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ABSTRACT

MARTINS, Marcella Scoczynski Ribeiro. A HYBRID MULTI-OBJECTIVE BAYESIAN
ESTIMATION OF DISTRIBUTION ALGORITHM. 124 f. Thesis – Graduate Program in
Electrical and Computer Engineering, Federal University of Technology - Paraná. Curitiba,
2017.

Nowadays, a number of metaheuristics have been developed for dealing with multiobjective
optimization problems. Estimation of distribution algorithms (EDAs) are a special class
of metaheuristics that explore the decision variable space to construct probabilistic models
from promising solutions. The probabilistic model used in EDA captures statistics of
decision variables and their interdependencies with the optimization problem. Moreover,
the aggregation of local search methods can notably improve the results of multi-objective
evolutionary algorithms. Therefore, these hybrid approaches have been jointly applied to
multi-objective problems. In this work, a Hybrid Multi-objective Bayesian Estimation of
Distribution Algorithm (HMOBEDA), which is based on a Bayesian network, is proposed
to multi and many objective scenarios by modeling the joint probability of decision variables,
objectives, and configuration parameters of an embedded local search (LS). We tested different
versions of HMOBEDA using instances of the multi-objective knapsack problem for two to
five and eight objectives. HMOBEDA is also compared with five cutting edge evolutionary
algorithms (including a modified version of NSGA-III, for combinatorial optimization) applied
to the same knapsack instances, as well to a set of MNK-landscape instances for two, three, five
and eight objectives. An analysis of the resulting Bayesian network structures and parameters
has also been carried to evaluate the approximated Pareto front from a probabilistic point of
view, and also to evaluate how the interactions among variables, objectives and local search
parameters are captured by the Bayesian networks. Results show that HMOBEDA outperforms
the other approaches. It not only provides the best values for hypervolume, capacity and inverted
generational distance indicators in most of the experiments, but it also presents a high diversity
solution set close to the estimated Pareto front.

Keywords: Multi-objective optimization, metaheuristic, bayesian network, estimation of
distribution algorithm, local search, hybridization



RESUMO

MARTINS, Marcella Scoczynski Ribeiro. UM ALGORITMO DE ESTIMAÇÃO
DE DISTRIBUIÇÃO HÍBRIDO MULTIOBJETIVO COM MODELO PROBABILÍSTICO
BAYESIANO. 124 f. Thesis – Graduate Program in Electrical and Computer Engineering,
Federal University of Technology - Paraná. Curitiba, 2017.

Atualmente, diversas metaheurísticas têm sido desenvolvidas para tratarem problemas
de otimização multiobjetivo. Os Algoritmos de Estimação de Distribuição são uma
classe específica de metaheurísticas que exploram o espaço de variáveis de decisão para
construir modelos de distribuição de probabilidade a partir das soluções promissoras. O
modelo probabilístico destes algoritmos captura estatísticas das variáveis de decisão e suas
interdependências com o problema de otimização. Além do modelo probabilístico, a
incorporação de métodos de busca local em Algoritmos Evolutivos Multiobjetivo pode melhorar
consideravelmente os resultados. Estas duas técnicas têm sido aplicadas em conjunto na
resolução de problemas de otimização multiobjetivo. Nesta tese, um algoritmo de estimação
de distribuição híbrido, denominado HMOBEDA (Hybrid Multi-objective Bayesian Estimation
of Distribution Algorithm ), o qual é baseado em redes bayesianas e busca local é proposto
no contexto de otimização multi e com muitos objetivos a fim de estruturar, no mesmo
modelo probabilístico, as variáveis, objetivos e as configurações dos parâmetros da busca local.
Diferentes versões do HMOBEDA foram testadas utilizando instâncias do problema da mochila
multiobjetivo com dois a cinco e oito objetivos. O HMOBEDA também é comparado com
outros cinco métodos evolucionários (incluindo uma versão modificada do NSGA-III, adaptada
para otimização combinatória) nas mesmas instâncias do problema da mochila, bem como, em
um conjunto de instâncias do modelo MNK-landscape para dois, três, cinco e oito objetivos.
As fronteiras de Pareto aproximadas também foram avaliadas utilizando as probabilidades
estimadas pelas estruturas das redes resultantes, bem como, foram analisadas as interações entre
variáveis, objetivos e parâmetros de busca local a partir da representação da rede bayesiana. Os
resultados mostram que a melhor versão do HMOBEDA apresenta um desempenho superior
em relação às abordagens comparadas. O algoritmo não só fornece os melhores valores para
os indicadores de hipervolume, capacidade e distância invertida geracional, como também
apresenta um conjunto de soluções com alta diversidade próximo à fronteira de Pareto estimada.

Palavras-chave: Otimização Multi-objetivo, metaheuristica, rede bayesiana, algoritmo de
estimação de distribuição, modelo de probabilidade, busca local, hibridização
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1 INTRODUCTION

In many optimization problems, maximizing/minimizing two or more objective

functions represents a challenge to a large number of optimizers (LUQUE, 2015). This class

of problems is known as Multi-objective Optimization Problems (MOP), and solving MOPs

has thus been established as an important field of research (DEB, 2001). In the past few years,

problems with more than three objectives are becoming usual. They are referred as Many

Objective Optimization Problems (MaOP) (ISHIBUCHI et al., 2008).

MOPs and specially MaOPs contain several, usually conflicting, objectives. This

means, optimizing one objective does not necessarily optimize the others. Due to the objectives

trade-off, a set called Pareto-optimal is generated at the decision variable space. Different

approaches have been proposed to approximate the Pareto-optimal front (i.e. Pareto-optimal

corresponding objectives) in the objective space in various scenarios (DEB, 2001).

Evolutionary Algorithms (EA) and other population-based metaheuristics have been

widely used for solving multi and many objective optimization, mainly due to their

ability to find multiple solutions in parallel and to handle the complex features of such

problems (COELLO, 1999). For combinatorial optimization, local optimizers can also be

aggregated to capture and exploit the potential regularities that arise in the promising solutions.

Several Multi-objective Evolutionary Algorithms (MOEA) incorporating local search

(LS) have been investigated, and these hybrid approaches can often achieve good performance

for many problems (LARA et al., 2010; ZHOU et al., 2011, 2015). However, as discussed in

Martins et al. (2016) and Martins et al. (2017a), they still present challenges, such as the choice

of suitable LS parameters e.g., the type, frequency and intensity of LS applied to a particular

candidate solution.

Frequency and intensity directly influence the degree of exploration versus exploitation

in these hybrid approaches (KRASNOGOR; GUSTAFSON, 2002). Clearly, a more intense

procedure increases chances for converging into a local optimum nevertheless it limits a suitable

search space exploration. Therefore, unless we work with unrestricted budget, special attention
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is necessary when setting these two parameters. Moreover, when only a subset of individuals

undergo local optimization, their choice becomes an issue. Finally, the type of LS favors

different neighborhood structures. All these parameters affect the algorithm’s performance

making auto-adaptation an important topic for Hybrid EAs and MOEAs.

Another strategy widely used in evolutionary optimization is the probabilistic

modeling, which is the basis of an Estimation of Distribution Algorithm

(EDA) (MÜHLENBEIN; PAAB, 1996). The main idea of EDAs (LARRAÑAGA; LOZANO,

2002) is to extract and represent, using a probabilistic model, the regularities shared by a subset

of high-valued problem solutions. New solutions are then sampled from the probabilistic

model guiding the search toward areas where optimal solutions are more likely to be found.

Normally, a Multi-objective Estimation of Distribution Algorithm (MOEDA) (KARSHENAS

et al., 2014) integrates both model building and sampling techniques into evolutionary

multi-objective optimizers using special selection schemes (LAUMANNS; OCENASEK,

2002). A promising probabilistic model, called Probabilistic Graphical Model (PGM) that

combines graph and probability theory, has been adopted to improve EDAs and MOEDAs

performance (LARRAÑAGA et al., 2012). Most of MOEDAs developed to deal with

combinatorial MOPs adopt Bayesian Networks as their PGM.

In this work, we propose a different approach called Hybrid Multi-objective Bayesian

Estimation of Distribution Algorithm (HMOBEDA) based on a joint probabilistic modeling of

decision variables, objectives, and parameters of a local optimizer. Some recent MOEDA-based

approaches model a joint distribution of variables and objectives in order to explore their

relationship, which means investigating how objectives influence variables and vice versa.

However, our approach also includes an LS parameter tuning in the same model. The

rationale of HMOBEDA is that the embedded PGM can be structured to sample appropriate

LS parameters for different configurations of decision variables and objective values.

The proposed approach is evaluated by means of the Multi-objective Knapsack

Problem (MOKP) - the multi-objective version of the well known knapsack problem which

has been recently explored in other works in the literature (ISHIBUCHI et al., 2015; KE

et al., 2014; TAN; JIAO, 2013; TANIGAKI et al., 2014; VIANNA; VIANNA, 2013). In

particular, MOEDAs that use different types of probabilistic models have already been applied

to MOKP (LI et al., 2004; WANG et al., 2012), especially those based on Bayesian Networks

(BN) (LAUMANNS; OCENASEK, 2002; SCHWARZ; OCENASEK, 2001a). We also extend

our analysis to the multi-objective NK-landscape (MNK-landscape) problem (AGUIRRE;

TANAKA, 2004, 2007), another multi-objective combinatorial optimization problem that has
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been recently explored by Aguirre and Tanaka (2007), Verel et al. (2011), Santana et al. (2015b),

Daolio et al. (2015), including works for the mono-objective version using EDAs (PELIKAN,

2008; PELIKAN et al., 2009; LIAW; TING, 2013). However, these works do not consider

objectives and LS parameters structured all together in the same BN, as proposed in this work.

1.1 OBJECTIVES

This work aims to provide a new hybrid MOEDA-based approach named

HMOBEDA (Hybrid Multi-objective Bayesian Estimation of Distribution Algorithm ) to solve

multi and many objective combinatorial optimization problems with automatic setting of LS

mechanisms (and their associated parameters) suitable to each stage of the evolutionary process.

The specific objectives include:

1. To implement this new hybrid MOEDA-based approach whose automatic LS setting is

provided by a Bayesian Network;

2. To develop a framework capable of learning a joint probabilistic model of objectives,

variables and local search parameters, all together;

3. To evaluate several variants in order to investigate the Bayesian Network learning

structure, the tie-breaker criterion from de selection scheme, the online versus off-line

versions of LS parameter tuning, and the different ways to set the evidences during the

sampling, in the context of HMOBEDA;

4. To analyze the Pareto front approximation provided by HMOBEDA from a probabilistic

point of view;

5. To scrutinize information present in the probabilistic model, analyzing the relations

between objectives, variables and local search parameters;

6. To compare HMOBEDA with other recent approaches for solving instances of MOKP

and MNK-Landscape problems.

1.2 CONTRIBUTIONS

Although other hybrid MOEDAs have been developed using joint probabilistic

modeling of decision variables and objectives, none of them has considered local search

parameters in the same model. Thus, this work proposes a joint probabilistic modeling of (i)
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local search with (ii) decision variables and (iii) objectives, in a framework named HMOBEDA.

The advantage is that a probabilistic model can learn local optimization parameters for different

configurations of decision variables and objective values at different stages of the evolutionary

process. Our main contribution refers to the inclusion of local search parameters in the

probabilistic model providing an auto-adapting parameter tuning approach.

Due the fact that the PGM structure learning is an important process of our proposal,

we investigate two methods: a Hill-Climbing technique (BN-HC Algorithm) and the K2

Algorithm, providing two versions: HMOBEDABN−HC and HMOBEDAK2. An important

criterion for the evolutionary approaches is the tie-breaker for the selection procedure. In

order to evaluate both crowding distance and hypervolume strategies, we define two variants

of HMOBEDA : HMOBEDACD and HMOBEDAhype.

Another gap observed in the literature concerns the test and analysis of parameter

tuning for hybrid MOEDAs accomplished before versus during optimization (named off-line

and online parameter tuning). In this context HMOBEDA, which is considered an

online parameter tuner, is modified into three other variants with LS parameters being

pre-determined and kept fixed during the search (off-line configuration): HMOBEDA f ,

HMOBEDA f−inst and HMOBEDAirace. HMOBEDA f considers the most frequent

LS-parameters achieved by the original HMOBEDA in non-dominated solutions, of all

instances and executions. HMOBEDA f−inst considers the most frequent LS parameters found

in all HMOBEDA executions by instance. HMOBEDAirace considers the parameters tuned by

I/F-Race (BIRATTARI et al., 2010).

Since providing relationships among solution variables is one of the advantages of

using EDA, this work scrutinizes information present in the final PGM. We explore, from

a probabilistic point of view, the approximated Pareto front using the final PGM structure.

Three versions, which use different sampling techniques, are tested: HMOBEDAIDEAL,

HMOBEDACPT and HMOBEDAEXT . These versions represent different possibilities to guide

the search. HMOBEDAIDEAL considers evidences fixed as maximum values for all objectives

(i.e. an estimated solution named ideal point). HMOBEDACPT considers evidences fixed

according to the parameters and probabilities estimated from the Conditional Probability Table

(CPT). HMOBEDAEXT considers evidences fixed as the ideal point and combinations of

maximum and minimum values for the objectives, all of them with the same probability of

occurrence.

After the comparison between the HMOBEDA variants on the MOKP instances,

a standard version is defined and compared with algorithms in the literature often used
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to solve MOPs: MBN-EDA (KARSHENAS et al., 2014), NSGA-II (DEB et al., 2002),

S-MOGLS (ISHIBUCHI et al., 2008) (NSGA-II with local search), MOEA/D (ZHANG; LI,

2007) and NSGA-III (DEB; JAIN, 2014). This analysis points out HMOBEDA’s performance

using not only hypervolume (HV−) but also Inverted Generational Distance (IGD) and capacity

indicators to provide a more complete picture of HMOBEDA behavior considering a set of

MOKP instances with 2 to 5 and 8 objectives, and of MNK-landscape instances with 2,

3, 5 and 8 objectives. Besides, we present the influence that objectives have on variables,

from the analysis of how frequently objective-variable interactions occur. After that we

determine how sensitive is the influence of objectives on LS parameters from the analysis of

the frequency of the objective-parameters interactions. Few works consider MOEDAs to solve

MOKP (SCHWARZ; OCENASEK, 2001a, 2001b; LI et al., 2004) and as far as we know, this

is the first work using a PGM as part of a Hybrid MOEDA in the MOKP context and the first

work using MOEDA to solve the MNK-landscape problem.

Results of this work and associated research were published in the following journal

and conference papers.

MARTINS, M. S.; DELGADO, M. R.; SANTANA, R.; LÜDERS, R.; GONÇALVES,

R. A.; ALMEIDA, C. P. d. HMOBEDA: Hybrid Multi-objective Bayesian Estimation of

Distribution Algorithm. In: Proceedings of the Genetic and Evolutionary Computation

Conference. New York, NY, USA: ACM, 2016. (GECCO’16), p. 357–364. ISBN

978-1-4503-4206-3.

In this paper, the new approach HMOBEDA is firstly presented and compared with six

evolutionary methods including a discrete version of NSGA-III, using instances of the MOKP

with 3, 4, and 5 objectives. Results have shown that HMOBEDA is a competitive approach that

outperforms the other methods according to hypervolume indicator.

MARTINS, M. S. R.; DELGADO, M. R. B. S.; LÜDERS, R.; SANTANA, R.;

GONÇALVES, R. A.; ALMEIDA, C. P. de. Hybrid multi-objective Bayesian estimation

of distribution algorithm: a comparative analysis for the multi-objective knapsack problem.

Journal of Heuristics, Sep 2017. p. 1–23.

Here, an additional investigation of off-line versions of LS parameter tuning

was published, comparing HMOBEDA f , HMOBEDA finst and HMOBEDAirace with

HMOBEDA (the online version). This paper also compared HMOBEDA with traditional

approaches for multi and many objective optimization based on Inverted Generational Distance

(IGD) quality indicator in addition to the hypervolume metric. Besides, an analysis of the

resulting BN structures has also been carried out to evaluate how the interactions among
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variables, objectives and local search parameters are captured by the BNs. The results showed

that probabilistic modeling arises as a significant and feasible way not only to learn and explore

dependencies between variables and objectives but also to automatically control the application

of local search operators.

MARTINS, M. S. R.; DELGADO, M. R. B. S.; LÜDERS, R.; SANTANA,

R.; GONÇALVES, R. A.; ALMEIDA, C. P. de. Probabilistic Analysis of Pareto Front

Approximation for a Hybrid Multi-objective Bayesian Estimation of Distribution Algorithm.

In: Proceedings of the 2017 Brazilian Conference on Intelligent Systems. Uberlândia,

(BRACIS’17). p. 1–8.

This paper explored, from a probabilistic point of view, the approximated Pareto

front using the final PGM structure. Two variants of HMOBEDA that use different sampling

techniques were then proposed: HMOBEDACPT and HMOBEDAEXT . Results concluded that

uniform distribution of evidences among ideal and extreme points of the Pareto front (EXT

version) in the sample process is beneficial for HMOBEDA .

Although this thesis addresses MOEDAs-based multi-optimization techniques, in the

next two papers we explored a relatively new single-objective NP-hard benchmark problem -

Travelling Thief Problem (TTP) - in a hyperheuristic context using Genetic Programming (GP)

and EDA.

YAFRANI, M. E.; MARTINS, M.; WAGNER, M.; AHIOD, B.; DELGADO, M.;

LÜDERS, R. A hyperheuristic approach based on low-level heuristics for the travelling thief

problem. Genetic Programming and Evolvable Machines, Jul 2017. p. 1–30.

MARTINS, M. S. R.; YAFRANI, M. E.; DELGADO, M. R. B. S.; WAGNER, M.;

AHIOD, B.; LÜDERS, R. HSEDA: A heuristic selection approach based on estimation of

distribution algorithm for the travelling thief problem. In: Proceedings of the Genetic and

Evolutionary Computation Conference. New York, NY, USA: ACM, (GECCO ’17), p.

361–368. ISBN 978-1-4503-4920-8.

Both approaches used well known low-level-heuristics in order to evolve combinations

of these heuristics aiming to find a good model for the instance at hand. The main contributions

of the last two studies are in the PGM used in hyperheuristic way and an attempt to work with

TTP problem to be further extended to a multi-objective context, exploring other probabilistic

models which are able to represent permutation problems as well.
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1.3 ORGANIZATION

This work is organized as follows. After this introduction, Chapters 2 and 3 present

an overview of multi-objective optimization concepts and estimation of distribution algorithms,

respectively. In Chapter 4, the MOKP and the MNK-landscape problems considered in

this work are discussed, in addition some previous work and contributions in the context of

MOEAs and EDAs are presented. Chapter 5 details the proposed approach, presenting the

encoding scheme and the developed framework and algorithm (HMOBEDA). Computational

experiments, results and discussions using instances of MOKP and MNK-landscape problem

are reported in Chapter 6 including a PGM analysis. Chapter 7 concludes this thesis and presents

new directions to future work.
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2 MULTI-OBJECTIVE OPTIMIZATION

Real-world problems are generally characterized by several competing objectives.

While in the case of single-objective optimization one optimal solution is usually required

to solve the problem, this is not true in multi-objective optimization. The standard approach

to solve this difficulty lies in finding all possible trade-offs among the multiple, competing

objectives. MOP (as a rule) presents a possibly uncountable set of solutions, which when

evaluated, produce vectors whose components represent trade-offs in the objective space. In

the past few years, MOPs with more than three objectives became a trend in the field of

multi-objective optimization, being a field by its own referred to as many objective optimization.

Once a set of Pareto solutions is determined, a decision maker can implicitly choose an

acceptable solution (or solutions) by selecting one or more of these vectors.

This chapter introduces the multi-objective optimization basic concepts in Section 2.1.

Pareto dominance-based, Scalarizing function-based and others approaches are discussed in

Sections 2.2 and 2.3. Finally, Section 2.4 discusses the statistical tests usually applied to

compare multi-objective algorithms.

2.1 BASIC CONCEPTS

A general MOP includes decision variables, objective functions, and constraints, where

objective functions and constraints are functions of the decision variables (ZITZLER; THIELE,

1999; SCHWARZ; OCENASEK, 2001b). Mathematically, a maximization MOP can be defined

as:
max

x
z = f(x) = ( f1(x), f2(x), ..., fR(x))

subject to

h(x) = (h1(x),h2(x), ...,hk(x))≤ 0,

x = (x1,x2, ...,xQ) ∈ X ,

z = (z1,z2, ...,zR) ∈ Z,

(1)
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where x = (x1, ...,xQ) is a Q-dimensional decision variable vector defined in a universe X ; z

is the objective vector, with R objectives, where each fr(x) is a single-objective function, Z is

the objective space and h(x) ≤ 0 is the set of constraints which determines a set of feasible

solutions X f .

The set of MOP solutions includes decision vectors for which the corresponding

objective vectors cannot be improved in any dimension without degradation in another - these

decision vectors are called Pareto optimal set. The idea of Pareto optimality is based on the

Pareto dominance.

For any two decision vectors u, v it holds

u dominates v iff f(u)> f(v),

u weakly dominates v iff f(u)≥ f(v),

u is indifferent to v iff u and v are not comparable.

A decision vector u dominates a decision vector v iff fr(u) ≥ fr(v) for r = 1,2, ..,R

with fr(u)> fr(v) for at least one r. The vector u is called Pareto optimal if there is no vector

v which dominates vector u in the decision space X . The set of non-dominated solutions lies,

in the objective space, on a surface known as Pareto optimal front. The goal of the optimization

is to find a representative set of solutions with the corresponding objective vectors along the

Pareto optimal front.

Examples of the concept of Pareto dominance and Pareto front are depicted in a

graphical form in Figure 1.

Figure 1: An example of Pareto front and Pareto dominance in the objective space.
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It can be noticed that solution F dominates solution C and D, solution F is dominated

by E, F is not comparable with A, B and G, solution E is non-dominated and Pareto optimal.

Note that a solution is a decision vector that has its Pareto dominance criteria based on the

objective space (objective vector corresponding values).

Generating the Pareto set can be computationally expensive and it is often infeasible,

because most of the time the complexity of underlying application prevents exact methods

from being applicable. For this reason, a number of stochastic search strategies such as EAs,

tabu search, simulated annealing, and ant colony optimization have been developed: they

usually do not guarantee the identification of optimal trade-offs instead they try to find a good

approximation, i.e., a set of solutions whose objective vectors are not too far from the Pareto

optimal front (ZITZLER et al., 2004). Due to their population-based nature, EAs are able

to approximate the whole Pareto front of a MOP in a single run, and these EAs are called

MOEAs (ZHOU et al., 2011).

MOEAs have been well established as effective approaches to deal with MOPs (JIANG

et al., 2015). After multiple trade-off and non-dominated points are found, higher-level

information can be used to choose one of the obtained trade-off points (DEB, 2001).

Based on various acceptance rules to accomplish fitness assignment and selection

to guide the search toward the Pareto-optimal set, and to maintain a diverse population

achieving a well distributed Pareto front, classical MOEAs can be generally divided

in Pareto dominance-based approaches, Scalarizing function-based methods and other

approaches (JIANG et al., 2015).

2.2 PARETO DOMINANCE-BASED APPROACHES

There are many papers presenting various approaches to find a Pareto front, most of

them based on classical MOEAs. The balance between convergence and diversity is the most

important aspect while solving a MOP. Unlike single-objective-optimization, fitness calculation

in MOPs is usually related to the whole population. The multi-objective optimization is a typical

multimodal search aiming to find multiple different solutions in a single run.

The main representatives of the Pareto optimization algorithms will be shortly

mentioned. The Niched Pareto Genetic Algorithm (NPGA) combines tournament selection

and the concept of Pareto dominance (HORN et al., 1994). An interesting approach using

Non-dominated Sorting in Genetic Algorithm (NSGA) was proposed by Srinivas and Deb

(1994). This technique calculates the Dominance Rank (DR) (ZITZLER et al., 2000),
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sorting the population according to the dominance relationships established among solutions,

producing a total of TotF sub-populations or fronts, F1,F2, ...,FTotF . Front F1 corresponds to

the set of non-dominated solutions (the best front). Each set Fi, i = 2, ...,TotF , contains the

non-dominated solutions when sets F1, ...,Fi−1 are removed from the current population.

A wide review of basic approaches and the specification of original Pareto evolutionary

algorithms includes the works of Coello (1996) and Zitzler and Thiele (1999), where the last

one describes the original Strength Pareto Evolutionary Algorithm (SPEA). An extension of

the SPEA algorithm resulted in SPEA2 (ZITZLER et al., 2001) and Pareto Envelope-Based

Selection Algorithm (PESA) (CORNE et al., 2000). This algorithm was updated to Pareto

Envelope-Based Selection Algorithm II (CORNE et al., 2001), where the authors described a

grid-based fitness assignment strategy in environmental selection. Another improved version,

called IPESA-II (LI et al., 2013) introduced three improvements in environmental selection,

regarding the performance: convergence, uniformity, and extensity.

One of the most popular approaches based on Pareto dominance is NSGA-II (DEB et

al., 2002). Recently, its reference-point based variant, referred as NSGA-III (DEB; JAIN, 2014)

was suggested to deal with many-objective problems, where the maintenance of diversity among

population members is aided by supplying and adaptively updating a number of well-spread

reference points.

We can point out the fact that Pareto approaches simultaneously consider all the

objectives - every point/solution of the Pareto front is part of the set of solutions - and maintain

the diversity of solutions. However two main disadvantages are that these approaches are

computationally expensive and they are not very intuitive when the number of objectives is

large. All the previously mentioned algorithms evolve toward the Pareto set with a good

distribution of solutions but none of them guarantees the convergence to Pareto front.

2.3 SCALARIZING FUNCTION-BASED METHODS AND OTHERS APPROACHES

In addition to the Pareto-dominance based methods, there are many others

developed for multi-criteria optimization, mostly based on the scalarization of the objective

functions (TRIVEDI et al., 2017). This way the MOP can be easily transformed into simpler

singe-objective problem. Multi-objective Evolutionary Algorithm Based on Decomposition

(MOEA/D) (ZHANG; LI, 2007), Multi-objective selection based on dominated hypervolume

(SMS-EMOA) (BEUME et al., 2007) and the algorithm for Fast Hypervolume-based

Many-objective Optimization (HypE) (BADER, 2009) are examples of these approaches.
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SMS-EMOA is a hypervolume-based algorithm. Its high search ability for

many-objective problems has been demonstrated in the literature (WAGNER et al., 2007). The

basic idea of SMS-EMOA is to search for a solution set with the maximum hypervolume for

its corresponding objective vectors. In SMS-EMOA, two parents are randomly selected from a

current population of size N to generate a single solution by crossover and mutation. The next

population with N solutions is constructed by removing the worst solution from the merged

population with (N+1) solutions. In the same manner as in NSGA-II, a rank is assigned to each

solution in the merged population as the primary criterion to select individuals. Each solution

with the same rank is evaluated by its hypervolume contribution as the secondary criterion.

In HypE, as in NSGA-II, first the non-dominated sorting is applied and then a criterion

is used to select individuals among those with the same rank. The main difference is that

the hypervolume maximization is used as the secondary criterion in environmental selection.

Solution selection for the hypervolume maximization is performed in an approximate manner

using Monte Carlo simulation given a number of sampling points.

MOEA/D is an efficient scalarizing function-based algorithm. A multi-objective

problem is decomposed into a number of single-objective problems. Each single-objective

problem is defined by the same scalarizing function with a different weight vector. The number

of the weight vectors is the same as the number of the single-objective problems, which is

also the same as the population size. A single solution is stored for each single-objective

problem (ZHANG; LI, 2007).

There are several approaches for converting the problem of approximation of the Pareto

front into a number of scalar optimization problems. In the following, we introduce three of

them.

2.3.1 WEIGHTED SUM APPROACH

This approach considers a combination of the different objectives function

f1(x), ..., fR(x). Let λλλ = (λ1, ...,λR)
T be a weight vector, i.e. λr ≥ 0, for all r = 1, ...,R where R

is the number of objectives and ∑
R
r=1 λr = 1. Then, the optimal solution to the following scalar

optimization problem:

maximize zws(x|λλλ ) = ∑
R
r=1 λr fr(x),

subject to x ∈ X (2)
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zws(x|λλλ ) is a Pareto optimal point to Equation 11, λλλ is a weight vector in the zws

objective function, while x is the vector of variables to be optimized. To generate a set

of different Pareto optimal vectors, we can use different weight vectors λλλ in this scalar

optimization problem (MIETTINEN, 1999). If the Pareto front is concave (convex in the case

of minimization), this approach could work well. However, not every Pareto optimal vector can

be obtained by this approach in the case of nonconcave Pareto fronts (ZHANG; LI, 2007). To

overcome these shortcomings, some effort has been made to incorporate other techniques such

as ε-constraint into this approach, more details can be found in Miettinen (1999).

2.3.2 TCHEBYCHEFF APPROACH

Another well-known method is the Tchebycheff Approach, for which scalar

optimization problem uses the zte function in the form:

minimize zte(x|λλλ ,z∗) = max{λr| fr(x)− z∗r |},

subject to x ∈ X (3)

where z∗ = (z∗1, ...,z
∗
R)

T is the ideal point in the decision space, i.e., z∗r = max{ fr(x)|x ∈ X}2

for each r = 1, ...,R . For each Pareto optimal point x∗ there exists a weight vector λλλ such that

x∗ is the optimal solution of Equation 3 and each optimal solution of Equation 3 is a Pareto

optimal solution of Equation 1. Therefore, the method is able to obtain different Pareto optimal

solutions by altering the weight vector. One weakness with this approach is that this aggregation

function is not smooth for a continuous MOP (ZHANG; LI, 2007).

2.3.3 BOUNDARY INTERSECTION APPROACH

Several recent MOP decomposition methods such as Normal-Boundary Intersection

Method (DAS; DENNIS, 1998) and Normalized Normal Constraint Method (MESSAC et al.,

2003) can be classified as Boundary Intersection (BI) approaches. They were designed for

a continuous MOP. Under some regularity conditions, the Pareto front of a continuous MOP

is part of the most top right 3 boundary of its attainable objective set. Geometrically, these

BI approaches aim to find intersection points of the most top boundary and a set of lines. If

these lines are evenly distributed in a sense, one can expect that the resultant intersection points

provide a good approximation to the whole Pareto front. These approaches are able to deal

1If Equation 1 is for minimization, "maximize" in 2 should be changed to "minimize".
2In the case of minimization, z∗r = min{ fr(x)|x ∈ X}
3In the case of minimization, it will be part of the most left bottom.
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with nonconcave Pareto fronts. Mathematically, we consider the following scalar optimization

subproblem with zbi function 4:

minimize zbi(x|λλλ ,z∗) = d,

subject to z∗− f(x) = dλλλ ,

x ∈ X (4)

where λλλ and z∗, as in the previous subsection, are a weight vector and the ideal point,

respectively. As illustrated in Figure 2, the constraint z∗ − f(x) = dλλλ ensures that f(x) is

always in L, the line with direction λλλ and passing through z∗ . The goal is to push f(x) as high

as possible so that it reaches the boundary of the attainable objective set (ZHANG; LI, 2007).

Figure 2: Ilustration of the boundary intersection approach (ZHANG; LI, 2007).

Appendix B contains some cutting edge detailed algorithms implemented in this work

for further comparison.

2.4 SOLUTION QUALITY INDICATORS

Comparing different optimization techniques always involves the notion of

performance. In the case of multi-objective optimization, the definition of solution quality

is substantially more complex than for single-objective optimization problems, because the

optimization goal itself consists of multiple objectives (ZITZLER et al., 2000):

• The distance of the resulting approximated Pareto-front to the Pareto optimal front should
4In the case of minimization, this equality constraint in this subproblem should be changed to f (x)− z∗ = dλλλ
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be minimized (i.e., convergence);

• A good (in most cases uniform) distribution of the objective vectors found in the objective

space is desirable. The assessment of this criterion might be based on a certain distance

metric;

• The spread of the approximated Pareto-front should be maximized along the Pareto

optimal front (i.e., diversity).

According to Martí-Orosa (2011), the stochastic nature of EAs prompts the use of

statistical tools in order to reach a valid judgement of the solutions quality and how different

algorithms compare with each other. The straightforward approach to experimental design is

to run the algorithm for a given number of independent executions and then extract descriptive

statistics of the performance indicators. These statistic measures can be used to support a given

hypothesis.

A statistical hypothesis testing is used to determine significant differences between

algorithms. This test generates the probability, p-value, of supporting a null hypothesis

according to a threshold probability: the significance level α . Regarding MOEA testing, it

is desired to evaluate MOEAs by approximated Pareto sets.

There is a rather broad set of hypothesis test techniques. They can be grouped in

parametric and non-parametric tests. According to García et al. (2008), in order to use the

parametric tests it is necessary to check the following conditions:

• Independence: in statistics, two events are independent when the fact that one occurs does

not modify the probability of the other one occurring;

• Normality: an observation is normal when its behaviour follows a normal or Gaussian

distribution with a certain value of average µ and variance σ2 . A normality test applied

over a sample can indicate the presence or absence of this condition in observed data.

García et al. (2008) proposes three normality tests:

– Kolmogorov-Smirnov: it compares the accumulated distribution of observed data

with the accumulated distribution expected from a Gaussian distribution, obtaining

the p-value based on both discrepancies.

– Shapiro-Wilk: it analyzes the observed data to compute the level of symmetry and

kurtosis (shape of the curve) in order to compute the difference with respect to a

Gaussian distribution afterwards, obtaining the p-value from the sum of the squares

of these discrepancies.
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– D’Agostino-Pearson: it first computes the skewness and kurtosis to quantify how far

from Gaussian the distribution is in terms of asymmetry and shape. It then calculates

how far each of these values differs from the value expected with a Gaussian

distribution, and computes a single p-value from the sum of these discrepancies.

• Heteroscedasticity: this property indicates the existence of a violation of the hypothesis of

equality of variances. Levene’s test (LEVENE, 1960) can be used for checking whether

or not k samples present this homogeneity of variances (homoscedasticity).

Non-parametric tests can be used for comparing algorithms whose results represent

average values for each problem. Given that the non-parametric tests do not require explicit

conditions for being conducted, it is recommendable that the sample of results is obtained

following the same criteria, that is, computing the same aggregation (average, mode, etc.) over

the same number of runs for each algorithm and problem.

Non-parametric tests consist of two meta-level approaches: rank tests and permutation

tests. Rank tests pool the values from several samples and convert them into ranks by sorting

them, and then they build tables describing the limited number of ways in which ranks can

be distributed (between two or more algorithms) to determine the probability that the samples

come from the same source. Permutation tests use the original values without converting them to

ranks but explicitly estimate the likelihood that samples come from the same source by Monte

Carlo simulation. Rank tests are the less powerful but are also less sensitive to outliers and

computationally inexpensive. Permutation tests are more powerful because information is not

discarded, and they are also better when there are many tied values in the samples, however

they can be expensive to compute for large samples (CONOVER, 1999).

There are many statistical tests for MOEA quality indicators that can be used when

comparing if two or more algorithms are different (better or worse) from another (KNOWLES

et al., 2006; COELLO et al., 2007; ZITZLER et al., 2008). One of the most

common non-parametric tests is the general form of the Mann-Whitney test called

Kruskal-Wallis (KRUSKAL; WALLIS, 1952) H test, where K independent samples can be

compared. This statistical test can be performed for each comparable quality indicator

using gathered experimental data (indicator values yielded by each algorithm’s run), and can

determine if the samples are from the same population. This test is primarily used when

no knowledge of the type of distribution is available. Expressing it more formally, for a set

of algorithms A1, ...,AK , each one running nr times (from a total of Nr = nrK) on the same

problem, let Ik, j be the indicator value yielded by algorithm k in run j. In a particular problem (or

instance), the Kruskal-Wallis test goes on by sorting Ik, j, by relying on R̃ank(Ik, j), the ranking
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function that returns the position of measurement Ik, j in the list. Following that, the rank sum is

calculated for each algorithm according to Equation 5:

R̃ankk =
nr

∑
j=1

R̃ank(Ik, j);k = 1, ...,K (5)

The definition of the Kruskal-Wallis H test is reflected in Equation 6.

H =
12

Nr(Nr+1)

K

∑
k=1

R̃ank2
k

Nrk
−3(Nr+1) (6)

Given:

K sample of different sizes Nr1,Nr2, ...,NrK , where Nr = ∑
K
k=1 Nrk. When

Nr1,Nr2, ...,NrK = nr and Nr = nrK, all algorithms runs the same nr times.

Upon calculation of H using Equation 6, its value is treated as though it was a value of

chi-square (χ2) sampling distribution with the degrees of freedom (d f ) = K−1, meaning that

as the test statistic H is approximately χ2-distributed, the null hypothesis is reject if H > χ2
K−1;α

(if H value is too great to fit in χ2 distribution).

In case that the null hypothesis is rejected the Dunn-Sidak post-hoc test (CONOVER,

1999) can be applied in a pairwise manner in order to determine if the results of one algorithm

are significantly better than those of the other. Dunn (1964) has proposed a test for multiple

comparisons of rank sums based on the z statistics of the standard normal distribution and

proved accurate by Sidak (HOCHBERG; TAMHANE, 1987). In particular, the difference of

indicator values yielded by algorithms Ak and Ah is statistically significant if

|R̃ankk− R̃ankh|> z1−α/2∗

√[
Nr(Nr+1)

12

][
1

Nrk
+

1
Nrh

]
(7)

with z1−α/2∗ defined as the value of the standard normal distribution for a given adjusted α/2∗
level.

According to Martí-Orosa (2011), these statistical tests can be performed over some

metrics values obtained by each algorithm’s run. On this context, we adopted two principals

convergence-diversity (JIANG et al., 2014) metrics that measure the quality of the solution

set for MOP’s: Hypervolume (HV) (ZITZLER; THIELE, 1999; BADER, 2009) and Inverted

Generational Distance (IGD) (VELDHUIZEN; LAMONT, 1999; ZITZLER et al., 2003; LI;

ZHANG, 2009).
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2.4.1 HYPERVOLUME INDICATOR - HV

Hypervolume was introduced by Zitzler et al. (2003) and considers the size of the

portion of the objective space that is dominated by the corresponding solutions region as an

indicator of convergence (DEB, 2011).

Let Re f be a set of distributed points (objective vectors) in a reference set and AP

the approximated Pareto-front in the objective space obtained from the set of non-dominated

solutions ND in the variable space. HV ∗(.) is the portion of the objective space whose solutions

are dominated by the corresponding solutions from the set defined in the function argument. It

can be defined as:

HV−(AP) = HV ∗(Re f )−HV ∗(AP) (8)

Note that we consider the hypervolume difference to the Re f . So, smaller values of

HV−(AP) correspond to higher quality solutions in non-dominated sets and they indicate both

a better convergence as well a good coverage of the reference set (YAN et al., 2007; ARROYO

et al., 2011).

2.4.2 INVERTED GENERATIONAL DISTANCE - IGD

The IGD is the average distance from each point on the reference set to the nearest

point in the approximated set (in the objective space) (CZYZẐAK; JASZKIEWICZ, 1998).

This metric measures both convergence and diversity (YEN; HE, 2014). Let Re f be a

set of distributed points (objective vectors) in the reference set. The IGD(AP) for the ND set is:

IGD(AP) =
∑v∈Re f d(v,AP)

|Re f |
(9)

where d(v,X), denotes the minimum Euclidean distance between point v in Re f and

the points in AP. To have a low value of IGD, the set AP should be close to Re f and cannot

miss any part of the whole Re f . The less the IGD, the better the algorithm’s performance.

2.4.3 CAPACITY METRICS

Capacity metrics quantify the number or ratio of non-dominated solutions in an

approximated set (in the objective space) (JIANG et al., 2014). An example is the Overall



31

Non-dominated Vector Generation (ONVG) (VELDHUIZEN; LAMONT, 2000), given by

Equation 10:

ONV G = |AP| (10)

In general, a large number of non-dominated solutions in AP is preferred (JIANG et

al., 2014). However, counting the number of non-dominated solutions in AP does not reflect

how far AP is from Re f (VELDHUIZEN; LAMONT, 2000).

The Error Ratio (ER) (VELDHUIZEN; LAMONT, 1999), also used as a capacity

metric, considers the solution intersections between AP and Re f , given by Equation 11:

ER = 1− |AP∩Re f |
|Re f |

(11)

where AP∩Re f denotes the solutions existing in both AP and Re f .

In this work, these metrics are obtained considering the non-dominated solutions

gathering all executions from each algorithm.

2.5 SUMMARY

In this chapter, we have introduced the multi-objective optimization, describing its

basic concepts and a general formulation for a MOP. We have also presented a MOEA

classification into Pareto dominance-based, Scalarizing function-based and other approaches,

providing some representatives algorithms of each class. In order to compare different

techniques, we have discussed some statistical tools for MOEA quality indicators. Moreover,

we have presented the hypervolume indicator, the IGD and the capacity metrics, considered in

this work. In the next chapter we aim to explore EDAs concepts and model building, concerning

their application to MOPs.
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3 ESTIMATION OF DISTRIBUTION ALGORITHM - EDA

Claimed as a paradigm shift in the field of EA, EDAs are population based

optimization algorithms, which employ explicit probability distributions (LARRAÑAGA;

LOZANO, 2002). This chapter provides a brief introduction to EDAs, followed by a

description of Bayesian Network, which is considered the most prominent Probabilistic

Graphical Model (LARRAÑAGA et al., 2012).

The main idea of EDAs (MÜHLENBEIN; PAAB, 1996; LARRAÑAGA; LOZANO,

2002) is to extract and represent, using a PGM, the regularities shared by a subset of high-valued

problem solutions. The PGM then samples new solutions guiding the search toward more

promising areas.

EDAs have achieved good performance when applied to several problems (PHAM,

2011) including environmental monitoring network design (KOLLAT et al., 2008), protein

side chain placement problem (SANTANA et al., 2008) and table ordering (BENGOETXEA

et al., 2011). In the context of Travelling Thief Problem (TTP), other probabilistic models have

been recently explored in a hyperheuristic framework using Genetic Programming (GP) (EL

YAFRANI et al., 2017) and EDA (MARTINS et al., 2017b). Both approaches use well known

low-level-heuristics in order to evolve combinations of these heuristics aiming to find a good

model for the TTP instance at hand.

EDAs have also been applied to solve multi-objective knapsack (SHAH; REED, 2011)

and MOPs in a noisy environment (SHIM et al., 2013). Normally they integrate both, the model

building and sampling techniques, into evolutionary multi-objective optimizers using special

selection schemes (KHAN et al., 2002; LAUMANNS; OCENASEK, 2002). However, recently

the role of the probabilistic model has been extended to model the dependencies between

variables and objectives (KARSHENAS et al., 2014). In addition, MOEDAs can be notably

enhanced by adding a local optimizer that can refine the solutions found by sampling from the

PGM (LI et al., 2004; WANG et al., 2012; ZHOU et al., 2015). In this work, we use this type

of enhancement in the context of multi-objective optimization.
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3.1 BASIC CONCEPTS

Let Ym be a random variable. A possible instantiation of Ym is denoted by ym, where

p(Ym = ym), or simply p(ym), denotes the probability that the variable Ym takes the value ym.

Y = (Y1, ...,YM) represents an M-dimensional vector of random variables, and y = (y1, ...,yM)

is a realization. The conditional probability of ym given y j is written as p(Ym = ym|Yj = y j) (or

simply p(ym|y j). The joint probability distribution of Y is denoted by p(Y = y), or simply p(y).

In this section, Pop denotes a data set, or the set of N instantiations of the vector of the random

variables Y = (Y1, ...,YM).

The general framework of an EDA is illustrated in Figure 3.

Figure 3: The general framework of an EDA.

Usually, an EDA starts by generating a random population Pop of N solutions in

Initialize population Pop block. Each solution is an individual y = (y1, ...,yM) with M elements.

Solutions are then evaluated using one or more objective functions and, in Select NPGM

individuals block, a subset of them is selected according to a pre-defined criterion. PopPGM

represents the population of the NPGM individuals selected from Pop.

The selected solutions are used to learn a PGM in the block Estimate the probability

distribution using PGM, according p(y|PopPGM), that is, the conditional probability of a

particular individual y among the selected ones. This conditional probability must be estimated



34

at every generation. The most important step is to find out the interdependencies between

variables that represent one point in the search space. The basic idea consists in inducing

probabilistic models from the best individuals of the population.

Once the probabilistic model has been estimated, the model is sampled to generate

a population Popsmp of new individuals (new solutions) in block Sample Popsmp for new

individuals using PGM. The cycle of evaluation, selection, modeling, and sampling is repeated

until a stop condition is fulfilled.

The steps that differentiate EDAs from other EAs are the construction of a probabilistic

model and the process of sampling new candidate solutions based on the model. These blocks

are highlighted in different color in Figure 3.

The next section introduces EDAs classification, based on the type of variables and the

interdependencies that the PGM can account for (LARRAÑAGA; LOZANO, 2002).

3.2 CLASSIFICATION

Depending on the problem solution representation, EDAs can be categorized as

discrete, permutation and real-valued based variables. Candidate solutions in EDAs have

usually fixed length. However, variables can either be discrete or receive a real value that covers

an infinite domain. Candidate solutions can also be represented by a permutation over a given

set of elements, e.g. solutions for travelling salesman or quadratic assignment problem. This

research concerns only EDAs for discrete variables. EDAs can be divided into three groups:

Univariate, Bivariate and Multivariate according to the level of interactions among variables.

Univariate EDAs assume no interaction among variables. The joint probability mass

function (pmf) of a solution y, which will be used afterward in the sampling process, is

simply the product of univariate marginal probabilities of all M variables in that solution,

that is p(y) = ∏
M
m=1 p(ym). Algorithms in this category have simple model building and

sampling procedures and can solve problems where variables are independent. However,

for problems with strong variable interactions, they tend to produce poor results. Different

variants in this category include: Population-based Incremental Learning (PBIL) (BALUJA,

1994), Univariate Marginal Distribution Algorithm (UMDA) (MÜHLENBEIN; PAAB, 1996)

and Compact Genetic Algorithm (cGA) (HARIK et al., 1999).

For bivariate EDAs, pairwise interactions among variables in the solutions are

considered. Therefore, the probabilistic models in this category contain factors involving

conditional probability of two interacting variables. New solutions are also sampled in a certain
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ordering of variables to address the conditional probabilities. These algorithms outperform

univariate EDAs in problems with pair-wise variable interactions; however, they tend to fail

when multiple interactions among variables exist in the problem (PHAM, 2011). Mutual

Information Maximization for Input Clustering (MIMIC) (BONET et al., 1997), Combining

Optimizer with Mutual Information Tree (COMIT) (BALUJA; DAVIES, 1997) and Bivariate

Marginal Distribution Algorithm (BMDA) (PELIKAN; MUEHLENBEIN, 1999), all of them

use bivariate models to estimate probability distribution.

Multivariate EDAs use probabilistic models able to capturing multivariate interactions

between variables. Algorithms using multivariate models of probability distribution include:

Extended Compact Genetic Algorithm (ECGA) (HARIK, 1999), Estimation of Bayesian

Network Algorithm (EBNA) (ETXEBERRIA; LARRAÑAGA, 1999), Factorized Distribution

Algorithm (FDA) (MÜHLENBEIN; MAHNIG, 1999), Bayesian Optimization Algorithm

(BOA) (PELIKAN et al., 1999), Hierarchical Bayesian Optimization Algorithm (hBOA)

(PELIKAN et al., 2003), Markovianity-based Optimization Algorithm (MOA) (SHAKYA;

SANTANA, 2008), Affinity Propagation EDA (AffEDA) (SANTANA et al., 2010).

One of the most general probabilistic models for discrete variables used in EDAs and

MOEDAs is the Bayesian Network (PEARL, 2000; KOLLER; FRIEDMAN, 2009), and we

briefly describe it in the next section.

3.3 BAYESIAN NETWORK

Bayesian networks (BN) are directed acyclic graphs (DAG) whose nodes represent

variables, and whose missing edges encode conditional independencies between variables.

Random variables represented by nodes may be observable quantities, latent variables, unknown

parameters or hypotheses. Each node is associated with a probability function that takes as input

a particular set of values for the node’s parent variables and gives the probability of the variable

represented by the node (COOPER; HERSKOVITS, 1992; KORB; NICHOLSON, 2010).

3.3.1 BASIC CONCEPTS

As in Section 3.1, let Y = (Y1, ...,YM) be a vector of random variables, and let ym be

a value of Ym, the m-th component of Y. The representation of a Bayesian model is given by

two components (LARRAÑAGA et al., 2012): a structure and a set of local parameters. The

set of local parameters Θ contains, for each variable, the conditional probability distribution of

its values given different value settings for its parents, according to structure B.
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The structure B for Y is a DAG that describes a set of conditional dependencies of

all variables in Y. PaB
m represents the set of parents (variables from which an arrow is coming

out in B) of the variable Ym in the PGM whose structure is given by B (BENGOETXEA, 2002).

This structure assumes that Ym is independent from its non-descendants given PaB
m, m= 2, ...,M,

where Y1 is the root node.

Therefore, a Bayesian network encodes a factorization for the mass probability as

follows:

p(y) = p(y1,y2, ...,yM) =
M

∏
m=1

p(ym|paB
m) (12)

Equation 12 states that the joint pmf of the variables can be computed as the product

of each variable’s conditional probability given the values of its parents.

In discrete domains, we can assume that Ym has sm possible values, y1
m, ...,y

sm
m , therefore

the particular conditional probability, p(yk
m|pa j,B

m ), can be defined as:

p(yk
m|pa j,B

m ) = θyk
m|pa j,B

m
= θm jk (13)

where pa j,B
m ∈ {pa1,B

m , ...,patm,B
m } denotes a particular combination of values for PaB

m and tm is

the total number of different possible instantiations of the parent variables of Ym given by tm =

∏Yv∈PaB
m

sv, where sv is the total of possible values (states) that Yv can assume. The parameter

θm jk represents the conditional probability that variable Ym takes its k−th value (yk
m), knowing

that its parent variables have taken their j-th combination of values (pa j,B
m ). This way, the

parameter set is given by Θ = {θθθ 1, ...,θθθ m, ...θθθ M}, where θθθ m = (θm11, ...,θm jk, ...,θm,tm,sm).

BN’s are often used for modeling multinomial data with discrete variables (PEARL,

1988) generating new solutions using the particular conditional probability described in

Equation 13 (probabilistic logic sampling (HENRION, 1986)).

The next sections present a way to estimate Θ parameters and the B structure.

3.3.2 PARAMETER ESTIMATION

Generally, the parameters in the whole set Θ are unknown, and their estimation process

is based on p(Θ|Pop,B), where Pop is the current data with N observations (instantiations) of

Y. Assuming a fixed structure B, let us consider the following assumption based on Bayes

Theorem:
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p(Θ|Pop,B) =
L(Θ;Pop,B)∗ p(Θ|B)

p(Pop,B)
(14)

In order to estimate the posteriori p(Θ|Pop,B) lets assume that the parameters θθθ m j =

{θm j1,θm j2, ...,θm jsm} are independent (i.e. priori and posteriori of Θ can be factorized through

θm jθm jθm j) and Nm jk is the number of observations in Pop for which Ym assumes the k-th value given

the j-th combination of values from its parents. According to this, Nm j = {Nm j1, ...,Nm jsm} fits

a multinomial distribution, with a pmf defined as follows.

p(Nm j|θθθ m j,B) =
Nm j!

Nm j1!Nm j2!...Nm jsm!
(θ

Nm j1
m j1 )(θ

Nm j2
m j2 )...(θ

Nm jsm
m jsm

) (15)

where ∑
sm
k=1 Nm jk = Nm j and ∑

sm
k θm jk = 1.

Considering the likelihood L(θθθ m j;Pop,B) given by Equation 15, there are two

approaches to estimate each θm jk parameter: Maximum Likelihood Estimate (MLE) and

Bayesian Estimate.

With MLE, we expect to find a vector in Θ that maximizes the likelihood. We can

denote this vector as θ̂θθ . In MLE, each θ̂θθ ∈ Θ is a point estimation, not a random variable.

Therefore, MLE does not consider any priori information, and the estimation is calculated

according to Equation 16, based on a frequentist analysis (by setting the derivative of Equation

15 to zero):

θ̂m jk = p(yk
m|pa j,B

m ,θθθ m) =
p(Ym = yk

m, pa j
m)

p(pa j
m)

=
f (yk

m, pa j
m)

f (pa j
m)

= Nm jk/Nm j (16)

where f (.) denotes the relative frequency and θ̂m jk is the MLE estimated parameter for θm jk.

Regarding to Bayesian estimation, it calculates the posteriori distribution p(Θ|Pop,B)

considering a priori information p(Θ|B). In practice, it is useful to require that the prior for each

factor is a conjugate prior. For example, Dirichlet priors are conjugate priors for multinomial

factors.

Considering we can assume that a priori θθθ fits a Dirichlet distribution with

hyperparameters αααm j = (αm j1, ...,αm jsm) where αm jk ≥ 1, αm j = ∑
sm
k=1 αm jk and its expected

value is given by Equation 17:

E(θm jk|B) = αm jk/αm j; (17)
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Dirichlet prior can be written as the following density probability function:

p(θθθ m j|B,αααm j) =
Γ(αm j)

Γ(αm j1)...Γ(αm jsm)
θ

αm j1−1
m j1 θ

αm j2−1
m j2 ...θ

αm jsm−1
m jsm

(18)

where Γ(.) is the Gamma function that satisfies Γ(x + 1) = xΓ(x) and Γ(1) = 1; according

definition Γ(x) = (x− 1)!, resulting in Γ(1) = (1− 1)! = 1 and Γ(x+ 1) = x! = x(x− 1)(x−
2)...1 = xΓ(x) (DEGROOT, 2005).

The term Γ(αm j)
Γ(αm j1)...Γ(αm jsm)

can be considered a normalizer factor and Equation 18 can

be rewritten as follows:

p(θθθ m j|B,αααm j) ∝ θ
αm j1−1
m j1 θ

αm j2−1
m j2 ...θ

αm jsm−1
m jsm

(19)

Considering the priori as p(θθθ m j|B,αααm j) and the likelihood as p(Nm j|B,θθθ m j) , we

obtain the posteriori as p(θθθ m j|αααm j,Nm j), given by Equation 20, which fits the Dirichlet

distribution with parameters αααm j = (αm j1 +Nm j1, ...,αm jsm +Nm jsm).

p(θθθ m j|B,αααm j,Nm j) ∝ θ
αm j1+Nm j1−1
m j1 θ

αm j2+Nm j2−1
m j2 ...θ

αm jsm+Nm jsm−1
m jsm

(20)

Assuming the expected value for the posteriori as follows:

E(θm jk|Nm j,B) = (αm jk +Nm jk)/(αm j +Nm j). (21)

where Nm j = ∑
sm
k=1 Nm jk, αm j = ∑

sm
k=1 αm jk, and, considering the αm jk values as 1, we have:

E(θm jk|Nm j,B) = (1+Nm jk)/(sm +Nm j). (22)

The expected value E(θm jk|Nm j,B) of θm jk is an estimate of θm jk, shown in

Equation 23.

θ̂m jk = (1+Nm jk)/(sm +Nm j) (23)

In this work we estimate the parameters by Bayesian Estimate, using the Dirichlet

prior.
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3.3.3 STRUCTURE

There are three main approaches to learn BN structures: score-based learning,

constraint-based learning, and hybrid methods (YUAN; MALONE, 2013).

Score-based learning methods evaluate the quality of BN structures using a scoring

function, like Bayesian Dirichlet (BD)-metric (HECKERMAN et al., 1995), and selects

the best one. Constraint-based learning methods typically use statistical tests to identify

conditional independence relations from the data and build a BN structure that best fits

those relations (PEARL, 1988). Hybrid methods aim to integrate the two approaches, like

those adopted by Tsamardinos et al. (2006a) and Perrier et al. (2008). These authors used

constraint-based learning to create a skeleton graph and then used score-based learning to find

a high-scoring network structure that is a subgraph of the skeleton.

Most of the developed structure learning algorithms fall into the score-based

approaches. The BD metric, defined by Equation 24, combines a priori knowledge about the

problem and the statistical data from a given data set.

p(B|Pop) = p(B)
M

∏
m=1

tm

∏
j=1

Γ(αm j)

Γ(αm j +Nm j)

sm

∏
k=1

Γ(αm jk +Nm jk)

Γ(αm jk)
(24)

where p(B) is the prior factor of quality information of the network B. If there is no prior

information for B, p(B) is considered a uniform probability distribution (LUNA, 2004) and

generally its value is set to 1 (CROCOMO; DELBEM, 2011). The product on j ∈ {1, ..., tm}
runs over all combinations of the parents of Ym and the product on k ∈ {1, ...,sm} runs over all

possible values of Ym.

Through αm jk and p(B), a priori information about the problem is incorporated into

the metric. The parameter αm jk stands for prior information about the number of instances that

have Ym set to its k-th value and the set of parents of Ym is instantiated to its j-th combination.

The prior network can be set to an empty network, when there is no such information.

In the so-called K2 metric (COOPER; HERSKOVITS, 1992) for instance, the

parameters αm jk can be set to 1 as there is no a priori information about the problem, and

Equation 24 becomes Equation 25:

p(B|Pop) =
M

∏
m=1

tm

∏
j=1

(sm−1)!
(Nm j + sm−1)!

sm

∏
k=1

(Nm jk)! (25)

Since the factorials in Equation 25 can grow to huge numbers, a computer overflow
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might occur. Thus the logarithm of the scoring metric log(p(B|Pop)) is usually used, as shown

in Equation 26, where

log(p(B|Pop)) =
M

∑
m=1

tm

∑
j=1

(
log
(

(sm−1)!
(Nm j + sm−1)!

)
+

sm

∑
k=1

log((Nm jk)!)

)
(26)

Various algorithms can be used to look for the network structure that maximizes the

value of a scoring metric, like a simple greedy search algorithm, local hill-climbing, simulated

annealing, tabu search and evolutionary computation (LARRAÑAGA et al., 2012).

3.3.4 NAIVE BN

One of the most important application of BN is as a classifier, where an instance

described by a number of features must to be classified in one of several distinct classes.

However, many application domains involve instances that have to be assigned to a most likely

combination of classes (GAAG; WAAL, 2006). A multidimensional BN (MBN) classifier is a

Bayesian network with a restricted topology designed to address these applications, including

one or more class variables and one or more feature variables.

An MBN classifier has a set of random variables Y partitioned into a set YF =

{F1, ...,Fm}, m ≥ 1, of feature variables and a set YC = {C1, ...,Cn}, n ≥ 1, with the class

variables. The subgraph BC of YC is called the classifiers class subgraph; the subgraph BF of

YF is called its feature subgraph. The subgraph BCF , which includes the arcs from the class

variables to the feature variables, is called the feature selection subgraph, since it represents

the selection of features that are deemed relevant for classification in view of the variables

{C1, ...,Cn}(WAAL; GAAG, 2007). Figure 4 illustrates an example of an MBN with m = 4 and

n = 3.

According to Karshenas et al. (2014), an MBN can address the class variables of given

features variables, the most probable feature values for a given combination of class variables,

and the most probable values for a subset of features or classes given the value of the others.

Our interest in this work is to apply the MBN concepts to a MOP context, aiming to answer

questions like: what are the estimated objectives values of a given solution, and/or what is the

most probable solution resulting in a specific value-setting for the objectives.

MBN classifiers use different search algorithms to find the optimal way to represent

data (GAAG; WAAL, 2006), and most of them are score-based (MORAN et al., 2009).
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Figure 4: An MBN classifier with 3 class variables and 4 feature variables.

The presence of several classes adds complexity and increases the number of network

parameters (BOUHAMED et al., 2012). Therefore, some authors have proposed the use

of methods to overcome these shortcomings, such as: K2 algorithms (LERNER; MALKA,

2011; PORWAL et al., 2006; MALKA; LERNER, 2004; HRUSCHKA; EBECKEN, 2007;

CARTA et al., 2011; COOPER; HERSKOVITS, 1992; MORAN et al., 2009), the Greedy

Search (SPIRTES et al., 2000; MORAN et al., 2009), the Greedy Hill Climber (BN-HC) and

the Repeated Hill Climber (BN-RHC) (WITTEN et al., 2016; MORAN et al., 2009).

The K2 algorithm, introduced by Cooper and Herskovits (1992) and presented in

Algorithm 1, is a score-based greedy local search technique that applies the K2 metric

(Equation 25). It starts by assuming that a node, in an ordered list, does not have any parent

(Step 3), then it processes each node in turn, gradually adding edges from previously processed

nodes to the current one. In each step it adds the edge that increases the scoring metric the most

(Step 8). When no edge increases the metric anymore, attention turns to the next node (Step

14). According to Witten et al. (2016), in order to avoid overfitting, the number of parents for

each node can be restricted to a predefined upper bound. Due to the fact that only edges from

previously processed nodes (pre-defined ordered list) are considered, this procedure guarantees

that acyclic graphs are always generated.

Note that Equation 27 is a factor of Equation 25 for a specific m value, as follows:

f (m,Pam) =
tm

∏
j=1

(sm−1)!
(Nm j + sm−1)!

sm

∏
k=1

(Nm jk)! (27)

An example of the K2 algorithm to learn the topology of a BN is presented in the

Appendix A.
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Algorithm 1: K2 Algorithm
INPUT: a set of M nodes;

a pre-defined nodes ordered list order with M elements;
an upper bound u on the number of parents a node may have;
the current data set Pop with N observations (instantiations);

OUTPUT: the set of the parents Pam of each node m;
1: for e = 1 to M do
2: m = ordere;
3: Pam = /0;
4: Scoreold = f (m,Pam); {This function is computed using Equation 27}
5: proceed = T RUE;
6: while proceed and |Pam)|< u do
7: Pred(Ym) = the set of the predecessors of Ym according order;
8: Let i be the node in Pred(Ym)−Pam that maximizes f (m,Pam∪{i});
9: Scorenew = f (m,Pam∪{i});

10: if Scorenew > Scoreold then
11: Scoreold = Scorenew;
12: Pam = Pam∪{i};
13: else
14: proceed = FALSE;
15: end if
16: end while
17: end for

As presented in Algorithm 2, the BN-HC procedure uses a hill climbing algorithm

adding, removing and reversing arcs on the space of the directed graphs until a local maximum

(network scoring metric) is reached. It starts with a random network structure (Step 1) and

generates a number of new networks applying all possible single-edge addition, removal and

reversal operations that will map the current network into a new valid structure (Step 5), and then

applies the operation that will result in the highest increase in the network scoring metric (Step

6). This new structure with the highest score is denoted as the new current network (Step 9) and

new structures are generated again until reaching a local optimum of scoring metric (MORAN

et al., 2009) (Step 8). Any scoring metric can be used.

In the BN-RHC, a BN-HC variant approach, the algorithm searches structures by

repeatedly generating a random network and applying the BN-HC to it. The structure search

is restarted from a new random structure after reaching a local optimum (MORAN et al.,

2009). This is repeated according to a given number of times, usually the number of node

score evaluations (KARSHENAS et al., 2014). In both approaches the algorithm returns the

highest network scoring metric.

Different types of MBN classifier can be distinguished based on their graphical
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Algorithm 2: BN-HC Algorithm
INPUT: Pop, the current data set with N observations (instantiations)
OUTPUT: B=best structure

{Random generate a network structure and calculate its score}
1: B=RandomStructure(Pop);
2: Score(B) = p(B|Pop); {The score is computed using any score metric, i.e., Equation 25}
3: proceed = T RUE;
4: while proceed do

{Apply all possible single-edge addition, removal or reversal operations on B for
generating new structures}

5: S=NewStructures(B);
6: Scoremax =ScoreMax(S);

{Calculate the score for each structure in S and find the maximum value}
7: B

′
= the structure ∈ S with the maximum score;

8: if ScoreB′ > ScoreB then
9: B = B

′
;

10: else
11: proceed = FALSE
12: end if
13: end while

structures. An example is the naive multidimensional classifier in which both the class subgraph

and the feature subgraph are empty (GAAG; WAAL, 2006) (i.e. there are edges only in feature

selection subgraph, as presented in Figure 5). This structure is the base of our proposal,

therefore the structure learning process consists in finding, for root notes defined as multiple

objectives, a feature selection subgraph (encompassing decision variables and local search

parameters in our case) that better fits the data.

Figure 5: A naive MBN classifier with 3 class variables and 4 feature variables.

In this work we investigate both K2 and BN-HC structure learning algorithm. The

BN-RHC method is not considered here due to its computational costs. We adopted K2 metric
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as score-based technique, although any other method could be used as well.

3.4 SUMMARY

EDAs are promising algorithms often applied to solve MOPs. In this chapter, we have

presented a general framework and a classification, that categorizes EDAs based on the level

of interactions among variables. We have related some representative works emphasizing the

BN model as a prominent PGM. BNs are often used to represent discrete variables using a

multinomial distribution. This chapter has also justified the use of the BN in the context of this

work. This way the nodes encode a probability function associated with a conditional relation

between parents nodes. The model learning is divided into parameter and structure estimation.

With the parameters being estimated through the Bayesian approach, the structure learning

algorithms search for the structure that maximizes the value of given scoring metric. We have

adopted a naive multidimensional network to further investigate both K2 and BN-HC structure

learning algorithm. The next chapter presents the problems addressed in this work, and briefly

describes related solving approaches using MOEAs and EDAs.
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4 THE MULTI-OBJECTIVE PROBLEMS ADDRESSED IN THIS WORK

This chapter presents the problems addressed in this work. Fist we investigate

the MOKP, according to the multi-objective formulation proposed by Ishibuchi et al.

(2015), Tanigaki et al. (2014) and Zitzler and Thiele (1999). After that we explore the

MNK-Landscape problem, proposed by Aguirre and Tanaka (2004). We also present some

previous work addressing these MOPs in the context of MOEAs and EDAs. We emphasize that

although the experiments are conducted using specifics MOPs, the proposal is general, and can

be extended to a wide range of multi and many-objective combinatorial problems.

4.1 THE MULTI-OBJECTIVE KNAPSACK PROBLEM

The 0/1 knapsack problem is a widely studied problem due to its practical

importance. In the last years the generalization of this problem has been well studied and

many algorithms for solving some variants have been proposed. Evolutionary approaches

for solving MOKP are of great interest (TAN; JIAO, 2013) with many works presented

in the last years (JASZKIEWICZ, 2001), (JASZKIEWICZ, 2002b), (VIANNA; VIANNA,

2013), (LUST; TEGHEM, 2012), (GANDIBLEUX; FRáVILLE, 2000), (ZITZLER; THIELE,

1999), (TANIGAKI et al., 2014) and (ISHIBUCHI et al., 2015).

Next sections present the MOKP general formulation and some related works

addressing this problem.

4.1.1 GENERAL FORMULATION

Given a total of R objective functions (knapsacks) and Q items, arq is the profit of item

q = 1, . . . ,Q, in the knapsack r = 1, . . . ,R, brq denotes the weight of item q in the knapsack r,

and cr is the constraint capacity of knapsack r. MOKP can be formulated as follows:
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max
x

z(x) = (z1(x), ...,zR(x))

subject to ∑
Q
q=1 brqxq ≤ cr, r = 1, . . . ,R

with zr(x) = ∑
Q
q=1 arqxq, x ∈ {0,1}Q

(28)

where arq, brq and cr are nonnegative coefficients, x is a Q-dimensional binary vector, such that

xq = 1 means that item q is selected to be in all knapsacks.

The mono-objective version of this problem has been extensively studied in the

literature (BAZGAN et al., 2009). One variant is Bounded Knapsack Problem (BKP), a

generalization of 0/1 knapsack problem in which multiple instances of each item are taken

in a single knapsack. BKP is concerned with a knapsack that has positive integer capacity c.

There are Q distinct items that may potentially be placed in the knapsack. Item q has a positive

integer weight bq and positive integer profit aq. In addition, there are nq available copies of item

q, where quantity nq is a positive integer. Assuming that yq represents the number of copies of

item q that are to be placed into the knapsack, the objective is to choose a subset of items that

maximizes the corresponding profit sum without exceeding the capacity of the knapsack. The

BKP problem is formulated as follows:

max
x

z(x) = ∑
Q
q=1 yqaq

subject to ∑
Q
q=1 bqyq ≤ c,

with 0≤ yq ≤ nq, q ∈ {1, ...,Q}

(29)

In the last decades, many algorithms for solving the MOKP variant have been

proposed using different techniques (TAN; JIAO, 2013). Moreover, in the multi-objective

case, many real-world applications are reported dealing with capital budgeting (ROSENBLATT;

SINUANY-STERN, 1989), selection of transportation investment alternatives (TENG; TZENG,

1996), relocation issues arising in conservation biology (KOSTREVA et al., 1999), planning

remediation of contaminated lightstation sites (JENKINS, 2002) and action plan in the social

and medico-social sector (CHABANE et al., 2015).

So, the problem has been chosen due to its combinatorial and multi-objective features

and because it serves to model several other real-world problems.
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4.1.2 MOEA TO SOLVE MOKP

One of the first works is presented by Zitzler and Thiele (1999) and performs a

comparative study of five different MOEAs on the MOKP. They compare four well-known

MOEAs, i.e., vector-evaluated genetic algorithm (FOURMAN, 1985), Haleja’s and Lin’s

Genetic Algorithm (HAJELA; LIN, 1992), NPGA (HORN et al., 1994), and NSGA

(SRINIVAS; DEB, 1994). The authors propose a method called SPEA, which outperforms

the other approaches on the experimental results.

Knowles and Corne (2000) have continued the previous experiment using the

same set of test instances. They compare SPEA with Memetic-Pareto Archive Evolution

Strategy (M-PAES), a multiple-objective memetic algorithm that hybridizes local search with

recombination operators. Their results indicate that M-PAES performs better than SPEA.

The goal of the methods proposed by Arroyo (2002) is to generate, in a reasonable

time, a set of approximated Pareto-optimal solutions, allowing the decision maker to choose

a solution of interest. First, the author develops a constructive heuristic to generate a set

of dominant solutions. In order to find sets of dominant solutions that are closer to the

Pareto-optimal sets, he develops a local search heuristic and two metaheuristics. The first one

is based on Genetic algorithm and uses the concept of Pareto dominance combining elitism,

population diversity and local search strategies. Then, he proposes a Tabu Search-based method

which explores a set of solutions in parallel to find a variety of solutions distributed along the

Pareto front. The performance of the proposed methods is tested on a number of instances for

the multi-objective flowshop scheduling problem and the MOKP.

Jaszkiewicz (2002b) compares four algorithms: SPEA, M-PAES, Ishibuchi’s and

Murata’s Multiple-objective Genetic Local Search (IMMOGLS) (ISHIBUCHI; MURATA,

1998), and the MOGLS algorithm proposed by Jaszkiewicz (2002a). The same set of MOKP

instances, recombination, mutation, repair operators and similar performance measures as those

adopted by Zitzler and Thiele (1999) are used. The only difference is that it sorts the elements

removed by a greedy repair procedure on the basis of a weighted scalarizing function value.

Ahn et al. (2010) present a Hybrid Multi-objective Evolutionary Algorithm (HMEA)

that deals with MOPs quite efficiently. The aim is to discover new non-dominated solutions

in the neighborhood of the most promising individuals in order to effectively push individuals

toward the global Pareto front. It was achieved by bringing the strength of an Adaptive Local

Search (ALS) to bear upon the evolutionary multi-objective optimization. The ALS is devised

by combining a weighted fitness strategy and a knowledge-based local search which does not
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incur any significant computational cost. To show the utility of HMEA, the ALS for MOKP

is developed by exploiting the problem’s knowledge. Experimental results have shown the

effectiveness (including convergence and diversity criteria) of the proposed approach.

Vianna and Vianna (2013) developed algorithms based on Greedy Randomized

Adaptive Search Procedure (GRASP) and Iterated Local Search (ILS) metaheuristics for the

MOKP. Computational experiments on benchmark instances show that the proposed algorithms

are very robust outperforming other heuristics in terms of solution quality and run times.

A new version of MOEA/D with uniform design for solving MOKP is proposed by Tan

and Jiao (2013). The algorithm adopts the uniform design method to generate the aggregation

coefficient vectors so that the decomposed scalar optimization subproblems are uniformly

scattered, and therefore the algorithm can uniformly explore the region of interest from the

initial iteration. Results show that the proposed algorithm significantly outperforms NSGA-II,

SPEA2 and PESA for 2-objective, 3-objective and 4-objective knapsack problems.

Ke et al. (2014) combine ideas from EA, decomposition approaches and Pareto local

search, and suggest a simple yet efficient Memetic Algorithm for Combinatorial Multi-objective

optimization problems (MoMad). It decomposes a combinatorial MOP into a number of

single objective optimization problems using an aggregation method. At each generation,

MoMad maintains three populations: population PL for recording the current solution to

each subproblem which will undergo perturbation and single objective local search operators;

population PP containing all the nondominated solutions in PL for Pareto local search; and

population PE for maintaining all the nondominated solutions found so far during the search.

A Pareto local search method is first applied to search a neighborhood of each solution in PP to

update PL and PE. Then a single objective local search is applied to each perturbed solution in

PL for improving PL and PE, and re-initializing PP. Extensive experiments are conducted by Ke

et al. (2014) to study MoMad and compare it with some other state-of-the-art algorithms on

the multi-objective traveling salesman problem and MOKP. Experimental results show that the

proposed algorithm outperforms or performs similarly the best heuristics on these two problems

so far.

Ishibuchi et al. (2015) examine the behavior of some classes of MOEAs on MOKPs

represented by Pareto dominance-based, scalarizing function-based, and hypervolume-based

algorithms. NSGA-II, MOEA/D, SMS-EMOA, and HypE are examined using knapsack

problems with 2 to 10 objectives. Experimental results on randomly generated instances of

MOKP are consistent with well-known performance deterioration of Pareto dominance-based

algorithms. That is, NSGA-II is outperformed by the other algorithms. However, they also
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show that NSGA-II outperforms the other algorithms when objectives are highly correlated.

MOEA/D shows totally different search behavior depending on the choice of a scalarizing

function and its parameter value. Some MOEA/D variants work very well only in two-objective

problems while others work well in many-objective problems with 4 to 10 objectives. They also

provide other interesting observations such as the performance improvement by similar parent

recombination and the necessity of diversity improvement for MOKPs.

Recently, Chabane et al. (2017) present a solution method using the iterated local

search based on R2 quality indicator (IBMOLS) to address the issue of elaborating efficient

action plans in social and medico-social sector in France, which includes more than 34,000

different structures (rest houses, accommodation and rehabilitation centers, work-based support

centers, etc). In this work, the authors investigate a real case of multi-objective action plan

optimization problem which aims to improve the whole quality of these structures. The action

plan optimization problem is a practical case of the MOKP. They assess the approach on

problem instances with 2 to 8 objectives and up to 500 candidate actions and demonstrate

its usefulness as a key component of a decision support system for social and medico-social

structures, presenting competitive results in comparison with NSGA-II.

Table 1 summarizes the main characteristics of MOEAs approaches to solve MOKP.

Table 1: MOEAs to MOKP main characteristics
MOEA Objectives Approach Local Search References
SPEA 2,3 and 4 Pareto No (ZITZLER; THIELE, 1999)

MPAES 2,3 and 4 Pareto Yes (KNOWLES; CORNE, 2000)
MOGLS 2,3 and 4 Pareto Yes (JASZKIEWICZ, 2001), (JASZKIEWICZ, 2002b)
MOGLS 2 Pareto Yes (ARROYO, 2002)
HMEA 2 and 3 Pareto Yes (AHN et al., 2010)

MGRASP 2,3 and 4 Pareto Yes (VIANNA; VIANNA, 2013)
MILS 2,3 and 4 Pareto Yes (VIANNA; VIANNA, 2013)

MOEA/D 2,3 and 4 Scalarizing Functions Yes (TAN; JIAO, 2013)
MOMAD 2,3 and 4 Scalarizing Functions Yes (KE et al., 2014)
NSGA-II 2-10 Pareto No (ISHIBUCHI et al., 2015)
MOEA/D 2-10 Scalarizing Functions No (ISHIBUCHI et al., 2015)

SMS-EMOA 2-10 Hypervolume No (ISHIBUCHI et al., 2015)
HypE 2-10 Hypervolume No (ISHIBUCHI et al., 2015)

IBMOLS 2-8 R2 based LS Yes (CHABANE et al., 2017)

4.1.3 EDA APPROACHES FOR MOKP

Schwarz and Ocenasek (2001b) propose a Pareto-based BOA algorithm to MOKP

that replaces the fitness assignment and replacement step of standard BOA by the

diversity-preserving niching method based on the promising Pareto technique. They

implemented the multi-objective Pareto BOA algorithm as a modification of the original

single-objective BOA algorithm using the same strength criterion applied to SPEA (ZITZLER

et al., 2001) for the Pareto oriented fitness. This criterion assigns a fitness to each solution
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based on the relation between the number of the individuals that this solution dominates in

entire population.

The paper presented by Laumanns and Ocenasek (2002) investigates the usefulness of

PGM in multi-objective optimization, where the aim is to approximate the set of Pareto-optimal

solutions. The PGM is built according to solutions selected by a new operator based on (µ +

λ ,ε)1, where dominated individuals are also allowed to survive, depending on the number of

individuals they are dominated by. The approach integrates the model building and sampling

techniques of BOA using binary decision tree as PGM instead of a Bayesian Network. The

model is composed of a set of trees, one tree is allocated for each variable. The dependence

assertions are expressed by the existence of splitting nodes and the local probabilities are stated

in leaf nodes. The behavior of the resulting Bayesian Multi-objective Optimization Algorithm

(BMOA) is empirically investigated on the MOKP.

Li et al. (2004) present a Hybrid Estimation of Distribution Algorithm (MOHEDA)

based on UMDA and scalarizing function for solving the MOKP. Further, local search using a

weighted sum method is applied to the initial and to the sampled population. A random repair

method is also used to handle constraints. Results show that MOHEDA outperforms several

other state-of-the-art algorithms.

Gupta et al. (2014) develop a new approach to solve BKP. This paper proposes an EDA

based on probability vector model using greedy operator approach to solve the mono-objective

BKP, defined in Equation 29. Greedy operator ensures the feasibility of the solutions (repair

method).

Recently, Zhou et al. (2015) suggest an approach combining an EDA with cheap

and expensive local search methods for making use of both global statistical information and

individual location information. In this approach, part of a new solution is sampled from a

modified UMDA, and the rest is generated by refining a parent solution through a cheap local

search method that does not need actual function evaluations. The basic idea of the cheap local

search is to replace some components of sampled solutions by those of solutions derived from

a surrogate model with a specific probability. To generate high-quality solutions, best solutions

are used to construct surrogate models. When the population has converged, an expensive

local search method is applied to improve a promising solution found so far. Experimental

results have shown that for simple test instances, this algorithm can produce better or similar

solutions but with faster convergence speed than the compared methods and for some complex

1µ denotes the number of parents that survive to the next generation, λ is the number of offspring solutions and
ε is the selection/archiving operator.
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test instances it can find better solutions. This work addresses the knapsack problem for a single

objective, like (GUPTA et al., 2014), considering it as a global optimization problem.

4.2 THE MULTI-OBJECTIVE NK-LANDSCAPE PROBLEM

This section introduces the MNK-landscape problem, a multi-objective version

of the NK fitness landscape problem. The NK model has found application in several

fields, since evolutionary biology studies (KAUFFMAN; LEVIN, 1987; KAUFFMAN;

WEINBERGER, 1989) to complex systems, such as the representation of complexity in

economics and organizational sciences (VALENTE, 2014). Next sections present the model

general formulation and related works addressing this problem.

4.2.1 GENERAL FORMULATION

The single NK fitness landscapes is a family of problems proposed by Kauffman

(1993) in order to explore the way in which the neighborhood structure and the strength of

the interactions between neighboring variables (subfunctions) is linked to the ruggedness of

search spaces. For the given parameters, the problem consists in finding the global maximum

of the function (SANTANA et al., 2015a).

Let X = (X1, . . . ,XN) denote a vector of discrete variables and x = (x1, . . . ,xN) an

assignment to the variables.

An NK fitness landscape is defined by the following components (PELIKAN et al.,

2009):

• Number of variables, N.

• Number of neighbors per variable, K.

• A set of neighbors, Π(Xq)∈X, for Xq, q∈ {1, . . . ,N} where Π(Xq) contains K neighbors.

• A subfunction fq defining a real value for each combination of values of Xq and Π(Xq),

q ∈ {1, . . . ,N}.

Both the subfunction fq for each variable Xq and the neighborhood structure Π(Xq) are

initialized randomly (PELIKAN et al., 2009).
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The mono-objective function zNK to be maximized is defined as:

zNK(x) =
N

∑
q=1

fq(xq,Π(xq)). (30)

The mono-objective model has been extensively analyzed to study EAs and other

heuristic algorithms (AGUIRRE; TANAKA, 2003; VEREL et al., 2011; TINÓS; YANG, 2014),

such as EDAs (PELIKAN, 2008; PELIKAN et al., 2009; LIAW; TING, 2013). In Pelikan

(2008) the author analyzed the performance of the hBOA (PELIKAN et al., 2003), the

UMDA (MÜHLENBEIN; PAAB, 1996), and the simple genetic algorithm (GA) (HOLLAND,

1992) with several variants on randomly generated NK fitness landscapes. Pelikan et al. (2009)

considered a class of NK landscapes with nearest neighbor interactions and tunable overlap. For

both works, hBOA outperformed other compared algorithms especially on the most difficult

instances with large neighborhood sizes.

Liaw and Ting (2013) studied the behaviors of EDAs with different model

complexities, comparing the solution quality and convergence speed of UMDA, BMDA, and

EBNA in the NK landscapes with different parameter settings. The authors provided some

insights regarding that BMDA and EBNA can solve more complex problems.

The MNK-landscape (AGUIRRE; TANAKA, 2004, 2007) is a multi-objective

combinatorial optimization problem with R objectives, where each objective function is

determined by a different instance of a NK-landscape z(x) = (z1(x),z2(x), . . . ,zR(x)) : BN →
RR, over the same binary string x, where N is the number of variables, R is the number of

objectives, zr(x) is the r-ith objective function, and B = {0,1}. K = {K1, . . . ,KR} is a set of

integers where Kr is the size of the neighborhood in the r-th landscape.

MNK-landscape problem can be formulated as follows (AGUIRRE; TANAKA, 2007):

max
x

z(x) = (z1(x), ...,zR(x))

subject tox ∈ {0,1}N ,

with

zr(x) = 1
N ∑

N
q=1 fr,q(xq,Πr,q(xq)),

r ∈ {1, ...R},
q ∈ {1, ...N},

(31)

where the fitness contribution fr,q of variable xq is a real number in [0,1] drawn from a uniform

distribution. From this point forward the number of variables N will be called Q.
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4.2.2 MOEA APPROACHES FOR MNK-LANDSCAPE

The MNK problem has been explored by Aguirre and Tanaka (2007), Verel et al.

(2011), Santana et al. (2015b), Daolio et al. (2015).

Aguirre and Tanaka (2007) study how the parameters of the MNK-landscape influence

several features of the fitness landscape, including the size of the Pareto front and the number

of fronts. The authors provide some discussions related to the effects that parameters of the

MNK-landscape on the problem complexity. They also compare NSGA-II and SPEA2 on the

generated landscapes.

The paper presented by Verel et al. (2011, 2013) conducts a fitness landscape analysis

on multi-objective NK-landscapes with objective correlation. In the ρMNK-landscapes, the

neighborhood structure is the same for all the objectives and the local fitness functions

(subfunctions) are not independent. Instead, the parameters of these subfunctions follow

a multi-variate uniform law defined by a correlation matrix C which is used to tune the

correlations between the objectives. These authors investigated the effect of the correlations

on characteristics of the Pareto front. In Verel et al. (2011), the authors enumerate small

ρMNK-landscape instances based on the Pareto dominance and studied, for example, the

correlation degree between objective functions and the number of Pareto local optima found

by a Pareto Local Search (PLS) algorithm.

More recently, Santana et al. (2015b) also propose an extension of the NK-landscape

to model multi-objective problems (MOPs), providing a variety of configurations of the

MNK-landscapes for investigating the effect of variables interactions on:(i) the shapes of

the Pareto fronts, (ii) the correlations between the objectives, and (iii) the emergence of

dependencies between the variables.

Liefooghe et al. (2015) study which (and how) problem features impact the search

performance of a global EMO strategy (GSEMO) in the ρMNK-landscapes. Daolio et al. (2015)

extend the work comparing two dominance-based algorithms: the GSEMO and a PLS. This

comparison analyzes the correlations between runtime and problem features, contrasting their

association with search performance within and across instance classes, for both GSEMO and

PLS algorithms.

Despite of the mono-objective version of this problem has been investigated using

EDAs, there is no MOEDA addressing the multi-objective model. Our work considers the same

MNK model used by Aguirre and Tanaka (2004), Aguirre and Tanaka (2007) and Santana et al.

(2015b), described in Section 4.2.1.
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Table 2 summarizes the main characteristics of MOEAs approaches to solve

MNK-landscape problem.

Table 2: MOEAs to MNK-landscape problem main characteristics
MOEA Objectives Approach Local Search References
SPEA 2,3 and 5 Pareto No (AGUIRRE; TANAKA, 2007)

NSGA-II 2,3 and 5 Pareto No (AGUIRRE; TANAKA, 2007)
PLS 2,3 and 5 Pareto Yes (VEREL et al., 2011)

GSEMO 2,3 and 5 Pareto No (LIEFOOGHE et al., 2015)
PLS 2,3 and 5 Pareto Yes (LIEFOOGHE et al., 2015)

4.3 SUMMARY

This chapter has presented the MOPs addressed in this work. We have also presented

related works for each MOP. For MOKP most used techniques solve the problem with

an embedded LS procedure. However, some authors have recently proposed competitive

MOEAs using scalarizing functions and indicator approaches. We have also shown that

several probabilistic models can be used to represent the solution set for both knapsack and

NK-landscape problems. In the next chapter we describe our proposed approach HMOBEDA,

which jointly encodes variables, objectives and LS parameters in the same PGM model and will

be tested on different MOKP and MNK-fitness landscape instances.
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5 HYBRID MULTI-OBJECTIVE BAYESIAN ESTIMATION OF DISTRIBUTION
ALGORITHM

In this chapter we present a hybrid EDA for solving combinatorial optimization

problems. The term hybrid concerns a local search (LS) mechanism included into the EDA

framework to improve its performance. The LS is combined with selection techniques usually

adopted in MOEAs. In the next sections we present an overview of the proposed approach

named Hybrid Multi-objective Bayesian Estimation of Distribution Algorithm (HMOBEDA)

which is based on the estimation of a probabilistic model (based on BN) of objectives, variables

and local search parameters, with the last part (LS parameters) as the innovation of the proposed

approach. First, we introduce a general schema and the solution encoding, next, we present the

algorithmic structure of HMOBEDA including its initialization procedure, local search strategy,

and probabilistic model (building and sampling). We also provide the main differences of this

novel approach in comparison with related works.

5.1 GENERAL SCHEME

The general scheme of the adopted version of HMOBEDA (MARTINS et al., 2016) is

presented in Figure 6.

Figure 6: The HMOBEDA Framework.
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The Initialization process randomly generates N solutions to compose the population

at first generation (Pop1).

The Survival block sorts individuals using the non-dominated sorting

procedure (SRINIVAS; DEB, 1994) and a truncation selection is applied to selects the N

best solutions. Different tie-breaker criteria can be used in the HMOBEDA framework (i.e.

Crowding Distance, hypervolume indicator, etc.)

After the Survival block, the Local Search block adopts an LS procedure. For every

solution in Popg, LS generates a neighbor, calculates its fitness and updates the original solution

in case the neighbor has a better fitness.

The EDA Selection block starts the PGM construction phase. A binary tournament

selects NPGM individuals from Popg. The procedure randomly selects two solutions and the one

positioned in the best front is chosen. If they lie in the same front, it chooses that solution based

on the tie-breaker criterion. Then, Popg
PGM is obtained encompassing NPGM good individuals.

Aiming to learn the probabilistic model, the BN structure and parameters are estimated

in the EDA Model block, encoding the joint probabilistic model of decision variables, objectives

and LS parameters. Different algorithms can be are considered for the EDA Model block: in

this work we tested K2 and BN-HC as described in Section 3.3.4, but any other algorithm can

be used in this block.

In the Sampling block, the obtained PGM is used to sample the set of new individuals

(Popsmp). In this case, not only decision variables, but also LS parameters can be sampled.

This naive Bayesian model (see Figure 7) is adopted to facilitate the sampling process: fixing

objective values as target evidences enables the estimation of their associated decision variables

and LS parameters.

The union of the sampled population (Popsmp) and the current population (Popg) in the

EDA Merge block is used to create the new population for the next generation g+ 1, and the

main loop continues until the stop condition is achieved.

5.2 SOLUTION ENCODING

Every individual is represented by a joint vector with Q + R + L elements, y =

(x,z,p) = (x1, ...,xQ,z1, ...,zR, p1, ..., pL), denoting the decision variables (x1, ...,xQ), objectives

(z1, ...,zR) and LS parameters (p1, ..., pL). Subvectors x, z and p can be specified as:

• x is a binary subvector of decision variables, with element xq ∈ {0,1}, q = 1...Q;
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• z is a subvector of objectives, with element zr, r = 1...R, representing the discrete value

of the rth objective, where zr ∈R;

• p is a subvector of elements, where each element pl , l = 1...L, pl ∈ R, indicates the

value associated with an LS parameter. As will be detailed in Section 5.3.3, different

parameters can be considered.

5.3 HMOBEDA FRAMEWORK

The main steps performed by HMOBEDA are described in Algorithm 3.

Algorithm 3: HMOBEDA Framework
INPUT: N, population size;

NPGM , number of individuals selected to learn the probabilistic model;
Nsmp, number of individuals sampled from the probabilistic model;
β , window of occurrence for the local search;
Maxeval , maximum number of solutions evaluation.

OUTPUT: ND, the final set of non-dominated solutions;
{Initialization}

1: Pop1(x)=RandomVector(N,Q);
2: Pop1(z)=Fitness(Pop1(x));
3: Pop1(p)=RandomVector(N,L);
4: e = 0; {e is the current number of solutions evaluation}
5: g = 1; {g is the current generation}

{EDA: main loop}
6: while e≤Maxeval do
7: if g > 1 {EDA sampling} then
8: Popsmp = Sampling(PGM); {repair if necessary}
9: Popsmp(z)=Fitness(Popsmp(x)); {not surrogate assisted}
10: Popg = {Popg−1 ∪Popsmp}; {EDA survival}
11: end if

{Non-dominated Sorting}
{Defines TotF Pareto fronts from the best (i = 1) to the worst, and assigns a crowding distance}

12: F1...FTotF = ParetoDominance(Popg);
13: Popg =Select (N,F1 ∪ ...∪FTotF );{Truncation Selection}

{Local search: performed at every β generations}
14: if ((g = 1) or (g mod β = 0)) then
15: PopI=(LS(Popg));{repair if necessary}
16: Popg = ParetoDominance(PopI );
17: else
18: PopI = /0;
19: end if

{EDA: learning the probabilistic model}
20: Popg

PGM = Selection(NPGM ,Popg);{binary tournament}
21: PGM = ProbabilisticModelEstimation(Popg

PGM);
22: g = g+1;
23: end while
24: ND = Popg−1(x);

The proposed algorithm makes use of specific strategies described in the next

subsections.
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5.3.1 INITIALIZATION

The block Initialization process randomly generates N subvectors x and p to compose

the Pop1. For each subvector x, the values of the corresponding objectives are calculated to

form the subvector z.

Therefore, N joint vectors (y = x,z,p) are obtained to compose the population in the

first generation.

5.3.2 NON-DOMINATED SORTING

In order to sort individuals of the current population, the proposed approach uses

the technique implemented by Srinivas and Deb (1994) and Deb et al. (2002), named

Non-dominated Sorting, described in Appendix B.1.

Individuals are sorted taking at first their Dominance Ranking (DR) and secondly (in

case of ties) the tie-breaker criterion. Finally, truncation selection takes place selecting the N

best solutions (notice that at the first generation the entire population is selected)1.

5.3.3 LOCAL SEARCH

Although HMOBEDA supports any LS procedures, in this work we adopted the Hill

Climbing (HC) LS procedure (RUSSEL; NORVIG, 2003) due to its simplicity, aiming to

improve a set of solutions selected by the truncation procedure. Algorithm 4 describes main

steps of the local search procedure.

For every solution y in Popg, HCLS generates a neighbor (nbh), calculates its fitness

and the neighbor nbh updates the original solution in case it has a better fitness. As previously

discussed, the subvector p of y defines the parameters associated with HCLS. In this work it

can define, for example, how many iterations (Niter) will be used, how each neighbor will be

generated (Tnbh), and how to compute the neighbor fitness (TFnbh) in a mono-objective way -

Linear Combination or Alternate of included objectives. This method of fitness calculation is

based on Ahn et al. (2010), Li et al. (2004), Wang et al. (2012). In the Linear Combination

method applied here the weights are uniformly distributed. For MOKP, if a neighbor is

infeasible, the algorithm applies the same greedy repair method adopted by Zitzler and Thiele

(1999) (See section 6.1.3 for details). The MNK-landscape problem addressed here has only

domain constraints, therefore no repair procedure is necessary.

1This implementation was adapted from Seshadri ().
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Algorithm 4: Local Search (LS)
INPUT: Popg, a set of selected solutions

Niter, the maximum number of iterations;
TFnbh, how to compute the neighbor fitness;
Tnbh, neighborhood type;

OUTPUT: PopI , the set of improved solutions;
1: t = 1;
2: PopI = Popg;
3: for each xk ∈ PopI do
4: while t ≤ Niter do

{Generate a Tnbh(xk) type feasible neighbor}
5: nhb=Tnbh(xk);

{Calculate fitness function fI according TFnbh(xk)}
6: fI(xk)=Fnbh(xk);
7: fI(nbh)=Fnbh(nbh);
8: if fI(nbh)> fI(xk) then
9: xk = nbh);

10: end if
11: t = t +1;
12: end while
13: end for

In this work, HCLS is applied at every β generations (steps 13 to 18 in Algorithm 3).

At the end of HCLS, Algorithm 3 provides a set of possibly improved solutions PopI .

5.3.3.1 BIT-FLIP AND SET MECHANISMS

In Algorithm 4, each neighbor is obtained based on two kinds of neighborhoods:

bit-flip (BF p) and set (Set).

The bit-flip neighborhood considers the bit-blip operator (ARROYO, 2002). For every

solution x = (x1, ...,xq) investigated by the local search, we define J1(x) = {q|xq = 1} (the set

of elements with bit 1) and J0(x) = {q|xq = 0} (the set of elements with bit 0). The positions

ν ∈ J1(x) and µ ∈ J0(x) are randomly chosen.

A neighbor nbh of x with neighborhood type BF p is obtained according to the steps

presented in Algorithm 5.

The Set neighborhood is based on a single bit-flip from 0 to 1 (SAMIR et al.,

2015), (ARROYO et al., 2011). Each neighbor nbh of x is generated by setting a bit q,

1≤ q≤ Q, in a random position of the sequence.

Considering J0(x) = {q|xq = 0} (the set of elements with bit 0), a neighbor nbh of x
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Algorithm 5: Bit-flip Neighborhood
1: ν=Random(J1
2: µ=Random(J0
3: end=false
4: Calculate nbh = (nbh1, ...,nbhQ), nbhν = 0,nbhµ = 1,

nbhq = xq,q = 1, ...,Q,q 6= ν ,q 6= µ

5: while end=false do
6: if nbh is a feasible solution then
7: return nbh;
8: end=true;
9: else

10: Repair(nbh);
11: end if
12: end while

with neighborhood type Set is obtained as described in Algorithm 6.

Algorithm 6: Set Neighborhood
1: µ=Random(J0(x)
2: end=false
3: Calculate nbh = (nbh1, ...,nbhQ),nbhµ = 1,nbhq = xq,q = 1, ...,Q,q 6= µ

4: while end=false do
5: if nbh is a feasible solution then
6: return nbh;
7: end=true;
8: else
9: Repair(nbh);

10: end if
11: end while

5.3.4 PROBABILISTIC MODEL

After the local search has been applied (and possible the repair method),

HMOBEDA builds a BN (the PGM construction phase). A binary tournament selects NPGM

individuals from Popg, each one composed of Q decision variables, R objectives and L local

search parameters, (i.e. Y = (Y1, ...YM) = (Z1, ...ZR,X1, ...XQ,P1, ...PL)). This way the BN

structure encodes a factorization of the joint probability distributions or the probability mass

function (pmf) given by:

p(y) =
R

∏
r=1

p(zr|paB
r ).

Q

∏
q=1

p(xq|paB
q ).

L

∏
l=1

p(pl|paB
l ) (32)



61

where paB
r , paB

q and paB
l represent combinations of values for the parents of objective, decision

variable and LS parameter nodes respectively, with PaB
r = /0, PaB

q ⊆ {Z1, ...ZR} and PaB
l ⊆

{Z1, ...ZR}. Therefore, aiming to learn the probabilistic model, the objective values collected

from vector z in Popg
PGM (selected in step 20 of Algorithm 3) are divided into sdr discrete

states2. Considering that the BN model is estimated using the K2-metric (Equation 26) and the

Bayesian estimate (Equation 23) with objectives as BN nodes, z must also fit a multinomial

distribution. Thus, to minimize the computational efforts to model B using all the possible

discrete values (sr), we have applied the discretization process with a limited number of possible

values for each zr ∈ z fixed as sdr. In this case we assume the same sdr value for each zr node.

Figure 7 presents an example of a PGM structure estimated by HMOBEDA. The model

encodes the joint probabilistic model of Q decision variables, R objectives and L local search

parameters. In this figure, Z represents the objectives, P the parameters and X the decision

variables. The advantage of HMOBEDA over traditional EDA-based approaches is that besides

providing good decision variables (based on the model captured from good solutions present

in Popg
PGM) it can also provide variables and LS parameters more related with good values

of objectives fixed as evidence. This naive BN model is conceived to facilitate the sampling

process: fixing objective values enables the estimation of their associated decision variables

and LS parameters. A limitation of this approach is that the multinomial distribution encoded

in the BN model cannot codify decision variables for permutation MOPs, and real numbers

codification for BN nodes. In these cases, another probability distribution must be used.

Figure 7: An example of the PGM structure used by HMOBEDA.

PGM is used to sample the set of new individuals (Popsmp). In this case, not

only decision variables x, but also, local search parameters p can be sampled. Vector z is

calculated based on the fitness function (in the case of surrogate assisted approaches, PGM

2The discretization process converts each objective value into sdr discrete states considering the maximum
possible value for each objective (Maxr). For each objective zr, its discrete value is calculated as zdr =
dzrsdr/Maxre.
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can also be used to sample the objective values) or MLE techniques can provide objective

value approximations. New individuals are generated from the joint distribution encoded by the

network using probabilistic logic sampling.

The probabilistic logic sampling (HENRION, 1986) method obtains a topological

ordering of the nodes according to the Bayesian network structure (each node appears after

its parent nodes). Therefore, in our work, the objective nodes appear before variable and

LS parameter nodes, due to the restrictions imposed by BN structure. New solutions are

generated by sampling the conditional probability distributions estimated for each node in the

BN according to the computed ancestral ordering. For example, considering a variable or an

LS parameter node denoted by Yi, since all its parents appear before it in the ordering, all the

parents will be already sampled at the time of sampling node it and therefore, the parameters

of the conditional probability distribution of this node can be computed (KARSHENAS et al.,

2014). Besides, as the BN encodes the dependencies between the variables, LS parameters and

objectives, any information about objective values (evidences) can be inserted and propagated in

the network in the sampling process, guiding the search, generating variables and LS parameters

values that will result in good solutions.

A union of the sampled population (Popsmp) and Popg is used to create the new

population for the next generation g+ 1, and the main loop HMOBEDA continues until the

stop condition is fulfilled (maximum number of solutions evaluation). At any stage of the

evolutionary process, if an infeasible solution is generated, HMOBEDA applies the repair

method described in Section 6.1.1.

5.4 DIFFERENCES FROM THE LITERATURE

There are many particularities that can be identified within the proposed approach. The

main differences of our work and those presented in Sections 4.1.3 and 4.2.2, are the inclusion

of local search and the relationship between objectives, variables and local search parameters

in the probabilistic model.

Considering the MOKP and starting with the approach proposed by Schwarz and

Ocenasek (2001b), their work presents a modified evaluation phase of the single BOA algorithm

using the concept of strength criterion adopted by the SPEA algorithm, and their experiments

are for 2 objectives. The work proposed by Laumanns and Ocenasek (2002) has been designed

using a probabilistic model based on binary decision trees and a special selection scheme based

on ε-archives, and it was applied to 2, 3 and 4 objectives. Differently, our work uses the
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non-dominated sorting scheme, tournament selection and crowding distance (CD) (DEB et al.,

2002) procedures as in NSGA-II. We adopt a local search, model the best solutions using a

BN, but with objectives and local search parameters besides decision variables as nodes of the

network, considering experiments with 2-5 and 8 objectives.

In Li et al. (2004), for MOKP, the following techniques were used: random repair

method; random neighborhood structure in local search; stochastic clustering method; a

mixture-based UMDA, for 2, 3 and 4 objectives. The differences of this work and ours

are the probabilistic model and the local search: in their work the weights are based on the

maximization and the minimization functions of each objective in the population. In our work

the local search weights are uniformly distributed.

Gupta et al. (2014) proposed an EDA to find the solution of the BKP using the same

repair method we have used in our work, but their addressed problem considers a single

objective, a vector as the probabilistic model and a mutation probability exchange a bit from 0

to 1 or 1 to 0 applied to the sampled solutions in order to overcome a local optimum.

The work of Zhou et al. (2015) presents an EDA combining two local search strategies

addressing the knapsack problem for a single objective. The main difference between this

previous research and our work is that we address the embedded local search parameters in an

EDA framework for MOPs. Zhou et al. (2015) present a relevant EDA approach with local

search that might extended to the MOKP to be consider in our future research.

Regarding to the MNK-landscape problem, the main differences of our work and

those presented in Section 4.2 are that none of them consideras EDAs for the multi-objective

NK-landscape problem.

Pelikan (2008) and Pelikan et al. (2009) analyze the performance of hBOA, UMDA,

and a genetic algorithm (GA) on the mono-objective NK-landscape problem. Liaw and Ting

(2013) also study the behavior of EDAs using UMDA, BMDA and EBNA with different

parameter settings. Although the authors use probabilistic model based on BN, such as in our

work, they applied to the mono-objective NK-landscape problem.

Aguirre and Tanaka (2007) compare NSGA-II and SPEA2 on the generated landscapes

using hypervolume indicator, similar to our work, and analyze the influence of the

MNK-landscape parameters in several features of the fitness landscape. However, the main

difference of that work and ours is that we aim to compare and study a PGM-based MOEDA,

analyzing the probabilistic model. We also apply the non-dominated sort used as the selection

scheme inspired by NSGA-II.
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The works proposed by Liefooghe et al. (2015) and Daolio et al. (2015) study

which (and how) problem features impact the search performance of such approaches in the

ρMNK-landscapes for a global EMO strategy (GSEMO) and a neighborhood-based local search

heuristic (PLS). The differences of these works and ours are that we explore an online parameter

tuning of LS, where the LS parameters are tuned and self-adapted as the global optimization

algorithm evolves.

Table 3 summarizes the main characteristics of EDA approaches to knapsack problem

and NK-landscape problem compared with HMOBEDA.

Table 3: Summarizing EDAs approaches to the knapsack problem and NK-landscape problem
EDA Problem Objectives Fitness assignment Probabilistic Model Local Search References
BOA MOKP 2 Pareto technique Bayesian Network No (SCHWARZ; OCENASEK, 2001b)

BMOA MOKP 2,3 and 4 (µ +λ ,ε) Operator Binary decision tree No (LAUMANNS; OCENASEK, 2002)
MOHEDA MOKP 2,3 and 4 Scalarizing Functions UMDA Yes (LI et al., 2004)

Greedy EDA KP 1 Objective function Probability Vector No (GUPTA et al., 2014)
Hybrid EDA KP 1 Surrogate/Objective Function UMDA Yes (ZHOU et al., 2015)

hBOA NK 1 Objective function hBOA No (PELIKAN, 2008)
UMDA NK 1 Objective function UMDA No (PELIKAN, 2008)
UMDA NK 1 Objective function UMDA No (LIAW; TING, 2013)

BMDA = NK 1 Objective function BMDA No (LIAW; TING, 2013)
EBNA NK 1 Objective function EBNA No (LIAW; TING, 2013)

HMOBEDA MOKP 2-5 and 8 Pareto technique Bayesian Network Yes (MARTINS et al., 2016)

Our work has thus intersections with other previous published works (BADER, 2009;

KARSHENAS et al., 2014; LI et al., 2004; LIAW; TING, 2013). It is linked to the work

presented in Karshenas et al. (2014) in which a joint probabilistic model of objectives and

variables is proposed, and related to Li et al. (2004) by considering the weighted sum method in

the fitness computation of each neighbor produced by the LS procedure. However the research

presented in Li et al. (2004) does not explore the influence of LS parameters in comparison with

off-line configuration techniques and the work described in Bader (2009) and Liaw and Ting

(2013) does not consider LS parameters as nodes in the PGM.

5.5 SUMMARY

This chapter has introduced our proposal, named Hybrid Multi-objective Bayesian

Estimation of Distribution Algorithm (HMOBEDA), describing its general scheme and solution

encoding. We also detailed the main steps and framework procedures. We have explained

how a naive BN is modeled according to the population of solutions and we highlighted the

main differences between our work and related approaches. We summarized these differences,

which are more related with the LS embedded technique, the parameter tuning process, the

BN as the PGM and finally, with the joint probabilistic model of objectives, variables and LS

parameters. In the next chapter we investigate this proposal comparing different versions of

the main framework, we also compare it with off-line configurations methods and with some

state-of-the-art algorithms on a set of MOKP and NK-landscape problem instances.
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6 EXPERIMENTS AND RESULTS

To analyze the performance of the proposed approach on multi and many objective

combinatorial optimization, HMOBEDA is evaluated over a set of MOKP and MNK-landscape

problem instances with different sizes and number of objectives.

The optimal Pareto front for each instance of the addressed problems is not

known. So, we use a reference set, denoted by Re f , which is constructed by gathering

all non-dominated solutions obtained by all algorithms over all executions. Two main

convergence-diversity (JIANG et al., 2014) metrics, usually adopted for measuring the quality

of the optimal solution set for multi and many objective optimization, are then considered:

Hypervolume (HV−) (ZITZLER; THIELE, 1999; BADER, 2009), Inverted Generational

Distance (IGD) (VELDHUIZEN; LAMONT, 1999). In this work we also consider two capacity

metrics: Overall Non-dominated Vector Generation (ONVG) (VELDHUIZEN; LAMONT,

2000) and Error Ratio (ER) (VELDHUIZEN; LAMONT, 1999). It is important to point out

that different from the HV− and IGD indicators that are considered at each execution of the

algorithm (so their results are compared based on a statistical analysis over a set of executions),

the capacity metrics are obtained at the end of all executions and measures the contribution of

each algorithm to the reference front.

As discussed in Section 2.4, the hypervolume metric considers the difference (HV−)

between the hypervolume of the solution set of an algorithm and that of the reference set. The

IGD metric is the average distance from each solution in the reference set to the nearest solution

in the solution set. So, smaller values of HV− and IGD correspond to higher quality solutions

in non-dominated sets indicating both better convergence and good coverage of the reference

set. The ONVG metric is the number of non-dominated solutions from an approximated set,

so larger values are preferred, and the Error Ratio considers the ratio of the solutions from the

approximated set that are not in the reference set, so smaller values indicate better performances.
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6.1 SETUP OF EXPERIMENTS

This section describes the assumptions assumed in the experiments regarding the

instances of each problem (Section 6.1.1), the parameters of the different HMOBEDA versions

(Section 6.1.2) and finally the parameters of the approaches being compared (Section 6.1.3).

6.1.1 PROBLEM INSTANCES

The experiments conducted in this section adopt the union of each set of MOKP

instances considered in Ishibuchi et al. (2015), Tanigaki et al. (2014) and Zitzler and Thiele

(1999). We use thus instances with 100 and 250 items, and 2 to 5 and 8 objectives. We

characterize each instance as R-Q, where R is the number of objectives and Q is the number

of items. The values of ar
q and br

q are specified as integers in the interval [10,100]. According

to Zitzler and Thiele (1999), the capacity cr is specified as 50% of the sum of all weights related

to each knapsack r.

HMOBEDA implements a repair method when an infeasible solution is found for

MOKP. The infeasible solution is transformed into a feasible one by removing items in an

ascending order of the following values until the constraints conditions ∑
Q
q=1 br

qxq ≤ cr,r =

1, ...,R and xq ∈ {0,1},q = 1, ...,Q are satisfied:

q j = max
(

arq

brq

)
, r = {1, ...,R}, q = {1, ...,Q} (33)

That is, a feasible solution is generated from an infeasible one by removing items

using the order of items specified by Equation 33. The method repairs the solution by removing

items in an ascending order of the relation profit/weight until all the constraints conditions are

satisfied.

We also consider MNK-landscape instances with K ∈ {2,4,6,8,10}, objective space

dimension R ∈ {2,3,5,8} and size Q ∈ {20,50,100}. A total of 60 instances are considered

(one for each combination of R, K and Q).

6.1.2 HMOBEDA ALTERNATIVE VERSIONS

This section provides details regarding different HMOBEDA versions considered in

the experiments. Figure 8 presents the HMOBEDA variations tested before we achieve the final

standard HMOBEDA version (HMOBEDAEXT highlighted in blue). All variations consider the
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parameters as presented in Table 5.

Briefly, HMOBEDA considers the K2 algorithm as BN learning structure process,

crowding distance as a tie-breaker for the selection scheme, online configuration of LS

parameters, and the ideal points of the approximated Pareto front as candidates for the evidences

in the root nodes. When the comparison is between HMOBEDABN−HC, HMOBEDA is

called HMOBEDAK2. In order to differentiate from HMOBEDAhype, HMOBEDA receives

the HMOBEDACD denomination. The same occurs when HMOBEDA is compared between

off-line versions (HMOBEDAonline) and using different sampling methods (HMOBEDAIDEAL

versus HMOBEDAEXT and HMOBEDACPT ). In other words, HMOBEDAK2, HMOBEDACD,

HMOBEDAonline and HMOBEDAIDEAL implement all the same algorithm.

Figure 8: Different HMOBEDA versions considered in the experiments.

For the results obtained by HMOBEDA versions considered in Section 6.2.1.1

to 6.2.1.3, the sub-vector z defined in Section 5.2 is fixed as evidence, set with target values

guided by the ideal point Z∗ 1. However, it is possible to obtain a set of solutions and

LS parameters associated with other specific objective values during the probabilistic logic

sampling and Section 6.2.1.4 compares different ways to set the evidences.

First, in order to analyze the performance of HMOBEDA framework with different

BN learning process we provide two versions: HMOBEDABN−HC and HMOBEDAK2.

HMOBEDABN−HC considers the BN-HC (Algorithm 2) as structure learning process and

HMOBEDAK2 considers the K2 (Algorithm 1), both using K2 scoring metric. The BN

1Usually high values for maximization problems: the ideal point Z∗ is calculated as the maximum value of each
objective obtained among all algorithms and executions.
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learning process used by the best performance approach is then applied in the other two

versions (HMOBEDACD and HMOBEDAhype) aiming to evaluate the tie-breaker criterion for

the selection scheme.

When two solutions tie on the dominance criterion, HMOBEDACD uses the crowding

distance (CD) (DEB et al., 2002) and HMOBEDAhype the hypervolume to decide which one

is better. The fitness calculation of HMOBEDAhype is based on a hypervolume approximation

using Monte Carlo simulation, as presented in HypE algorithm proposed by Bader and Zitzler

(2011) 2 (BADER; ZITZLER, 2011) due to the very expensive and time consuming computation

of the exact hypervolume fitness (BADER; ZITZLER, 2011). This method generates random

samples in the objective space and it counts the number of samples that are dominated by Popg.

The hypervolume is approximated by the ratio between the dominated and total samples. In this

work the number of samples used for Monte-Carlo approximation is 10,000.

This work aims to answer the question "What is the influence (on the

HMOBEDA performance) of including LS parameters as BN nodes"? As previously discussed,

this is a relevant question since the automatic and informed determination of the LS parameters

can notably improve the efficiency of the search.

As an attempt to answer this question, we named HMOBEDAonline and modified this

version providing three variants: HMOBEDA f , HMOBEDA f−inst and HMOBEDAirace. All

these variants have no LS parameter encoded as nodes of the PGM structure nevertheless

they also adopt the same parameters values (described in Table 5) and all the remaining

characteristics considered in HMOBEDA.

The LS online configuration adopted by HMOBEDAonline during the evolution

assumes the following elements in the vector p: the number of LS iterations Niter ∈
{5,6...,20}; the type of neighbor fitness calculation TFnbh ∈ {1,2}: with (1) representing

Linear Combination of objectives and (2) Alternation of objectives (i.e., one by one for each LS

iteration); the neighborhood type Tnbh ∈ {1,2}: with (1) defining bit-flip and (2) set.

In the LS off-line configuration adopted by the modified algorithms, the first version,

HMOBEDA f , considers Niter = 19, TFnbh = 0 and Tnbh = 1. These values represent the most

frequent value of each LS-parameter provided by HMOBEDA in the set of non-dominated

solutions, considering all the instances and executions. HMOBEDA f−inst considers the

same rule (i.e., the most frequent value found in all HMOBEDA executions) but now

separated for each instance, as presented in Table 4. HMOBEDAirace considers Niter = 14,

2This implementation is used by Bader and Zitzler (2011) for more than three objectives and can be downloaded
from http://www.tik.ee.ethz.ch/sop/download/supplementary/hype/.
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TFnbh = 0 and Tnbh = 1. The LS off-line configuration method used for HMOBEDAirace is

I/F-Race (BIRATTARI et al., 2010), which is a state-of-the-art automatic configuration method.

We use the implementation of I/F-Race provided by the irace package (LÓPEZ-IBÁÑEZ et al.,

2011). As presented by López-Ibáñez and Stützle (2012), it performs the configuration process

using the hypervolume (HV−) as the evaluation criterion. Additionally, we consider a budget

of 10,000 experiments for irace.

Table 4: HMOBEDA f−inst parameters.
Value Instances

TFnbh 0 all instances
Tnbh 1 all instances
Niter 18 3-100, 2-250 and 4-250
Niter 10 3-250
Niter 19 4-100
Niter 16 2-100 and 5-100
Niter 20 8-100, 5-250 and 8-250

The same instances are used for training and testing off-line versions. The results

obtained by HMOBEDA f HMOBEDA f−inst and HMOBEDAirace are, thus, quite better than

would be expected if the test instances were different. In this case, we assure that all algorithms

are well adjusted for the instances considered in the training/testing phase (no one is privileged).

In Section 6.2.1.4 we compare three variants named HMOBEDAIDEAL,

HMOBEDAEXT and HMOBEDACPT which represent different alternatives to guide the

search (see Figure 9). The main difference among the approaches concerns the Sampling

procedure. Roughly speaking, the main characteristic of the HMOBEDAIDEAL is that it uses an

estimation of the ideal point Z∗ (as depicted in Figure 9a) to guide the search. This is achieved

by fixing discretized values of Z∗ achieved so far, as evidences in the root nodes of the BN

structure (i.e., in nodes Z1, ...,ZR of Figure 7) during the probabilistic logic sampling.

As shown in Figure 9c, HMOBEDACPT uses the priori probabilities of Z1, ...,ZR

described in the Conditional Probability Table (CPT) to draw and further fix their evidences;

and 9b shows that HMOBEDAEXT , besides considering Z∗ like the HMOBEDAIDEAL version,

it includes the extremes points of the approximated Pareto front as candidates for the evidences

in the root nodes, i.e., the ideal point Z∗ plus the estimated extreme points of the current

approximation of the Pareto front. These values are fixed in each generation considering the

same probabilities for all the candidates: Z∗ and the total number of objectives (each in every

extreme of the current approximation Pareto front).
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(a) (b) (c)

Figure 9: Evidences (blue circles) from the approximated Pareto front with 2 objectives for (a)
HMOBEDAIDEAL, (b) HMOBEDAEXT and (c) HMOBEDACPT .

6.1.3 CUTTING EDGE EVOLUTIONARY APPROACHES FROM THE LITERATURE

After comparing HMOBEDA (in its different versions), and then achieving its best

version (HMOBEDAEXT ), we compare it with, MBN-EDA (KARSHENAS et al., 2014),

NSGA-II (DEB et al., 2002), S-MOGLS (ISHIBUCHI et al., 2008) (NSGA-II with local

search), MOEA/D (ZHANG; LI, 2007) and NSGA-III (DEB; JAIN, 2014).

All algorithms used in the comparison are the original ones found in the literature. The

exception is NSGA-III that has been adapted for combinatorial optimization. MOEA/D and

NSGA-III are implemented in C++, and the remaining algorithms in Matlab. Details of these

algorithms are provided in Appendix B. All algorithms are run on an AMD Opteron Processor

6378 server, CPU 2.40GHz machine with 125 GB of RAM, running Linux.

The parameters for each algorithm are shown in Table 5.

Table 5: Parameters of the MOEAs used for solving the MOKP and MNK-landscape problem.
Description Value Algorithm

N Population size 100 HMOBEDA, MBN-EDA, NSGA-II, S-MOGLS
beta Local Search 1 HMOBEDA, S-MOGLS

NPGM Popg
PGM size N/2 HMOBEDA, MBN-EDA, NSGA-II, S-MOGLS

Nsmp Popg
smp size 10∗N HMOBEDA, MBN-EDA

sdr Total of disc. states 10 HMOBEDA
pcr Uniform Cross Prob. 0.8 NSGA-II, S-MOGLS, NSGA-III, MOEA/D
pmu Bit Flip Mutat. Prob. 1/500 NSGA-II, S-MOGLS,NSGA-III, MOEA/D

As discussed by Ishibuchi et al. (2008), for S-MOGLS we set the probabilities Pls and

bit-flip operation in LS as 0.1 and 4/500, respectively; the number of neighbors (Nls) to be

examined as 20. For NSGA-III, we adopt the same configuration used by Deb and Jain (2014),

i.e., the number of reference points (H) defines the population size N. For R-objective functions,

if p divisions are considered along each objective, Deb and Jain (2014) define H =Cp
R+p−1. In

MOEA/D, the number of subproblems equals the population size N and the weight vectors

λλλ
1, ...,λλλ N are controlled by the configuration parameter W , calculated as proposed by Zhang

and Li (2007) (this is the same procedure used to generate the reference points in NSGA-III).

As discussed by Deb and Jain (2014), the size of the neighborhood for each weight vector is
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T = 10. MOEA/D considers the weighted sum approach 3.

The K2 algorithm is used to learn the BN structure in MBN-EDA and HMOBEDA.

The K2 inputs are the ordering of variables, which presents a relationship between a node

and its parents (ascendent nodes), and the maximum number of parents for each node (all the

objectives nodes in our case). For HMOBEDA we consider crowding distance as a tie-breaker

for the selection scheme, online configuration of LS parameters, and both the ideal and extremes

points of the approximated Pareto front as candidates for the evidences in the root nodes. We

also fix the objectives as parents in the network.

Due to heterogeneous hardware and to be fair enough, we define a stop condition based

on maximum number of fitness evaluations (Maxeval), which includes repair procedures and

LS-iterations. Then, all algorithms stop when the total number of fitness computations achieves

200,000 evaluations. A total of 30 independent executions are conducted for each algorithm to

get average performance metrics.

The next section presents the results obtained by comparing the HMOBEDA versions

to each other and the best HMOBEDA version with cutting edge evolutionary approaches from

the literature.

6.2 RESULTS

Section 6.2.1 compares HMOBEDA versions in order to define a final standard version

to be compared with the literature. As previously discussed, Section 6.2.1.1 investigates

HMOBEDABN−HC and HMOBEDAK2 in order to fix the best algorithm to estimate the BN

structure. In Section 6.2.1.2 we compare HMOBEDACD with HMOBEDAhype, regarding the

tie-breaker criterion. An analysis of the LS-parameters influence in the PGM structure is

presented in Section 6.2.1.3, considering HMOBEDAonline, HMOBEDA f , HMOBEDA f−inst

and HMOBEDAirace. Section 6.2.1.4 compares different ways to set evidences during the

sampling by considering HMOBEDAIDEAL, HMOBEDAEXT and HMOBEDACPT . Once the

standard HMOBEDA version is defined, in 6.2.1, we extend the comparisons to cutting edge

evolutionary algorithms in Section 6.2.2. Finally we discuss, in Section 6.2.3, the PGM

structures learned during the evolutionary process.

In this section we used the Shapiro-Wilk normality test (CONOVER, 1999) to verify

the performance metrics results are normally distributed. Then, in the case of non-normal

3This approach is usual for MOKP (ZHANG; LI, 2007), and can be downloaded from
http://http://dces.essex.ac.uk/staff/zhang/webofmoead.htm It is also suggested by Ishibuchi et al. (2015).
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distribution, the Mann-Whitney-Wilcoxon test is applied for statistical analysis (CASELLA;

BERGER, 2002) of the results when we have two approaches being compared, and the

Kruskal-Wallis test (CASELLA; BERGER, 2002) for three or more approaches.

For all the tables in this section, the numbers in parentheses show the results of the

pairwise comparisons using Dunn-Sidak’s post-hoc test The first number shows how many

algorithms are better than the algorithm listed in the corresponding line, and the second number

shows how many algorithms are worse. When the entries present no statistically significant

difference for the compared approaches the background is emphasized in light blue. The entry

related to the algorithm with the lowest (best) average metric is highlighted in bold. All tests

have been executed with a confidence level of 95% (α = 5%).

6.2.1 COMPARING ALTERNATIVE VERSIONS OF HMOBEDA

First we investigate the structure learning process used in HMOBEDAK2 and

HMOBEDABN−HC. After that we analyze the use of CD versus hypervolume as tie-breaker

criterion comparing HMOBEDA with HMOBEDAhype. Then we proceed with the analysis by

evaluating the influence of LS online configuration based on BN nodes, comparing the original

HMOBEDA with its off-line configured versions. After that we explore how the evidence

setting can influence the search by comparing three different versions: HMOBEDAIDEAL,

HMOBEDAEXT and HMOBEDACPT .

6.2.1.1 BN STRUCTURE ESTIMATION: HMOBEDAK2 X HMOBEDABN−HC

To fix the best algorithm to estimate the BN structure, we compare HMOBEDAK2

with HMOBEDABN−HC based on Mann-Whitney-Wilcoxon statistical test. Table 6 shows the

statistical analysis of pairwise comparisons between HMOBEDAK2 and HMOBEDABN−HN for

each instance with respect to HV− and IGD values, respectively.

Table 6: Results for pairwise comparison between HMOBEDAK2 and HMOBEDABN−HC using
Mann-Whitney-Wilcoxon test with α = 5% for each problem instance.

Algorithm 2-100 2-250 3-100 3-250 4-100 4-250 5-100 5-250 8-100 8-250
Hypervolume differences (HV−)

HMOBEDAK2 (0,0) (0,0) (0,0) (0,0) (0,0) (0,1) (0,0) (0,1) (0,0) (0,0)
HMOBEDABN−HC (0,0) (0,0) (0,0) (0,0) (0,0) (1,0) (0,0) (1,0) (0,0) (0,0)

IGD metric
HMOBEDAK2 (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (1,0) (0,0) (0,0) (0,0)

HMOBEDABN−HC (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,1) (0,0) (0,0) (0,0)

The results reveal statistically significant differences, then the null hypothesis

assuming that all HV− values come from the same distribution can be rejected for all instances.
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The same hypothesis can be rejected in the case of IGD. Then the post hoc analysis is performed.

Based on Table 6, we conclude that HMOBEDAK2 presents better results than

HMOBEDABN−HC for both 4-250 and 5-250 instances regarding HV− indicator. However,

HMOBEDABN−HC has the best IGD metric for 5-100 instance. There is no statistically

significant differences between HMOBEDAK2 and HMOBEDABN−HC for the remaining

instances regarding both HV− and IGD metric.

We extend the analysis comparing the average run time over 30 executions for each

approach, as presented in Table 7.

Table 7: Average Run time (minutes) for each algorithm and instance.
Algorithm 2-100 2-250 3-100 3-250 4-100 4-250 5-100 5-250 8-100 8-250

HMOBEDAK2 2.45 5.19 5.31 14.58 9.15 24.24 23.54 52.48 34.24 65.54
HMOBEDABN−HC 5.51 10.26 11.05 28.16 16.48 42.15 40.17 91.78 57.67 103.57

Table 8 presents the runtime statistical analysis using Mann-Whitney-Wilcoxon test

with α = 5% for each problem instance.

Table 8: Results for pairwise run time comparisons between HMOBEDAK2 and HMOBEDABN−HC

using Mann-Whitney-Wilcoxon test with α = 5% for each problem instance.
Algorithm 2-100 2-250 3-100 3-250 4-100 4-250 5-100 5-250 8-100 8-250

HMOBEDAK2 (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1)
HMOBEDABN−HC (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0)

We can see that HMOBEDA with K2 is faster than using BN-HC for all instances. For

this reason, we define K2 structure learning algorithm and HMOBEDA=HMOBEDAK2 as our

current standard version to be compared in the next section.

6.2.1.2 TIE-BREAKER CRITERION: HMOBEDACD X HMOBEDAHY PE

In this section we compare HMOBEDACD with HMOBEDAhype to test crowding

distance and the hypervolume as the tie-breaker criterion. In Table 9, we can see that

HMOBEDACD presents statistically significant differences in comparison with HMOBEDAhype

for 2-250, 5-100, 8-100 and 8-250, and regarding only IGD metric, for 2-100, 3-100,

3-250, 4-100 and 4-250 instances. There is no statistically significant differences between

HMOBEDACD and HMOBEDAhype for instances 2-100, 3-100, 3-250, 4-100, 4-250 and 5-250

for HV− metric. Regarding IGD metric, HMOBEDACD’s results present statistically significant

differences for almost all instances, except in 5-250, where there is no statistically significant

differences, however, HMOBEDACD presents the lowest metric value.
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Table 9: Results for pairwise comparisons between HMOBEDACD and HMOBEDAhype using
Mann-Whitney-Wilcoxon test with α = 5% for each problem instance.

Algorithm 2-100 2-250 3-100 3-250 4-100 4-250 5-100 5-250 8-100 8-250
Hypervolume differences (HV−)

HMOBEDACD (0,0) (0,1) (0,0) (0,0) (0,0) (0,0) (0,1) (0,1) (0,1) (0,1)
HMOBEDAhype (0,0) (1,0) (0,0) (0,0) (0,0) (0,0) (1,0) (1,0) (1,0) (1,0)

IGD metric
HMOBEDACD (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,0) (0,1) (0,1)
HMOBEDAhype (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (0,0) (1,0) (1,0)

We also analyze the average run time over 30 executions for HMOBEDACD and

HMOBEDAhype, presented in Table 10, and its respective statistical analysis, in Table 11, using

Mann-Whitney-Wilcoxon test with α = 5% for each problem instance.

Table 10: Average run time (minutes) for each algorithm and instance.
Algorithm 2-100 2-250 3-100 3-250 4-100 4-250 5-100 5-250 8-100 8-250

HMOBEDACD 2.45 5.19 5.31 14.58 9.15 24.24 23.54 52.48 34.24 65.54
HMOBEDAhype 3.56 6.98 6.78 17.01 12.38 32.45 34.82 65.32 42.43 75.18

Table 11: Results for pairwise run time comparisons between HMOBEDACD and HMOBEDAhype
using Mann-Whitney-Wilcoxon test with α = 5% for each problem instance.

Algorithm 2-100 2-250 3-100 3-250 4-100 4-250 5-100 5-250 8-100 8-250
HMOBEDACD (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1)
HMOBEDAhype (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0)

We can conclude that despite using less computational resources (HMOBEDACD

has the lowest average runtime for all instances), HMOBEDACD is competitive with

HMOBEDAhype and we will assume HMOBEDA=HMOBEDACD for the next comparisons.

6.2.1.3 LS PARAMETER TUNING: ONLINE X OFF-LINE VERSIONS

We can now analyze one of the main contributions of the proposed approach, i.e.,

the influence of including LS-parameters in the PGM structure considering four different

versions: HMOBEDAonline, HMOBEDA f , HMOBEDA f−inst , HMOBEDAirace, where the first

is considered the online parameter tuning version and the last ones are the off-line versions. The

results are shown in Table 12. A post-hoc analysis is performed to evaluate which algorithms

present statistically significant differences.

HMOBEDAonline shows statistically significant differences in comparison with its

off-line modified versions for almost all instances, particularly those with high number of

objectives and variables (4-250, 5-100, 8-100 and 8-250), where HMOBEDAonline is better

than the other three algorithms. There is no statistically significant differences between

HMOBEDAonline and HMOBEDAirace for instance 4-100 for both HV− and IGD values. For



75

all instances with 4, 5 and 8 objectives, HMOBEDAonline is better than HMOBEDA f−inst and

HMOBEDA f .

Table 12: Results for pairwise comparisons between HMOBEDAonline and its off-line versions using
Kruskal-Wallis and Dunn-Sidak’s post-hoc tests with α = 5% for each problem instance.

Algorithm 2-100 2-250 3-100 3-250 4-100 4-250 5-100 5-250 8-100 8-250
Hypervolume differences (HV−)

HMOBEDAonline (0,3) (1,2) (0,3) (0,3) (0,2) (0,3) (0,3) (0,3) (0,3) (0,3)
HMOBEDA f−inst (1,0) (3.0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (3.0) (1,1)
HMOBEDAirace (1,0) (0,3) (1,0) (1,0) (0,0) (1,0) (1,0) (1,0) (1,2) (1,1)

HMOBEDA f (1,0) (2,1) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (2,1) (3,0)
IGD metric

HMOBEDAonline (0,0) (1,2) (0,3) (0,1) (0,2) (0,3) (0,3) (0,2) (0,3) (0,3)
HMOBEDA f−inst (0,0) (3,0) (1,0) (0,0) (1,0) (1,0) (1,0) (2,0) (3.0) (1,1)
HMOBEDAirace (0,0) (0,3) (1,0) (1,0) (0,0) (1,0) (1,0) (0,2) (2,1) (1,1)

HMOBEDA f (0,0) (2,1) (1,0) (0,0) (1,0) (1,0) (1,0) (2,0) (1,2) (3,0)

The average run time for each algorithm is presented in Table 13.

Table 13: Average run time (minutes) for each algorithm and instance.
Algorithm 2-100 2-250 3-100 3-250 4-100 4-250 5-100 5-250 8-100 8-250

HMOBEDAonline 2.45 5.19 5.31 14.58 9.15 24.24 23.54 52.48 34.24 65.54
HMOBEDA f−inst 2.12 5.23 5.09 14.15 9.86 24.87 21.25 53.12 32.12 66.43
HMOBEDAirace 2.67 5.01 5.17 13.87 9.43 24.64 23.12 52.76 33.21 65.01

HMOBEDA f 2.59 4.91 5.88 13.98 9.51 24.40 23.87 51.42 34.51 65.24

We can observe in Table 13 that the computational efforts for each algorithm are in

the same time scale, and increasing the number of objectives and variables impacts the average

computational time for all approaches. We also include statistical tests in order to compare the

run time for all instances considering the total number of executions. Table 14 shows the results

for pairwise comparisons among HMOBEDA run time and all other algorithms. The entry with

the lowest average run time is emphasized in bold.

Table 14: Results for pairwise run time comparisons among HMOBEDAonline and the off-line
versions using Kruskal-Wallis and Dunn-Sidak’s post-hoc tests with α = 5% for each problem
instance.

Algorithm 2-100 2-250 3-100 3-250 4-100 4-250 5-100 5-250 8-100 8-250
HMOBEDAonline (0,1) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,1)
HMOBEDA f−inst (0,1) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (3,0)
HMOBEDAirace (3,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,1)

HMOBEDA f (0,1) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,1)

Table 14 shows that HMOBEDAonline and off-line variations do not present statistically

significant differences between its execution times for almost all instances. HMOBEDAirace

presents the worst results for 2-100 instance, as well as HMOBEDA f−inst for 8-250 instance.

These results justify, in our opinion, the relevance of adding LS parameters into the

probability model, and we assume that HMOBEDAonline is better or at least equal to its modified
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versions with LS off-line configuration. So, we define HMOBEDA=HMOBEDAonline as our

current standard version, i.e. the version using K2 for BN structure learning in the EDA Model

block, CD as tie-breaker criterion with a joint BN of decision variables, objectives and online

LS parameters setting.

6.2.1.4 SETTING EVIDENCE: HMOBEDAIDEAL X HMOBEDAEXT X HMOBEDACPT

We aim to investigate in this section how the evidences may influence the convergence

and distribution of non-dominated solutions along the approximated Pareto front. In addition to

HV− and IGD indicators, this section aims to evaluate the quality of the final approximation of

the Pareto front through the analysis of the final achieved PGM. This way, we want to explore

one of the main advantages of using EDA: the possibility of scrutinizing its probabilistic model

which encompasses relationship among variables encoded in the nodes. Three versions are

considered: HMOBEDAIDEAL, HMOBEDAEXT and HMOBEDACPT .

Table 15 shows the statistical analysis of pairwise comparisons between

HMOBEDAIDEAL, HMOBEDAEXT and HMOBEDACPT for each instance with respect to HV−

and IGD values, respectively.

Table 15: Results for pairwise comparisons between HMOBEDAIDEAL, HMOBEDAEXT and
HMOBEDACPT using Kruskal-Wallis and Dunn-Sidak’s post-hoc tests with α = 5% for each
problem instance.

Algorithm 2-100 2-250 3-100 3-250 4-100 4-250 5-100 5-250 8-100 8-250
Hypervolume differences (HV−)

HMOBEDAIDEAL (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)
HMOBEDAEXT (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)
HMOBEDACPT (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

IGD metric
HMOBEDAIDEAL (0,0) (0,1) (0,1) (0,1) (0,0) (0,0) (1,1) (1,1) (1,0) (1,0)
HMOBEDAEXT (0,0) (0,1) (0,1) (0,1) (0,0) (0,0) (0,2) (0,2) (0,2) (0,2)
HMOBEDACPT (0,0) (2,0) (2,0) (2,0) (0,0) (0,0) (2,0) (2,0) (1,0) (1,0)

Although Table 15 shows that there is no statistically significant differences between

HMOBEDAIDEAL, HMOBEDACPT and HMOBEDAEXT regarding HV− indicator for all

instances, there are statistically significant differences regarding the IGD metric for 5-100,

5-250, 8-100 and 8-250 instances. HMOBEDAIDEAL and HMOBEDAEXT present better results

than HMOBEDACPT for 2-250, 3-100, 3-250, 5-100 and 5-250 with some advantage for

HMOBEDAEXT . Besides, HMOBEDAEXT is the best approach for 8-100 and 8-250 instances.

The average run time between the algorithms are presented in Table 16, with the

respective post-hoc test showed in Table 17. We can observe that the computational efforts

for each algorithm are similar, as excepted, keeping the runtime at practical levels. However,
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increasing the number of objectives and variables severely impacts the average computational

time of all approaches. The run times range from approximately 3 minutes (instance 2-100) to

66 minutes (instance 8-250) for the three HMOBEDA versions, with no statistically significant

differences between them for the same instance.

Table 16: Average run time (minutes) for each algorithm and instance.
Algorithm 2-100 2-250 3-100 3-250 4-100 4-250 5-100 5-250 8-100 8-250

HMOBEDAIDEAL 2.45 5.19 5.31 14.58 9.15 24.24 23.54 52.48 34.24 65.54
HMOBEDAEXT 2.42 5.34 5.39 14.27 9.84 24.51 23.49 52.54 34.27 65.13
HMOBEDACPT 2.39 5.26 5.15 14.48 9.57 24.58 23.98 52.84 34.21 65.27

Table 17: Results for pairwise run time comparisons between HMOBEDAIDEAL, HMOBEDACPT

and HMOBEDAEXT versions using Kruskal-Wallis and Dunn-Sidak’s post-hoc tests with α = 5%
for each problem instance.

Algorithm 2-100 2-250 3-100 3-250 4-100 4-250 5-100 5-250 8-100 8-250
HMOBEDAIDEAL (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)
HMOBEDAEXT (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)
HMOBEDACPT (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

In order to analyze the final approximated Pareto front achieved by each

HMOBEDA version taking into account the information available in the final PGM, we

calculate, for each possible solution in the approximated Pareto front, the pmf P(y), defined

by Equation (32), from the final set (dominated and non-dominated solutions) achieved at the

end of each execution. After that, the mean of pmf values along all executions is obtained for

further calculating the marginal distribution P(Z1 = z1, ...,ZR = zR). The probabilistic view

of the Pareto set is defined by gathering all non-dominated solutions obtained over all 30

executions. Each non-dominated solution is represented by a circle, which is proportional to

the corresponding marginal probability P(Z1 = z1, ...,ZR = zR).

Figure 10 presents the analysis of the approximated Pareto front for the instance 2-100

considering the probabilistic information of the PGM. The approximated Pareto front obtained

by each algorithm is calculated gathering all non-dominated solutions over 30 executions.

We can observe that HMOBEDAIDEAL and HMOBEDACPT provide solutions concentrated

on a particular region of the Pareto front (around the ideal point), region named Pareto front

knee. However, for HMOBEDAEXT solutions are better distributed, with the extreme point

associated with objective Z1 presenting higher probabilities than those for HMOBEDAIDEAL

and HMOBEDACPT .

On the other hand, in Figure 11 for instance 2-250, HMOBEDAIDEAL provides points

well distributed along the entire front. HMOBEDAEXT presents solutions concentrated around

max(z2) and ideal point. While, HMOBEDACPT provides the worst Pareto front, with less

points as some of them located near max(z1).
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Figure 10: A probabilistic view of the approximated Pareto front for 2 objectives and 100 items for
HMOBEDAIDEAL, HMOBEDAEXT and HMOBEDACPT .

Figure 11: A probabilistic view of the approximated Pareto front for 2 objectives and 250 items for
HMOBEDAIDEAL, HMOBEDAEXT and HMOBEDACPT .
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Since it is not possible to visualize the Pareto front for more than two objectives,

Figures 12 to 16 illustrate the ordered Euclidean distance between each point from the

approximated Pareto front and the ideal point. We note that HMOBEDAIDEAL presents

the smoothest distance fluctuation, except in Figure 12a for instance 2-100, where all the

approaches present similar Euclidean distances. This observation, associated with the IGD

values in Table 18, indicates that HMOBEDAIDEAL provides an approximation of the Pareto

front with a slightly high concentration around the ideal point.

(a) (b)

Figure 12: The Euclidean distance between each solution and the ideal point for 2 objectives with
(a) 100 items and (b) 250 items.

(a) (b)

Figure 13: The Euclidean distance between each solution and the ideal point for 3 objectives with
(a) 100 items and (b) 250 items.

Notice that each solution/circle in the graph is proportional to its marginal probability

P(Z1 = z1, ...,ZR = zR). Therefore, in Figures 12 to 14, we can conclude that for 2, 3 and

4 objectives, the solutions present different probabilities along the Pareto front, concentrated

around the ideal point, as also noticeable in Figures 10 and 11.
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(a) (b)

Figure 14: The Euclidean distance between each solution and the ideal point for 4 objectives with
(a) 100 items and (b) 250 items.

(a) (b)

Figure 15: The Euclidean distance between each solution and the ideal point for 5 objectives with
(a) 100 items and (b) 250 items.

(a) (b)

Figure 16: The Euclidean distance between each solution and the ideal point for 8 objectives with
(a) 100 items and (b) 250 items.
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We note, in Figures 15 and 16, that for 5 and 8 objectives, the solutions present similar

probabilities since there are few large points plotted in the Pareto front. However, similarly to

the 2, 3 and 4 objectives cases, HMOBEDAEXT and HMOBEDAIDEAL produce solutions with

high diversity and small mean distances from ideal point: some solutions might be close to the

ideal point but others can be far away. This behavior is also observed by HMOBEDACPT for

8-250 instance (Figure 16b).

With these experiments, we can conclude that, examining BN structures according to

the marginal distribution of the corresponding objectives values taken over all the algorithm

executions, enables the analysis of the influence of fixing evidences in the proposed approach.

According to the results we could note that fixing evidences along the evolutionary

process can guide the search through specific regions of the Pareto front, providing different

convergence and diversity. HMOBEDAIDEAL has fixed the highest values for objectives as

evidences in the network, providing solutions concentrated around the ideal point. On the other

hand, when the evidences are chosen based on a uniform distribution of ideal and extreme points

(i.e. with equally likely chances of occurrence for each of them), like in HMOBEDAEXT , the

solutions are better distributed along the front, as depicted in Figure 10 and the remaining figures

by the red points based on the fluctuation in the measured distance of each point and Z∗.

These observations based on the probability of the solutions along the Pareto front

and Euclidean distance to the ideal point presented in Figures 12 to 16, corroborate the results

presented in Table 15, which show that HMOBEDAEXT provides a high diversity (lowest IGD

values) when the number of objectives increases. Therefore we define HMOBEDAEXT as our

final HMOBEDA standard version (see Figure 8).

6.2.2 COMPARING HMOBEDAEXT WITH CUTTING EDGE APPROACHES

In this section we compare the standard HMOBEDA version (HMOBEDAEXT referred

to as HMOBEDA here)4 with MBN-EDA (KARSHENAS et al., 2014), NSGA-II (DEB et al.,

2002), S-MOGLS (ISHIBUCHI et al., 2008) (NSGA-II with local search), MOEA/D (ZHANG;

LI, 2007) and NSGA-III (DEB; JAIN, 2014). In the tables, the lowest values are highlighted in

bold and results with no statistically significant differences with the best values are emphasized

in light blue for each instance, using Kruskal-Wallis and Dunn-Sidak’s post-hoc tests with a

significance level of α = 5%.

4HMOBEDA with K2 algorithm as learning structure process, crowding distance as a tie-breaker for the
selection scheme, online configuration of LS parameters, and both the ideal and extremes points of the
approximated Pareto front as candidates for the evidences in the root nodes during the sample process.
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6.2.2.1 EXPERIMENTS WITH MOKP

Table 18 shows the hypervolume difference (HV−) and IGD metric, both averaged

over 30 executions for HMOBEDA and cutting edge evolutionary approaches.

Table 18: Average HV− and IGD over 30 executions.
Instance 2-100 2-250 3-100 3-250 4-100 4-250 5-100 5-250 8-100 8-250

Average hypervolume differences (HV−)
x107 x108 x1010 x1011 x1014 x1015 x1017 x1019 x1029 x1033

HMOBEDA 1.5091 1.0550 2.4284 4.1649 1.7502 4.5288 5.2559 5.4919 8.0724 1.3427
MBN-EDA 1.5801 1.0970 3.1139 4.9970 2.1104 5.7474 6.7614 6.4183 8.2010 1.4549
NSGA-II 1.5572 1.1006 2.9675 5.0176 2.0044 5.6352 6.4577 6.2135 8.1963 1.4601

S-MOGLS 1.6866 1.1006 2.9886 5.0135 1.9956 5.6412 6.3791 6.2463 8.1951 1.4537
NSGA-III 1.5121 1.0866 2.4461 4.2254 1.7815 5.4369 6.3693 6.0640 8.1820 1.4423
MOEA/D 1.5174 0.7219 2.4487 4.2432 1.8215 5.2503 6.4815 5.8908 8.1914 1.4467

Average IGD metric
x103 x103 x1 x1 x1 x1 x1 x1 x103 x104

HMOBEDA 2.4960 6.5290 21.7847 44.2044 18.2645 26.3493 10.2432 16.3464 8.0231 1.3235
MBN-EDA 2.5449 6.7565 32.9048 53.4658 23.8543 30.2950 14.8650 21.9795 8.2153 1.6470
NSGA-II 2.5286 6.7907 32.1872 55.1838 23.8436 30.0147 15.1695 22.8114 8.4397 1.7084

S-MOGLS 2.7496 6.7745 32.4780 54.6336 23.6078 29.9242 15.2941 22.5989 8.3997 1.7059
NSGA-III 2.4931 6.7602 22.5150 45.8885 18.1235 29.5950 14.1986 20.9275 8.2402 1.5197
MOEA/D 2.4992 5.0465 23.0015 45.9216 20.3025 30.2128 14.6657 21.9553 8.1993 1.5268

We note that there is no statistically significant differences between HMOBEDA,

NSGA-III and MOEA/D regarding both HV− indicator and IGD metric for the 2-100, 3-100 and

3-250 instances. However, HMOBEDA presents the lowest values among all other approaches

for 4-250, 5-100, 5-250, 8-100 and 8-250 instances.

Table 19 presents the capacity metrics ONVG and ER, whose approximated front

of each algorithm is calculated over 30 executions and the reference is defined as all

non-dominated solutions obtained by all algorithms over all executions.

Table 19: Capacity metrics over 30 executions for each algorithm. The best values are in bold
Algorithm 2-100 2-250 3-100 3-250 4-100 4-250 5-100 5-250 8-100 8-250
|Re f | 72 72 408 220 182 619 452 957 1133 1120

Overall Non-dominated Vector Generation (ONVG)
HMOBEDA 65 83 417 309 663 512 965 736 1260 1239
MBN-EDA 58 53 301 246 512 495 845 652 1032 987
NSGA-II 55 41 161 71 156 143 410 405 595 399

S-MOGLS 50 65 245 102 248 246 658 598 689 659
NSGA-III 82 40 296 224 497 458 769 622 1006 1022
MOEA/D 64 96 369 298 498 498 954 640 998 985

Error Ratio (ER)
HMOBEDA 0.7222 0.6944 0.6627 0.5927 0.5330 0.4911 0.2898 0.4619 0.1882 0.1295
MBN-EDA 0.9114 0.9411 0.9115 0.9409 0.9286 0.9600 0.9712 0.9697 0.9982 0.9982
NSGA-II 0.9083 0.9317 0.9755 0.9091 0.9743 0.9919 0.9956 1.0000 1.0000 1.0000

S-MOGLS 0.9444 0.9097 0.9755 0.9768 0.9725 0.9935 0.9889 0.9801 1.0000 1.0000
NSGA-III 0.6697 0.9000 0.7304 0.9000 0.6484 0.7932 0.8761 0.7868 0.9153 0.9330
MOEA/D 0.8400 0.6250 0.7451 0.6818 0.9451 0.7706 0.8783 0.8015 0.8985 0.9393

We can observe that HMOBEDA is better than the other approaches for almost all

instances regarding both ONVG (largest values) and ER (lowest values), except for 2-100 and

2-250 instance. It is import to point out that almost all solutions from the reference set of

instances 8-100 and 8-250 are from HMOBEDA.
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Therefore, we can affirm that HMOBEDA is a competitive approach for the MOKP

particularly for large size instances and can be considered a state-of-the-art algorithm for the

instances considered here.

The average run time for each algorithm is presented in Table 20 only as guidance of

the corresponding computational effort.

Table 20: Average Run time (minutes) for each algorithm and instance.
Algorithm 2-100 2-250 3-100 3-250 4-100 4-250 5-100 5-250 8-100 8-250

HMOBEDA 2.42 5.34 5.39 14.27 9.84 24.51 23.49 52.54 34.27 65.13
MBN-EDA 1.54 5.21 3.87 12.90 6.41 25.76 26.15 55.89 31.81 62.45
NSGA-II 0.87 2.21 1.57 5.87 5.89 20.13 26.51 50.32 35.27 66.18

S-MOGLS 1.76 3.53 4.12 11.10 8.91 22.67 30.67 56.76 37.18 67.03
NSGA-III 2.91 5.18 5.41 14.90 9.41 24.90 22.85 54.23 34.54 67.04
MOEA/D 2.82 5.01 5.44 14.50 9.34 23.70 23.76 52.87 34.61 66.55

We can observe from Table 20 that the computational effort required by each algorithm

for the same instance are similar to each other, keeping the runtime at practical levels.

However, by increasing the number of objectives and variables severely impacts the average

computational time of all approaches.

The results also shows that NSGA-II presents the lowest computational time for all

instances with 2, 3 and 4 objectives. However, HMOBEDA presents competitive results in

comparison with other approaches for instances with 5 and 8 objectives.

6.2.2.2 EXPERIMENTS WITH MNK-LANDSCAPE PROBLEM

In this section we aim to compare the results of HMOBEDA, MBN-EDA, NSGA-II,

S-MOGLS, MOEA/D and NSGA-III for solving MNK-landscape instances.

Tables 21 and 22 show the hypervolume difference (HV−), IGD metric respectively,

both averaged over 30 executions of each algorithm. There is no statistically significant

differences between HMOBEDA, NSGA-III and MOEA/D regarding both HV− indicator and

IGD metric for several instances with 2 and 3 objectives. However, there are statistically

significant differences for all the remaining instances for both HV− indicator and IGD metric,

where HMOBEDA presents the best values in comparison with all other approaches.

Tables 23 and 24 present the capacity metrics whose approximated front of each

algorithm is calculated over 30 executions and the reference is defined as all non-dominated

solutions obtained by all algorithms over all executions.
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Table 21: Average HV− over 30 independent executions.
Average hypervolume differences (HV−)

Algorithm HMOBEDA MBN-EDA NSGA-II S-MOGLS NSGA-III MOEA/D
M2N20K2 0.11601 0.47900 0.49704 0.51590 0.11463 0.10534
M2N20K4 0.09880 0.52351 0.54506 0.55554 0.09534 0.09612
M2N20K6 0.08375 0.52550 0.51571 0.52295 0.08066 0.08121
M2N20K8 0.08369 0.51777 0.51541 0.51834 0.08548 0.09259

M2N20K10 0.08086 0.49878 0.49253 0.50265 0.08111 0.08344
M2N50K2 0.06026 0.44380 0.45590 0.47286 0.09033 0.11873
M2N50K4 0.06188 0.50516 0.50135 0.52737 0.10549 0.13829
M2N50K6 0.04358 0.47313 0.47007 0.49150 0.10547 0.12471
M2N50K8 0.05705 0.44096 0.43702 0.45979 0.11891 0.12500

M2N50K10 0.04334 0.33153 0.33919 0.35620 0.04874 0.04851
M2N100K2 0.05269 0.42464 0.43374 0.44931 0.10483 0.12004
M2N100K4 0.03939 0.45249 0.45964 0.48457 0.13176 0.14831
M2N100K6 0.07622 0.43678 0.44017 0.45551 0.15507 0.16818
M2N100K8 0.05054 0.30400 0.30569 0.32625 0.05351 0.05209
M2N100K10 0.04264 0.27860 0.27225 0.29621 0.03932 0.04080
M3N20K2 0.12614 0.38089 0.38218 0.40413 0.12656 0.14033
M3N20K4 0.09641 0.39954 0.39400 0.40857 0.10170 0.09151
M3N20K6 0.10178 0.41152 0.40721 0.41239 0.09852 0.10329
M3N20K8 0.08725 0.38262 0.37600 0.39207 0.09217 0.09333

M3N20K10 0.07339 0.35889 0.35904 0.36278 0.07660 0.07656
M3N50K2 0.07459 0.34824 0.32923 0.34722 0.11470 0.12905
M3N50K4 0.07618 0.37666 0.35558 0.38003 0.12625 0.13629
M3N50K6 0.05955 0.35323 0.33518 0.35396 0.12372 0.13490
M3N50K8 0.09064 0.32901 0.31501 0.33111 0.13303 0.13344

M3N50K10 0.03908 0.22928 0.21717 0.23668 0.04214 0.04620
M3N100K2 0.04747 0.31130 0.28710 0.30722 0.10605 0.11367
M3N100K4 0.04230 0.32941 0.30443 0.32996 0.12814 0.13998
M3N100K6 0.04848 0.32150 0.29838 0.31977 0.14241 0.15180
M3N100K8 0.09785 0.26909 0.24519 0.27049 0.11340 0.11646
M3N100K10 0.03386 0.17547 0.15512 0.17938 0.03660 0.03616
M5N20K2 0.11121 0.21689 0.20636 0.20273 0.18351 0.23320
M5N20K4 0.09549 0.23163 0.21516 0.23760 0.18757 0.24871
M5N20K6 0.08491 0.22297 0.19679 0.20196 0.17860 0.23994
M5N20K8 0.08248 0.20895 0.20493 0.18128 0.17412 0.23374

M5N20K10 0.08266 0.20812 0.20240 0.22737 0.17212 0.22745
M5N50K2 0.05579 0.16104 0.18568 0.16104 0.11668 0.16580
M5N50K4 0.05293 0.17219 0.16786 0.17127 0.11978 0.17970
M5N50K6 0.05678 0.15587 0.13926 0.17006 0.10730 0.16460
M5N50K8 0.03715 0.12062 0.13992 0.12782 0.07574 0.13010

M5N50K10 0.03619 0.11462 0.12881 0.11858 0.07201 0.12377
M5N100K2 0.03723 0.13228 0.12925 0.14883 0.08685 0.13329
M5N100K4 0.03321 0.13203 0.11220 0.14432 0.08119 0.13286
M5N100K6 0.03226 0.10459 0.09999 0.10714 0.05507 0.10780
M5N100K8 0.02874 0.08882 0.08745 0.08272 0.04487 0.09522
M5N100K10 0.02874 0.08676 0.08921 0.08107 0.04178 0.09107
M8N20K2 0.00373 0.00584 0.00572 0.00649 0.00639 0.00669
M8N20K4 0.00464 0.00741 0.00770 0.00627 0.00811 0.00874
M8N20K6 0.00524 0.00762 0.00792 0.00759 0.00891 0.00963
M8N20K8 0.00546 0.00768 0.00671 0.00616 0.00929 0.00906

M8N20K10 0.00473 0.00641 0.00583 0.00704 0.00779 0.00751
M8N50K2 0.00068 0.00157 0.00143 0.00176 0.00148 0.00190
M8N50K4 0.00078 0.00197 0.00187 0.00198 0.00170 0.00232
M8N50K6 0.00083 0.00191 0.00187 0.00187 0.00160 0.00230
M8N50K8 0.00078 0.00182 0.00187 0.00132 0.00140 0.00194

M8N50K10 0.00055 0.00112 0.00077 0.00121 0.00097 0.00137
M8N100K2 0.00018 0.00056 0.00055 0.00044 0.00049 0.00068
M8N100K4 0.00030 0.00092 0.00099 0.00066 0.00071 0.00105
M8N100K6 0.00024 0.00075 0.00066 0.00077 0.00053 0.00084
M8N100K8 0.00025 0.00073 0.00077 0.00066 0.00050 0.00081
M8N100K10 0.00023 0.00060 0.00066 0.00066 0.00044 0.00070
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Table 22: Average IGD over 30 executions landscapes.
Average IGD metric

Algorithm HMOBEDA MBN-EDA NSGA-II S-MOGLS NSGA-III MOEA/D
M2N20K2 0.02191 0.12140 0.12525 0.12884 0.02190 0.01864
M2N20K4 0.02522 0.18211 0.18724 0.18704 0.02696 0.02440
M2N20K6 0.02110 0.12357 0.12049 0.12019 0.01846 0.01790
M2N20K8 0.02384 0.17916 0.17589 0.17343 0.02219 0.02503

M2N20K10 0.01833 0.15700 0.15227 0.15145 0.01869 0.01954
M2N50K2 0.00492 0.05747 0.05892 0.06136 0.00686 0.00912
M2N50K4 0.00767 0.09249 0.09122 0.09582 0.01236 0.01583
M2N50K6 0.00656 0.08513 0.08337 0.08722 0.01237 0.01426
M2N50K8 0.01519 0.13499 0.13000 0.13702 0.02639 0.02816

M2N50K10 0.01006 0.09981 0.09834 0.10278 0.01058 0.01063
M2N100K2 0.00378 0.05643 0.05645 0.05918 0.00855 0.00921
M2N100K4 0.00510 0.07402 0.07357 0.07857 0.01352 0.01560
M2N100K6 0.00903 0.08162 0.07975 0.08383 0.02013 0.02141
M2N100K8 0.01570 0.13131 0.12708 0.13694 0.01680 0.01618
M2N100K10 0.00926 0.08682 0.08100 0.08955 0.00894 0.00900
M3N20K2 0.00775 0.03609 0.03614 0.03841 0.00767 0.00828
M3N20K4 0.00763 0.04474 0.04382 0.04568 0.00789 0.00747
M3N20K6 0.00642 0.04677 0.04576 0.04587 0.00632 0.00647
M3N20K8 0.00720 0.04580 0.04478 0.04538 0.00719 0.00716

M3N20K10 0.00581 0.04074 0.03941 0.03869 0.00576 0.00598
M3N50K2 0.00323 0.02511 0.02368 0.02550 0.00416 0.00456
M3N50K4 0.00310 0.02748 0.02539 0.02814 0.00451 0.00478
M3N50K6 0.00411 0.03678 0.03435 0.03702 0.00704 0.00776
M3N50K8 0.00573 0.03933 0.03685 0.03927 0.00884 0.00895

M3N50K10 0.00326 0.03229 0.03014 0.03280 0.00356 0.00354
M3N100K2 0.00284 0.02864 0.02632 0.02904 0.00522 0.00547
M3N100K4 0.00230 0.03280 0.02958 0.03368 0.00671 0.00793
M3N100K6 0.00253 0.03304 0.02967 0.03351 0.00864 0.00929
M3N100K8 0.01013 0.04524 0.04071 0.04675 0.01250 0.01293
M3N100K10 0.00287 0.02874 0.02523 0.03010 0.00293 0.00292
M5N20K2 0.00457 0.00954 0.00814 0.01012 0.00808 0.01142
M5N20K4 0.00423 0.01049 0.01045 0.01045 0.00831 0.01253
M5N20K6 0.00432 0.01161 0.01100 0.01034 0.00934 0.01388
M5N20K8 0.00436 0.01073 0.01309 0.01001 0.00927 0.01366

M5N20K10 0.00489 0.01208 0.01342 0.01243 0.01045 0.01486
M5N50K2 0.00390 0.01208 0.00902 0.01089 0.00862 0.01383
M5N50K4 0.00334 0.01265 0.01320 0.01386 0.00849 0.01476
M5N50K6 0.00404 0.01441 0.01243 0.01353 0.01008 0.01729
M5N50K8 0.00272 0.00929 0.00902 0.01100 0.00657 0.01140

M5N50K10 0.00283 0.00926 0.00946 0.00825 0.00652 0.01127
M5N100K2 0.00253 0.01239 0.01331 0.01265 0.00821 0.01365
M5N100K4 0.00310 0.01621 0.01573 0.01375 0.01002 0.01768
M5N100K6 0.00380 0.01329 0.01540 0.01232 0.00758 0.01529
M5N100K8 0.00248 0.00843 0.00803 0.00792 0.00496 0.01043
M5N100K10 0.00224 0.00753 0.00781 0.00781 0.00429 0.00897
M8N20K2 0.00409 0.00523 0.00561 0.00572 0.00448 0.00695
M8N20K4 0.00369 0.00478 0.00484 0.00495 0.00414 0.00687
M8N20K6 0.00364 0.00471 0.00517 0.00451 0.00408 0.00717
M8N20K8 0.00359 0.00462 0.00473 0.00495 0.00406 0.00688

M8N20K10 0.00370 0.00466 0.00429 0.00506 0.00414 0.00694
M8N50K2 0.00233 0.00396 0.00319 0.00396 0.00290 0.00543
M8N50K4 0.00230 0.00418 0.00495 0.00440 0.00297 0.00566
M8N50K6 0.00230 0.00397 0.00374 0.00418 0.00295 0.00565
M8N50K8 0.00229 0.00401 0.00407 0.00363 0.00287 0.00547

M8N50K10 0.00222 0.00360 0.00385 0.00385 0.00274 0.00522
M8N100K2 0.00189 0.00439 0.00440 0.00407 0.00256 0.00567
M8N100K4 0.00178 0.00415 0.00374 0.00385 0.00243 0.00538
M8N100K6 0.00166 0.00391 0.00374 0.00396 0.00223 0.00494
M8N100K8 0.00169 0.00375 0.00374 0.00363 0.00224 0.00490
M8N100K10 0.00169 0.00360 0.00418 0.00352 0.00222 0.00480
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Table 23: Overall Non-dominated Vector Generation (ONVG) over 30 executions for each
algorithm. The best values are in bold.

Instance |Re f | HMOBEDA MBN-EDA NSGA-II S-MOGLS NSGA-III MOEA/D
M2N20K2 19 36 32 22 30 31 29
M2N20K4 11 28 34 13 40 34 25
M2N20K6 20 22 26 18 15 26 21
M2N20K8 10 25 39 13 6 40 16
M2N20K10 12 22 32 12 22 33 28
M2N50K2 75 80 64 16 55 64 61
M2N50K4 38 59 43 17 40 42 42
M2N50K6 42 43 55 11 30 53 31
M2N50K8 16 52 52 16 30 53 31
M2N50K10 18 39 34 15 37 34 34
M2N100K2 86 105 85 12 90 85 88
M2N100K4 55 89 71 11 84 73 80
M2N100K6 46 98 71 10 62 71 52
M2N100K8 10 63 74 12 65 75 58

M2N100K10 19 60 64 15 55 63 62
M3N20K2 161 209 168 122 122 169 135
M3N20K4 114 252 164 174 163 164 158
M3N20K6 116 260 164 111 146 164 156
M3N20K8 104 286 206 82 110 206 110
M3N20K10 126 316 200 96 99 200 99
M3N50K2 337 285 202 177 207 202 195
M3N50K4 323 273 227 99 220 226 220
M3N50K6 194 281 209 84 200 208 203
M3N50K8 156 211 245 112 198 245 197
M3N50K10 141 272 223 112 171 225 170
M3N100K2 289 341 237 92 257 238 257
M3N100K4 248 350 234 75 190 233 193
M3N100K6 248 275 210 82 244 211 251
M3N100K8 109 297 226 118 239 225 237

M3N100K10 125 295 211 107 201 211 208
M5N20K2 1114 823 491 619 428 490 434
M5N20K4 1115 954 553 581 542 555 535
M5N20K6 911 939 473 626 412 473 414
M5N20K8 888 927 501 549 400 502 401
M5N20K10 703 951 453 417 430 451 425
M5N50K2 815 1008 602 595 615 601 617
M5N50K4 849 1060 519 489 816 518 810
M5N50K6 559 1125 482 582 633 483 635
M5N50K8 943 1187 518 556 586 518 581
M5N50K10 876 1005 548 584 697 548 694
M5N100K2 842 1243 610 608 713 609 714
M5N100K4 592 1138 658 511 792 658 797
M5N100K6 539 1079 549 562 712 548 718
M5N100K8 925 1152 405 520 683 407 684

M5N100K10 1100 1059 478 524 732 478 734
M8N20K2 3096 1518 894 1376 658 895 660
M8N20K4 3611 1547 957 1438 582 958 577
M8N20K6 3525 1550 951 1434 507 951 509
M8N20K8 3445 1513 934 1412 443 934 437
M8N20K10 3233 1455 865 1230 431 865 434
M8N50K2 4077 1600 885 1402 1064 886 1059
M8N50K4 3980 1736 885 1538 842 884 845
M8N50K6 3888 1701 683 1458 773 683 772
M8N50K8 3797 1730 730 1421 721 730 716
M8N50K10 3970 1677 725 1470 595 725 597
M8N100K2 3249 1757 735 1329 1077 735 1079
M8N100K4 3728 1681 832 1459 1038 833 1027
M8N100K6 4133 1705 752 1432 975 752 970
M8N100K8 4011 1766 572 1370 859 573 861

M8N100K10 3906 1767 603 1307 859 604 855
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Table 24: Error Ratio over 30 executions for each algorithm. The best values are in bold.
Instance |Re f | HMOBEDA MBN-EDA NSGA-II S-MOGLS NSGA-III MOEA/D

M2N20K2 19 0.5000 1.0000 1.0000 1.0000 0.6974 0.8026
M2N20K4 11 0.5000 1.0000 1.0000 1.0000 0.6591 0.8409
M2N20K6 20 0.6000 1.0000 1.0000 1.0000 0.7500 0.6500
M2N20K8 10 0.4000 1.0000 1.0000 1.0000 0.6000 1.0000

M2N20K10 12 0.5000 1.0000 1.0000 1.0000 0.6667 0.8333
M2N50K2 75 0.5067 1.0000 1.0000 1.0000 0.7400 0.7533
M2N50K4 38 0.5000 1.0000 1.0000 1.0000 0.7237 0.7763
M2N50K6 42 0.4762 1.0000 1.0000 1.0000 0.7143 0.8095
M2N50K8 16 0.5000 1.0000 1.0000 1.0000 0.6875 0.8125

M2N50K10 18 0.6111 1.0000 1.0000 1.0000 0.7500 0.6389
M2N100K2 86 0.5000 1.0000 1.0000 1.0000 0.7384 0.7616
M2N100K4 55 0.5455 1.0000 1.0000 1.0000 0.7545 0.7000
M2N100K6 46 0.5000 1.0000 1.0000 1.0000 0.7283 0.7717
M2N100K8 10 0.4000 1.0000 1.0000 1.0000 0.6000 1.0000
M2N100K10 19 0.4211 1.0000 1.0000 1.0000 0.6579 0.9211

M3N20K2 161 0.5000 1.0000 1.0000 1.0000 0.7314 0.7686
M3N20K4 114 0.5000 1.0000 1.0000 1.0000 0.7719 0.7193
M3N20K6 116 0.4914 1.0000 1.0000 1.0000 0.7198 0.7888
M3N20K8 104 0.5000 1.0000 1.0000 1.0000 0.7212 0.7788

M3N20K10 126 0.5000 1.0000 1.0000 1.0000 0.7262 0.7738
M3N50K2 337 0.5104 1.0000 1.0000 1.0000 0.7478 0.7418
M3N50K4 323 0.5000 1.0000 1.0000 1.0000 0.7407 0.7593
M3N50K6 194 0.5000 1.0000 1.0000 1.0000 0.7345 0.7655
M3N50K8 156 0.4936 1.0000 1.0000 1.0000 0.7276 0.7788

M3N50K10 141 0.5000 1.0000 1.0000 1.0000 0.7287 0.7713
M3N100K2 289 0.5052 1.0000 1.0000 1.0000 0.7612 0.7336
M3N100K4 248 0.5000 1.0000 1.0000 1.0000 0.7379 0.7621
M3N100K6 248 0.5040 1.0000 1.0000 1.0000 0.7399 0.7560
M3N100K8 109 0.5000 1.0000 1.0000 1.0000 0.7225 0.7775
M3N100K10 125 0.5000 1.0000 1.0000 1.0000 0.7260 0.7740

M5N20K2 1114 0.0036 1.0000 1.0000 1.0000 1.0000 0.9964
M5N20K4 1115 0.0009 1.0000 1.0000 1.0000 1.0000 0.9991
M5N20K6 911 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000
M5N20K8 888 0.0034 1.0000 1.0000 1.0000 1.0000 0.9966

M5N20K10 703 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000
M5N50K2 815 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000
M5N50K4 849 0.0047 1.0000 1.0000 1.0000 1.0000 0.9953
M5N50K6 559 0.0197 1.0000 1.0000 1.0000 1.0000 0.9803
M5N50K8 943 0.0286 1.0000 1.0000 1.0000 1.0000 0.9714

M5N50K10 876 0.0308 1.0000 1.0000 1.0000 1.0000 0.9692
M5N100K2 842 0.0036 1.0000 1.0000 1.0000 1.0000 0.9964
M5N100K4 592 0.0186 1.0000 1.0000 1.0000 1.0000 0.9814
M5N100K6 539 0.1466 1.0000 1.0000 1.0000 1.0000 0.8534
M5N100K8 925 0.1286 1.0000 1.0000 1.0000 1.0000 0.8714
M5N100K10 1100 0.1382 1.0000 1.0000 1.0000 1.0000 0.8618

M8N20K2 3096 0.1395 1.0000 1.0000 1.0000 0.9984 0.8614
M8N20K4 3611 0.1399 1.0000 1.0000 1.0000 0.9958 0.8643
M8N20K6 3525 0.1245 1.0000 1.0000 1.0000 0.9983 0.8772
M8N20K8 3445 0.1170 1.0000 1.0000 1.0000 0.9942 0.8888

M8N20K10 3233 0.1222 1.0000 1.0000 1.0000 0.9954 0.8825
M8N50K2 4077 0.1921 1.0000 1.0000 1.0000 1.0000 0.8079
M8N50K4 3980 0.1937 1.0000 1.0000 1.0000 1.0000 0.8063
M8N50K6 3888 0.2063 1.0000 1.0000 1.0000 1.0000 0.7937
M8N50K8 3797 0.2054 1.0000 1.0000 1.0000 1.0000 0.7946

M8N50K10 3970 0.2000 1.0000 1.0000 1.0000 0.9997 0.8003
M8N100K2 3249 0.1847 1.0000 1.0000 1.0000 1.0000 0.8153
M8N100K4 3728 0.2154 1.0000 1.0000 1.0000 1.0000 0.7846
M8N100K6 4133 0.2354 1.0000 1.0000 1.0000 1.0000 0.7646
M8N100K8 4011 0.2468 1.0000 1.0000 1.0000 1.0000 0.7532
M8N100K10 3906 0.2348 1.0000 1.0000 1.0000 1.0000 0.7652
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We can observe that HMOBEDA is better than the other approaches for all instances

regarding both ONVG (largest values) and ER (lowest values). Another important observation

is that all solutions from the reference set of M5N20K6, M5N20K10 and M5N50K2 instances

have been generated using HMOBEDA.

Table 25 shows that the run time required by each algorithm for the same instance

are similar to each other. In addition, the run times do not present statistically significant

differences, except for instances with 2 and 3 objectives, where NSGA-II has the lowest

computational time. However, increasing the number of objectives and variables severely

impacts the average computational time of all approaches, as noticed for the MOKP as well.

An analysis of the resulting BN structures has also been carried out on the

HMOBEDA standard version to evaluate how the interactions among variables, objectives and

local search parameters are captured by the BNs. This discussion is presented in the next

section.

6.2.3 ANALYZING THE PROBABILISTIC GRAPHIC MODEL

In order to discuss the PGM structures learned during the evolutionary process

we provide an interpretation of the probabilistic model resulted for some MOKP and

MNK-landscape instances (examples of easy bi-objective and difficult many objective

optimization instances) achieved by the HMOBEDA standard version, i.e. the one using K2

algorithm as learning structure process, crowding distance as a tie-breaker for the selection

scheme, online configuration of LS parameters, and the ideal and extremes points of the

approximated Pareto front as candidates for the evidences in the root nodes.

Figure 17 shows the interactions (circles) between each decision variable Xq, q ∈
{1, . . . ,100}, and the objectives Z1 and Z2, learned by the BN for the MOKP instance 2-100.

Each circle has coordinates indicating the number of times an arc (Z1,Xq) has been captured

along the evolutionary process for all executions versus a similar measure for arc (Z2,Xq). Note

that the interaction is quite similar for the two objectives, since most of points are located nearby

the +1 slope line. In other words, based on Figure 17, we can conclude that variables (specially

if the number of interactions for a given variable is either very low or very high) are equally

affected by both objectives.

Figure 18 focuses on the analysis of BN structure concerning the relations between

objectives and LS parameters for the MOKP instance 8-100. The relations between each

objective and the three LS parameters considered in this paper are illustrated by star glyphs. In
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Table 25: Average run time (minutes) for each algorithm and instance.
Average run time (minutes)

Algorithm HMOBEDA MBN-EDA NSGA-II S-MOGLS NSGA-III MOEA/D
M2N20K2 0.59 1.17 0.51 0.89 1.06 0.92
M2N20K4 0.68 1.09 0.54 0.84 0.97 0.80
M2N20K6 0.96 0.90 0.47 0.91 0.95 0.88
M2N20K8 0.81 0.77 0.56 0.78 0.83 0.87

M2N20K10 0.86 0.67 0.52 0.64 0.87 1.02
M2N50K2 1.82 1.82 0.85 1.69 1.78 1.83
M2N50K4 1.84 1.86 0.95 1.90 1.80 1.90
M2N50K6 1.89 1.72 0.81 2.03 1.86 1.76
M2N50K8 1.60 1.69 0.88 1.75 1.97 1.86

M2N50K10 1.72 1.85 0.92 1.73 1.88 2.04
M2N100K2 2.69 2.60 1.31 2.67 2.74 2.75
M2N100K4 2.71 2.66 1.46 2.72 2.71 2.59
M2N100K6 2.59 2.54 1.34 2.58 2.62 2.82
M2N100K8 2.89 2.70 1.32 2.71 2.67 2.71
M2N100K10 2.70 2.75 1.50 2.62 2.69 2.48

M3N20K2 1.15 1.35 0.69 1.35 1.43 1.41
M3N20K4 1.23 1.38 0.73 1.18 1.58 1.42
M3N20K6 1.30 1.49 0.69 1.09 1.43 1.37
M3N20K8 1.25 1.22 0.65 1.67 1.19 1.30

M3N20K10 1.23 1.46 0.70 1.32 1.41 1.36
M3N50K2 2.45 2.95 1.45 2.76 2.66 2.83
M3N50K4 2.64 2.66 1.45 2.84 2.78 2.81
M3N50K6 2.83 2.56 1.35 2.83 2.67 2.59
M3N50K8 2.80 2.67 1.41 2.74 2.46 2.63

M3N50K10 3.01 2.63 1.33 2.61 2.38 2.73
M3N100K2 4.59 4.37 2.30 4.45 4.26 4.17
M3N100K4 4.38 4.65 2.30 4.39 4.47 4.46
M3N100K6 4.35 4.29 2.18 4.46 4.60 4.65
M3N100K8 4.49 4.45 2.28 4.98 4.42 4.52
M3N100K10 4.47 4.30 2.29 4.96 4.57 4.51

M5N20K2 4.38 4.52 4.51 4.62 4.47 4.56
M5N20K4 4.23 4.28 4.39 4.84 4.43 4.10
M5N20K6 4.89 4.72 5.01 4.01 4.44 4.55
M5N20K8 4.22 4.58 4.56 4.62 4.25 4.77

M5N20K10 5.02 4.43 5.29 4.64 4.41 4.47
M5N50K2 9.05 8.91 9.19 9.18 8.51 8.97
M5N50K4 8.38 9.14 9.55 8.98 8.93 8.53
M5N50K6 9.49 8.96 9.05 9.40 8.82 8.56
M5N50K8 9.37 8.83 8.91 8.59 8.79 9.30

M5N50K10 8.83 8.87 8.86 9.04 9.01 8.78
M5N100K2 18.34 17.90 17.69 18.33 18.29 18.20
M5N100K4 18.17 17.62 17.94 18.23 18.31 17.60
M5N100K6 18.16 17.83 17.88 17.63 18.22 18.41
M5N100K8 17.58 17.79 18.15 17.83 17.35 17.74
M5N100K10 17.72 17.66 17.71 17.82 17.84 18.01
M8N20K2 8.04 8.40 8.05 8.11 7.97 8.35
M8N20K4 7.86 8.20 8.19 8.13 8.04 8.19
M8N20K6 8.00 8.08 8.36 8.01 8.12 8.03
M8N20K8 8.25 8.14 8.54 8.22 8.13 8.08

M8N20K10 8.27 8.11 8.15 7.96 8.07 8.06
M8N50K2 13.54 13.29 13.62 13.71 13.39 13.84
M8N50K4 13.63 13.36 13.72 13.42 13.40 13.14
M8N50K6 13.56 13.27 13.84 13.40 13.60 13.57
M8N50K8 13.61 13.42 13.51 13.35 13.63 13.50

M8N50K10 13.48 13.32 13.53 13.46 13.90 13.38
M8N100K2 27.03 26.67 27.18 27.09 27.15 26.94
M8N100K4 26.94 27.09 27.29 27.08 27.06 27.02
M8N100K6 27.21 27.32 26.95 27.02 27.00 26.69
M8N100K8 27.22 27.36 27.00 26.95 27.07 27.25
M8N100K10 26.91 26.92 27.08 26.85 27.18 27.09
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Figure 17: For instance 2-100, number of times arc (Z1,Xq) has been captured in the BN
versus a similar measure for arc (Z2,Xq). Each circle corresponds to one decision variable Xq,
q ∈ {1, . . . ,100}.

.

such representation, each spoke represents one parameter Pl and it is proportional to the number

of times the arc (Zr,Pl), l ∈ {1,2,3}, r ∈ {1, . . . ,8}, has been captured along the evolutionary

process for all executions. The glyphs allow us to visualize which is the relative strength of

the relations. For example, it can be seen in Figure 18 that objectives Z2 and Z5 have small

influence on the way the parameters are instantiated. On the other hand, Z1, Z3 and Z6 have

great influence, although Z3 and Z6 seem to have similar balance among the parameters.

Z1 Z2 Z3 Z4

Z5 Z6 Z7 Z8

Figure 18: Glyph representation of the three LS parameters (spokes) for each objective Z1 to Z8 of
instance 8-100.

.

We extend this analysis for the MNK-landscape problem. Figure 19 shows the

interactions between each decision variable Xq, q ∈ {1, . . . ,20}, and the objectives Z1 and

Z2, learned by the BN for the M2N20K2 instance. The analysis of Figure 19 reveals that the

variables are unequally affected by each objective.
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Figure 19: For M2N20K2 instance, number of times arc (Z1,Xq) has been captured in the BN
versus a similar measure for arc (Z2,Xq). Each circle corresponds to one decision variable Xq,
q ∈ {1, . . . ,20}.

.

Figures 20 and 21 present the relations between objectives and LS parameters for

M3N50K6 and M8N100K10 instances, respectively.

Z1 Z2 Z3

Figure 20: Glyph representation of the three LS parameters (spokes) for each objective Z1 to Z3 of
M3N50K6 instance.

.

We can observe, in Figure 20, that objective Z1 has great influence on the parameters

and it is better balanced among them. From Figure 21 we can conclude that Z4 has the least

influence on the parameters.

In this analysis we have aimed to illustrate one of the main advantages of using

EDA: the possibility of scrutinizing its probabilistic model which usually encompasses useful

information about the relationship among variables. We have shown with these examples that

HMOBEDA model allows a step forward. First, it is possible to estimate the relation between

variables and objectives from the analysis of how frequent objective-variable interactions are.

Second, it is possible to determine how strong the interaction between objective and parameter
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Z1 Z2 Z3 Z4

Z5 Z6 Z7 Z8

Figure 21: Glyph representation of the three LS parameters (spokes) for each objective Z1 to Z8 of
M8N100K10 instance.

.

is from the analysis of objective-parameters interactions in the PGM along the evolution.

6.3 SUMMARY

This chapter begins by describing the setup of experiments. Then we have compared

different versions of the proposed approach. In this comparison phase, first we investigated two

BN structure learning algorithm, K2 and BN-HC, where K2 presented lower computational

runtime in comparison with BN-HC, being defined as our standard BN structure learning

algorithm. We also analyzed the use of CD versus hypervolume as a tie-breaker criterion,

and no statistically significant difference was observed (CD presented advantage in terms of

running). Then we compared HMOBEDA (which is an online LS parameter tuner) using K2

and CD with its off-line LS configuration versions. We provided these versions in order to

discuss the relevance of the LS parameters encoded as BN nodes in an online configuration

approach. Based on these results we have concluded that the online version of HMOBEDA is

better or at least equal to its modified versions with LS off-line configuration. These findings

evidence that the flexibility imposed by modeling LS parameters as nodes of the PGM model

results in benefits to the hybrid model encompassing variables and objectives.

We have also compared three different versions of HMOBEDA in order to analyze

how using evidences during the evolution can influence both convergence and diversity along

the approximated Pareto front. We aimed to explore one of the main advantages of using

EDA: the possibility of analyzing its probabilistic model which encompasses relationship

among objectives, decision variables and configuration parameters of the HCLS procedure.

In addition to the analysis of the final achieved PGM, this chapter evaluated the performance

of HMOBEDA versions in comparison with traditional approaches considering HV− and IGD,

concluding that uniformly distributing the evidences among ideal and extreme points of the
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Pareto front (HMOBEDAEXT ) in the sampling process is beneficial for HMOBEDA .

In all the experiments performed in this first phase we considered MOKP instances.

At the end of the section we compared HMOBEDA with other techniques on the two addressed

problems: MOKP and MNK-landscape, where we concluded that HMOBEDA is a competitive

approach, according to hypervolume indicator, IGD and capacity metrics, for the instances

considered in this work, and the average run time for each algorithm has been kept in practical

levels. An analysis of the resulting BN structures was presented in order to evaluate how the

interactions among variables, objectives and local search parameters are captured by the BNs.

As a way to illustrate the types of information that can be extracted from the models, we have

shown that the frequency of arcs in the BNs can indicate how the variables and LS parameters

are influenced by the objectives. Next chapter provides final considerations as well as a guide

for future work.
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7 CONCLUSION

In this work we have analyzed a new Multi-objective Estimation of Distribution

Algorithm (MOEDA) based on Bayesian Network in the context of multi and many objective

combinatorial optimization. The approach named Hybrid Multi-objective Bayesian Estimation

of Distribution Algorithm (HMOBEDA) considers a hill climbing procedure embedded in the

probabilistic model as a local optimizer. We have incorporated this local search (LS) procedure

to exploit the search space and a joint probabilistic model of objectives, variables and LS

parameters to generate new individuals through the sampling process. One of the main issues

investigated in this work concerns whether the auto-adaptation of LS parameters improves the

search by allowing the Bayesian network to represent and set these parameters.

For the comparison of HMOBEDA versions, we initially tested two different

algorithms: a greedy Hill Climber algorithm (BN-HC) as structure learning process using

the K2 scoring metric, providing a version called HMOBEDABN−HC, and another one

that uses the K2 algorithm named HMOBEDAK2. We have also implemented two online

configurations of HMOBEDA for the tie-breaker of the selection procedure: HMOBEDACD

for crowding distance and HMOBEDAhype for hypervolume indicator. We also built three

off-line versions with no LS parameter encoded as node in the probabilistic model. The

first version (HMOBEDA f ) is based on the best LS parameters found by HMOBEDAonline.

HMOBEDAonline is the online version that uses K2 algorithm and CD as tie-breaker. The second

version (HMOBEDA f−ins) is specialized for each instance by setting the LS parameters to the

best ones found by HMOBEDAonline for that instance. The third version (HMOBEDAirace)

defines the LS parameters by using irace package. Based on the experiments with MOKP

instances, we conclude that K2 is better than BN-HC, as structure learning algorithm.

HMOBEDAhype neither improves the solution found nor presents good computational cost.

The inclusion of online configuration of LS parameters is beneficial for HMOBEDA, since

HMOBEDAonline outperformed the off-line HMOBEDA versions. In other words, the online

parameter setting based on the PGM is more effective than fixing good parameters before the

optimization. We have shown that the better performance of the proposed approach is more
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related with the probabilistic model than with LS: as modified versions of HMOBEDA using

different tuned LS parameters did not provide the same trade-off.

After that we tested different versions of HMOBEDA with ten instances of the

multi-objective knapsack problem (MOKP), considering two traditional metrics: Hypervolume

(HV−) and Inverted Generational Distance (IGD). Then we compared the best version with

some traditional MOEAs in the literature considering MOKP and MNK landscape problems.

In a way to explore how fixing evidences during the evolution can influence both

convergence and diversity along the approximated Pareto front, we provided an interpretation

of the probabilistic model resulted at the end of evolution, proposing three versions of

HMOBEDA, named HMOBEDAIDEAL, HMOBEDAEXT and HMOBEDACPT which represent

different possibilities to guide the search using the sampling process.

Finally we tested and concluded that the proposed hybrid EDA is competitive when

compared with the investigated cutting edge evolutionary algorithms for both MOKP and

MNK-landscape problems, as it outperformed these approaches, specially for many objective

optimization. We also concluded that its PGM structure can represent the interdependencies

between variables, objectives and LS parameters. The explanation is based on the fact that

since LS parameters are in the same probabilistic model, HMOBEDA provides an automatic and

informed decision during the evolutionary process. Thus a variety of non-dominated solutions

can be found during different stages of the evolutionary process. This finding is relevant for the

development of other adaptive hybrid MOEAs. Probabilistic modeling arises as a sensitive and

feasible way to learn and explore dependencies not only between variables and objectives but

also for controlling the application of local search operators. Another important conclusion is

that it is less sensitive to an increasing number of objectives, figuring as a good candidate to

many objective optimization.

7.1 FUTURE WORK

In the future, we will investigate other local search approaches, like Iterated

Local Search (ILS) (LOURENÇO et al., 2003), Tabu Search (GLOVER, 1989), Simulated

Annealing (AARTS; KORST, 1989) and HMOBEDA will be able to selected the best approach

according to the improvement obtained along the search, like an algorithm selection framework.

Therefore, we intend that HMOBEDA could learn not only the LS parameters, but also

automatically select the LS procedure most adapted to the current evolutionary stage, i.e.,

it can operate like a hyper-heuristic. Another steps for the future include the investigation
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of the MOEA techniques other than Pareto-based approaches, such as scalarizing functions,

for example. These new approaches should be investigated with more than eight objectives.

Beyond that, we intend to relax some of the current restrictions of our model to represent

reacher types of interactions (e.g., dependencies between variables). Consequently, other

classes of methods to learn the BN structures, such as constraint based (ALIFERIS et al., 2010;

TSAMARDINOS et al., 2003) and hybrid (TSAMARDINOS et al., 2006b) methods will be

investigated. Additionally, another interesting research direction is the application of other types

of PGM that can learn and explore dependencies between variables, objectives and application

of local search operators. Finally, we intend to compare HMOBEDA with other MOPs and

MaOPs - a multi-objective variant of the Travelling Thief Problem, for example, including

a baseline method commonly used in hyperheuristic contexts which randomly generates LS

parameters.
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APPENDIX A -- EXAMPLE OF THE K2 ALGORITHM

An example of the K2 algorithm to learn the topology of a BN is presented as follows.

Considering the dataset given by Table 26, where the variables have two possible

values {0,1}.

Table 26: A given dataset for the K2 algorithm example
Y1 Y2 Y3

case 1 0 1 0
case 2 1 0 1
case 3 1 1 1
case 4 0 0 1
case 5 1 1 0
case 6 1 1 1
case 7 0 0 0
case 8 0 1 0
case 9 1 0 1
case 10 0 0 0

The inputs for the K2 algorithm are:

•The set of M nodes: {Y1,Y2,Y3};

•A pre-defined order: order=(Y1,Y2,Y3);

•The upper bound on the number of parents a node may have: u = 2;

•The dataset Pop: N = 10 cases.

iteration e = 1:

m = order1 : m = 1;

Pa1 = /0;

Scoreold = f (1, /0);
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s1 = 2;

Since Pa1 = /0, Step 3, t1 = 0 and Y1 has no parents, j will be ignored in the Scoreold

formula (COOPER; HERSKOVITS, 1992). Then, according to the dataset Pop presented in

Table 26:

N1 j1 = 5, cases where Y1 = 0 (1,4,7,8 and 10);

N1 j2 = 5, cases where Y1 = 1 (2,3,5,6 and 9).

N1 j = 10.

Hence:

f (1,Pa1) = ∏
t1
j=1

(s1−1)!
(N1 j+s1−1)! ∏

s1
k=1(N1 jk)!

f (1, /0) = (2−1)!
(10+2−1)! ∏

2
k=1(N1 jk)! = 1!

11! ∗5!∗5! = 1/2772

Since Pred(Y1) = /0, the iteration for e = 1 ends with Pa1 = /0.

iteration e = 2:

m = order2 : m = 2;

Pa2 = /0;

Scoreold = f (2, /0);

s2 = 2;

Considering the same analysis used for iteration e = 1, for m = 2 we have:

N2 j1 = 5, cases where Y2 = 0 (2,4,7,9 and 10);

N2 j2 = 5, cases where Y2 = 1 (1,3,5,6 and 8);

N2 j = 10.

Hence:

f (2,Pa2) = ∏
t2
j=1

(s2−1)!
(N2 j+s2−1)! ∏

s2
k=1(N2 jk)!

f (2, /0) = (2−1)!
(10+2−1)! ∏

2
k=1(N2 jk)! = 1!

11! ∗5!∗5! = 1/2772

Scoreold = 1/2772;

However Pred(Y2) = {Y1}, then, in Step 8, we have to calculate f (2,Pa2 ∪{i}) for

i = Y1:
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f (2,Pa2∪{Y1}) = f (2,{Y1})
f (2,{Y1}) = ∏

t2
j=1

(s2−1)!
(N2 j+s2−1)! ∏

s2
k=1(N2 jk)!

Since t2 = 2 (Y1 = 0 or Y1 = 1), then:

N211 = 3, cases where Y1 = 0 and Y2 = 0 (4,7 and 10);

N212 = 2, cases where Y1 = 0 and Y2 = 1 (1 and 8);

N221 = 2, cases where Y1 = 1 and Y2 = 0 (2 and 9);

N222 = 3, cases where Y1 = 1 and Y2 = 1 (3,5 and 6);

N21 = 5;

N22 = 5.

f (2,{Y1}) = (2−1)!
(5+2−1)! ∗∏

2
k=1(N21k)!∗ (2−1)!

(5+2−1)! ∏
2
k=1(N22k)!

f (2,{Y1}) = (1)!
(6)! ∗ (N211)!∗ (N212)!∗ (1)!

(6)! ∗ (N221)!∗ (N222)!

f (2,{Y1}) = (1)!
(6)! ∗3!∗2!∗ (1)!

(6)! ∗2!∗3!

f (2,{Y1}) = 1
6∗5∗4 ∗2∗ 1

6∗5∗4 ∗2 = 1/3600

Scorenew = 1/3600

Since Scorenew = 1/3600 < Scoreold = 1/2772, the iteration for e = 2 ends with Pa2 = /0.

iteration e = 3:

m = order3 : m = 3;

Pa3 = /0;

Scoreold = f (3, /0);

s3 = 2;

Considering the same analysis used for iteration e = 1, for m = 3 we have:

N3 j1 = 4, cases where Y3 = 0 (1,5,7 and 8);

N3 j2 = 6, cases where Y3 = 1 (2,3,4,6 and 9);

N3 j = 10.

f (3,Pa3) = ∏
t3
j=1

(s3−1)!
(N3 j+s3−1)! ∏

s3
k=1(N3 jk)!

f (3, /0) = (2−1)!
(10+2−1)! ∏

2
k=1(N3 jk)! = 1!

11! ∗4!∗6! = 1/2310

Scoreold = 1/2310
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Note that Pred(Y3) = {Y1,Y2}, then, in Step 8, we have to calculate argmax( f (3,Pa3 ∪
{Y1}), f (3,Pa3∪{Y2})).

Given:

t3 = 2 (Y1 = 0 or Y1 = 1);

N311 = 3, cases where Y1 = 0 and Y3 = 0 (1,7 and 8);

N312 = 2, cases where Y1 = 0 and Y3 = 1 (4 and 10);

N321 = 1, case where Y1 = 1 and Y3 = 0 (5);

N322 = 4, cases where Y1 = 1 and Y3 = 1 (2,3,6 and 9);

N31 = 5;

N32 = 5;

f (3,{Y1}) = ∏
t3
j=1

(s3−1)!
(N3 j+s3−1)! ∏

s3
k=1(N3 jk)!

f (3,{Y1}) = (2−1)!
5+2−1)! ∏

2
k=1(N31k)!∗ (2−1)!

5+2−1)! ∏
2
k=1(N32k)!

f (3,{Y1}) = (1)!
(6)! ∗ (N311)!∗ (N312)!∗ (1)!

(6)! ∗ (N321)!∗ (N322)!

f (3,{Y1}) = 1!
6! ∗3!∗2!∗ 1!

6! ∗1!∗4! = 1/1800

Given:

t3 = 2 (Y2 = 0 or Y2 = 1);

N311 = 2, case where Y2 = 0 and Y3 = 0 (7 and 10);

N312 = 3, cases where Y2 = 0 and Y3 = 1 (2,4 and 9);

N321 = 3, cases where Y2 = 1 and Y3 = 0 (1,5 and 8);

N322 = 2, cases where Y2 = 1 and Y3 = 1 (3 and 6);

N31 = 5;

N32 = 5;

f (3,{Y2}) = ∏
t3
j=1

(s3−1)!
(N3 j+s3−1)! ∏

s3
k=1(N3 jk)!

f (3,{Y2}) = (2−1)!
5+2−1)! ∏

2
k=1(N31k)!∗ (2−1)!

5+2−1)! ∏
2
k=1(N32k)!

f (3,{Y2}) = (1)!
(6)! ∗ (N311)!∗ (N312)!∗ (1)!

(6)! ∗ (N321)!∗ (N322)!

f (3,{Y2}) = 1!
6! ∗2!∗3!∗ 1!

6! ∗3!∗2! = 1/3600

Since f (3,{Y1}) = 1/1800 > f (3,{Y2}) = 1/3600, then Scorenew = f (3,{Y1}) =
1/1800, i = Y1, Pa3 = Pa3∪{Y1} and Scoreold := Scorenew at Step 11.

Now, the next iteration of the algorithm for e = 3 considers adding the remaining

predecessor of Y3, namely Y2, to the parents of Y3.
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Given:

t3 = 4 (Y1 = 0, Y2 = 0 or Y1 = 0, Y2 = 1 or, Y1 = 1, Y2 = 0 or Y1 = 0, Y2 = 1);

N311 = 2, cases where Y1 = 0, Y2 = 0 and Y3 = 0 (7 and 10);

N312 = 1, case where Y1 = 0, Y2 = 0 and Y3 = 1 (4);

N321 = 2, cases where Y1 = 0, Y2 = 1 and Y3 = 0 (1 and 8);

N322 = 0, cases where Y1 = 0, Y2 = 1 and Y3 = 1 ( );

N331 = 0, cases where Y1 = 1, Y2 = 0 and Y3 = 0 ( );

N332 = 2, cases where Y1 = 1, Y2 = 0 and Y3 = 1 (2 and 9);

N341 = 1, case where Y1 = 1, Y2 = 1 and Y3 = 0 (5);

N342 = 2, cases where Y1 = 1, Y2 = 1 and Y3 = 1 (3 and 6);

N31 = 3;

N32 = 2;

N33 = 2;

N34 = 3;

f (3,Pa3∪{Y2}) = f (3,{Y1,Y2})
f (3,{Y1,Y2}) = ∏

t3
j=1

(s3−1)!
(N3 j+s3−1)! ∏

s3
k=1(N3 jk)!

f (3,{Y1,Y2}) = ∏
t3
j=1

(s3−1)!
(N3 j+s3−1)! ∏

s3
k=1(N3 jk)!

f (3,{Y1,Y2}) = (2−1)!
3+2−1)! ∏

2
k=1(N31k)! ∗ (2−1)!

2+2−1)! ∏
2
k=1(N32k)! ∗ (2−1)!

2+2−1)! ∏
2
k=1(N33k)! ∗

(2−1)!
3+2−1)! ∏

2
k=1(N41k)!

f (3,{Y1,Y2}) = (1)!
(4)! ∗ (N311)! ∗ (N312)! ∗ (1)!

(3)! ∗ (N321)! ∗ (N322)! ∗ (1)!
(3)! ∗ (N331)! ∗ (N332)! ∗ (1)!

(4)! ∗
(N341)!∗ (N342)!

f (3,{Y1,Y2}) = 1!
4! ∗2!∗1!∗ 1!

3! ∗2!∗0!∗ 1!
3! ∗0!∗2!∗ 1!

4! ∗1!∗2! = 1/1296

Scorenew = 1/1296

Since Scorenew = 1/1296 > Scoreold = 1/1800, Pa3 = Pa3 ∪ {Y2}, Scoreold :=

Scorenew at Step 11 and the iteration for e = 3 ends with Pa3 = {Y1,Y2}.

The parents output for each node are:

•Y1: Pa1 = /0;

•Y2: Pa2 = /0;

•Y3: Pa3 = {Y1,Y2}

Then the learned structure is:
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Figure 22: An example of structure learned by K2 Algorithm.
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APPENDIX B -- CUTTING EDGE EVOLUTIONARY ALGORITHMS

In the following subsections we detail some Pareto and scalarizing function based

algorithms. These algorithms have been chosen aiming to observe: 1- a very popular MOEA

described in the literature (NSGA-II); 2- a MOEA with local search (S-MOGLS); 3- a

quite recent approach applied to many objectives optimization problems (NSGA-III); 4- an

EDA that incorporates a Pareto based selection technique (MBN-EDA); and 5- a scalarizing

function-based algorithm, MOEA/D, that decomposes a MOP into a number of mono-objective

problems using the same scalarizing function with a different weight vector. Note that these

algorithms can be used on continuous and discrete MOPS, but this work they will be explored

in the context of discrete and combinatorial optimization problems.

B.1 NSGA-II

NSGA-II is the one of the most applied Pareto dominance-based algorithms in the

literature (DEB et al., 2002) and it is described in Algorithm 7. Its fitness evaluation is based

on a rank assignment mechanism. An offspring population of size N is generated by binary

tournament selection, crossover, and mutation from a current population of size N, Steps 5−8.

These two populations are combined into a merged population of size (N +N), Step 9. The

next population is constructed by choosing (based on the Non-dominated Sorting) the best N

solutions from the merged population, Step 11. ND is the final set of non-dominated solutions.

The initialization process randomly generates every vector x of the initial population

Pop1, a total of N vector solutions is generated. For each solution in Pop1 the values of all

objectives are calculated based on the objective functions and set in z. Therefore, N joint vectors

(x,z) are obtained and complete the population at first generation. Finally, the initialization

procedure sets g = 1.

In order to sort individuals of the current population, NSGA-II uses Non-dominated

Sorting technique (SRINIVAS; DEB, 1994) in Step 6.

After classifying the population at gth generation (Popg) into TotF sub-populations
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Algorithm 7: NSGA-II
INPUT: N, population size;

Nbest , maximum of parents selected to provide the offspring population;
Maxeval , maximum number of solutions evaluation.

OUTPUT: ND, the final set of non-dominated solutions;
{Initialization}

1: Pop1(x)=Random(N);
2: Pop1(z)=Fitness(Pop1(x));
3: e = 0; {e is the current number of solutions evaluation}
4: g = 1;

{NSGA-II: main loop}
5: while e≤Maxeval do

{Non-dominated Sorting}
{Defining TotF Pareto fronts: from the best (i = 1) to the worst}

6: F1...FTotF = ParetoDominance (Popg);
{NSGA-II: Selecting the parents}

7: Popg
best= Selection(Nbest ,F1...FTotF );{crowding distance to binary tournament}

{NSGA-II:Perform crossover and mutation operator to provide offspring population}
8: Popg

o f f spring= GeneticOperator(Popg
best);

9: Popg
merged=Popg∪Popg

o f f spring;
10: F1...FTotF = ParetoDominance (Popg

merged);
11: Popg+1 =Selection (N,F1...FTotF );{Truncation Selection}
12: g = g+1;
13: end while
14: ND = Popg(x);
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(F1,F2, ...,FTotF ) using Non-dominated Sorting technique, the method assigns a CD (DEB et al.,

2002) to every solution in each Fi. CD is based on a technique proposed by Deb et al. (2002)

which tries to preserve the dispersion of the population Popg. Initially the solutions in Fi are

sorted in ascending order of the corresponding first objective. For each point zk in Fi the distance

d1(zk) = zk+1
1 − zk−1

1 is calculated. Sorting the points similarly to the other objectives we obtain

d2(zk), ...,dr(zk). So, for the estimation of the total of points which are located around zk we

used CD = dist(zk) = ∑
R
r=1 dr(zk).

In Step 7 of Algorithm 7, Nbest individuals are selected through binary tournament to

compose the Popg
best , taking at first DR and secondly (in case of ties) the CD criterion (solutions

with the greatest CD is chosen). The GeneticOperator procedure randomly selects individuals

from Popg
best to generate using genetic operators (crossover and mutation) a Popg

o f f spring

population. Popg
merged is the union of Popg and Popg

o f f spring. Finally, truncation selection in

Step 11 selects the best N solutions from Popg
merged to compose the next generation population

Popg+1.

B.2 S-MOGLS

Simple Multi-Objective Genetic Local Search Algorithm (S-MOGLS) is a memetic

algorithm proposed by Ishibuchi et al. (2008) that implements a hybrid algorithm of NSGA-II

and local search.

The local search is probabilistically applied to solutions in the offspring population

Popg
o f f spring. Everytime a solution in Popg

o f f spring is improved by local search, it is included

in the improved population Popg
I . The next population is chosen from the current population

Popg, the offspring population Popg
o f f spring, and the improved population Popg

I in the same way

manner as performing in NSGA-II. When probability Pls (probability of LS occurrence) is zero

S-MOGLS is exactly the same as NSGA-II.

B.2.1 S-MOGLS LOCAL SEARCH PROCEDURE

An initial solution for LS is selected from the offspring population Popg
o f f spring by the

tournament selection with replacement using following the weighted sum fitness function.

f(x) = λ1 f1(x)+λ2 f2(x)+ ...+λR fR(x) (34)

where { f1(x), f2(x), ..., fR(x)} are the objective values {z1,z2, ...,zR}, λλλ =
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(λ1,λ2, ...,λR) is a non-negative weight vector for R-objectives controlled by the parameter

d =∑
R
r=1 λr, where λr ∈{0,1, ...,d} for r = {1,2, ...,R}, i.e, we have six weight vectors (0,0,2),

(0,2,0), (2,0,0), (0,1,1), (1,0,1), (1,1,0) when d = 2 for R = 3 objectives.

LS is applied to the chosen solution with probability Pls. A neighbor is randomly

generated and the current solution is replaced if this neighbor is better. This means that each LS

adopted by S-MOGLS accepts the first improved neighbor instead of the best improved in the

neighborhood. After a neighbor is accepted, LS continues to search for better solutions around

the updated current solution (accepted neighbor) . The total number of examined neighbors in a

series of LS from the initial solution, Nls, is the termination condition. The selection of an initial

solution and the probabilistic application of LS are iterated N times in each generation, where

N is the population size. It should be noted that a weight vector is randomly drawn whenever an

initial solution for LS is selected. This means that the initial solution can be evaluated through

a unique fitness value using different weights for each objective. According to Ishibuchi et

al. (2008), this provides a wide range of objectives values in the objective space, which can

increase quite well the quality of the Pareto front approximation.

B.3 NSGA-III

NSGA-III, proposed by Deb and Jain (2014), is a new approach of

reference-point-based many-objective EA that follows the NSGA-II main steps and emphasizes

non-dominated population members yet close to a set of reference points. The basic NSGA-III

framework is similar to the original NSGA-II algorithm (DEB et al., 2002) with main changes

focused on the selection operator, where CD is replaced. The maintenance of diversity in

NSGA-III is achieved by supplying and adaptively updating a number of well-spread reference

points.

The main NSGA-III steps are presented in Algorithm 8.

NSGA-III starts with a random population of size N and a set of pre-established

R-dimensional reference points on a unit hyper-plane having a normal vector of ones covering

the entire RR
+ region. The hyper-plane is placed in a manner so that it intersects each objective

axis at one.

Deb and Jain (2014) have used the approach described by Das and Dennis (1998) for

generating the structured reference points RpN .

If H divisions are considered along each objective, the total number of reference points,

which are often considered the same of the population size (N) (DEB; JAIN, 2014) in an
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Algorithm 8: NSGA-III
INPUT: N structured reference points (RpN);

Maxeval , maximum number of solutions evaluation;
OUTPUT: ND, the final set of non-dominated solutions;

{Initialization}
1: Pop1(x)=RandomVector(N);
2: Pop1(z)=Fitness(Pop1(x));
3: e = 0; {e is the current number of solutions evaluation}
4: g = 1;
5: S1 = /0;

{NSGA-III: main loop}
6: while e≤Maxeval do

{Perform crossover and mutation operator to provide offspring population}
7: Popg

o f f spring= GeneticOperator(Popg);
8: Popg

merged =Popg∪Popg
o f f spring;

{Non-dominated Sorting}
{Defining TotF Pareto fronts: from the best (i = 1) to the worst}

9: F1...FTotF = ParetoDominance (Popg
merged);

10: repeat
11: Sg = Sg∪Fi;
12: i = i+1;
13: until |Sg| ≥ N
14: Fk = Fi; {Last front to be included}
15: if |Sg|= N then
16: Popg+1 = Sg;
17: break;
18: else
19: Popg+1 = ∪k−1

j=1Fj;
20: K = N−|Popg+1|; {Points to be chosen from Fk};
21: (Popg+1(z),Rpre f ) =Normalize(S,RpN);{Normalize objectives and create reference

set Rpre f };
22: [π(z),d(z)] =Associate(Sg,Rpre f );{Associate each individual z (objective vector) of

Sg with a reference point. π(z):closest reference point, d(z):distance between z and
π(z)};

23: ρ j = ∑z∈Sg/Fk
((π(z) = j)?1 : 0);{Compute niche count of reference point j ∈ Rpre f };

24: Popg+1 =Niching(K,ρ j,π,d,Rpre f ,Fk,Popg+1); {Choose K members one at a time
from Fk to construct Popg+1 };

25: end if
26: g = g+1;
27: end while
28: ND = Popg(x);
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R-objective problem is given by Equation 35.

N =CH
R+H−1 (35)

For example, in a three-objective problem (R = 3) the reference points are created on

a triangle with the apex at (1,0,0), (0,1,0), and (0,0,1). If 13 divisions (H = 13) are chosen

for each objective axis, N = 105 reference points will be created.

Since the reference points are widely distributed on the entire normalized hyper-plane,

the obtained objectives vectors are also distributed likely on or near the Pareto front.

The offspring population is created using the GeneticOperator procedure, Step 7, as in

NSGA-II, and merged with parent population, Popg
merged .

At a generation g, first the combined population Popg
merged is sorted according to

different non-dominated levels (F1,F2...FTotF ), as in the Non-dominated Sorting procedure.

Then, each non-dominated level is selected, one at a time, to construct a new population Sg

, starting from F1 and proceeding with each Fk.

In most situations, the last accepted level can only be partially accepted. In such a

case, only those solutions that maximize the diversity of the last accepted front are chosen from

Sg using a niche-preserving operator, which we describe next (Steps 18−25).

First, the corresponding objective vector of each solution from Sg and the last front is

normalized by using the current population spread (in the objective space) so that all objective

vectors and reference points have commensurate values, as shown in Step 21.

After adaptively normalizing each objective based on the extent of individuals of Sg

in the objective space, we need to associate each population individual (in the objective space)

with a reference point in Step 22. For this purpose we calculate the perpendicular distance of

the corresponding objective vector of each solution from Sg with a reference line created by

joining the origin with a supplied reference point (SEADA; DEB, 2015). The reference point

whose reference line is closest to a population individual in the normalized objective space is

considered to be associated with the population individual.

A reference point can have no one or several population individuals associated with it.

We count the number of population individuals from Popg+1 = Sg/Fk that are associated with

each reference point as a niche count, ρ j, for the j-th reference point. First, we identify the

reference point set Jmin = { j : argmin j∈Rpre f ρ j} having minimum ρ j. In the case of multiple

such reference points, one ( j ∈ Jmin) is chosen at random.
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When there is no associated Popg+1 individual to the reference point j, ρ j = 0 and

we have two possibilities: there exists one or more individuals of Sg in front Fk that can be

associated with the reference point j and the one having the shortest perpendicular distance

from the reference line is added to Popg+1/; or, the front Fk does not have any individual

associated with the reference point j and the reference point is not considered. When there

exists one individual associated with the reference point in Sg/Fk), ρ j ≥ 1, then a randomly

chosen individual from front Fk associated with the reference point j is added to Popg+1. The

procedure is repeated for a total of K times until population Popg+1 is fulfilled.

In order to provide non-dominated individuals, the whole process is then expected to

find one population individual corresponding to each supplied reference point close to the Pareto

front.

B.4 MBN-EDA

MBN-EDA was proposed by Karshenas et al. (2014) as a new MOEDA based on

joint probabilistic modeling of objectives and variables. This EDA uses a multidimensional

BN (MBN) as its probabilistic model, where the objectives are continuous-valued class nodes

and the variables are modeled as features nodes. The model considers relations between the

problem variables encoded at the feature subgraph, between objectives, at the class subgraph

and between variables and objectives, representing by direct iterations at the bridge subgraph.

The probabilistic MBN model can capture characteristics of selected solutions

according to their objective values, and samples new candidate solutions aiming to find Pareto

optimal solutions.

Figure 23 illustrates the algorithm. A selection mechanism, e.g., non-dominated

sorting and truncation selection, are used to selects a subset of solutions. These solutions are

extended in order to keep their objectives values encoding as a joint vector. These extended

solutions, comprising values for both variables and objectives, are used to serve as a dataset for

the MBN learning process.

The model samples new candidate solutions from the learned MBN, according to the

values of both objectives and variables. Finally, these new solutions are added to the population

based on a replacement strategy.
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Figure 23: An overview of the proposed MBN-EDA by Karshenas et al. (2014).

B.5 MOEA/D

MOEA/D is based on aggregation approaches, as those presented in Section 2.3,

once it decomposes a MOP into a number of single objective optimization subproblems. The

objective of each subproblem is a linear (or nonlinear) weighted aggregation of all individual

objectives in the MOP. Neighborhood relations among these subproblems depend on distances

among their aggregation weight vectors.

A set of weight vectors, where each vector λλλ = (λ1,λ2, ...,λR) is specified by the

following relations for a R-objective problem:

λ1 +λ2 + ...+λR = 1 (36)

λr ∈
{

0,
1
H
,

2
H
, ...,

H
H

}
,r = 1,2, ...,R (37)

where H is a user defined positive integer. MOEA/D uses all weight vectors satisfying

Equation 36 and relation 37.

Thus, each subproblem is simultaneously optimized using mainly information from its

neighbor subproblems (ISHIBUCHI et al., 2015).
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The MOEA/D is presented in Algorithm 9.

Algorithm 9: MOEA/D
INPUT: N, number of sub-problems;

λλλ 1...λλλ N , a uniform spread of weight vectors;
T , the number of the weight vectors in the neighborhood of each weight vector;
Maxeval , maximum number of solutions evaluation.

OUTPUT: ND, all non-dominated solutions found during the search;
{Initialization}

1: B(i) = {i1, ..., iT}=EuclideanDistance(λλλ 1...λλλ N),T ; {For i = 1...N, set the indexes of the T
closest weight vectors to λλλ

i}
2: Pop1(x)=RandomVector(N);
3: Pop1(z)=Fitness(Pop1(x,λλλ ));
4: ND = /0;
5: e = 0; {e is the current number of solutions evaluation}
6: g = 1;

{MOEA/D: main loop}
7: while e≤Maxeval do
8: for i = 1to N do

{Perform crossover and mutation operator to provide a new solution from xk and xl ,
k, l ∈ B(i)}

9: xo f f spring= GeneticOperator(xk,xl); {repair method if infeasible solution}
{Update of neighbor solutions}

10: for each j ∈ B(i) do
11: if (Fitness(xo f f spring,λλλ j)≥Fitness(x j,λλλ j)) then
12: x j = xo f f spring;
13: z( j) =Fitness(xo f f spring,λλλ j);
14: end if
15: end for

{Update ND}
{Remove from ND all the vector dominated by xo f f spring};

16: if (no vectors in ND dominate xo f f spring) then
17: ND = ND∪xo f f spring;
18: end if
19: end for
20: g = g+1;
21: end while

In Initialization, set B(i) contains the indexes of the T closest vectors of λ i. We use the

Euclidean distance (EuclideanDistance) procedure to measure the closeness between any two

weight vectors. Therefore, λλλ
i’s closest vector is itself, and then i ∈ B(i) . If j ∈ B(i) , the j-th

subproblem can be regarded as a neighbor of the i-th subproblem.

The initialization process randomly generates every vector x of the initial population

Pop1, so a total of N vector solutions is generated. For each solution in Pop1 the fitness z is

calculated based on one of the scalarizing function approach presented in Section 2.3. ND is an
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external population containing all non-dominated solutions found during the search.

The GeneticOperator procedure randomly selects two indexes, k and l from B(i), and

then generates a new solution xo f f spring from xk and xl by using genetic operators (crossover

and mutation).

Steps 11 to 16 consider all the neighbors of the i-th subproblem, replacing x j with

xo f f spring if xo f f spring performs better than x j with regard to the j-th subproblem. z is needed in

computing the value of z =Fitness(xo f f spring|λλλ j) in Step 14. In Step 17 we remove from ND all

the vectors dominated by xo f f spring and add xo f f spring if no vectors in NP dominates xo f f spring.

The number of subproblems (N) and weight vectors λ 1, ...,λ N in MOEA/D is

controlled by the parameter H Zhang and Li (2007).More precisely, λ 1, ...,λ N are all the weight

vectors in which each individual weight takes a value from { 0
H , 1

H , ..., H
H }. Therefore, the number

of such vectors is calculated by Equation 38.

N =CR−1
R+H−1 (38)

The same method is applied in NSGA-III for the N supplied reference points.
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