approved by the quality test (event

labels f i
QY (YES) and f i

QN (NO), for types i = 1,2); or (ii) the car is reworked in Z in case of a

rejection in the quality test (event labels f i
Qr, for the types i = 1,2). This leads us to the second

question that we aim to answer.

Question 2. When a car fails the quality test (machine MQ), the control system has to opt by:

(i) a rework, trying to complement its customization and hopefully increase its chances to be

approved in the next test; or (ii) removing it from the manufacturing line. This is also a decision

that does not depend on the process control, but on the company’s profit and sales expectations.

The controller is only expected to enable both possibilities for an external agent to choose. How

this decision could be provided to the automatic controller?

Questions 1 and 2 are aligned with the intelligent solution proposed in this study to be

integrated with the logic solution resulting from the SCT, and their application and integration

are detailed better in the following.

5.1 PROBABILISTIC ASSUMPTIONS

It is reasonable to assume that the test unit (machine MQ) has a probability associated

with how likely each type of car is to pass the test. Cars type 2 are more likely to be approved, as

they include less equipment to be tested in comparison with cars type 1. The inclusion of more

devices in cars type 1 is, therefore, a decision that must balance the value added to the car, in

return for more chances for it to fail the quality test. Our approach captures these decisions using

2 parameters: (i) the probability for approval after the quality test, which is associated with the
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transition matrix T ; and (ii) the reward structure R that reflects the profit upon manufacturing

a car.

In the next sections, we use the Fig. 3 to present the modeling, control, and optimiza-

tion steps for the example in Fig. 4. Our solution is expected to maximize profit, reduce costs

and waste (time and row material), and provide environment simulation to anticipate manufac-

turing scenarios.

5.2 MODELING AND SYNTHESIS

This section addresses the steps 1 and 2 of the guide in Fig 3. Each component of the

process in Fig 4 is modeled as an FSM. The event meaning is as in Table 1, and the result of the

plant modeling step is shown in Fig. 5.
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MP : MQ:
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Figure 5 – Plant of the automotive manufacturing system.

Controllable Events Uncontrollable Events
Event Description Event Description
sI Machine MI starts working with a car fI Machine MI inserts a car in buffer B1
siO, i = 1, 2 Machine MO starts working with a car of type i f i

O, i = 1, 2 Machine MO inserts car of type i in buffer B3
siP , i = 1, 2 Machine MP start working with a car of type i f i

P , i = 1, 2 Machine MP inserts car of type i in buffer B4

siQ, i = 1, 2
Test unit MQ picks car of type i,
from buffer B4 to acceptance or rejection

f i
QN , i = 1, 2

Test unit MQ rejects car of type i,
respectively

siQr, i = 1, 2
Test unit MQ picks car of type i from buffer B4 to
acceptance or rework

f i
Qr, i = 1, 2 Test unit MQ sends car of type i to rework

sRi

Machine MR picks car from buffer B1 to
insert some optionals in it

f i
QY , i = 1, 2 Test unit MQ approves car of type i

sRO

Machine MR picks car from buffer B2 to
reinsert the car in the main line

fRi Machine MR inserts car in buffer B2

sS
Machine MS picks car from buffer B2 to
insert some optionals in it

fRO Machine MR inserts car in buffer B1

fS Machine MS inserts car in buffer B2

Table 1 – Event description table

Models MI and MS represent the homonym machine with 2 states that evolve with

start and finish transitions. Models MO, MP , and MR design the machines that work in two

modes, one for each type of car (1 and 2). Finally, FSMMQ expresses the two ways cars type 1

and 2 can either leave the system or go back to recycle. The composition G = MI ‖MO ‖MS ‖
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MP ‖MQ, with 540 states, corresponds to the unrestricted behavior of the plant. It is restricted

by the set of specifications detailed in Table 2.

Specification Description
Bi, i = 1, · · · ,4 Avoid overflow and underflow in the buffer Bi

Cj , j = O,P,Q Control the types of car handled by machine Mj

ORewk Limit the number of rework cycles to be allowed for each car
OCust Decide whether or not adding customization for each car

Table 2 – Specifications to be considered in the example.

Notice that designing specifications Bi and Cj is straightforward. In fact, they in-

volves no memory tracing, only the disabling of certain events in order to impose the cor-

rect flow of cars through the production line. However, it has been shown in the literature

(Malik and Teixeira 2021) that designing ORewk and OCust as FSMs can be quite tricky and

lead to state space explosion, due to the following reasons:

(i) They both have a dynamic cost factor associated, which requires a more flexible approach

to be expressed than FSMs.

(ii) Designing ORewk as FSMs fixes a deterministic limit of cycles to be allowed. What-

ever that limit is, it implies designing by hands the entire memory that precedes

the control action, which increases exponentially with the number of cycles and is

not practical for real cases (Teixeira et al. 2015; Cury et al. 2015; Teixeira et al. 2018;

Malik and Teixeira 2021).

(iii) FSMs would impose to ORewk and OCust a static definition, which is not compatible with

the purposes in this work.

In the following, the possibility of entering block Y, and recycling in block Z (specifi-

cations ORewk and OCust), are kept free from the supervisory control synthesis. These decisions

will emerge from the proposed RL software layer and provided automatically to the controller.

The FSMs modeling Bi and Cj are represented in Fig. 6.
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fRo fRo
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Figure 6 – Restriction of overflow and underflow.
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In Bi, overflow is controlled by disabling events of arrival of cars in the buffer when it

is full; underflow is controlled otherwise by disabling the start events of machines in the initial

state, while the buffer is still empty. In addition to buffering control, it is also necessary to

keep memory of the type of car to be processed, so that the actuation can be compatible. This

is enforced by specifications Cj . For example, CO disables the operation of machine MO for

cars type 1 (event s1O) in the initial state, and only enables it if the path though block Y (which

culminates in the event fRo) is chosen. CO performs similarly for cars type 2. Restrictions CP

and CQ work likewise and the result is the complete tracking of each type of car throughout the

system.

The composition E = B1 ‖B2 ‖B3 ‖B4 ‖CO ‖CP ‖CQ has 81 states. When joined to

the plant, it forms the expected behavior for the manufacturing system under control, modeled

by K = G ‖ E with 18630 states. Synthesis processing results a supervisor supC(K,G) with

1309 states and 4878 transitions.

We are now in position to translate the FSM that models supC(K,G) into an MDP.

This will later serve as the environment to process the RL algorithm proposed to enforce spec-

ifications ORewk and OCust, hopefully providing reasonable answers to questions 1 and 2. This

corresponds to phases 3 and 4 of the step-guide in 3.

5.3 TRANSLATING FSMs INTO MDPs

From the methodology in Section 4.1, the first conversion step is to transform the

FSM supC(K,G) into a DMC. Remark that, for an FSM 〈Σ ,Q,q◦,Qω,−→〉, and a DMC tuple

(S,A,T ), equivalences follow for the set of states S ≡ Q, set of events and actions A ≡ Σ,

and deterministic transition relations T ≡ −→. It is further necessary to add a reward function

R and a discount factor γ in order to transform the DMC tuple (S,A,T ) into an MDP tuple

〈S,A,T,R,γ〉.

Function R is created by allocating rewards for every a ∈ A. That is, for each event in

the DES presented in Figure 4 (which coincides with the MDP actions after the FSM translation

procedure), we allocate a reward to map its profit, in case it occurs in the system. For example,

event f 1
QY returns a high positive profit, while event f 1

QN returns a high negative profit. It is

also considered that machine actions have low negative profit (related with power consumption,

wear, maintenance, etc.) and customized cars are more profitable than otherwise.

The final step towards deriving a RL environment is to add transition probabilities to
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the deterministic MDP obtained so far. For the automotive manufacturing example, we consider

only probabilities of approving a car after a quality test, and the other transitions are determin-

istic. We also assume that cars type 2 (not customized) have more or equal chances of approval

than type 1, since more equipment implies more chances to violate the quality test.

For practical purposes, we tested the RL efficiency through the environment for 9

cases, each one varying the probability of approving cars type 1. Probability was started in 90%

and reduced from 10% to 10% in the subsequent cases until reaching 10% in case 9. For the

above setup, the rewards and probabilities adopted for every action are shown in Table 3. It was

assumed a discount factor γ of 0.9, as we pursue a low discount on long term rewards. Those

parameters are only illustrative and they can be replaced without loosing generality, as shown

in (Zielinski et al. 2021).

Controllable Actions Uncontrollable Actions

Action Reward
Probability

(%)
Action Reward

Probability

(%)

sI -10 Not considered f1
QN -30000 10 - 90

s1O -10 Not considered f2
QN -20000 10

s2O -10 Not considered fI -10 Not considered

s1P -10 Not considered f1
O -10 Not considered

s2P -10 Not considered f2
O -10 Not considered

s1Q -10 Not considered f1
P -10 Not considered

s1Qr -10 Not considered f2
P -10 Not considered

s2Q -10 Not considered fRi -10 Not considered

s2Qr -10 Not considered fRo -10 Not considered

sRi -10 Not considered fS -10 Not considered

sRo -10 Not considered f1
QY 30000 90 - 10

sS -10 Not considered f2
QY 20000 90

f1
Qr -1000 10 - 90

f2
Qr -1000 10

Table 3 – Rewards and probabilities assumed for the example.

It is assumed that actions leading machines to start working cause a minor -10 penalty,

while producing an entire car returns a profit of 30000 for type 1 and 20000 for type 2. The same

setup applies negatively, in case the car is rejected by the quality test. Also, starting a rework

cycle implies a penalty of -1000. It was considered further that not customized cars (type 2)

have constant probability of 90% to be approved, while customized cars (type 1) have variable

probability from 90% to 10% through the 9 test cases.
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We are now in position to assess how worth it is to customize a car, considering the

combined impact of multiple variables and probabilities over the profit collected from the man-

ufacturing line.

5.4 APPLYING RL OVER THE EXAMPLE

The algorithms SARSA and N-step SARSA (sections 3.1 and 3.2) are now applied

over the example, considering the 9 test cases defined previously. This corresponds to the fifth

and final phase of the step-guide in Fig. 3. We first check the performance of the algorithm

SARSA, which is simple, but looks only one step forward in the environment; then we present

improved results using the N-step SARSA method; and, finally, we generalize the results for

larger test cases in order to show the effectiveness of the presented method.

For training, the environment was tested over 10000 episodes, considering that each

episode ends after producing 10 cars. It was also used the controllable epsilon greedy policy

detailed in Algorithm 4, with ǫ value of 0.5. Then, each algorithm was tested over 20 episodes,

and mean and standard deviation of rewards obtained with and without an RL agent helping the

SCT controller, were measured. For each case, we collect and compare how many cars, of each

type, was produced or discarded.

5.4.1 SARSA

The performance (mean reward) resulting from SARSA over the manufacturing system

example, in comparison with letting production to be controlled purely by the SCT method, is

presented in Fig. 7(a). As the SCT does not choose whether or not to customize or rework, we

set this possibilities in 50%. Figures 7(c) and 7(d) also show the number of occurrences of each

event that leads a car to leave the production (either approved or not), both under the influence

of RL and without it, respectively, while varying the fail probability.

Remark in Fig. 7(a) that the pure SCT obtains better results when running under low

fail probabilities. This happens because the SCT controller chooses randomly whether to cus-

tomize or not, while the RL method chooses mostly not to customize (see figures 7(c) and

7(d)).

As the SARSA method updates the action values of the Q-table by looking only one

step forward, it prioritizes short-term rewards. As the production of cars type 2 is shorter, it is
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Figure 7 – Results of applying SARSA while varying the probability of rejecting cars type 1.

chosen mostly by the RL. This suggests that the 1-step SARSA is not an appropriate method to

process RL over the example, even with mean reward slightly better than the SCT.

We can also notice in Fig. 7(b) that only SCT decisions allowed reworks of cars type

1. The RL decided not to produce this type, which may also not be an attractive decision. Gen-

erally, the RL method returned a reward of 160725, against 120892 from the SCT, meaning a

performance improvement of approximately 32.9%.

5.4.2 N-step SARSA

The second experiment exposes the performance (mean reward) resulting from the

application of the N-step SARSA algorithm over the manufacturing system example. Its perfor-

mance is again compared with the ordinary SCT.

Differently from SARSA, the N-step SARSA performs better along all fail probabili-

ties variations, as shown in Fig. 8(a). This happens because, while SARSA mostly chooses to

produce cars without customization, and SCT chooses randomly, the N-step SARSA prioritizes

customization when fail probability is low, as it feels that it may return higher profit. Over high

fail probabilities, however, it prefers mostly not to risk producing cars type 1. In average, these

intelligent decisions lead the algorithm to accumulate better rewards. The N-step SARSA re-

sulted a mean reward of 179230, in comparison with 122483 from the SCT, representing an
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Figure 8 – Results of applying the N-step SARSA while varying the probability of rejection of cars type 1.

improvement of 46.3%.

Figure 8(b) shows the number of rework cycles applied per car. Under high fail proba-

bilities, the SCT causes more rework cycles, since it reworks whenever the car is not approved,

as expected. As for the intelligent method, the number of reworks also keep increasing with the

fail probability.

Also see in figures 7(c), 8(d), 8(c), and 8(d) that there is a dominant event f 2
QY

(Approval type 2). This is because the environment supports parallel production, that is, it is

possible to produce more than one car in parallel. When a car enters the block Y, its production

takes more time than cars that do not enter that block. Suppose, for example, that a car reaches

the station B2, and another car reaches B1. The car in B2 will be blocked to proceed until the

car in B1 is moved to machine MO. When it does, another car may enter the system and reach

B1, again blocking the car in B2, i.e., the system has no justice property. The result may lead

more cars to be produced, but they are prevented from customization. Here, we leave justice to

be assigned in future results.

So far, we have tested the efficiency of the N-step SARSA, in comparison with its

1-step version, over the proposed example. As this method is expected to be independent on re-

ward or probability settings, one remains to be shown its generalization capabilities, which is dis-

cussed in (Zielinski et al. 2021) though additional examples of small, moderate, and large sizes.
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This can be assessed more generally over randomly-defined scenarios, which is approached

next.

5.4.3 N-step SARSA for random scenarios

In this section, we consider simulating 100 different scenarios, with random values of

reward and probabilities. Table 4 shows the parameters which were randomly varied. The main

objective of this experiment is to verify if the intelligent method is able to optimize the profit,

regardless of the adopted configuration. This is an important feature of our proposal, as it is

expected to optimize DESs with variable configuration policies and/or objectives.

Controllable Actions Uncontrollable Actions

Action Reward
Probability

(%)
Action Reward

Probability

(%)

sI -10/-800 Not considered f1
QN -20000/-40000 10-90

s1O -10/-800 Not considered f2
QN -20000/-40000 10-90

s2O -10/-800 Not considered fI -10/-800 Not considered

s1P -10/-800 Not considered f1
O -10/-800 Not considered

s2P -10/-800 Not considered f2
O -10/-800 Not considered

s1Q -10/-800 Not considered f1
P -10/-800 Not considered

s1Qr -10/-800 Not considered f2
P -10/-800 Not considered

s2Q -10/-800 Not considered fRi -10/-800 Not considered

s2Qr -10/-800 Not considered fRo -10/-800 Not considered

sRi -10/-800 Not considered fS -10/-800 Not considered

sRo -10/-800 Not considered f1
QY 20000/40000 10-90

sS -10/-800 Not considered f2
QY 20000/40000 10-90

f1
Qr -1000/-9000 10-90

f2
Qr -1000/-9000 10-90

Table 4 – Rewards and probabilities adopted for the test case. The parameters were varied randomly in
order to simulate the algorithm through 100 different scenarios.

Figure 9 shows that the intelligent method achieved better results in 99 of the 100

cases, in comparison with the SCT. In case 40, however, the SCT returned better profit. One

hypothesis is that the created environment (with randomly generated rewards and probabilities)

was harder for the RL agent to learn than the other scenarios, and it would require more training

to adapt.

The mean reward of the SCT was of 24022, while the combined method returned

217736. This means approximately 9 times more profit, which reinforces the role played by

the combination of RL and SCT, independently on probabilities setup, cost of production, vol-
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Figure 9 – Results of the N-step SARSA while varying the environment parameters randomly.

ume of manufactured products, etc. At the same time, SCT preserves safety properties that are

essential along manufacturing.
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6 FUTURE OPTIMIZATIONS

In this study, we consider that the probability distribution is uniform for all events. In

future attempts, we aim to adapt these probabilities to other distributions, such as the expo-

nential. For example, a machine may have 5% chances to crash for some episodes, while this

may increase to 10% for others. This could be approached differently by modeling in future

researches.

Another possible variation is to allow rework cycles to reduce the probability of failure,

i.e., a car that reworks once reduces its fail probability by 10%, while twice reduces 20%, and so

on. It is also possible to test more complex algorithms for the intelligent part, such as SARSA-λ

or Q(σ,λ) (Sutton and Barto 2018). Other properties are also expected to be exploited, such as

justice, in order to avoid that cars block when entering the customization zone. This may assign

flexibility and efficiency for the RL agent to choose between sending cars to customization or

not.



41

7 FINAL CONSIDERATIONS

This research is dedicated to match flexibility and safety in the control of DES. This is

difficult to be ensured by hands, as engineers are in general limited to handle a few states and

transitions, while real-scale systems are far more complex. Therefore, our contributions enrich

the automatic control of DESs with simulation and intelligent capabilities that improve profit

and are more tuned with the reality of modern flexible industries, while safety properties are still

ensured. Besides presenting a method to handle the control of DESs intelligently, our results

also point out differences between RL and DESs, and how they can be integrated by modeling.

This creates an alternative to simulate, optimize, and control DES that are trained via RL.

The use of RL in DESs evidences practical appeal, considering that the concept of

reward, used in RL algorithms, can reflect many practical tasks of an industrial systems, such

as those related with cost, profit, and performance aspects in general. The RL agent can then

learn how to perform those tasks and return valuable decision making skills, in order to aid

the control engineering. In the presented example, the contribution brought by the association

of RL and SCT allowed to obtain a mean reward (profit, in this case) approximately 9 times

higher in comparison with the SCT acting alone to control the system. This leads us to believe

that our approach has a wide and promising applicability in factory floors, under the price of a

minor engineering effort: providing the input FSMs, a reward list for each triggered event in the

system, and the probabilities for uncontrollable events.

By generalizing well for any system that can be modeled as FSM, our method supports

any RL algorithm on the training step, without concerning about compromising the system

functioning under control, as it explores an already safe, nonblocking, and controllable state

space. As the approach is released as an open source tool, we believe that it can further support

other studies involving RL and DESs, specially in industry 4.0-aware scenarios.
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APPENDIX A – COMPLEMENTARY EXAMPLES

In this section, we present some examples to facilitate the understanding of the method-

ologies presented in this document. Our goal here is to bring the reviewer closer to the research

methodology.

Example 1 (FSM compositions). Consider the example in Fig 10.

replacements

s

s s

ss

fA

fA
fA

fA

fA

fB

fB

fB

fB

fB

A: A′: B:

A ‖B: A′ ‖B:

Figure 10 – Graphical view of FSMs and compositions.

The three machines, A, A′, and B, start with the same event s (s ∈ ΣA ∩ ΣB ∩ ΣA′),

which is therefore merged (case (i) of composition definition) in both A ‖ B and A′ ‖ B. In

A ‖ B, machines A and B can finish in any order after s, as fA ∈ ΣA \ ΣB and fB ∈ ΣB \ ΣA

(cases (ii) and (iii)). However, in A′‖B, machine A is forced to finish before B can finish (event

fB is prohibited after s in A′ until fA occurs). In this case, fB ∈ ΣA′ ∩ ΣB (suggesting case

(i)), but A′ s
−→ q

fB
9, which falls in case (iv) and causes the event to be definitively disabled by

composition, i.e., A′ ‖B
s
−→ q

fB
9.

Example 2 (Control synthesis). Consider an example of two transmitters, T1 and T2, sharing

a communication channel C, as in Fig. 11(a). T1 and T2 can be respectively modeled as FSMs

GT1
and GT2

in Fig. 11(b).

T 1

T 2

C

(a) Layout of the transmis-
sion process.

GT1
:

GT2
:

req1

req2

tran1

tran2

ack1

ack2

(b) Plant model.

req1

req1

req1

req2

req2

req2

tran1

tran1

tran1

tran2

tran2

tran2

ack1

ack1ack1
ack2

ack2ack2
G:

(c) Composed plant model G = GT1
‖GT2

.

Figure 11 – Example of a concurrent transmission system.

The following events are observable:
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• req1 and req2: request messages arriving for transmission in T 1 and T 2, respectively.

These events are controllable, since the requisition is manually triggered by the system;

• tran1 and tran2: model the start of transmission in T 1 and T 2, respectively. They are

uncontrollable, since the control agent can not disable; and

• ack1 and ack2: reset the channel C for new transmissions. Also uncontrollable events,

because the acknowledge signal is not triggered by the control agent.

It is assumed that Σc = {trani}, while Σu = {reqi, acki}, for i = 1,2. The plant

G = GT1
‖GT2

has 9 states and 18 transitions, and it is displayed in Fig 11(c). The behavior

of each transmitter (and of G) is unrestricted, i.e., it does not consider channel limitations nei-

ther the sharing of C with other transmitters. One possible specification is to mutually exclude

transmissions in C, which is modeled by E in Fig. 12.

E:

tran1, tran2

ack1, ack2

Figure 12 – Mutual exclusion specification for the channel C.

E allows both transmitters to start transmission (events tran1 and tran2) in the initial

state but, as soon as one of them occupies the channel, the other is prohibited to transmit until

an acknowledge (ack1 or ack2) is received (both tran1 and tran2 are disabled in the non-initial

state).

From the composition K = G‖E, the optimal controller supC(K,G) can be obtained.

In this example it has 8 states and 14 transitions, and the model can be used to generate hardware-

compatible code (Qamsane et al. 2018).

Example 3 (SARSA vs N-step SARSA ). Consider an MDP with 6 states and 2 actions as

shown in the example in Fig 13. A robot moves through six rooms with the objective of collect-

ing raw material. Consider that room number 5, which is correlated to state 5 in our MDP, has

a considerable mount of raw material, so that the robot receives a reward of 10 after it collects

it all. Differently, room number 1 has also raw material available to collect, but its total reward

is only 2.
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s0 s1

s2

s3

s4

s5

a0 →east

a1 →north

r5 = 10

r4 = 0

r3 = 0

r2 = 0

r1 = 2

Figure 13 – Example of a robot walking in a room

So now we show the outcome of the environment for both algorithms. First of all,

we calculate the Q-values for SARSA, since it is less complex than its N-step version. After

initializing all Q-values to 0, we apply Equation 5 to both outcomes: going east, and going

north. We also allocate some values to our training parameters. In this example, we consider a

learning rate of α = 0.1, and a discount factor γ = 0.9. Since there are only two paths that the

robot can move, we follow the only possible policy for each path in the environment.

Next, we show the Q-values for all the robot outcomes after one updating step on all

states. We can note that the Q-value of making an action a1 (north) in the initial state s0 is

0.000729, while the value of making an action a0 in the same state is 0.2. See that the reward on

going 4 steps north is higher than the reward of going just one step east. This is because SARSA

loses track of future rewards over time, and to overcome that, it needs to keep memory storage

in order to keep track of the path that is taken.
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Q(s4,a1) = Q(s4,a1) + α ∗ (r5 + γ ∗Q(s5,a1))

= 0 + 0.1 ∗ (10 + 0.9 ∗ 0) = 1

Q(s3,a1) = Q(s3,a1) + α ∗ (r4 + γ ∗Q(s4,a1))

= 0 + 0.1 ∗ (0 + 0.9 ∗ 1) = 0.09

Q(s2,a1) = Q(s2,a1) + α ∗ (r3 + γ ∗Q(s3,a1))

= 0 + 0.1 ∗ (0 + 0.9 ∗ 0.09) = 0.0081

Q(s0,a0) = Q(s0,a0) + α ∗ (r1 + γ ∗Q(s1,a0))

= 0 + 0.1 ∗ (2 + 0.9 ∗ 0) = 0.2

Q(s0,a1) = Q(s0,a1) + α ∗ (r2 + γ ∗Q(s2,a1))

= 0 + 0.1 ∗ (0 + 0.9 ∗ 0.0081) = 0.000729

Now, we use N-step SARSA to look at the environment’s outcome and see the behavior

of the RL agent looking at its Q-values. The parameters used for α and γ are the same. In

addition, we use n = 5 to keep track of 5 steps further. After one single update in each step of

the environment, the Q-values are the following.
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Q(s4,a1) = Q(s4,a1) + α ∗ (r5 + γ ∗Q(s5,a1))

= 0 + 0.1 ∗ (10 + 0.9 ∗ 0) = 1

Q(s3,a1) = Q(s3,a1) + α∗

(r4 + γ ∗ r5 + γ2 ∗Q(s4,a1))

= 0 + 0.1 ∗ (0 + 0.9 ∗ 10 + 0.81 ∗ 1)

= 0.981

Q(s2,a1) = Q(s2,a1) + α∗

(r3 + γ ∗ r4 + γ2 ∗ r5 + γ3 ∗Q(s3,a1))

= 0 + 0.1 ∗ (0 + 0.9 ∗ 0 + 0.81 ∗ 10 + 0.729 ∗ 0.981)

= 0.866

Q(s0,a0) = Q(s0,a0) + α∗

(r1 + γ ∗Q(s1,a0))

= 0 + 0.1 ∗ (2 + 0.9 ∗ 0)

= 0.2

Q(s0,a1) = Q(s0,a1) + α∗

(r2 + γ ∗ r3 + γ2 ∗ r4+

γ3 ∗ r5 + γ4 ∗Q(s2,a1))

= 0 + 0.1 ∗ (0 + 0.9 ∗ 0 + 0.81 ∗ 0+

0.729 ∗ 10 + 0.656 ∗ 0,866)

= 0,785

Note that, in this case, Q(s0,a0) = 0.2, the same as in SARSA, but now Q(s0,a1) =
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0.785, which is higher than the previous Q(s0,a0). So, if the agent decides to follow a greedy

policy in the initial state, it always chooses to pick up the action a1 in the initial state, because

it has a higher Q-value and it produces a better profit by the end of the iteration.

Example 4 (Assembler System for Computer Manufacturing). Figure 14 exposes a partial ver-

sion of system that assembles personal computers using 2 production lines. A computer enters

the system through an event a1 and leaves the system through the events out1 and out2. Rectan-

gular blocks represent machines, while circular blocks represent temporary storage buffers. In

this example, a computer may either pass directly through machine M1 to M3, or manufacture

further (and optionally) in machine M2. For example, let us assume that machine M2 adds an

optional GPU attribute to be installed in the computer.

a1

a2b2

b1 in1

in2

out1

out2
M1

M2

M3B1

Figure 14 – Partial layout of an assembler system for personal computer manufacturing.

The first step to apply our method, is to treat the system as a DES, modeling the FSMs

that represents the plant, and express the specifications for the system to follow. Table 5 shows

the description and controllability of the events to be observed. Figure 15 shows the models for

each machine in the system, whose composition leads to the global unrestricted G. In order to

add restrictions of overflow and underflow in the buffer B1, to prevent computers to be handled

inappropriately, we design the FSM E that controls the events in1 and in2 as the computer

enters or not the optional line, as shown in Figure 16. The composition K = G‖E represents

the desired behavior for the system under control.

In sequence, the optimal supervisor of the system supC(K,G) was processed by the

SCT and it resulted in an FSM with 15 states and 24 transitions. Then, we translate this FSM

into an MDP, converting the FSM states, events, and transition function into the corresponding

MDP states, actions, and transition function, respectively (see more details in Section ??). For

this example, we do not assume transition probabilities in the model, in order to simplify the

problem in question. The reward values for each action in the environment are shown in Table

6.
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Table 5 – Description and controllability of the events used in the computer assembler system.

Event Controllability Description
a1 Controllable Inserts a computer in machine M1.
a2 Controllable Inserts a computer in machine M2.

in1 Controllable
Sends a computer to M3

line without optional items

in2 Controllable
Sends a computer to M3

line with optional items

b1 Uncontrollable
Inserts a computer in buffer B1

through machine M1.

b2 Uncontrollable
Inserts a computer in buffer B1

through machine M2.

out1 Uncontrollable
Dispatches a computer off the production
line without optional items

out2 Uncontrollable
Dispatches a computer off the production
line with optional items

a1

a2

b2

M1

M2

M3

b1

in1

in2 out1

out2

Figure 15 – Design of the free behavior of each machine of the system.

a2b2

R b1

in1

in2

Figure 16 – Restriction of underflow and overflow in buffer B1 and also the control of events in1 and in2.

Finally, after splitting the action set into controllable and uncontrollable actions, we

simulate the environment for 3000 episodes, considering that an episode ends after 100 steps

of the agent in the environment, and also considering the following values for the parameters:

α = 0.1, γ = 0.9, ǫ = 0.1, and n = 10. To validate the method, we simulated each agent (with

and without RL) for 50 episodes. The mean reward obtained for each one is shown in Figure 17.

Action set A Reward set R
a1 -0.1
a2 -0.1
in1 -0.1
in2 -0.1
b1 -0.1
b2 -0.1
out1 0.7
out2 0.9

Table 6 – Rewards adopted for the computer assembler example.
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Figure 17 – Mean rewards obtained for the case study of a system that assembles computer parts.

Remark that, as expected, the intelligent approach returned a better profit in compari-

son with the non-intelligent method. The rewards considered for each action presented in Table

6 shows that computers with manufacture of optional devices return a better reward (0.9) than a

computer manufactured through the otherwise flow (0.7). However, the process of assembling

an optional device on the computer has a cost, and the RL agent can balance it in order to ma-

ximize the final reward to be obtained. Since the approach without RL keeps taking random

action decisions, it comparably receives a lower profit.

Example 5 (Automotive industry with a rotating table). This case study exposes a particular

case in which the automotive industry, presented as the main example of our work, is comple-

mented with a rotating table that separates both approved and not approved cars. Figure 18

shows the components of the system, note that the table has 4 places in it. Cars enter the table

in position P1 and travel all the way through position P4 (if they are approved by MQ), where

a robotic arm MA picks the car and transfers it out of the production line. Non approved cars

are discarded by machine MD in position P2 while approved cars pass by P2 without being

discarded and go to position P3 to be tested by machine MT . Finally, the approved cars go to

P4 in order to be dispatched of the production line.

The modeled plants, representing the unrestricted behavior of the components, are pre-

sented in Fig. 20. Note that there are 4 models, one for each of the three new machines of the

system and also a model for the rotating table. Event sTu from Table model indicates that the
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Figure 18 – Automotive system complemented with a rotating table at the end. Machine MD discards cars
that are not approved by MQ and send approved cars out of the production line by a robotic
arm represented by machine MA

.
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Figure 19 – Restriction of overflow and underflow of buffers in blocks X,Y and Z

table is moving, while event fTu is a signal that informs that it has stopped moving. From model

MD, note that there is a loop at the initial state, with event sNd indicating that the car that entered

position P2 can not be discarded, so it has to go directly through position P3.

sD

fD

sTe

fTe fA

sA

sTu

fTu

sNd

Table : MD:

MT : MA:

Figure 20 – Design of the unrestricted behavior of the components representing block W on the Automotive
system.

The restrictions adopted for the components in block W are represented in Fig. 21,

while the description of each one of the models is detailed by Table 7.

By synthesizing the models in order to get the optimal supervisor of the system, we

applied the SCT and the result was a state machine with 153289 states and 741736 transitions,

that is, a state space of around 117 times higher than the system without the rotating table.

In order for this model to be apt to learn by RL, we adopted the rewards and probabil-
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Figure 21 – Design of the restrictions implemented in block W.

ities represented in Table 8. The model was trained for 10 scenarios varying the probability of

rejection of a car type 2. Each scenario was trained for 10000 episodes and the mean reward

obtained is represented by Fig. 22.
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Figure 22 – Mean reward obtained for the system with a complementary rotating table example.
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Specification Description

R1
Avoid to turn the table
while discarding a car

R2
Avoid to turn the table
while the robotic arm
is transferring a car

R3
Avoid to turn the table
while testing a car

R4
Controls the flow of
approved cars between
positions P1 and P2

R5
Controls the flow of
approved cars between
positions P2 and P3

R6
Controls the flow of
approved cars between
positions P3 and P4

R7
Controls the overflow of
pieces in P1

R8
Controls the flow of non
approved cars between P1
and P2

R9
Avoid the table from
moving when there are
no cars

Table 7 – Description of each specification model presented in Fig 21.

Controllable Actions Uncontrollable Actions

Action Reward
Probability

(%)
Action Reward

Probability
(%)

sI -10 Not considered f1
QN -30000 10 - 90

s1O -10 Not considered f2
QN -20000 90

s2O -10 Not considered fI -10 Not considered
s1P -10 Not considered f1

O -10 Not considered
s2P -10 Not considered f2

O -10 Not considered
s1Q -10 Not considered f1

P -10 Not considered
s1Qr -10 Not considered f2

P -10 Not considered
s2Q -10 Not considered fRi -10 Not considered
s2Qr -10 Not considered fRo -10 Not considered
sRi -10 Not considered fS -10 Not considered
sRo -10 Not considered f1

QY 30000 90 - 10
sS -10 Not considered f2

QY 20000 90
sD -10 Not considered f1

Qr -1000 10 - 90
sNd -10 Not considered f2

Qr -1000 90
sTu -10 Not considered fD -10 Not considered
sTe -10 Not considered fTu -10 Not considered
sA -10 Not considered fTe -10 Not considered

fA -10 Not considered

Table 8 – Rewards and probabilities adopted for the example. The probability of rejection of a car of type 2
was fixed at 50% while varying the probability of a type 1.
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We can note that, although the model has a significantly higher state space for the

RL agent to explore, it could still learn well and obtain a higher profit that the non-intelligent

approach, showing that regardless of how big the state space of the environment is, our method

will still be able to get a better reward than the method without intelligence.
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APPENDIX B – ADDITIONAL RESULTS

For all our case studies, we show the comparison of mean reward and event occur-

rences, for both the SCT method and the n-step sarsa RL method combined. In order to show

that our method works for many configurations of a system, we picked the example from Figure

4. For all tests, 9 scenarios were considered, and each one was trained through 5000 episodes.

B.1 CASE 1

In our first additional study case, we fixed the probability of a car of type 2 to be

approved at 50% while varying the approval of type from 10% to 90% . Table 9 shows the

parameters used for this scenario.

Controllable Actions Uncontrollable Actions

Action Reward
Probability

(%)
Action Reward

Probability
(%)

sI -10 Not considered f1
QN -30000 10 - 90

s1O -10 Not considered f2
QN -20000 50

s2O -10 Not considered fI -10 Not considered
s1P -10 Not considered f1

O -10 Not considered
s2P -10 Not considered f2

O -10 Not considered
s1Q -10 Not considered f1

P -10 Not considered
s1Qr -10 Not considered f2

P -10 Not considered
s2Q -10 Not considered fRi -10 Not considered
s2Qr -10 Not considered fRo -10 Not considered
sRi -10 Not considered fS -10 Not considered
sRo -10 Not considered f1

QY 30000 90 - 10
sS -10 Not considered f2

QY 20000 50
f1
Qr -1000 10 - 90
f2
Qr -1000 50

Table 9 – Rewards and probabilities adopted for the example. The probability of rejection of a car of type 2
was fixed at 50% while varying the probability of a type 1.

Figure 23(a) shows the mean reward obtained. Note that the intelligent method contin-

ues to give a higher profit than the non-intelligent approach over all values, but both methods

decrease their reward as the rejection probability increases, which is quite expected.

Figure 23(c) shows the frequency of accepted and rejected cars for the n-step SARSA

method while Figure 23(d) shows it for the supervisory method. Note that the intelligent method

chooses to produce more cars of type 1 over low rejection probabilities, while the non-intelligent

is random over its choices.

Also, as the rejection probability increases, the number of rework cycles per car pro-

duced also increases, which is shown in Fig. 23(b). Also from this figure we can note that the
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(d) Frequency of occurrence of events without the N-
step SARSA method.

Figure 23 – Results of applying the N-step SARSA while fixing the probability of rejection of cars type 2,
and varying the probability of rejection of cars type 1. See Table 9 for the adopted parameters.

supervisory method also increases its rework cycles, and the cars type 2 are kept approximately

constant. This is because its rejection probability was fixed.

B.2 CASE 2

In this study case, we fixed the probability of a car of type 2 to be approved at 10%.

The parameters adopted are represented in Table 10.

In this scenario, the mean reward obtained by the n-step SARSA method is also better

than the supervisory method, as shown in Figure 24(a), but it decreases over high rejection

probabilities.

Also, note that even with high rejection probabilities for both types of car, the mean

reward is still better under the intelligent method. The reason is because the intelligent agent

decides in most cases to rework in order for cars to be approved, as it is shown in Figure 24(b).

B.3 CASE 3

In this case study, we varied the rework cost while fixing the other values. The scenario

was analyzed following the values on Table 11, which varied the rework cost from 1000 to 9000
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Controllable Actions Uncontrollable Actions

Action Reward
Probability

(%)
Action Reward

Probability
(%)

sI -10 Not considered f1
QN -30000 10 - 90

s1O -10 Not considered f2
QN -20000 90

s2O -10 Not considered fI -10 Not considered
s1P -10 Not considered f1

O -10 Not considered
s2P -10 Not considered f2

O -10 Not considered
s1Q -10 Not considered f1

P -10 Not considered
s1Qr -10 Not considered f2

P -10 Not considered
s2Q -10 Not considered fRi -10 Not considered
s2Qr -10 Not considered fRo -10 Not considered
sRi -10 Not considered fS -10 Not considered
sRo -10 Not considered f1

QY 30000 90 - 10
sS -10 Not considered f2

QY 20000 10
f1
Qr -1000 10 - 90
f2
Qr -1000 90

Table 10 – Rewards and probabilities adopted for case 2. This time we fixed the probability of rejection of a
type 2 car at 90%.
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Figure 24 – Results of N-step SARSA application fixing the probability of rejection of a type 2 car while
variating the probability of rejection of a type 1 car. See Table 10 for the adopted parameters.
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into 9 different cases.

The mean reward is shown in Figure 25(a), which shows that even when the rework

cost is high, the mean reward does not have a significant variation in its absolute value for both

methods.
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Figure 25 – Results of N-step SARSA application variating the probability of the rework cost. See Table 11
for the adopted parameters.

Figure 25(b) shows the number of rework occurrences per car produced in the test. It

shows that the rework decisions tend to occur more frequently under the intelligent method, even

under high costs, but in this case with less frequency. This is due to the even higher rejection

costs, and to the fact that the rejection probability is low, so that it is worth for the agent to

decide reworking the car.

The event frequency of occurrence for the intelligent method is shown on Figure 25(c),

while for the non-intelligent approach is shown in Figure 25(d). Both results are expected, since

the intelligent agent prefers to work safely, and it decides to work with cars of type 2 in most

cases. This is due to the higher chances of approval, while the non-intelligent method chooses

randomly and this is expected to reflect on performance.
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B.4 CASE 4

For this scenario, we varied the cost of an event aside from rejection, approval and

rework. Table 12 shows the values assumed for this case, varying the cost of a step from 10

through 800 in 9 different cases.

The mean reward for this case is shown in Figure 26(a). Remark that when the cost

increases, the production profit decreases, as expected. Also, the RL method has shown better

performance at taking decisions in comparison with the pure supervisory approach.
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step SARSA method.

Figure 26 – Results of applying the N-step SARSA while varying the cost of a step in the system. See Table
12 for the adopted parameters.

Fig. 26(b) shows the number of rework cycles per car produced for each method. We

can see that without RL, the agent opts to make less rework cycles than the intelligent approach,

which is expected due to the random manner it takes its actions. Also, cars type 1 tend to have

more rework cycles, which is also expected, since their rejection probability is higher.

Fig. 26(c) shows the relation of cars approved and cars rejected in the simulation using

the intelligent method, while Fig. 26(d) shows this relation using the pure supervisory method.

In the intelligent method we can see that the agent prefers to work with cars of type 2,

since the probability of approval is higher. As for the supervisory method, there is an expected

randomness in this decisions, since it balances between producing type 1 or 2.
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Controllable Actions Uncontrollable Actions

Action Reward
Probability

(%)
Action Reward

Probability
(%)

sI -10 Not considered f1
QN -30000 30

s1O -10 Not considered f2
QN -20000 10

s2O -10 Not considered fI -10 Not considered
s1P -10 Not considered f1

O -10 Not considered
s2P -10 Not considered f2

O -10 Not considered
s1Q -10 Not considered f1

P -10 Not considered
s1Qr -10 Not considered f2

P -10 Not considered
s2Q -10 Not considered fRi -10 Not considered
s2Qr -10 Not considered fRo -10 Not considered
sRi -10 Not considered fS -10 Not considered
sRo -10 Not considered f1

QY 30000 70
sS -10 Not considered f2

QY 20000 90
f1
Qr -1000/-9000 30
f2
Qr -1000/-9000 10

Table 11 – Rewards and probabilities adopted for case 3, varying the rework cost while fixing the other
values.

Controllable Actions Uncontrollable Actions

Action Reward
Probability

(%)
Action Reward

Probability
(%)

sI -10 Not considered f1
QN -30000 30

s1O -10/-800 Not considered f2
QN -20000 10

s2O -10/-800 Not considered fI -10/-800 Not considered
s1P -10/-800 Not considered f1

O -10/-800 Not considered
s2P -10/-800 Not considered f2

O -10/-800 Not considered
s1Q -10/-800 Not considered f1

P -10/-800 Not considered
s1Qr -10/-800 Not considered f2

P -10/-800 Not considered
s2Q -10/-800 Not considered fRi -10/-800 Not considered
s2Qr -10/-800 Not considered fRo -10/-800 Not considered
sRi -10/-800 Not considered fS -10/-800 Not considered
sRo -10/-800 Not considered f1

QY 30000 70
sS -10/-800 Not considered f2

QY 20000 90
f1
Qr -1000 30
f2
Qr -1000 10

Table 12 – Rewards and probabilities adopted for the case 4, which varies the cost of a step that is not an
approval, rejection, or rework.
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B.5 CASE 5

We conducted yet another test fixing all values, except the cost of rejection of cars type

1. Table 13 shows the values adopted for this test case.

The graph of the mean reward presented in Fig. 27(a) shows that no matter the cost of

rejection, the intelligent agent still makes decisions such that its mean reward is better than the

supervisory approach.
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SARSA method.
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(d) Frequency of occurrence of events without the N-
step SARSA method.

Figure 27 – Results for the system under variation of the cost to reject cars type 1 (Table 13).

Fig. 27(b) shows the number of rework cycles per car produced in each method. As we

can see, there is more rework cycles for cars type 1, since its probability of rejection is higher

than otherwise, as expected. We can also note that the supervisory method does not decide to do

as many rework cycles as the intelligent approach, since it includes randomness on its decisions.

On the other hand, Figures 27(c) and 27(d) represent the frequency of approved

and rejected cars, both using RL and not, respectively. It is worth to notice that the supervisory

method sends more cars to customization than the intelligent method, and consequently receives

more rejections, since its rejection probability is higher than cars type 1. This justifies the lower

reward received.
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Controllable Actions Uncontrollable Actions

Action Reward
Probability

(%)
Action Reward

Probability
(%)

sI -10 Not considered f1
QN -20000/-40000 30

s1O -10 Not considered f2
QN -20000 10

s2O -10 Not considered fI -10 Not considered
s1P -10 Not considered f1

O -10 Not considered
s2P -10 Not considered f2

O -10 Not considered
s1Q -10 Not considered f1

P -10 Not considered
s1Qr -10 Not considered f2

P -10 Not considered
s2Q -10 Not considered fRi -10 Not considered
s2Qr -10 Not considered fRo -10 Not considered
sRi -10 Not considered fS -10 Not considered
sRo -10 Not considered f1

QY 30000 70
sS -10 Not considered f2

QY 20000 90
f1
Qr -1000 30
f2
Qr -1000 10

Table 13 – Rewards and probabilities adopted for case 5, fixing all values while varying the cost of rejection
of cars type 1.
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