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ABSTRACT 
 

 
MATEI, Gilvani. Genome-Wide Selection in soybeans and optimization of 
phenotyping for grain yield.  100 pp. Thesis (Ph.D in Agronomy) - Graduate Program 
in Agronomy (Area of Focus: Plant Production), Federal Technological University of 
Paraná. Pato Branco, 2017. 
 
In a breeding program, several factors influence the selection of cultivars, mainly due 
to the high number of genotypes under evaluation and the reduced experimental 
capacity in the initial phases of the program. In this context, the present study was 
divided into four parts. The first one aimed to identify the core locations for evaluation 
and selection of soybean genotypes in the macro-regions 1 (M1) and 2 (M2), in 
generations with low seed availability. The data set consisted of 22 soybean 
genotypes grown in 23 sites for three years. The GGL + GGE and G analyses versus 
the GE analysis were used. The locations Chapada-RS and Maracaju-MS were the 
most representative sites and discriminant macro-regions 1 and 2, respectively. 
Identification of the core location is fundamental to evaluation, since it is where the 
number of test sites can be summarized to a single site by soybean growing macro-
region. The second study aimed to evaluate the experimental accuracy of different 
statistical methods used to analyze the assays with large numbers of soybean 
genotypes. The grain yield data from 324 soybean genotypes, evaluated in six 
replicates, were used. The data were analyzed by using the randomized block 
design, triple lattice design, and Papadakis method. The experimental accuracy 
indicators of the Papadakis method were more favorable when compared to those of 
the randomized block and triple lattice designs. Two replicates could be used when 
analyzing the data without reducing experimental accuracy: a randomized complete 
block design or the Papadakis method. In the third study, the productive 
performance, adaptability, and stability of modern soybean cultivars were evaluated 
in multi-environment assays. A total of 46 cultivars were evaluated in eight 
environments, in the adaptation micro-regions 102, 201, and 202, during the 
2014/2015 harvest. Genotype × complex environment interactions occurred with 
changes in the ranking of cultivars between the sites. Among the genotypes 
evaluated, the cultivar NA 5909 RG, parental to the RILs in the genome-wide 
selection (GWS) assay, was considered to be among the genotypes with higher 
mean productivities, and it also showed high adaptability and stability. The fourth 
study had three objectives: to evaluate the accuracy of genomic selection in 
soybean, to identify the effect of intra-population structure on the accuracy of 
genomic selection, and to compare the efficiencies of the phenotypic and genomic 
selections in soybean. The BayesB model with cross validation was used for 
analyzing the phenotype data from the 324 soybean genotypes. The accuracy of GS 
for phenotypic characters with genotypic data of 5403 SNP molecular markers was 
also evaluated. The results indicated that the genotypic accuracy was similar, 
irrespective of consideration of the population structure. It was observed that the 
population structure did not significantly affect the accuracy of the models for the 
traits evaluated. It was verified that with this methodology it is possible to halve the 
selection time and increase the selection efficiency by 123% for grain yield. 
 
 
Keywords: Agronomy. Plants - Genetic Improvement. Genetic Markers. 



RESUMO 
 
 

MATEI, Gilvani. Seleção genômica ampla em soja e otimização da fenotipagem para 
produtividade de grãos. 100 f. Tese (Doutorado em Agronomia) – Programa de Pós-
Graduação em Agronomia (Área de Concentração: Produção vegetal), Universidade 
Tecnológica Federal do Paraná. Pato Branco, 2017. 
 
 

Em um programa de melhoramento genético varios fatores influenciam na seleção 
de cultivares, basicamente pelo elevado número de genótipos em avaliação e pela 
reduzida capacidade experimental em fases iniciais do programa. Nesse contexto, o 
presente trabalho foi dividido em quatro partes. O primeiro estudo objetivou 
identificar locais chaves para avaliação e seleção de genótipos de soja nas nas 
macrorregiões 1 (M1) e 2 (M2), em gerações com pouca disponibilidade de semente. 
O conjunto de dados consistiu em 22 genótipos de soja cultivados em 23 locais por 3 
anos. As análises GGL + GGE e G vs. GE foram usadas. As localidades Chapada-
RS e Maracaju-MS foram os locais mais representativos e discriminantes 
macrorregiões 1 e 2, respectivamente. A identificação das localidades chave é 
fundamental para a avaliação, onde o número de locais de ensaio pode se resumir a 
um único local por macrorregião sojícola. O segundo estudo teve como objetivo 
avaliar a precisão experimental de diferentes métodos de análise estatística para 
ensaios com elevado número de genótipos de soja. Foram usados dados de 
produtividade de grãos de 324 genótipos de soja, avaliados em 6 repetições. Os 
dados foram analisados considerando os delineamentos de blocos ao acaso, látice 
triplo e uso do método de Papadakis. Os indicadores de precisão experimental do 
método de Papadakis são mais favoráveis, quando comparados com os 
delineamentos de blocos ao acaso e látice triplo. Pode-se usar duas repetições e 
analisar os dados, usando o delineamento de blocos completamente casualizados 
ou método Papadakis, sem redução da precisão experimental. No terceiro estudo foi 
avaliado o desempenho produtivo, a adaptabilidade e a estabilidade de cultivares 
modernas de soja, em ensaios multiambientes. Foram avaliados 46 cultivares em 
oito ambientes, nas microrregiões de adaptação 102, 201 e 202, na safra 2014/2015. 
Ocorreu interação genótipo x ambiente complexa, com alterações do ranqueamento 
de cultivares entre os locais. Dentre os genótipos avaliados a cultivar NA 5909 RG, 
parental das RILs no ensaio GWS, esteve presente entre genótipos de maiores 
médias produtivas, apresentando também elevada adaptabilidade e estabilidade. O 
quarto estudo teve três objetivos: avaliar a precisão da SG na soja; identificar o 
efeito da estrutura intrapopulação na precisão da seleção genômica; e, comparar a 
eficiência da seleção fenotípica e genômica na soja. Foi utilizado o modelo BayesB 
com validação cruzada para dados fenótipicos e genótipicos de 324 genótipos de 
soja. Avaliou-se a precisão do GS para caracteres fenotípicos com dados 
genotípicos de 5403 marcadores SNPs. Os resultados indicaram que a precisão 
genotípica foi semelhante, considerando, ou não, a estrutura da população. Se 
observou que a estrutura da população não afetou significativamente a precisão dos 
modelos para os caracteres avaliados. Constatou-se que com esta metodologia 
torna-se possível reduzir pela metade o tempo de seleção e aumentar a eficiência de 
seleção em 123% para produtividade de grãos.  
 
Palavras-chave: Agronomia. Plantas - Melhoramento Genético. Marcadores 
Genéticos. 



LIST OF ILLUSTRATIONS 
 
Figure 2.1 – The GGL + GGE ((genotype main effects plus genotype × location interaction) + 

(genotype main effects plus genotype × environment interaction)) biplot for the 
macrorregion 1 based on 2012/13–2015/16 crop seasons (Data for the VCU trials). The 
environments are displayed as the relevant location code, and the genotypes are 
represented by “+”. The environments are: Abelardo Luz (ABL), Chapada (CHA), Campos 
Novos (CPN), Erechim (ERC), Guarapuava (GUA), Palma Sola (PSO), Realeza (RLZ), 
São Francisco de Assis (SFA), Santa Cruz do Sul (STC), Santo Augusto (STO), Vacaria 
(VAC). ................................................................................................................................. 26 

Figure 2.2 – The biplot form to display the environment’s ability to select for G (Genotypic effect) vs. 
GE (genotype x environment effects) (A) and the environment vector view of the GGE 
biplot with linear map (B), based on 2012/13–2015/16 crop seasons. Data for the VCU 
trials in soybean macrorregion 1. The environment is composed of a location and a year 
(For example: STC_13 = Santa Cruz do Sul in the year 2013). The environments are: 
Abelardo Luz (ABL), Chapada (CHA), Campos Novos (CPN), Erechim (ERC), 
Guarapuava (GUA), Palma Sola (PSO), Realeza (RLZ), São Francisco de Assis (SFA), 
Santa Cruz do Sul (STC), Santo Augusto (STO), Vacaria (VAC). ..................................... 26 

Figure 2.3 – The GGL + GGE ((genotype main effects plus genotype × location interaction) + 
(genotype main effects plus genotype × environment interaction)) biplot for the 
macrorregion 2 based on 2012/13–2015/16 crop seasons (Data for the VCU trials). The 
environments are displayed as the relevant location code, and the genotypes are 
represented by “+”. The environments are: Brasilândia do Sul (BRA), Cascavel (CCV), 
Cândido Mota (CMO), Dourados (DOU), Londrina (LON), Maracaju (MCJ), Palotina 
(PLT), Ponta Porã (PPO), Perobal (PRB), Sidrolândia (SID), São Jorge do Ivaí (SJI), 
Ubiratã (UBI)....................................................................................................................... 27 

Figure 2.4 – The biplot form to display the environment’s ability to select for G (Genotypic effect) vs. 
GE (genotype x environment effects) (A) and the environment vector view of the GGE 
biplot with linear map (B), based on 2012/13–2015/16 crop seasons. Data for the VCU 
trials in soybean macroregion 2. The environment is composed of a location and a year 
(For example: CCV_13 = Cascavel, in the year 2013). The environments are: Brasilândia 
do Sul (BRA), Cascavel (CCV), Cândido Mota (CMO), Dourados (DOU), Londrina (LON), 
Maracaju (MCJ), Palotina (PLT), Ponta Porã (PPO), Perobal (PRB), Sidrolândia (SID), 
São Jorge do Ivaí (SJI), Ubiratã (UBI). .............................................................................. 28 

Figure 3.1 - Selective accuracy (SA), least significant difference (LSD) by the Tukey test (5%) in 
percentage of the mean, and variation in the Fasoulas differentiation index (FDI); mean, 
lower limit (LL), and upper limit (UL) of the confidence interval, by resampling (1-α=0.95) 
for different number of replicates, and using the randomized complete block design 
(RCBD) and Papadakis method. ........................................................................................ 39 

Figure 4.1 – Mean and stability for the 46 soybean cultivars (A), and for the cultivars division in early 
(B), medium (C) and late cycle (D), assessed in eight locations (seven of which in the 
State of Paraná (Cambé, Corbélia, Mamborê, Palotina, Realeza, São Jorge do Ivaí e São 
Miguel do Iguaçu) and one in State of São Paulo (Cândido Mota)), in 2014/2015 crop 
season. PC: main component. Cultivars: BMX Potência RR (1), DMario 58i (2), NK 7059 
RR (3), A 6411RG (4), BMX Ativa RR (5), BMX Energia RR (6), NA 5909 RG (7), NS 
4823 (8), BMX Turbo RR (9), NS 5858 (10), NS 6262 (11), SYN1059 RR (12), NS 6767 
(13), TMG 7262RR (14), NS 4901 (15), NS 5258 (16), NS 5290 (17), NS 5401 RR (18), 
NS 6209 (19), NS6121RR (20), NS6823RR (21), M6210IPRO (22), M6410IPRO (23), 
5958RSF IPRO (24), 6458RSF IPRO (25), 6563RSF IPRO (26), AS 3570IPRO (27), AS 
3610IPRO (28), M5917IPRO (29), NS 5000 IPRO (30), NS 5106 IPRO (31), NS 5151 
IPRO (32), NS 5445 IPRO (33), NS 5959 IPRO (34), NS 6909 IPRO (35), NS 7000 IPRO 
(36), NS 7209 IPRO (37), NS 7237 IPRO (38), NS 7300 IPRO (39), NS 7338 IPRO (40), 
NS 5727 IPRO (41), NS 6006 IPRO (42), NS6060IPRO (43), NS6700IPRO (44), 
NS6906IPRO (45) e TMG2158IPRO (46). ......................................................................... 51 

Figure 4.2. Ideal genotype for the 46 soybean cultivars (A), and for the cultivars division in early (B), 



medium (C) and late cycle (D), assessed in eight locations (seven of which in the State of 
Paraná (Cambé, Corbélia, Mamborê, Palotina, Realeza, São Jorge do Ivaí e São Miguel 
do Iguaçu) and one in State of São Paulo (Cândido Mota)), in 2014/2015 crop season. 
PC: main component. Cultivars: BMX Potência RR (1), DMario 58i (2), NK 7059 RR (3), A 
6411RG (4), BMX Ativa RR (5), BMX Energia RR (6), NA 5909 RG (7), NS 4823 (8), BMX 
Turbo RR (9), NS 5858 (10), NS 6262 (11), SYN1059 RR (12), NS 6767 (13), TMG 
7262RR (14), NS 4901 (15), NS 5258 (16), NS 5290 (17), NS 5401 RR (18), NS 6209 
(19), NS6121RR (20), NS6823RR (21), M6210IPRO (22), M6410IPRO (23), 5958RSF 
IPRO (24), 6458RSF IPRO (25), 6563RSF IPRO (26), AS 3570IPRO (27), AS 3610IPRO 
(28), M5917IPRO (29), NS 5000 IPRO (30), NS 5106 IPRO (31), NS 5151 IPRO (32), NS 
5445 IPRO (33), NS 5959 IPRO (34), NS 6909 IPRO (35), NS 7000 IPRO (36), NS 7209 
IPRO (37), NS 7237 IPRO (38), NS 7300 IPRO (39), NS 7338 IPRO (40), NS 5727 IPRO 
(41), NS 6006 IPRO (42), NS6060IPRO (43), NS6700IPRO (44), NS6906IPRO (45) e 
TMG2158IPRO (46). .......................................................................................................... 53 

Figure 5.1 – The eight geographical locations in this study. CM, Cândido Mota; COR, Corbélia; MAB, 
Mamborê; PAL, Palotina; REA, Realeza; CAM, Cambé; SJI, São Jorge do Ivaí; SMI, São 
Miguel do Iguaçu. PR, Paraná State; SP, São Paulo State. .............................................. 58 

Figure 5.2 – Decay of LD (r2) with physical map distances between markers in the examined 
genotypes, as determined by locally weighted polynomial regression. ............................. 64 

Figure 5.3 – Scatterplot of the two first eigenvalues in a principal coordinates analysis of 4947 SNPs in 
324 Brazilian soybean genotypes clustered into RIL (G1, in green) and elite genotype 
(G2, in red) subpopulations. ............................................................................................... 64 

Figure 5.4 – Dendrogram obtained by cluster analysis of data from 4947 SNP markers in 324 
individuals (divided into two subgroups): G1 (243 RILs, in green) and G2 (81 elite 
genotypes, in red) included in the GS. ............................................................................... 65 

Figure 5.5 – eBLUPs predicted by a mixed linear model (lme4) for the analyzed traits. Datasets 
corresponding to RILs and elite genotypes are shown in green and red, respectively. .... 66 

 

 



LIST OF TABLES 
 

Table 2.1 – Locations of conduction of value of cultivation and use (VCU) trials in the macroregions of 
soybean 1 (M1) and 2 (M2). ............................................................................................... 20 

Table 2.2 - Soybean genotypes and lineages tested in the Value of Cultivation and Use (VCU) trials in 
2012/13 to 2015/16 crops seasons in the M1 and M2 macroregions. ............................... 21 

Table 2.3 – Numerical values of the analysis G vs. GE for locations with the ability to select superior 
genotypes (AEC_X), stable (G) and unstable (GE) (AEC_Y), Vector length and 
representativeness of the environment (Correlation with AEA) for Macroregion 1. ........... 23 

Table 2.4 – Numerical values of the analysis G vs. GE for locations with the ability to select superior 
genotypes (AEC_X), stable (G) and unstable (GE) (AEC_Y), Vector length and 
representativeness of the environment (Correlation with AEA) for Macroregion 2. ........... 24 

Table 3.1 – Variability indicators obtained using the randomized complete block design (RCBD), 
Papadakis (Papa) method, and triple lattice for nine environments (E) in Paraná (PR) and 
São Paulo (SP), Brazil, in the 2014/15 harvest. ................................................................. 35 

Table 3.2 - Variability indicators obtained using the randomized complete block design (RCBD; six 
blocks), Papadakis method (Papa; six blocks), and duplicate triple lattice design in 
soybean trials conducted in the 2014/15 harvest. .............................................................. 38 

Table 4.1 – Description of 46 soybean cultivars, maturity group, cycle, year of release, technology and 
releaser. .............................................................................................................................. 42 

Table 4.2 – Identification of test locations used to evaluate 46 soybean cultivars, in 2014/2015 crop 
season. ............................................................................................................................... 44 

Table 4.3 – Estimation of genetic parameters for each of the eight locations and for the set of 
locations, for the trait grain yield (GY) of 46 soybean cultivars. ......................................... 46 

Table 4.4 – Grain yield (kg ha-1) of soybean cultivars, grouping means by the Scott-Knott test, and 
mean of cultivars in eight. sites GY ( X G), mean of each location ( X L), and mean of 46 
soybean cultivars classifid according to their cycle, in each site, in the 2014/2015 crop 
season. ............................................................................................................................... 48 

Table 4.5 – Genetic effects (g), predicted genotypic values (u + g), gain, new mean of the genotype, 
rank, average genotypic value in the environments (u + g + gem) and methods of 
adaptability and stability using mixed models. ................................................................... 49 

Table 5.1 – Geographical and climatic information on the eight locations selected for evaluation of 324 
soybean genotypes in the 2014/15 crop season................................................................ 58 

Table 5.2 – Coefficients of genetic and environmental variances and heritability determined from 
restricted maximum likelihood model estimates................................................................. 66 

Table 5.3 – Accuracy of GS analysis for five traits in soybean based on the BayesB model and eBLUP 
considering homogeneous or stratified population structures ............................................ 67 

Table 5.4 – Deviance information criterion values obtained for GS analysis* ....................................... 67 

Table 5.5 – Accuracy of GS vs. phenotypic selection ............................................................................ 68 

 
 



LIST OF ACRONYMS AND ABBREVIATIONS 
ABL Abelardo Luz 
alt Altitude 
AEA Average environment axis 

α Bootstrap confidence interval estimate 

BRA Brasilândia do Sul 
CPN Campos Novos 
CMO Cândido Mota 
CCV Cascavel 
CHA Chapada 
CV% Coefficient of variation 

CRD Completely randomized design 

HA-GGE Data scaled by standard deviation and adjusted heritability 

DM Days to maturity 

DOU Dourados 
eBLUPs  Empirical best linear unbiased prediction  
h Environment vector length 

ERC Erechim 
VCe Error variation coefficient 

FDI Fasoulas differentiation index 

rg Genetic correlation 

g Genetic effects 

VCg Genetic variation coefficient  

GB Genomic breeding 

GEBVs Genomic breeding values 

GS Genomic selection 

GGE Genotype main effects plus genotype × environment interaction 

GA Genotypic accuracy 

CVgi% Genotypic coefficient of variation 

G Genotypic effect 

GE Genotypic interaction 

VG Genotypic variance 

GY Grain yield 

GUA Guarapuava 
HMGV Harmonic mean of genotypic values 

R8 Harvest maturity 

ha Hectare 



h2
g Heritability in the broad sense 

IPF Insertion of the first pod  
lat Latitude 
LSD Least significant difference 

LD Linkage disequilibrium 

GGL Location interaction 
GL Location interaction 

LON Londrina 
long Longitude 
M1 Macroregions 1 

M2 Macroregions 2 

MCJ Maracaju 
MAS  Marker-assisted selection  

MG Maturity groups 

m Metros 
NPK Nitrogen:phosphorus:potassium 

PSO Palma Sola 
PLT Palotina 
Papa Papadakis 

PR Paraná State 
PRB Perobal 
PA Phenotypic accuracy 

PB Phenotypic breeding 

VF Phenotypic variance 

PH Plant height 

PH Plant height  
PPO Ponta Porã 
RPGV Predicted genotypic values 

u + g Predicted genotypic values 

PCs Principal components 

i.e. Progenies from a single plant 

QTLs  Quantitative trait loci 
kg Quilograma 
RCBD Randomized complete block design 

RLZ Realeza 
RILs  Recombinant inbreed lines  
RKHS Reproducing kernel Hilbert space 

CVe% Residual coefficient of variation 

STC Santa Cruz do Sul 



STO Santo Augusto 
SFA São Fco. de Assis 
SJI São Jorge do Ivaí 
SP São Paulo State 
SA Selective accuracy 

SID Sidrolândia 
SNPs  Single Nucleotide Polymorphisms  

SVP Singular value partition 

TGW Thousand grain weight  
UBI Ubiratã 
VAC Vacaria 
VCU Value of cultivation and use 

VG×A Value of interaction variance 

VC Variation coefficient 

 
 
 
 
 
 
 
 

SUMMARY 
 
1 INTRODUCTION .................................................................................................... 17 

2 IDENTIFICATION OF CORE LOCATIONS FOR SOYBEAN BREEDING IN 
SOUTHERN BRAZIL ................................................................................................ 19 

2.1 Literature Review of Core Locations for Soybean Breeding in Southern Brazil ... 19 

2.2 Materials and Methods Utilized to Identification of Core Locations for Soybean 
Breeding in Southern Brazil ....................................................................................... 20 

2.3 Results about Identification of Core Locations for Soybean Breeding in Southern 
Brazil ......................................................................................................................... 23 

2.4 Discussion about Identification of Core Locations for Soybean Breeding in 
Southern Brazil .......................................................................................................... 29 

2.5 Conclusion about Identification of Core Locations for Soybean Breeding in 
Southern Brazil .......................................................................................................... 31 

3 METHODS OF ANALYSIS AND NUMBER OF REPLICATES FOR TRIALS WITH 
LARGE NUMBERS OF SOYBEAN GENOTYPES ................................................... 33 

3.1 Literature Review of Methods of analysis and number of replicates for trials with 
large numbers of soybean genotypes ....................................................................... 33 

3.2 Materials and Methods of analysis and number of replicates for trials with large 
numbers of soybean genotypes ................................................................................ 34 



3.3 Results and Discussion about Methods of analysis and number of replicates for 
trials with large numbers of soybean genotypes........................................................ 36 

3.4 Conclusion about Methods of analysis and number of replicates for trials with 
large numbers of soybean genotypes ....................................................................... 41 

4 AGRONOMIC PERFORMANCE OF MODERN SOYBEAN CULTIVARS IN 
MULTI-ENVIRONMENT TRIALS .............................................................................. 42 

4.1 Literature Review of Agronomic Performance of Modern Moybean Cultivars in 
Multi-environment Trials ............................................................................................ 42 

4.2 Materials and Methods of Agronomic Performance of Modern Soybean Cultivars 
in Multi-environment Trials ........................................................................................ 43 

4.3 Results and Discussion of Agronomic Performance of Modern Soybean Cultivars 
in Multi-environment Trials ........................................................................................ 46 

4.4 Conclusion of Agronomic Performance of Modern Soybean Cultivars in Multi-
Environment Trials .................................................................................................... 55 

5 GENOMIC SELECTION IN SOYBEAN: ACCURACY AND TIME GAIN IN 
RELATION TO PHENOTYPIC SELECTION ............................................................ 56 

5.1 Introduction of Genomic Selection in Soybean: Accuracy and Time Gain in 
Relation to Phenotypic Selection ............................................................................... 56 

5.2 Materials and Methods of Genomic Selection in Soybean: Accuracy and Time 
Gain in Relation to Phenotypic Selection .................................................................. 58 

5.3 Results of Genomic Selection in Soybean: Accuracy and Time Gain in Relation to 
Phenotypic Selection ................................................................................................. 64 

5.4 Discussion of Genomic Selection in Soybean: Accuracy and Time Gain in 
Relation to Phenotypic Selection ............................................................................... 70 

5.4 Conclusions of Genomic Selection in Soybean: Accuracy and Time Gain in 
Relation to Phenotypic Selection ............................................................................... 73 

6 CONCLUSIONS ..................................................................................................... 74 

REFERENCES .......................................................................................................... 76 

GLOSSÁRIO ............................................................................................................. 87 

 
 
 



1 INTRODUCTION 

The constantly growing global demand for soybeans necessitates 

increasing the country's productivity. Selective plant breeding based on genetics has 

made significant advances in this direction possible, more specifically in the last few 

decades. However, breeding selection is practiced based on phenotypic features, 

often obtained through estimation methods that consider only the phenotype, which 

results in the narrowing of the genetic base and consequently, in the limitation of the 

genetic gains in successive breeding cycles. 

In a genetic breeding program, several factors influence the selection of 

the ideal phenotype, mainly due to the high number of genotypes and the reduced 

experimental capacity in the initial phases of the program. In addition, to selecting a 

superior phenotype, it is necessary to consider the representativeness of the target 

selection environment, the efficiency of planning and experimentation used in the 

genotype evaluation assays, and the suitability of the selected target genotype group 

and its performance in multi-environments. 

Choosing the best environment for the selection of superior genotypes 

has direct implications on the effectiveness of the breeding program, mainly due to the 

limitations of early seed availability and the proportion of lineages in these stages. As 

such, it is essential to conduct tests in a location representative of the target 

environment to maximize the genetic gains in the next generations. 

Selection of the best genotype is associated with obtaining phenotypic 

information from the replicates sown in a specific place, which, once statistically 

analyzed, allows to improve the tests and the efficiency in identifying the most 

promising genotypes. However, the accuracy of the assays and the number of 

replicates suitable for trials with large numbers of soybean genotypes are still 

unknown. 

The multi-environmental performance is what determines if a group of 

selected genotypes shows adaptability and production stability. That is, a genotype’s 

ability to respond predictably to environmental stimuli and the predictability in its 

performance in different environments determine its suitability and superiority, and 

based on these characteristics the selection of phenotypes with superior genotypes is 



guaranteed. 

However, the pace and proportion with which the breeding programs 

have been developing in the recent decades, has made it increasingly difficult to 

identify suitable genotypes early, simultaneously with increasing the selection gains 

and reducing the gap between segregating generations. In this context, the use of 

molecular markers associated with the selection and prediction of genetic values for 

grain yields stands out as an important tool in the selection process. 

Genome-wide selection (GWS) has become an important tool in the 

early selection of superior genotypes, and it basically involves the simultaneous 

prediction of genetic effects based on a large number of genetic markers scattered 

throughout the genome. In this way, it seeks to capture the effects, both small and 

large, of all loci, and to explain much of the genetic variations of a quantitative 

character based on specific molecular markers. 

In this context, the objective of this work was to develop a model for 

broad genomic selection through the use of SNP molecular markers, aiming to 

contribute to the early selection of superior lineages in soybean breeding programs. 

For this purpose, the main selection environments for the initial stages of the crop 

breeding program were selected. In addition, the number of ideal replicates and the 

efficiency of statistical methodologies applied for the selection of a large number of 

genotypes were evaluated. Finally, the soybean genotypes ideal for cultivation in eight 

growing environments in Brazil were selected through multi-environmental trials, 

aiming for new studies and validation of the developed model. 

 

 



2 IDENTIFICATION OF CORE LOCATIONS FOR SOYBEAN BREEDING IN 
SOUTHERN BRAZIL 

2.1 Literature Review of Core Locations for Soybean Breeding in Southern Brazil 

Hybridization among homozygous soybean genotypes is performed with 

the aim of recombining alleles for increasing genetic variability. Subsequently, several 

succeeding generations of progeny are evaluated and selected until a new cultivar is 

developed and released. However, in generations with low seed availability, such as in 

segregating or advanced populations, and recently selected lines (i.e., progenies from 

a single plant), soybean breeders are often faced with a dilemma while choosing the 

best environment for the selection of superior genotypes. This is an important issue 

owing to limitations in seed availability in early generations. Moreover, these trials are 

usually conducted in few locations, and in many cases, at a single location. This has 

direct implications on the effectiveness of the breeding program. 

It is essential to conduct trials at a location that is representative of the 

target environment of selection. Moreover, this representativeness must be consistent 

over the years (DIA, 2016b; YAN, 2016). Furthermore, location and selection must be 

efficient in differentiating superior genotypes (QIN et al., 2015; KRISHNAMURTHY et 

al., 2017). When the location combines both characteristics it is named as a core 

location (YAN, 2014).  

The GGE (genotype main effects plus genotype × environment 

interaction) biplot analysis has been widely used for evaluating the suitability of test 

locations for numerous crops, e.g., watermelon (DIA et al., 2016a), spring durum 

wheat (KARIMIZADEH et al., 2016), rice (KRISHNAMURTHY et al., 2017), soybean 

(QIN et al., 2015), and oat (YAN, 2010). However, traditional methods use individual 

year-to-year analysis. This method produces results that are hard to interpret; thus, it 

may not be efficient if a pattern observed over years is not clear-cut. A new method 

designated as GGL + GGE (YAN, 2014, 2015) overcame this obstacle. In this biplot, 

data are summarized in a single biplot point, which is calculated from the mean of the 

two first principal components (PCs). This enables the establishment of a pattern 

among years. Thus, the GGL + GGE biplot is the most appropriate for comparing test 



locations based on multi-year data (YAN, 2014). This analysis enables decision-

making with more certainty regarding the representativeness of a location as 

compared with that of the target environment and its potential for the selection of 

superior genotypes. Therefore, this study aimed to identify core locations in soybean 

M1 and M2 in southern Brazil.  

2.2 Materials and Methods Utilized to Identification of Core Locations for Soybean 
Breeding in Southern Brazil 

Data from Value of Cultivation and Use (VCU) trials from the 2012–13, 

2013–14, 2014–15, and 2015–16 crop seasons were used. Trials were conducted in 

23 locations, 11 of which are in M1 and 12 in M2 macroregions (Table 2.1). Twenty-

two genotypes were tested, including eight cultivars and 14 lineages (Table 2.2). 

Experiments were conducted using a completely randomized block 

design with three replications. Plots consisted of four rows with a length of 5 m, and 

row spacing and plot spacing of 0.5 m. Sowing density was standardized for all 

genotypes at 30 seeds m−2. Basis fertilization consisted of N-P-K mineral fertilizer with 

7 kg N ha-1, 70 kg P2O5 ha-1, and 70 kg K2O ha−1. Harvest was performed using a 

plot combine when plants reached harvest maturity (R8). Both central rows of each 

plot (5 m2) were harvested, and seed moisture content was routinely adjusted to 13%. 

Statistical analysis for identification of core locations were performed 

using the GGEbiplot software (YAN, 2001). GGL + GGE analysis was used to identify 

core location in each of the two previously defined macroregions. In this analysis, 

location in the biplot was defined by the mean of both PC1 and PC2 over the tested 

years. When the data were scaled using HA-GGE (data scaled by standard deviation 

and adjusted heritability), the cosine of the angle between the vector of the location 

and the Average environment axis (AEA) line represents a good estimate of the 

genetic correlation (rg) between the two (YAN and holland, 2010; YAN, 2014). Thus, 

the smaller the angle between the location and the mean environment, the more 

representative is the location. The vector length indicates the consistency of the 

results recorded over the years, i.e., its representativeness. When the biplot 

explanation is high, the vector length is proportional to the squared root of the 



heritability (h) (YAN, 2014). 

Table 2.1 – Locations of conduction of value of cultivation and use (VCU) trials in the macroregions of 
soybean 1 (M1) and 2 (M2). 

Location Code Region 
Crop season 

2012 2013 2014 2015 

Abelardo Luz ABL M1 X X X X 

Brasilândia do Sul BRA M2   X X 

Cascavel CCV M2 X X X X 

Chapada CHA M1 X X X X 

Cândido Mota CMO M2 X X X  

Campos Novos CPN M1 X  X X 

Dourados DOU M2 X X X X 

Erechim ERC M1 X X   

Guarapuava GUA M1  X X X 

Londrina LON M2 X X X X 

Maracaju MCJ M2 X X  X 

Palotina PLT M2 X X X X 

Ponta Porã PPO M2 X  X X 

Perobal PRB M2 X  X X 

Palma Sola PSO M1 X X X  

Realeza RLZ M1 X X X X 

São Fco. de Assis SFA M1   X X 

Sidrolândia SID M2 X  X X 

São Jorge do Ivaí SJI M2   X X 

Santa Cruz do Sul STC M1 X X X X 

Santo Augusto STO M1 X X  X 

Ubiratã UBI M2  X X X 

Vacaria VAC M1 X X  X 
 

The G vs. GE analysis allows for inferences about the environmental 

capability (environment = location + year) for the selection of superior genotypes. In 

this analysis, the more farther to the right of the biplot the environment is, the higher 

the environmental potential for selection of superior genotypes. The vector length 

towards the double-arrowed line, average environment coordination (AEC), permits 

identification of the environmental potential to select genotypes through the genotypic 

effect (G) or interaction (GE genotype x environment effects, i.e., instability effect). In 

this case, the shorter the vector, the higher the potential of the environment to select 

genotypes through G, and the longer the vector (more distant from the AEA line in 

order to the AEC line) the higher its potential for selection of genotypes through GE, 

indicating genotype instability. Therefore, environments to the right side of the biplot 



with short vectors are desirable, whereas environments to the left side with long 

vectors are not suitable. Environments to the left of the AEC line are inefficient for any 

type of selection and environments to the right of the AEC line, even with long vectors 

towards or close to the AEC line, are somewhat useful, e.g., for selecting unstable but 

not superior genotypes (YAN, 2014). 

Table 2.2 - Soybean genotypes and lineages tested in the Value of Cultivation and Use (VCU) trials in 
2012/13 to 2015/16 crops seasons in the M1 and M2 macroregions. 

Genotype Specification 
Crop season 

2012/13 2013/14 2014/15 2015/16 

A 4724RG RG X X   

BMX ENERGIA RR RG X X   

Dmario 58i RG X X X X 

NA 5909 RG RG X X X X 

BMX TURBO RR RG X X X X 

NS 6262 RG X X X X 

BMX Potência RR RG X X X X 

NK 7059 RR RG X X X X 

NS L01 L X X   

NS L02 L X X   

NS L06 L X X   

NS L07 L X X X X 

NS L08 L X X   

NS L11 L X X   

NS L12 L X X X X 

NS L13 L X X   

NS L14 L X X X X 

NS L23 L   X X 

NS L24 L   X X 

NS L25 L   X X 

NSL26 L   X X 

NSL27 L   X X 
L = Line; RG = Released Genotype.  
 

Vector analysis of the environments allows the construction of the 

environmental linear map (right side of the biplot). This bar indicates the distance 

between environments, where proximity among environments indicates positive 

genetic correlation among them (YAN, 2014). Furthermore, the position of 

environments on the linear map makes it possible to identify patterns in genotype and 

location interaction (GL) and GE data. Thus, if environments are placed on the linear 

map mainly by location and not year, dominance will be established by GL over GE. 



However, if environments are mainly placed by year instead of location, dominance 

will be established by GE over GL (YAN, 2014). 

For all analysis, the following parameters were used: data transformation 

(Transform = 0, no transformation); data scaling [Scaling = 2, data scaled by standard 

deviation (SD-scaled), and adjusted heritability (h-weighted)]; data centering [Data 

centering = 2, genotype + genotype environment interaction (G + GE), and singular 

value partition (SVP) = 2, focus on environment]. 

2.3 Results about Identification of Core Locations for Soybean Breeding in Southern 
Brazil 

The GGL + GGE analysis revealed that the most representative test 

location (of the target environment, i.e., macroregion) is highly correlated with the 

mean environment, and that the results must be consistent over years (long vector). 

Furthermore, it is highly desirable that it allows genotype differentiation in the G vs. 

GE analysis and selection of superior genotypes mainly through the genotypic effect 

(G). 

In the G vs. GE analysis based on various environments, the 

interpretation of the biplot may be limited by location overlapping. However, results 

that are more intelligible are presented in Tables 2.3 and 2.4, for M1 and M2, 

respectively. Data in these tables are rgh values (AEC_X), which is an index for 

evaluating test environments that is defined by the ratio between rg (close to the 

cosine of the angle between environment and AEA) and h (environment vector 

length). This index is integrated for environmental evaluations and is useful even with 

a low explanation of the biplot (Yan, 2014). Therefore, the higher the AEC_X value, 

the higher is the environmental potential for selection of superior genotypes and the 

desirability of the environment. The AEC_Y column refers to the potential of a location 

for selection of genotypes through G or GE. The higher the modular AEC_Y value, the 

lower the potential of the location for selecting genotypes by G, and higher is the 

possibility of selecting based on the GE interactions. Thus, environments 

characterized by AEC_Y values between 0.30 and −0.30 were considered adequate 

for selecting genotypes through G, whereas environments with AEC_Y above these 



values were considered adequate for selecting genotypes based on GE. In summary, 

a most desirable environment will be one characterized by a high AEC_X value and a 

close-to-zero AEC_Y value. 

Table 2.3 – Numerical values of the analysis G vs. GE for locations with the ability to select superior 
genotypes (AEC_X), stable (G) and unstable (GE) (AEC_Y), Vector length and 
representativeness of the environment (Correlation with AEA) for Macroregion 1.  

Tester AEC_X AEC_Y Vector Length Correlation with AEA 

CPN_14 1.449 0.373 1.496 0.968 

GUA_14 1.327 0.644 1.475 0.900 

PSO_14 1.289 -0.370 1.341 0.961 

ABL_14 1.252 -0.459 1.333 0.939 

VAC_12 1.240 0.105 1.244 0.996 

STC_13 1.160 0.703 1.356 0.855 

VAC_15 1.155 0.112 1.160 0.995 

CHA_15 1.145 0.602 1.294 0.885 

ERC_13 1.143 0.816 1.404 0.814 

RLZ_14 1.049 -0.352 1.106 0.948 

CPN_15 1.047 -0.106 1.052 0.995 

CPN_12 1.033 1.029 1.458 0.708 

STO_13 0.995 0.673 1.201 0.828 

GUA_15 0.981 -0.74 1.229 0.798 

ERC_12 0.980 0.501 1.101 0.890 

CHA_13 0.919 -0.264 0.956 0.961 

ABL_15 0.917 -0.387 0.995 0.921 

STO_12 0.830 1.147 1.416 0.586 

CHA_12 0.783 0.788 1.111 0.705 

PSO_12 0.766 0.940 1.212 0.632 

STO_15 0.756 -0.201 0.782 0.966 

STC_14 0.734 -0.415 0.843 0.870 

ABL_13 0.684 -1.037 1.243 0.551 

STC_12 0.641 1.305 1.454 0.441 

RLZ_12 0.570 0.050 0.573 0.996 

PSO_13 0.545 -0.935 1.082 0.503 

ABL_12 0.507 0.877 1.013 0.501 

RLZ_15 0.437 -0.642 0.776 0.563 

CHA_14 0.435 -1.258 1.331 0.327 

SFA_14 0.422 -1.112 1.189 0.355 

VAC_13 0.317 -1.186 1.227 0.258 

RLZ_13 0.308 0.109 0.327 0.943 

SFA_15 0.134 -0.194 0.236 0.568 

GUA_13 -0.184 -0.969 0.986 -0.187 

STC_15 -1.040 -0.149 1.051 -0.990 
A Tester is composed of a location and a year (For example: CPN_14 = Campos Novos, in the year 



2014). The environments are: Abelardo Luz (ABL), Chapada (CHA), Campos Novos (CPN), Erechim 
(ERC), Guarapuava (GUA), Palma Sola (PSO), Realeza (RLZ), São Francisco de Assis (SFA), Santa 
Cruz do Sul (STC), Santo Augusto (STO), Vacaria (VAC).  

Table 2.4 – Numerical values of the analysis G vs. GE for locations with the ability to select superior 
genotypes (AEC_X), stable (G) and unstable (GE) (AEC_Y), Vector length and 
representativeness of the environment (Correlation with AEA) for Macroregion 2.  

Tester AEC_X AEC_Y Vector Length Correlation with AEA 

MCJ_13 1.779 0.263 1.799 0.989 

MCJ_12 1.643 0.517 1.722 0.954 

LON_12 1.611 -0.234 1.628 0.990 

PRB_12 1.373 0.006 1.373 1.000 

DOU_12 1.360 0.359 1.407 0.967 

CMO_13 1.316 -0.151 1.325 0.993 

LON_13 1.307 -0.335 1.349 0.969 

MCJ_15 1.133 -0.326 1.179 0.961 

PPO_15 1.133 -0.326 1.179 0.961 

CCV_12 1.091 -0.924 1.429 0.763 

DOU_13 0.993 1.090 1.474 0.674 

SID_15 0.973 -0.076 0.976 0.997 

SID_12 0.937 0.790 1.225 0.765 

PPO_12 0.918 -0.542 1.066 0.861 

CMO_12 0.835 -1.197 1.460 0.572 

UBI_15 0.793 0.752 1.093 0.726 

PLT_15 0.762 0.469 0.895 0.852 

DOU_15 0.678 0.349 0.763 0.889 

PLT_12 0.655 -1.466 1.606 0.408 

PLT_13 0.655 -1.466 1.606 0.408 

CCV_14 0.642 1.070 1.248 0.514 

SJI_15 0.560 0.360 0.665 0.841 

CCV_15 0.446 0.290 0.532 0.838 

DOU_14 0.420 -0.014 0.421 0.999 

BRA_15 0.417 0.996 1.079 0.386 

LON_15 0.272 0.198 0.336 0.809 

LON_14 0.237 -0.936 0.966 0.246 

PRB_15 0.224 -0.313 0.384 0.582 

UBI_13 0.186 -0.487 0.522 0.356 

CMO_14 -0.098 1.358 1.361 -0.072 

BRA_14 -0.108 0.609 0.619 -0.174 

SJI_14 -0.234 -0.624 0.666 -0.351 

PPO_14 -0.253 0.163 0.301 -0.840 

UBI_14 -0.274 -0.816 0.861 -0.319 

SID_14 -0.335 -0.495 0.598 -0.56 

PLT_14 -0.379 1.065 1.130 -0.335 

PRB_14 -0.542 1.061 1.191 -0.455 

CCV_13 -0.707 -1.036 1.254 -0.564 



A Tester is composed of a location and a year (For example: MCJ_13 = Maracaju, in the year 2013). 
The environments are: Brasilândia do Sul (BRA), Cascavel (CCV), Cândido Mota (CMO), Dourados 
(DOU), Londrina (LON), Maracaju (MCJ), Palotina (PLT), Ponta Porã (PPO), Perobal (PRB), 
Sidrolândia (SID), São Jorge do Ivaí (SJI), Ubiratã (UBI). 
 

The GGL + GGE analysis indicated that CHA and PSO were the most 

representative locations in M1. Both locations had high rg with elevated mean 

environment and genetic correlation between them (Figure 2.1). The G vs. GE 

analysis revealed that environment CPN_14 presented the highest potential for 

selection of superior genotypes (highest rgh) (Figure 2.2A, Table 2.3). However, CPN 

is less representative of M1, as compared with CHA and PSO (Figure 2.1). The CHA 

environments were placed to the right of the AEC line across years, which indicate 

their effectiveness as sites for selecting superior genotypes. The best performance 

among these locations occurred in the environment CHA_15. However, CHA_14 

exceeded optimal vector length, which indicates that it would not be an effective site 

for selecting genotypes through G. Regarding PSO environments, PSO_14 showed 

the third highest potential for selecting superior genotypes. Linear correlation analysis 

(linear mapping), showed that environments CHA_12 and CHA_15 were highly 

correlated and close on the linear map, indicating that these two environments were 

similar over the years (Figure 2.2B). However, most environments were mainly 

grouped by year and not by location, which indicates that GE dominates over GL. 

Environments SFA and STC are the less representative of M1, with 

lower genetic association with the mean environment and short vectors in the GGL + 

GGE analysis (Figure 2.1). Furthermore, STC_15 and GUA_13 showed negative 

AEC_X values, which indicate negligible potential for selecting superior genotypes. 

Therefore, CHA, PSO, and CNP are the best candidates for a core location within M1, 

but CHA is more representative of M1 than the other locations are. Therefore, CHA 

can be considered the core location for this macroregion. 



 
Figure 2.1 – The GGL + GGE ((genotype main effects plus genotype × location interaction) + 

(genotype main effects plus genotype × environment interaction)) biplot for the 
macrorregion 1 based on 2012/13–2015/16 crop seasons (Data for the VCU trials). The 
environments are displayed as the relevant location code, and the genotypes are 
represented by “+”. The environments are: Abelardo Luz (ABL), Chapada (CHA), Campos 
Novos (CPN), Erechim (ERC), Guarapuava (GUA), Palma Sola (PSO), Realeza (RLZ), 
São Francisco de Assis (SFA), Santa Cruz do Sul (STC), Santo Augusto (STO), Vacaria 
(VAC).  

 
Figure 2.2 – The biplot form to display the environment’s ability to select for G (Genotypic effect) vs. 

GE (genotype x environment effects) (A) and the environment vector view of the GGE 
biplot with linear map (B), based on 2012/13–2015/16 crop seasons. Data for the VCU 
trials in soybean macrorregion 1. The environment is composed of a location and a year 
(For example: STC_13 = Santa Cruz do Sul in the year 2013). The environments are: 
Abelardo Luz (ABL), Chapada (CHA), Campos Novos (CPN), Erechim (ERC), Guarapuava 
(GUA), Palma Sola (PSO), Realeza (RLZ), São Francisco de Assis (SFA), Santa Cruz do 
Sul (STC), Santo Augusto (STO), Vacaria (VAC). 

In M2, the GGL + GGE analysis indicated that MCJ is the most 

representative location (highest rg) (Figure 2.3). Furthermore, MCJ_13 and MCJ_12 

are the environments with the highest potential for identifying superior genotypes, 



since they are located to the right of the AEA line (higher rgh). In addition, selection in 

MCJ_13 seems to be mostly dependent on G, because the environmental vector is 

shorter towards AEC than towards AEA (Figure 2.4A). Furthermore, the linear map 

indicated that MCJ_12, MCJ_13, and MCJ_15 are closely related, which showed high 

rg among environments. Moreover, the GL effect partially dominates over the GE 

effect at these environments (Figure 2.4B). The G vs. GE analysis allowed the 

identification of CCV_13, PRB_14, PLT_14, SID_14, UBI_14, PPO_14, SJI_14, 

BRA_14, and SJI_14 as environments showing negative AEC_X values and located 

on the left of the AEC line (Figure 2.4A). 

Furthermore, PLT, UBI, CCV, SJI, SDI, and PRB showed short vectors 

in the GGL + GGE analysis, which indicates inconsistency of results over the years 

and low heritability. In addition, it was observed that environments BRA and PLT are 

scarcely representative, whereas PLT, UBI, CCV, SJI, SID, and PRB present short 

vectors with inconsistent results over the tested years. Therefore, MCJ is the location 

most suitable for designation as a core location in M2 for evaluating segregating 

populations. In addition, MCJ is representative (high rg and mean environment) and 

characterized by a long vector, which indicates consistent results over years. 

Furthermore, environments MCJ_12 and MCJ_13 exhibited the highest potential as 

sites where selection of superior genotypes can be conducted most efficiently. 

 
Figure 2.3 – The GGL + GGE ((genotype main effects plus genotype × location interaction) + 

(genotype main effects plus genotype × environment interaction)) biplot for the 



macrorregion 2 based on 2012/13–2015/16 crop seasons (Data for the VCU trials). The 
environments are displayed as the relevant location code, and the genotypes are 
represented by “+”. The environments are: Brasilândia do Sul (BRA), Cascavel (CCV), 
Cândido Mota (CMO), Dourados (DOU), Londrina (LON), Maracaju (MCJ), Palotina (PLT), 
Ponta Porã (PPO), Perobal (PRB), Sidrolândia (SID), São Jorge do Ivaí (SJI), Ubiratã 
(UBI). 

 
Figure 2.4 – The biplot form to display the environment’s ability to select for G (Genotypic effect) vs. 

GE (genotype x environment effects) (A) and the environment vector view of the GGE 
biplot with linear map (B), based on 2012/13–2015/16 crop seasons. Data for the VCU 
trials in soybean macroregion 2. The environment is composed of a location and a year 
(For example: CCV_13 = Cascavel, in the year 2013). The environments are: Brasilândia 
do Sul (BRA), Cascavel (CCV), Cândido Mota (CMO), Dourados (DOU), Londrina (LON), 
Maracaju (MCJ), Palotina (PLT), Ponta Porã (PPO), Perobal (PRB), Sidrolândia (SID), São 
Jorge do Ivaí (SJI), Ubiratã (UBI). 

2.4 Discussion about Identification of Core Locations for Soybean Breeding in 
Southern Brazil 

The South of Brazil, specifically in M1, is characterized by higher altitude 

and mesothermic climate without dry seasons, as are Cfa or Cfb (temperatures in the 

coldest month range between −3 and 18 ºC). M1 consists of the Rio Grande do Sul 

and Santa Catarina states, in addition to the mid-southern and southeastern regions of 

the Paraná state, and the southern São Paulo state in Brazil. In contrast, M2, which 

consists of the western and northern Paraná, southern and western São Paulo, and 

southern Mato Grosso do Sul states, is considered a transitional region between Cfa 

and Cwa climates, with higher predominant temperatures in summer and dry winters 

(KASTER and FARIAS, 2012). 

Segregating populations and recently selected lines had low seed 

availability. In this sense, it is necessary to identify the best test location, one that 

shows consistency in results across years and a sufficiently high genetic correlation 



(rg) with the target environment to make it representative (DIA et al., 2016b; YAN, 

2016). In summary, locations CHA and MCJ were found to be the closest to a core 

location for the soybean-producing macroregions M1 and M2, respectively.  

In addition to a high representativeness and consistent results across 

years, a core location must exhibit high potential for genotype differentiation (QIN et 

al., 2015). Moreover, a core location must allow selection of genotypes mainly by the 

genotypic effect (G) and not by instability (GE). Therefore, selection will be performed 

considering inherent characteristics in each genotype subject to as low as possible 

environmental effects. However, selection based on GE is interesting when focusing 

on discarding unstable genotypes. However, G selection is more attractive for 

breeding purposes, because superior genotypes can be selected with lower 

environmental interaction. Thus, the results obtained in core locations will be more 

reproducible at other locations, because the selection is mainly performed based on 

G. Accordingly, CHA and MCJ are appropriate locations; moreover, MCJ showed 

results that particularly enable superior genotype selection, mainly through genotypic 

effect in M2. Therefore, core locations CHA and MCJ are desirable environments in 

most years, according to the G vs. GE analysis. Environments with short vectors 

towards AEC are desirable for selecting superior genotypes through G (YAN, 2014), 

as observed in environments CHA_15, CHA_13, MCJ_12, and MCJ_13. However, 

locations to the left side of the AEC line present negative rgh and are inadequate for 

selecting superior genotypes (YAN, 2014). 

In addition to the identification the best test locations, the possibility of 

identifying inappropriate locations for trials is another important characteristic of the 

GGE biplot (KRISHNAMURTHY et al., 2017). In this respect, environments on the left 

side of the AEC line on G vs. GE analysis may be replaced by other environments 

with higher potential for selecting superior genotypes, because they are not effective 

for selection, and therefore undesirable (YAN, 2014). Furthermore, non-representative 

locations with short vectors (inconsistent results) in the GGL + GGE analysis may be 

replaced. Our observations showed that SFA and STC in M1, and BRA, PLT, UBI, 

CCV, SJI, SID, and PRB in M2, had short vectors and an elevated angle (low rg with 

the mean environment); thus, they do not represent the target environment (GGL + 

GGE analysis). Moreover, results at all these locations were inconsistent across 



years. Consequently, they cannot be designated as core locations (YAN, 2015). 

In the relationship among testers analysis, a linear map is built to 

facilitate identification of similarity among environments. Based on this analysis, it is 

possible to identify the patterns of, where GL represents genotype × location 

interaction, GY represents genotype × year interaction, and GLY represents genotype 

× location × year interaction (YAN, 2016). Thus, the GE interaction increases when 

the year effect is high. 

In both macroregions, the environments effects are mainly ranked by 

year and not by location. Thus, a higher correlation is observed because of GE owing 

to the ranking of environments by year and not by location. This occurs because the 

year effect is naturally randomized and unpredictable; thus, GY and GLY are not 

reproducible (YAN, 2016). Minimizing environmental effects is essential for plant 

breeding, because environmental control decreases the effect of GE over GL in 

addition to enabling higher heritability and experimental precision. This was observed 

for MCJ: the environments at this location (especially, MCJ_12, MCJ_13, and 

MCJ_15) remained close on the linear map. A portion of GL may repeat with a 

decreased year effect, which is related to location effects such as sowing date, plant 

density, irrigation, soil fertility, and other crop management factors. These 

characteristics minimize the effects of interactions involving the year factor (YAN, 

2016). Thus, in addition to choosing the most representative location with the highest 

potential for selecting superior genotypes, experimental area homogeneity and an 

efficient crop management practice are essential requisites of any core location, 

because the success of any breeding effort greatly depends on them. 

Identifying the best location for selecting segregating populations and 

recently selected lines in a macroregion are essential, because limited seed 

availability is a common feature in these cases. Seed availability limitation usually 

limits the number of trial locations to a single one. Therefore, conducting experiments 

in the location that combines the highest representativeness and the highest potential 

for selecting superior genotypes — mainly through the genotypic effects — is essential 

for the success in evaluating and selecting new soybean cultivars. 

2.5 Conclusion about Identification of Core Locations for Soybean Breeding in 



Southern Brazil 

Environments Chapada - RS and Maracaju - MS best approximate the 

definition of a core location in macroregion 1 and 2, respectively.  

Locations Santa Cruz do Sul - RS and São Francisco de Assis - RS, in 

macroregion 1 and Perobal - PR, Brasilândia do Sul - PR, Ubiratã - PR, Palotina - PR, 

São Jorge do Ivaí - PR, Cascavel - PR and Sidrolândia - MS, in macroregion 2, are 

inadequate and should not be considered while designating core locations. 

The identification of core locations is crucial when the availability of 

seeds is low because trials are normally conducted in one or few locations 

simultaneously in each macroregion. 

 



3 METHODS OF ANALYSIS AND NUMBER OF REPLICATES FOR TRIALS WITH 
LARGE NUMBERS OF SOYBEAN GENOTYPES 

3.1 Literature Review of Methods of analysis and number of replicates for trials with 
large numbers of soybean genotypes 

Planning for genotype evaluation trials is a very important activity for 

qualification of results in genetic breeding programs. This activity is even more 

important when the number of entries (genotypes) is large, as usually occurs in 

breeding programs. For these cases, most appropriate designs and analysis methods 

are reported, e.g., single and triple lattice designs (RAMALHO et al., 2000) and the 

Papadakis spatial analysis method. This was applied in various cases with a smaller 

number of soybean genotypes (VOLLMAN et al., 2000; STORCK et al., 2008; BENIN 

et al., 2013), showing significant accuracy gains when compared to the random 

complete block design. Appropriate measures to assess the experimental precision in 

bean and soybean genotypes competition assays were studied (CARGNELUTTI 

FILHO et al., 2009), and they can be used to identify the best planning and data 

analysis. 

Bean yield data with 25 to 400 genotypes and lattice design were used, 

and it was observed that the Papadakis method contributes to improve the local 

control efficiency (COSTA et al., 2005). In wheat, it was observed that the indices of 

experimental precision measurements improved with use of the Papadakis method, 

and the number of replicates necessary to predict genotype performance was reduced 

(STORCK et al., 2014). Similar results were obtained in soybean trials with a small 

number of genotypes, and it was observed that the Papadakis method allowed to 

reduce the number of replicates (STORCK et al., 2009).  

In breeding programs, obtaining information about the best analysis 

method and the most appropriate number of replicates is extremely important to 

conduct competition assays with a large number of genotypes. This information allows 

to improve network testing and efficiency in the identification of most promising 

genotypes. Precision of trials, with a large number of soybean genotypes and 

analyzed by different methods, is still unknown. Number of replicates suitable for trials 

with a large number of genotypes is also not known. The aim of this study was to 



evaluate both the experimental precision of different statistical analysis methods, with 

a large number of soybean genotypes, and their relationship with the number of 

replicates.  

3.2 Materials and Methods of analysis and number of replicates for trials with large 
numbers of soybean genotypes 

Data on soybean yield of nine trials were used (324 genotypes obtained 

in the 2014/15 harvest). Among the genotypes, lines from bi-parental crosses 

(generation F7:8 of the Nidera Sementes Ltda breeding program) (240), advanced 

lines of the program (38), and commercial cultivars recommended for the soybean 

cultivation macroregions 1 and 2 (46) were evaluated. The triple lattice experimental 

design with three replicates was used. Each repetition (complete block) was arranged 

in six rows of three incomplete blocks (18 incomplete blocks) and each incomplete 

block contained 18 genotypes. Each plot comprised four 5-m length lines, with 0.50-m 

spacing between lines. The two central lines of each plot were used to obtain the grain 

yield data. A seeding density of 30 seeds m-2 was used, and the basic fertilization 

consisted of NPK (02:20:20; 350 kg ha-1). Procedures for the control of weeds, pests, 

and diseases met the technical recommendations for the culture.  

The trials were conducted in the state of Paraná (PR), in the cities of 

Cambé (lat: 23°11’ S; long: 51°17’ W; alt: 520m), Corbélia (lat: 24°32’ S; long: 53°18’ 

W; alt: 650m), Mamborê (lat: 24°13’ S; long: 52°32’ W; alt: 715m), Palotina (lat: 24°18’ 

S; long: 53°50’ W; alt: 330 m), Realeza (lat: 25°42’ S; long: 53°32’ W; alt: 520 m), São 

Jorge do Ivaí (lat: 23°25’ S; long: 52°18’ W; alt: 560m), and São Miguel do Iguaçu (lat: 

25°15’ S; long: 54°14’ W; alt: 290m), and in the state of São Paulo (SP), in the city of 

Cândido Mota (lat: 22°46’ S; long: 50°23’ W; alt: 440m). In Corbélia city (PR), two 

side-by-side trials were performed, also forming an experiment with six complete 

blocks or a duplicate triple lattice design with 1944 plots.  

Analysis of variance was performed according to the triple lattice design 

for each trial. Genes (CRUZ, 2013) software was used in these analyzis. The same 

trials were also analyzed using the randomized complete block design (RCBD) and 

spatial analysis or Papadakis method, using DelPapa (STORCK et al., 2015) software. 



From these analyzes, precision measurements were obtained as follows: relative 

efficiency for the use of complete block in relation to completely randomized design 

(CRD); relative efficiency of the use of triple lattice in relation to RCBD; error variation 

coefficient (VCe); genetic variation coefficient (VCg); ratio VCe/VCg; and selective 

accuracy (SA), which was estimated as: SA = (1-1/F)1/2, for F>1, and SA = 0, for F<1, 

in which F is the F test value for the genotype. The least significant difference (LSD) 

between genotypes was also obtained by the Tukey test. The Fasoulas differentiation 

index (FDI) was calculated using the expression , and mi is the number of averages 

that the ith genotype statistically exceeds, after the Tukey test (α=0.05) was applied. 

The FDI is the percentage of the number of significant differences between means, 

which the method of multiple comparisons of means (Tukey) could detect in relation to 

the total number of pairs of means.  

Mathematical model additivity was evaluated by the non-additivity test 

(STEEL et al., 1997). Regarding error estimates, homogeneity between genotype 

variances was verified using the Bartlett test (STEEL et al., 1997) with α=0.05. 

Normality of distribution and error randomness was assessed by the Shapiro-Wilk test 

(α=0.05) (STORCK et al., 2015).  

Averages estimated by analysis with the random block design, and those 

obtained using the triple lattice analysis and Papadakis method, were used to estimate 

the Pearson linear correlation coefficients and Spearman non-parametric method.  

Considering that a six-replicate experiment (six complete blocks) was 

also conducted in the city of Corbélia (PR), with plots arranged according to a 36-row 

and 54-column matrix, block resampling (replicate) was possible using the R (R 

Development Core Team, 2015) program. First, taking into account the six blocks, 

2.000 replicas were resampled, with replacement, for analysis by the randomized 

complete block design (RCBD) and Papadakis (Papa) methods. In each method and 

analysis, the precision measurements (SA, VCe, VCg, VCg/VCe, LSD, and FDI) were 

obtained with the additivity, randomness, normality, and variance homogeneity 

assumptions. The 2000 results of each precision measurement were used to 

determine the mean value and the 0.025 (LL) and 0.975 (UL) percentiles as being a 

bootstrap confidence interval estimate (α=0.95). The 2.000 resampling procedure was 

also performed in the cases of five, four, three, and two blocks per trial, and the mean, 



LL, and UL values were obtained for each precision measurement and number of 

replicates.  

3.3 Results and Discussion about Methods of analysis and number of replicates for 
trials with large numbers of soybean genotypes 

3.3.1 Methods of analysis  

In all trials and analysis methods, genotype effects were significant 

(α<0.01). According to the randomized complete block design (RCBD), analysis 

relative efficiency is low in all trials relative to the completely randomized design 

(CRD). Similarly, efficiency in using triple lattice is low relative to RCBD (Table 3.1). 

Block effect was significant (α<0.05) in five of nine trials (55.0%) and significance did 

not result in greater relative efficiency. A study of soybean (226 trials) showed that the 

average relative efficiency in block use was equal to 135% (range: 102.7-215.0%) 

when the number of genotypes is low (10 to 20), and the block effect was significant 

(29.0% of the trials) (STORCK et al., 2008). The value for relative efficiency was equal 

to 127.0% in the evaluation of grain yield (100 soybean genotypes) using a triplicate 

triple lattice design (nine replicates) (BARONA et al., 2009). In a study with soybean 

yield data (25-60 genotypes) in lattice design (nine trials), the average relative 

efficiency in the lattice design was 186% (range: 101-402%), and the variation 

coefficient (VC) was 12%. The VC value was determined for the RCBD (17.5%) and 

Papadakis method (11.0%) with variation in the number of neighboring plots in the 

covariate estimate (VOLLMANN et al., 2000). Progenies of Eucalyptus (121) of two 

ages were analyzed in two different locations, according to the lattice design (11x11), 

with three replicates, and the Papadakis method efficiency was observed only when 

the lattice was also efficient (145%) (SOUZA et al., 2003). Thus, in this study, the 

precision gain due to the use of triple lattice was limited because high precision 

already existed in the analysis by use of the design in random complete blocks.  

 

Table 3.1 – Variability indicators obtained using the randomized complete block design (RCBD), 
Papadakis (Papa) method, and triple lattice for nine environments (E) in Paraná (PR) and 



São Paulo (SP), Brazil, in the 2014/15 harvest.  
Variability A1: Corbélia-PR  A2: Corbélia-PR  A3: Palotina-PR 

indicators(1) RCBD Papa lattice  RCBD Papa lattice  RCBD Papa lattice 

RE 100.3 -  101.7  101.3 - 101.8  99.8 - 104.4 

SA 98.72 99.14 98.69  98.14 98.70 98.10  97.54 98.59 97.52 

VCe 6.89 5.64 6.73  7.88 6.55 7.69  10.11 7.73 9.69 

VCg 24.66 24.73 23.76  23.26 23.23 22.46  25.84 26.25 24.64 

VCg/VCe 3.58 4.38 3.53  2.95 3.55 2.92  2.56 3.40 2.54 

LSD 27.12 22.21 26.51  31.00 25.78 30.29  39.79 30.41 38.17 

FDI 46.58 53.78 47.58  38.43 46.34 39.68  32.07 43.93 33.92 

p-Random 0.222 0.000 -  0.116 0.000 -  0.000 0.000 - 

p-Normal 0.000 0.000 -  0.357 0.732 -  0.003 0.098 - 

p-Non-addict 0.087 - -  0.701 - -  0.344 - - 

p-Bartlet 0.001 0.013 -  0.894 0.996 -  0.816 0.030 - 

 A4: Mamborê-PR  A5: São Miguel do Iguaçu-PR  A6: São Jorge do Ivaí-PR 

RE 104.9 - 100.9  118.6 - 99.0  100.9 - 106.9 

SA 96.39 97.82 96.37  98.10 98.65 98.08  94.70 96.77 94.78 

VCe 7.81 6.02 7.69  7.03 5.92 7.07  8.14 6.27 7.69 

VCg 16.33 16.36 16.01  20.52 20.59 20.52  13.86 13.89 13.19 

VCg/VCe 2.09 2.72 2.08  2.92 3.48 2.90  1.70 2.22 1.72 

LSD 30.73 23.69 30.28  27.66 23.31 27.82  32.03 24.68 30.28 

FDI 17.43 27.88 17.99  35.81 43.85 35.53  11.98 21.17 13.31 

p-Random 0.090 0.000 -  0.302 0.000 -  0.004 0.000 - 

p-Normal 0.420 0.746 -  0.000 0.000 -  0.009 0.676 - 

p-Non-addict 0.789 - -  0.055 - -  0.106 - - 

p-Bartlet 0.575 0.583 -  0.000 0.001 -  0.687 0.020 - 

 A7: Cambé-PR  A8: Cândido Mota-SP  A9: Realeza-PR 

RE 99.7 - 100.0  100.1 - 104.6  105.8 - 101.8 

SA 91.33 94.83 91.28  97.10 98.29 97.16  96.59 98.07 96.57 

VCe 8.65 6.70 8.63  8.96 6.81 8.58  5.56 4.12 5.43 

VCg 11.21 11.56 11.14  20.99 21.00 20.35  11.99 11.95 11.66 

VCg/VCe 1.30 1.73 1.29  2.34 3.08 2.37  2.16 2.90 2.15 

LSD 34.06 26.37 34.00  35.25 26.78 33.79  21.89 16.23 21.39 

FDI 5.07 12.83 5.08  25.30 37.90 26.99  18.94 31.33 19.63 

p-Random 0.415 0.000 -  0.002 0.000 -  0.000 0.000 - 

p-Normal 0.484 0.479 -  0.121 0.410 -  0.689 0.703 - 

p-Non-addict 0.904 - -  0.661 - -  0.240 - - 

p-Bartlet 0.599 0.507 -  0.976 0.172 -  0.013 0.229 - 

(1) RE: relative efficiency; SA: selective accuracy; VCe: error variation coefficient; VCg: genetic 
variation coefficient; LSD: least significant difference, by the Tukey test (5%) in percentage of the mean; 
FDI: Fasoulas differentiation index; and p-value for the randomness, normality, and non-additivity tests 
and error variance homogeneity (Bartlet); - : Variable not available. 
 

Taking into account the precision measurements (SA, VCg/VCe, LSD, 

and FDI), use of the Papadakis method showed a higher efficiency (more accurate) in 



all trials compared to the RCBD and triple lattice models. In the study of 226 trials by 

STORCK et al. (2008), LSD was reduced (from 41.5 to 30.6%) and FDI was increased 

(from 5.0 to 13.1) with use of the Papadakis method relative to RCBD. In this study, 

different values were obtained for LSD with the use of RCBD (31.1%) and Papadakis 

method (24.4%; 6.7% less). In addition, average values were also obtained for FDI 

using RCBD (25.7) and Papadakis method (35.4; 9.7 more units). Thus, despite the 

large number of genotypes assessed in this study, the results obtained for the two 

precision measures cited above were similar, indicating that the Papadakis method 

provides higher accuracy compared to RCBD and triple lattice.  

Selective accuracy (SA) was very high (SA>90%; RESENDE, DUARTE, 

2007) and similar in all trials and analysis methods, ranging from 91.3% (RCBD; 

Cambé-PR) to 99.1% (Papa; Corbélia-PR). It is likely that the methodologies did not 

show difference, due to the high precision (low experimental error) in these trials, with 

a large number of genotypes. In a study of 216 soybean trials, with a variable number 

of genotypes (10-20), the SA values were very high (90%>SA) in 15.5% of the trials 

and high (70%<SA<90%) in 59% of trials (CARGNELUTTI FILHO et al., 2009). In the 

present study, all (100%) trials (and methods) presented very high SA values, and 

thus accuracy differences between analysis methods are small, and all of them belong 

to the same (very high) accuracy class.  

Regarding assumptions, the additivity model was not rejected in the nine 

trials. Regarding analysis in RCBD, randomness (5), variance homogeneity (6), and 

normality (5) were observed in the trials. Regarding use of the Papadakis method, 

results for normality and homogeneity were similar. In addition, lack of error 

randomness was observed due to adjustment of plot values as a function of mean 

errors in the neighboring plots.  

Adjustment in the average values (by the Papadakis method or lattice 

design) did not change their ordination (via Spearman correlation) and relationship 

between means (via Pearson correlation) not adjusted in the analysis with the RCBD 

model (data not shown). Taking into account the high number of genotypes and the 

very high accuracy (SA>90%) in this study, it seems reasonable to assume that there 

is no bias in the adjustment of means when the triple lattice design and Papadakis 

method are used. However, spatial analysis in a trial of 115 soybean genotypes, led to 



a different ordering of lines relative to the non-spatial analysis (DUARTE, 

VENCOVSKY, 2005).  

On average, the precision measurements (SA, LSD, and FDI), as 

obtained by analysis of the duplicate triple lattice design (six replicates), are higher 

than those obtained by the RCBD or Papadakis method in six replicates (Table 3.2). 

However, the differences are small and the method can be chosen by precaution, in 

which efficiency of the analysis method depends on the number of entries and spatial 

variation of the plots in the experimental area.  

Table 3.2  -  Variability indicators obtained using the randomized complete block design (RCBD; six 
blocks), Papadakis method (Papa; six blocks), and duplicate triple lattice design in soybean 
trials conducted in the 2014/15 harvest.  

Variability indicators(1) RCBD Papa Lattice 

SA (%) 98.48 98.97 99.18 

VCe (%) 9.97 8.18 7.32 

VCg (%) 23.04 23.06 22.47 

VCg/VCe 2.31 2.82 3.07 

LSD (%) 27.63 22.68 20.31 

FDI (%) 43.58 51.26 55.67 

(1) SA: selective accuracy; VCe: error variation coefficient; VCg: genetic variation coefficient; LSD: least 
significant difference, by the Tukey test (5%) in percentage of the mean; FDI: Fasoulas differentiation 
index.  

3.3.2 Number of replicates 

Influence of number of replicates on the experimental precision, as 

measured by SA, LSD and FDI is shown in figure 3.1. As can be seen, the accuracy 

gain is low from three replicates on, in the analyses of both randomized complete 

block design (RCBD) and Papadakis method. If amplitude of the confidence interval is 

considered in the precision measurements of this study, difference between accuracy 

values obtained for two or three replicates was not observed. A possible reason is that 

accuracy is already high, and little can be gained by increasing the number of 

replicates and varying the method of analysis. In RCBD, estimates of SA and FDI 

were lower than those obtained by the Papadakis method for any number of 



replicates.   

 

 
Figure 3.1 - Selective accuracy (SA), least significant difference (LSD) by the Tukey test (5%) in 

percentage of the mean, and variation in the Fasoulas differentiation index (FDI); mean, 
lower limit (LL), and upper limit (UL) of the confidence interval, by resampling (1-α=0.95) 
for different number of replicates, and using the randomized complete block design 
(RCBD) and Papadakis method.  



In a study of 175 competition trials of irrigated rice in RCBD, with number 

of genotypes in the range of 5-36, SA was suitable to evaluate experimental precision 

in the trials and use of more than five replicates was of little contribution to precision 

gains (CARGNELUTTI FILHO et al., 2012). In another study with 101 maize yield 

trials, in RCBD, FDI was also suitable to classify the experimental precision 

(CARGNELUTTI FILHO, STORCK, 2007). In this study, it was observed that FDI 

values in RCBD are smaller than those obtained using the Papadakis method with any 

number of replicates. 

A trial is considered very accurate if SA>90%. Such a high accuracy was 

obtained using two replicates, due to the LL values of the confidence interval for 

RCBD (93.6%) and Papadakis method (95.3%). Thus, use of only two repetitions can 

be recommended for trials containing 324 soybean genotypes, and the analysis can 

be performed using the RCBD or Papadakis method. Based on these results, 

however, it cannot be stated that the simple lattice method (two replicates) can be 

used, as this situation was not analyzed by resampling. Block resampling with 

replacement does not assures genotype distribution as recommended by the “simple 

lattice” method.  

3.4 Conclusion about Methods of analysis and number of replicates for trials with large 
numbers of soybean genotypes 

Papadakis method has more reliable experimental precision indicators 

when compared to the randomized complete block design and triple lattice method. 

For trials with 324 soybean genotypes, it is possible to use two replicates and analyze 

the data with the randomized complete block design or Papadakis method as a 

precaution to obtain selective accuracy above the range of high experimental 

precision.  

 



4 AGRONOMIC PERFORMANCE OF MODERN SOYBEAN CULTIVARS IN MULTI-
ENVIRONMENT TRIALS  

4.1 Literature Review of Agronomic Performance of Modern Moybean Cultivars in 
Multi-environment Trials 

Soybean (Glycine max (L.) Merr.) is one of the most important crops for 

the Brazilian economy. Its domestic production reached 96.2 million tons in the 

2014/2015 crop season, with an average production of approximately 3,000 kg ha-1 

(CONAB, 2016).  

Genotype × environment interaction (GEI) is one of the main challenges 

of soybean breeding programs with respect to both cultivar selection and 

recommendation phases (BRANQUINHO et al., 2014). GEI is reflected in differing 

genotypic expressions in different growing environments, and reduces the association 

between phenotype and genotype, thereby reducing genetic progress in breeding 

programs (LOPES et al., 2012). 

Data from multi-environment trials are necessary to assess the presence 

of GEI, yield, and genotype adaptability and stability. Adaptability is the ability of the 

genotype to respond predictably to environmental stimuli, and stability indicates the 

predictability of performance in different environments. Several methods for 

adaptability and stability analysis have been described in the literature, which differ 

according to the statistics—including analysis of variance, non-parametric regression, 

multivariate analysis, and mixed-model analysis—and parameters used. Methods 

based on mixed models enable the analysis of genotypes, including random effects 

analysis, and multivariate analysis has innovative solutions regarding the visualization 

of results. 

The aforementioned mixed-model analysis methods, including restricted 

maximum likelihood/best linear unbiased prediction (REML/BLUP), enable estimation 

of variance components and prediction of genetic values free of environmental effects 

(PEIXOUTO et al., 2016). The following methods may be used: the harmonic mean of 

genotypic values (HMGV) to infer the mean and stability; relative performance of 

predicted genotypic values (RPGV) to analyze the genotypic adaptability and average 

production rate; and the harmonic mean of the relative performance of predicted 



genotypic values (HMRPGV) to identify highly productive, adapted and stable 

genotypes (GOMEZ et al., 2014; SPINELLI et al., 2015; COSTA et al., 2015). Mixed 

models provide estimates of stability and genotypic adaptability because they classify 

the genotypic effects as random (RESENDE, 2004). 

The use of multivariate statistics, involving tools, which include GGE 

biplots, enables the summarizing of data from a large dataset into a few principal 

components (YAN, 2015). Biplots assessing the mean, phenotypic stability, and ideal 

genotype enable the graphical representation of the performance of each cultivar, 

thereby facilitating the selection of superior genotypes (QIN et al., 2015). 

The simultaneous use of mixed models, based on REML/BLUP and 

multivariate method, enables the exploration of different adaptability and stability 

concepts, thereby complementing the data collected, and thus increasing the efficacy 

of the selection of superior genotypes (ANDRADE et al., 2016). 

This study differs from other published studies on soybean adaptability, 

stability, and crop performance, because it combines mixed-model methods and GGE 

biplots to assess cultivars widely grown in the Brazilian macroregions of adaptation 1 

and 2. 

This study aimed to assess the crop performance, adaptability, and 

stability of modern soybean cultivars, in multi-environment trials, and to identify the 

ideal cultivars for eight growing environments in Brazil. 

4.2 Materials and Methods of Agronomic Performance of Modern Soybean Cultivars in 
Multi-environment Trials 

Forty-six modern soybean cultivars, widely grown in the Brazilian 

soybean macroregions of adaptation 1 and 2, which were provided for cultivation from 

2007 to 2013, were assessed (Table 4.1). The cultivars used were classified, based 

on their maturity groups (MG), into: early, MG = 4.8 to 5.7; medium, MG = 5.8 to 6.2; 

and late, MG = 6.3 to 7.3. The experiments were conducted in a randomized complete 

block design, with three replicates, in eight sites representative of the microregions of 

adaptation 102, 201, and 202, in the 2014/2015 crop season (Table 4.2). The sites 

were selected within microregion 201 and nearby regions, with similar sowing season 



and climatic characteristics. 

Table 4.1 –  Description of 46 soybean cultivars, maturity group, cycle, year of release, technology and 
releaser.  

Number Cultivar Maturity 

Group 
Growth 

habit Cycle Year of 

release Technology Releaser 

1 BMX Potência RR 6.7 I Later 2007 RR GDM Genética 
2 DMario 58i 5.5 I Early 2007 RR GDM Genética 
3 NK 7059 RR 6.2 I Medium 2007 RR Syngenta 
4 A 6411RG 6.4 D Later 2008 RR Nidera 
5 BMX Ativa RR 5.6 D Early 2008 RR GDM Genética 
6 BMX Energia RR 5.3 I Early 2008 RR GDM Genética 
7 NA 5909 RG 5.9 I Medium 2008 RR Nidera 
8 NS 4823 4.8 I Early 2008 RR Nidera 
9 BMX Turbo RR 5.8 I Medium 2009 RR GDM Genética 
10 NS 5858 5.8 I Medium 2010 RR Nidera 
11 NS 6262 6.2 I Medium 2010 RR Nidera 
12 SYN1059 RR 5.9 I Medium 2010 RR Syngenta 
13 NS 6767 6.7 I Later 2011 RR Nidera 
14 TMG 7262RR 6.2 I Medium 2011 RR TMG 
15 NS 4901 4.9 I Early 2012 RR Nidera 
16 NS 5258 5.2 I Early 2012 RR Nidera 
17 NS 5290 5.2 I Early 2012 RR Nidera 
18 NS 5401 RR 5.4 I Early 2012 RR Nidera 
19 NS 6209 6.2 I Medium 2012 RR Nidera 
20 NS6121RR 6.1 I Medium 2013 RR Nidera 
21 NS6823RR 6.8 I Later 2013 RR Nidera 
22 M6210IPRO 6.2 I Medium 2011 IPRO Monsoy 
23 M6410IPRO 6.4 I Later 2011 IPRO Monsoy 
24 5958RSF IPRO 5.8 I Medium 2012 IPRO GDM Genética 
25 6458RSF IPRO 6 I Medium 2012 IPRO GDM Genética 
26 6563RSF IPRO 6.3 I Later 2012 IPRO GDM Genética 
27 AS 3570IPRO 5.7 I Early 2012 IPRO Monsoy 
28 AS 3610IPRO 6.1 I Medium 2012 IPRO Monsoy 
29 M5917IPRO 5.9 I Medium 2012 IPRO Monsoy 
30 NS 5000 IPRO 5 I Early 2012 IPRO Nidera 
31 NS 5106 IPRO 5.1 I Early 2012 IPRO Nidera 
32 NS 5151 IPRO 5.1 I Early 2012 IPRO Nidera 
33 NS 5445 IPRO 5.4 I Early 2012 IPRO Nidera 
34 NS 5959 IPRO 5.9 I Medium 2012 IPRO Nidera 
35 NS 6909 IPRO 6.9 I Later 2012 IPRO Nidera 
36 NS 7000 IPRO 7 I Later 2012 IPRO Nidera 
37 NS 7209 IPRO 7.2 I Later 2012 IPRO Nidera 
38 NS 7237 IPRO 7.2 I Later 2012 IPRO Nidera 
39 NS 7300 IPRO 7.3 I Later 2012 IPRO Nidera 
40 NS 7338 IPRO 7.3 I Later 2012 IPRO Nidera 
41 NS 5727 IPRO 5.7 I Early 2013 IPRO Nidera 
42 NS 6006 IPRO 6 I Medium 2013 IPRO Nidera 
43 NS6060IPRO 6 D Medium 2013 IPRO Nidera 
44 NS6700IPRO 6.7 I Later 2013 IPRO Nidera 
45 NS6906IPRO 6.9 I Later 2013 IPRO Nidera 
46 TMG2158IPRO 5.8 I Medium 2013 IPRO TMG 



* I: Indetermined; D: Determined 

This region has the highest soybean production in southern Brazil. The 

experimental units consisted of four 5 m rows, spaced 0.5 m between rows. The 

sowing density was 30 seeds m-2, and base fertilization was performed using 350 kg 

ha-1 NPK (02:20:20). Mechanical methods were employed for sowing and harvesting. 

The character primarily studied was the grain yield (GY, kg ha-1), assessed in the two 

central rows of each plot (5 m2 useful area), with grain moisture corrected to 13% (wet 

basis). Crop treatments were conducted in accordance with the technical 

recommendations for soybean cultivation (OLIVEIRA, ROSA, 2014). 

Table 4.2 – Identification of test locations used to evaluate 46 soybean cultivars, in 2014/2015 crop 
season.  

Location Macroregion Microregion 
Latitude / Altitude 

(m) 
Climate 

Longitude 

Cambé, PR 2 201 
23°16’S 

520 Cfa 
51°16’W 

Cândido Mota, SP 2 201 
22°44’S 

440 Cwa 
50°23’W 

Corbélia, PR 2 201 
24°47’S 

650 Cfa 
53°18’W 

Mamborê, PR 2 201 
24°19’S 

715 Cfa 
52°31’W 

Palotina, PR 2 201 
24°17’S 

330 Cfa 
53°50’W 

Realeza, PR 1 102 
25°46’S 

520 Cfa 
53°31’W 

São Jorge do Ivaí, PR 2 202 
23°25’S 

560 Cfa 
52°17’W 

São Miguel do Iguaçu, PR 2 201 
25°20’S 

290 Cfa 
54°14’W 

 

Initially, variance components were assessed using restricted maximum 

likelihood (REML), and mean components were assessed using the best linear 

unbiased prediction (BLUP) method, employing the statistical package Selegen 

(RESENDE, 2002) with models 21 (for analysis of genetic parameters for each site) 

and 54 (for combined analysis of sites).  

Analysis of variance was also performed to assess the presence of 

genotype × environment interactions. Subsequently, cluster analysis of means was 

performed using the Scott-Knott test at 5% probability and the statistical software 



package Genes (CRUZ, 2013). The average production rates of each genotype, at 

each site, and for the set of sites were also indicated.  

Data on genetic effects (g), predicted genotypic values (u + g), and the 

gain of each genotype would attain on removal of the environmental component, were 

also collected in the analysis performed using model 54 of the software package 

Selegen (RESENDE, 2002). The new genotype average was assessed with this gain, 

and rank analysis was performed using this new value. Furthermore, the mean 

genotypic value (u + g + gem) was assessed in the various environments; this 

indicated the average interaction with all study environments (RESENDE, 2002). The 

following parameters could also be assessed using this model: genotypic stability 

using HMGV; genotypic adaptability and crop performance, using RPGV multiplied by 

the overall mean (OM) of all sites (RPGV*OM); and genotypic stability and adaptability 

and crop performance, using HMRPGV*OM. 

Stability was also assessed using the software GGEbiplot (Yan, 2001), 

which analyzes the stability of genotypes associated with their average production 

rates. For this purpose, the following parameters were used: data transformation 

(Transform = 0, without transformation), data scale (Scaling = 0, without scale), data 

centering (Data centering = 2, genotype plus genotype x environment interaction 

[G+GEI]), and singular-value partitioning (SVP = 1, focus on genotype). The concept 

of ideal genotype was also evaluated using the software GGEbiplot (YAN, 2001) using 

the same parameters as those used for the mean and stability analysis. 

4.3 Results and Discussion of Agronomic Performance of Modern Soybean Cultivars 
in Multi-environment Trials 

In the combined analysis, the estimation of heritability in the broad sense 

(h2
g) for grain yield (GY) was 0.37 (± 0.05), which is lower than the estimate usually 

assessed for agronomic characters controlled by a few genes, albeit within the 

expected range for characters controlled by many genes having small effects, 

including GY (Table 4.3). Low h2
g values indicate the need for a breakdown in the 

GEI, because they result from changes in the performance of genotypes at the study 



sites (ROSADO et al., 2012). Interaction analysis enables maximizing selection gains, 

when testing homozygous clones or lines. Similar results were obtained by other 

authors (PINHEIRO et al., 2013; ROCHA et al., 2015; ANDRADE et al., 2016), who 

also found low heritability estimates for soybean GY. The value of interaction variance 

(VG×A), when higher than genotypic variance (VG), also contributes to the low values 

of h2
g estimates. In the individual analysis of sites, h2

g was higher, ranging from 0.60 

to 0.92, which indicates that a large part of phenotypic variance (VF) resulted from 

VG. The value of standard deviation, at each site, was higher than that assessed for 

the set of study environments, ranging from 0.19 to 0.23. However, these standard 

deviation values are within acceptable limits, thus indicating that the predictions are 

reliable for use in breeding (RESENDE, 2004). 

Table 4.3 – Estimation of genetic parameters for each of the eight locations and for the set of locations, 
for the trait grain yield (GY Kg ha.-1) of 46 soybean cultivars. 

  Locations   Mean of locations 

State Paraná   Sâo Paulo    

Parameter Cambé Corbélia Mamborê Palotina Realeza 
São Jorge 

do Ivaí 
São Miguel 
do Iguaçu  Cândido Mota   VG 222102 

VG 198089 771929 903687 370107 327417 276953 683526  586966  VGxA 292728 

Ve 130764 105619 74431 69894 51372 117540 59123  87360  Ve 87014 

VF 328853 877548 978118 440001 378790 394494 742649  674326  VF 601844 

h2
g 

0,60 
(±0,19) 

0,88 
(±0,22) 

0,92 
(±0,23) 

0,84 
(±0,22) 

0,86 
(±0,22) 

0,70( 
±0,20) 

0,92 
(±0,23)  

0,87 
(±0,22)  h2

g 
0,37 
(±0,05) 

h2
mg 0,82 0,96 0,97 0,94 0,95 0,88 0,97  0,95  h2

mg 0,85 

Acgen 0,91 0,98 0,99 0,97 0,97 0,94 0,99  0,98  Acgen 0,92 

CVgi% 10,49 18,42 22,85 21,15 12,49 12,69 20,23  23,41  c2
int 0,49 

CVe% 8,53 6,81 6,56 9,19 4,95 8,26 5,95  9,03  rgloc 0,43 

PEV 35727 33671 24147 21918 16273 34324 19156  27744  CVgi% 11,73 

SEP 189,01 183,50 155,39 148,05 127,57 185,27 138,40  166,56  CVe% 7,34 

Mean 4242 4770 4160 2876 4582 4148 4087  3273  
General 
mean 4017 

VG, genotypic variance; VGxA, genotype x environment interaction variance; Ve, residual variance; VF, 

individual phenotypic variance. h2
g, heritability of individual plots of the total genotypic effects (in the 

broad sense); c2
int, coefficient of determination of the G x E interaction; h2

mg, heritability of the mean 

of genotype; Acgen, accuracy in the selection of genotypes; rgloc, genotypic correlation between 
environments; CVgi%, coefficient of genotypic variation; CVe%, coefficient of residual variation; PEV, 
variance of the prediction error; SEP, standard deviation of the genotypic value predicted.  
 

The genotypic coefficient of variation (CVgi%) was 11.73% in the 

combined analysis of sites, and ranged from 10.49%, in Cambé, Paraná State (PR), to 

23.41%, in Cândido Mota, São Paulo (SP). Sites with higher CVgi% values favor the 

discrimination of genotypes; that is, they promote a wider performance range, thereby 



favoring selection. The residual coefficient of variation (CVe%) ranged from 4.95% in 

Realeza, PR, to 9.19% in Palotina, PR. These values are considered low and indicate 

good experimental precision. Genotype selection accuracy (Acgen) for the set of sites 

was 0.92, and ranged from 0.91 in Cambé, PR, to 0.99 in Mamborê, PR and São 

Miguel do Iguaçu, PR, thereby, indicating the high experimental precision obtained in 

all study environments. This parameter involves correlating the true genotypic value of 

the genetic treatment with the genotypic value estimated or predicted from 

experimental data. These values may be classified within the very high accuracy class 

(Acgen > 0.90; RESENDE, DUARTE, 2007).  

The genotypic correlation between performances in the various 

environments (rgloc) was 0.43. These values indicate the occurrence of complex 

interaction between genotypes and test sites, which entails different genotypic 

responses at the different sites where they are assessed, thus, changing the ranking 

between sites (COSTA et al., 2015). Furthermore, this also indicates that sites in the 

same soybean microregion of adaptation show considerable differences in cultivar 

performance. This is the case with microregion 201 (macroregion 2). The sites 

Realeza, PR, in microregion 102 (macroregion 1), and São Jorge do Ivaí, PR, in 

microregion 202 (macroregion 2), showed crop performance similar to that assessed 

in microregion 201. Furthermore, large variations in performance were observed, even 

in study sites with latitude variation smaller than 3°. Therefore, breeders must conduct 

several comparative trials of cultivars, within the same sub-region, to identify the 

specificity of each site where they intend to plant their cultivars.  

The average GY of the trials was 4.017 kg ha-1  (Table 4.4), which is 

higher than the average of the Central-South region of Brazil (3.016 kg ha-1), and the 

states of Paraná (3.294 kg ha-1) and São Paulo (2.970 kg ha-1), according to the 

Conab (2016). The average yields assessed in the trials, for each site, ranged from 

2.876 kg ha-1 in Palotina, PR, to 4.770 kg ha-1 in Corbélia, PR. 

In the set of study environments, the highest yields were observed in the 

NA 5909 RG, M6410IPRO, NS 5959 IPRO, NS6823RR, M5917IPRO, NS 6767, and 

6563RSF IPRO cultivars with 4.851, 4.705, 4.670, 4.644, 4.590, 4.589, and 4.578 kg 

ha-1 GY, respectively. 



Table 4.4 – Grain yield (kg ha-1) of soybean cultivars, grouping means by the Scott-Knott test, and 
mean of cultivars in eight. sites GY ( X G), mean of each location ( X L), and mean of 46 
soybean cultivars classifid according to their cycle, in each site, in the 2014/2015 crop 
season. 

 Locations  

Cultivar Cambé, 
PR 

Corbélia, 
PR 

Mamborê, 
PR 

Palotina, 
PR 

Realeza, 
PR 

São. J. do 
Ivaí, PR 

São M. do 
Iguaçu, PR 

Cândido 
Mota, SP 

XG 

BMX Potência RR 4151cB 6186 aA 4453bB 3072cD 4348cB 4706bB 3656dC 3859bC 4304c 

DMario 58i 4241cB 4373dB 4804bA 2325eC 4623bA 3982cB 4580bA 2602dC 3941d 

NK 7059 RR 4020cC 5813bA 3957cC 3579bD 4461bC 3955cC 5277aB 3364cD 4303c 

A 6411RG 3495dB 4105eA 1174eD 2307eC 3997cA 2840eC 2286fC 2601dC 2851h 

BMX Ativa RR 2770eB 3030fA 972eD 1743eC 3308dA 2525eB 2269fB 1653fC 2284i 

BMX Energia RR 3624dB 4445dA 4850bA 2817dC 4953bA 4088cB 3580dB 3857bB 4027d 

NA 5909 RG 4614bB 5557bA 5373aA 3240cC 5343aA 4808bB 5283aA 4588aB 4851a 

NS 4823 3816cB 3129fC 3771cB 2251eD 5086aA 3635dB 2836eC 2463dD 3373g 

BMX Turbo RR 4495bB 5108cB 5577aA 2445eE 5000bB 3928cC 4824bB 3202cD 4322c 

NS 5858 3947cB 3548fB 3897cB 2242eC 4619bA 4301cA 4278cA 3437cB 3784e 

NS 6262 4156cB 3938eB 4664bA 2230eD 4980bA 4195cB 3963cB 2726dC 3856e 

SYN1059 RR 5099aA 4810cA 4475bB 2586dD 4749bA 4320cB 4278cB 3605cC 4240c 

NS 6767 4999aB 5886bA 4686bB 3673bD 4104cD 4447cC 4909bB 4011aD 4589a 

TMG 7262RR 4441bB 5123cA 4800bB 2158eC 5315aA 4634bB 4288cB 2502dC 4158c 

NS 4901 3911cB 4182eB 3915cB 2255eD 5090aA 4067cB 3943cB 2832dC 3774e 

NS 5258 4299bB 4052eB 4035cB 2175eC 4678bA 4670bA 4181cB 3677bB 3971d 

NS 5290 4446bA 4228eA 4478bA 2424eB 4586bA 4441cA 4109cA 2317eB 3879e 

NS 5401 RR 4093cA 3161fB 4008cA 2474dC 4083cA 4081cA 4033cA 2638dC 3571f 

NS 6209 4199cB 5167cA 5253aA 3122cC 3984cB 3969cB 3607dB 3767bB 4134c 

NS6121RR 3906cB 5345cA 3958cB 2886dC 4247cB 4189cB 3186eC 2976dC 3836e 

NS6823RR 4586bB 6097aA 4277cC 3923bC 4699bB 4675bB 4458cB 4437aB 4644a 

M6210IPRO 4328bC 5605bA 4257cC 3777bC 4117cC 4794bB 4705bB 3889bC 4434b 

M6410IPRO 4613bB 5711bA 4184cC 2920dD 4815bB 5453aA 5296aA 4645aB 4705a 

5958RSF IPRO 4686bB 5402cA 4657bB 3107cD 4188cC 3947cC 4951bB 3499cD 4305c 

6458RSF IPRO 4056cC 4753dB 4668bB 3103cD 5130aA 4373cB 4158cC 3905bC 4268c 

6563RSF IPRO 5342aA 5539bA 4970bB 3253cD 4763bB 4029cC 4373cC 4358aC 4578a 

AS 3570IPRO  4200cA 3874eA 4063cA 2243eC 3834cA 4140cA 3084eB 3526cA 3621f 

AS 3610IPRO 4329bB 5175cA 4625bA 3303cC 4776bA 4068cB 4870bA 4149aB 4412b 

M5917IPRO 4215cC 5430cA 4793bB 3368cD 4797bB 4864bB 4870bB 4379aC 4590a 

NS 5000 IPRO 4216cB 3360fC 3853cC 2785dD 4861bA 3762dC 3637dC 2217eE 3586f 

NS 5106 IPRO 4131cC 4051eC 3961cC 2567dD 5416aA 4807bB 4370cC 2436dD 3967d 

NS 5151 IPRO 4043cB 4238eB 3879cB 2656dD 5443aA 4093cB 3805cB 3259cC 3927d 

NS 5445 IPRO 3328dC 4004eB 4355cB 2125eD 5056aA 3776dB 3172eC 2602dD 3552f 

NS 5959 IPRO 4765bC 5120cB 5532aA 2725dE 5668aA 4490bC 5124aB 3936bD 4670a 

NS 6909 IPRO 4579bA 4654dA 4600bA 2521dC 4665bA 4617bA 3796cB 2122eC 3944d 

NS 7000 IPRO 4360bC 5730bA 3411dD 3866bD 4527bC 4923bB 4151cC 4152aC 4390b 

NS 7209 IPRO 4178cB 6080aA 3026dD 4494aB 3489dC 4320cB 4613bB 3792bC 4249c 

NS 7237 IPRO 4077cB 4895cA 3663cC 3437cC 3399dC 4326cB 2281fD 3019dC 3637f 

NS 7300 IPRO 4114cC 6087aA 3975cC 3340cD 3091dD 3592dD 4852bB 3366cD 4052d 



NS 7338 IPRO 4098cB 4628dA 3729cC 3647bC 3936cC 3629dC 4177cB 2712dD 3819e 

NS 5727 IPRO 4722bA 3885eB 4274cB 2678dD 5182aA 3062eC 3178eC 2539dD 3690f 

NS 6006 IPRO 4643bA 4420dB 5103aA 2754dC 4870bA 3961cB 4691bA 2505dC 4118c 

NS6060IPRO 3224dB 3575fB 1343eD 1948eC 4898bA 2997eB 2150fC 2098eC 2779h 

NS6700IPRO 4395bA 4691dA 4091cA 3369cB 4396cA 4376cA 4258cA 4251aA 4228c 

NS6906IPRO 3940cC 6265aA 4474bB 3983bC 4279cC 3968cC 4945bB 3827bC 4460b 

TMG2158PRO 5231aA 4975cA 4513bB 2388eD 4946bA 4005cC 4664bB 2275eD 4124c 

*Means followed by the same uppercase in the row and lowercase letter in the column are not 
significantly different (P = 0.05) according to Scott-Knott test. 
 

 The highest absolute production (6.265 kg ha-1) was obtained with the 

NS6906IPRO cultivar in Corbélia, PR, albeit with no significant differences from the 

BMX Potência RR, NS6823RR, NS 7300 IPRO, and NS 7209 IPRO cultivars in the 

same environment, which did not perform similarly at other sites. The BMX Ativa RR 

cultivar showed the worst average performance in the set of study sites, with 2.284 kg 

ha-1 GY. 

The strongest, positive g values were obtained in the NA 5909 RG, 

M6410IPRO, NS 5959 IPRO, and NS6823RR cultivars, which therefore had the 

highest genetic values free of interaction (µ + g; Table 4.5). The strongest negative 

effects were obtained in the BMX Ativa RR, NS6060IPRO, and A 6411RG cultivars (all 

with growth habit determined), with genetic values far below the average. The new 

estimated means suggest that the genotype ranking remained similar to that obtained 

by comparing the fixed-model means, and changes occurred in phenotypes with 

intermediate ranking. Similarly, the predicted µ + g values and the average µ + g + 

gem values persisted in the same category when classified between genotypes, 

indicating that the same recommendation is made by both the parameters; thus, also 

enabling making recommendations for untested sites in the experimental network 

using µ + g values, because genotypic performance is free of interactions in this case. 

A similar result was also reported by Borges et al., (2012). 

The NA 5909 RG, NS6823RR, M6410IPRO, and M5917IPRO cultivars 

were the most stable, and had the highest average production rates, based on the 

HMGV method; and the BMX Ativa RR, NS6060IPRO, and A 6411RG cultivars were 

the most unstable and least productive. The genotypic stability analysis using that 

method is related to the dynamic concept of stability by association with GY (Resende, 

2004), and the lower the standard deviation of the genotypic performance between 



sites is, the higher the HMGV will be. Thus, selection by HMGV simultaneously leads 

to both yield and stability selection (RESENDE, DUARTE, 2007). 

Table 4.5 – Genetic effects (g), predicted genotypic values (u + g), gain, new mean of the genotype, 
rank, average genotypic value in the environments (u + g + gem) and methods of 
adaptability and stability using mixed models. 

Cultivar g u+g Gain New 
mean Rank u+g+ 

gem HMGV RPGV 
*OM 

HMRPGV  
*OM 

BMX Potência RR 242 4260 424 4441 14 4300 4155 4300 4254 
DMario 58i -64 3953 247 4265 29 3942 3702 3904 3852 
NK 7059 RR  242 4259 412 4429 15 4299 4178 4317 4260 
A 6411RG -988 3029 57 4075 44 2867 2559 2866 2605 
BMX Ativa RR -1468 2550 0 4017 46 2308 2056 2291 2111 
BMX Energia RR 8 4025 295 4313 25 4027 3913 4042 3998 
NA 5909 RG 706 4723 706 4723 1 4839 4718 4855 4829 
NS 4823 -545 3472 81 4099 43 3382 3195 3363 3293 
BMX Turbo RR 258 4276 454 4472 12 4318 4059 4278 4219 
NS 5858 -198 3819 181 4198 35 3787 3631 3785 3736 
NS 6262 -136 3881 214 4231 32 3859 3630 3823 3773 
SYN1059 RR 189 4206 376 4394 18 4237 4073 4223 4203 
NS 6767 484 4502 557 4574 6 4582 4497 4615 4572 
TMG 7262RR 119 4136 354 4371 20 4156 3795 4081 3992 
NS 4901 -206 3812 170 4187 36 3778 3582 3745 3716 
NS 5258 -39 3978 282 4300 26 3972 3780 3960 3908 
NS 5290 -118 3900 225 4243 31 3880 3634 3841 3782 
NS 5401 RR -378 3640 108 4126 41 3577 3445 3580 3533 
NS 6209 98 4116 341 4359 21 4132 4028 4155 4104 
NS6121RR -153 3864 203 4220 33 3839 3701 3830 3800 
NS6823RR 531 4548 593 4610 4 4635 4572 4683 4634 
M6210IPRO 353 4370 505 4522 9 4428 4366 4473 4427 
M6410IPRO 582 4599 644 4661 2 4695 4529 4704 4646 
5958RSF IPRO 243 4261 438 4455 13 4301 4179 4306 4279 
6458RSF IPRO 212 4230 399 4417 15 4265 4178 4283 4266 
6563RSF IPRO 475 4492 545 4562 7 4570 4460 4590 4555 
AS 3570IPRO -336 3681 133 4150 39 3626 3493 3632 3586 
AS 3610IPRO 334 4352 488 4505 10 4407 4332 4436 4412 
M5917IPRO 484 4502 571 4588 5 4582 4501 4612 4585 
NS 5000 IPRO -365 3652 121 4138 40 3592 3422 3585 3520 
NS 5106 IPRO -42 3975 270 4288 27 3968 3721 3932 3862 
NS 5151 IPRO -76 3941 237 4254 30 3928 3789 3918 3896 
NS 5445 IPRO -394 3624 96 4114 42 3559 3337 3522 3466 
NS 5959 IPRO 552 4570 613 4631 3 4661 4451 4639 4601 
NS 6909 IPRO -62 3955 259 4276 28 3945 3648 3895 3809 
NS 7000 IPRO 315 4333 472 4489 11 4385 4301 4436 4353 
NS 7209 IPRO 196 4213 387 4405 17 4246 4113 4328 4130 
NS 7237 IPRO -322 3695 145 4163 38 3642 3495 3681 3540 
NS 7300 IPRO 30 4047 307 4325 24 4052 3895 4074 3956 
NS 7338 IPRO -168 3850 192 4209 34 3822 3744 3858 3807 
NS 5727 IPRO -277 3740 158 4175 37 3694 3492 3676 3597 
NS 6006 IPRO 85 4103 319 4337 23 4117 3883 4087 4024 
NS6060IPRO -1048 2969 33 4050 45 2796 2473 2764 2546 
NS6700IPRO 179 4196 366 4383 19 4225 4187 4276 4243 
NS6906IPRO 375 4392 524 4541 8 4454 4356 4496 4416 
TMG2158IPRO 91 4108 330 4347 22 4123 3778 4059 3960 

*HMGV, harmonic mean of the genotypic values; RPGV*OM, relative performance of the genotypic 
values multiplied in all environments multiplied by the overall mean; HMRPGV*OM, harmonic mean of 
the relative performance of the genotypic values multiplied in all environments multiplied by the overall 
mean. 
 

The NA 5909 RG, NS6823RR, M6410IPRO, NS 6767, M5917IPRO, and 

NS 5959 IPRO cultivars had the highest RPGV*OM values. Selection using 

RPGV*OM enables the identification of the most adapted genotypes by capitalizing on 

the ability of each genotype to respond favorably to an improvement in the production 

environment. Furthermore, this parameter is associated with average production rate, 

which enables the identification of genotypes that are both well adapted and 

productive. This method can be compared to the method reported by Annicchiarico 



(1992), because it uses relative performance. However, these two methods differ in 

their measurement of adaptability, which is performed genotypically in the RPGV*OM 

and phenotypically in the method by Annicchiarico (CARBONELL et al., 2007). 

The NA 5909 RG, M6410IPRO, NS6823RR, and NS 5959 IPRO 

cultivars had the highest values, based on the HMRPGV*OM method, which indicates 

that they are, simultaneously, the most productive, stable, and adapted to the study 

sites. The BMX Ativa RR, NS6060IPRO, and A 6411RG cultivars had the worst crop 

performances, adaptability, and stability. This method has the advantage of assessing 

the relative performance of genotypes in the genotypic context, unlike other widely 

used methods, including the methods by Lin & Binns (1988) and Annichiarico (1992), 

which analyze the values in the phenotypic context (BORGES et al., 2010). 

In the total set of cultivars, NA 5909 RG (7), NS 5959 IPRO (34), and 

M6410IPRO (23) had the highest average production rates, based on the GGE biplot 

method (Figure 4.1).  

 

The classification is performed in relation to the single-arrow line 

indicating that the farther on the right it is, the higher the genotype average will be. 

The AS 3570IPRO, NS 6209, 6563RSF IPRO, and NA 5909 RG cultivars were the 

most stable, because they showed a small projection in relation to the two-arrow line. 

However, these genotypes are considered to respond poorly to environmental 

changes. The AS 3570IPRO cultivar failed to show either high stability or average 

production rate, thereby failing to meet the breeding objectives. However, the NA 5909 

RG cultivar had adequate values of both characteristics.  

Among the early cultivars, BMX Energia RR and DMario 58i had the 

highest average production rates, and the NS 4901 was the most stable cultivar. NA 

5909 RG, NS 5959 IPRO, and M5917IPRO were the most productive, and 5958RSF 

IPRO the most stable medium-cycle cultivars. Among the late-cycle cultivars, 

M6410IPRO had the best crop performance associated with high stability. Similarly, 

the NS 6767 and NS6823RR cultivars were also productive and stable. The A 

6411RG, NS 7237 IPRO, and NS 7338 IPRO cultivars had high stability.  

However, they had the worst crop performances. Stability is measured 

biologically by the GGE biplot method; that is, the genotype has a consistent 

performance among all the environments, but fails to respond to environmental 



improvements (JAMSHIDMOGHADDAM; POURDAD, 2013). 

 
Figure 4.1 – Mean and stability for the 46 soybean cultivars (A), and for the cultivars division in early 

(B), medium (C) and late cycle (D), assessed in eight locations (seven of which in the State 
of Paraná (Cambé, Corbélia, Mamborê, Palotina, Realeza, São Jorge do Ivaí e São Miguel 
do Iguaçu) and one in State of São Paulo (Cândido Mota)), in 2014/2015 crop season. PC: 
main component. Cultivars: BMX Potência RR (1), DMario 58i (2), NK 7059 RR (3), A 
6411RG (4), BMX Ativa RR (5), BMX Energia RR (6), NA 5909 RG (7), NS 4823 (8), BMX 
Turbo RR (9), NS 5858 (10), NS 6262 (11), SYN1059 RR (12), NS 6767 (13), TMG 
7262RR (14), NS 4901 (15), NS 5258 (16), NS 5290 (17), NS 5401 RR (18), NS 6209 (19), 
NS6121RR (20), NS6823RR (21), M6210IPRO (22), M6410IPRO (23), 5958RSF IPRO 
(24), 6458RSF IPRO (25), 6563RSF IPRO (26), AS 3570IPRO (27), AS 3610IPRO (28), 
M5917IPRO (29), NS 5000 IPRO (30), NS 5106 IPRO (31), NS 5151 IPRO (32), NS 5445 
IPRO (33), NS 5959 IPRO (34), NS 6909 IPRO (35), NS 7000 IPRO (36), NS 7209 IPRO 
(37), NS 7237 IPRO (38), NS 7300 IPRO (39), NS 7338 IPRO (40), NS 5727 IPRO (41), 
NS 6006 IPRO (42), NS6060IPRO (43), NS6700IPRO (44), NS6906IPRO (45) e 
TMG2158IPRO (46).  

 

The ideal cultivar—the closest to the center of the concentric circles—is 

defined based on high yield and stability criteria (YAN, 2015). Thus, in the combined 

analysis, the NA 5909 RG and M6410IPRO cultivars may be considered ideal (Figure 

4.2). BMX Energia RR and DMario 58i stood out among all the early cultivars, and the 

NA 5909 RG, which proved ideal, stood out among the medium-cycle cultivars. 



Among the late cultivars, M6410IPRO was the closest to the ideal cultivar. Identifying 

adapted and stable genotypes for a wide region enables breeders to use this source 

of germplasm towards developing new cultivars for adaptation to a wide range of 

environments. 

 
Figure 4.2. Ideal genotype for the 46 soybean cultivars (A), and for the cultivars division in early (B), 

medium (C) and late cycle (D), assessed in eight locations (seven of which in the State of 
Paraná (Cambé, Corbélia, Mamborê, Palotina, Realeza, São Jorge do Ivaí e São Miguel 
do Iguaçu) and one in State of São Paulo (Cândido Mota)), in 2014/2015 crop season. PC: 
main component. Cultivars: BMX Potência RR (1), DMario 58i (2), NK 7059 RR (3), A 
6411RG (4), BMX Ativa RR (5), BMX Energia RR (6), NA 5909 RG (7), NS 4823 (8), BMX 
Turbo RR (9), NS 5858 (10), NS 6262 (11), SYN1059 RR (12), NS 6767 (13), TMG 
7262RR (14), NS 4901 (15), NS 5258 (16), NS 5290 (17), NS 5401 RR (18), NS 6209 (19), 
NS6121RR (20), NS6823RR (21), M6210IPRO (22), M6410IPRO (23), 5958RSF IPRO 
(24), 6458RSF IPRO (25), 6563RSF IPRO (26), AS 3570IPRO (27), AS 3610IPRO (28), 
M5917IPRO (29), NS 5000 IPRO (30), NS 5106 IPRO (31), NS 5151 IPRO (32), NS 5445 
IPRO (33), NS 5959 IPRO (34), NS 6909 IPRO (35), NS 7000 IPRO (36), NS 7209 IPRO 
(37), NS 7237 IPRO (38), NS 7300 IPRO (39), NS 7338 IPRO (40), NS 5727 IPRO (41), 
NS 6006 IPRO (42), NS6060IPRO (43), NS6700IPRO (44), NS6906IPRO (45) e 
TMG2158IPRO (46). 

 

The methods of identifying ideal genotype via GGE, and stability via 

HMGV, consistently identified NA 5909 RG and M6410IPRO as superior cultivars. 

These two methods are not always consistent in identifying adapted and stable 

genotypes. Yang et al., (2009) indicated that their simultaneous use is advantageous, 



because the assessment of those parameters analyzes the phenotype when using 

GGE, and the genotype when using mixed models. These methods also showed 

agreement regarding the cultivars with the worst performances, wherein BMX Ativa 

RR, NS6060IPRO, and A 6411RG were the least stable and productive.  

4.4 Conclusion of Agronomic Performance of Modern Soybean Cultivars in Multi-
Environment Trials 

i. The NA 5909 RG, M6410IPRO, NS 5959 IPRO, NS6823RR, 

M5917IPRO, NS 6767, and 6563RSF IPRO cultivars are the most productive in the 

study environments, and the BMX Ativa RR cultivar has the worst crop performance. 

ii. The NA 5909 RG, NS6823RR, M6410IPRO, and NS 5959 IPRO 

cultivars show high yield, adaptability and stability and may be considered ideal for 

cultivation in the study sites. 

iii. There are modern soybean cultivars ideal for cultivation in the 

Brazilian soybean’s microregions of adaptation 102, 201, and 202 (all indetermined). 

 

 



5 GENOMIC SELECTION IN SOYBEAN: ACCURACY AND TIME GAIN IN 
RELATION TO PHENOTYPIC SELECTION  

5.1 Introduction of Genomic Selection in Soybean: Accuracy and Time Gain in 
Relation to Phenotypic Selection 

The genetic gain for soybean cultivation (Glycine max L. Merrill) has 

varied between 0.5% and 1.8% per year in different countries (KARMAKAR & 

BHATNAGER, 1996; MORRISON et al., 1999; KOESTER et al., 2014; de FELIPE et 

al., 2016), with an average gain of 1.3% per year (RAY et al., 2013). The average 

annual genetic gain of the major producing countries (Brazil, United States, and 

Argentina) is 1.1% (DE FELIPE et al., 2016). To meet the demand for soy protein for 

both human consumption and animal feed that is projected for 2050 (9 billion people 

and increased purchasing power of developing countries), soybean production must 

increase by approximately 55% (RAY et al., 2013; HATFIELD and WALTHALL, 2015) 

and would need to reach 282 million tons (ALEXANDRATOS & BRUINSMA, 2012, 

HATFIELD and WALTHALL, 2015). However, the current genetic approaches are 

inadequate to meet this future demand, necessitating new breeding techniques such 

as genomic selection (GS). 

GS consists of the application of statistical models to predict the 

breeding value of individuals in a population (SPINDEL et al., 2015). To this end, a 

large number of markers spread over the entire genome is required to encompass 

polymorphisms responsible for phenotypic variation. GS differs from traditional 

marker-assisted selection by the fact that it is not limited to previously selected 

markers; instead, breeding values can be predicted based on all available marker data 

(MEUWISSEN, 2007; SPINDEL et al., 2015). GS incorporates all marker effects or 

genetic loci in the whole genome to estimate genomic breeding values (GEBVs) 

(MEUWISSEN et al., 2001; SHU et al., 2013). One of the major advantages of GS in 

crop breeding is that it reduces the time required to complete breeding cycles 

(HICKEY et al. 2014), thereby accelerating genetic improvement per unit time. 

Soybean is particularly amenable to GS due to its moderate genome size and the 

rapid progress in soybean genome sequencing (SCHMUTZ et al. 2010; MA et al., 

2016). 



Several statistical models have been developed for GS analysis 

including the BayesB model, which uses a Bayesian approach and parametric 

regression (GIANOLA, 2013, DESTA and ORTIZ, 2014) and takes into account 

linkage effects between alleles of different loci, which may generate a spurious 

disequilibrium effect. In this manner, BayesB allows indirect correction of the effect of 

population structure; it also identifies quantitative trait loci in disequilibrium in an 

additive manner based on markers (XAVIER et al., 2016). This method also has the 

advantage that it allows markers to have large and/or null effects (HABIER et al. 

2011). BayesB has already been used for GS in economically important species such 

as wheat (HEFFNER et al., 2011; THAVAMANIKUMAR et al., 2015) and soybean 

(XAVIER et al., 2016). In the latter, the BayesB model had the highest accuracy in 

genomic prediction for genetic architecture and heritability characteristics such as 

grain yield, days to maturity, plant height, pod number, node number, and pods per 

node (XAVIER et al., 2016). It was reported that the BayesB model enabled better 

prediction of grain yield in wheat in different environments as compared to the 

reproducing kernel Hilbert space (RKHS) kernel method (PÉREZ-RODRÍGUEZ et al., 

2012) and was effective for selecting various traits in this species (HEFFNER et al., 

2011). 

Evaluating the influence of population structure on the accuracy of GEBV 

estimates and accuracy is important. The use of a more generalized set of unrelated 

genotypes makes GS more flexible and relevant in plant breeding programs. Results 

from several recent studies suggest that population structure should be considered 

when assessing the potential of GS (GUO et al., 2014; ISIDRO et al., 2015; MA et al., 

2016), since it can influence the accuracy of the prediction depending of the evaluated 

trait(s); for instance, the accuracy within each subpopulation can be overestimated 

relative to the total population (Ma et al., 2016). 

Estimating the gains from GS in relation to phenotypic selection is 

important for plant breeding programs (OLIVEIRA et al., 2012). The reduction in time 

spent on breeding programs can be considered as an estimate of the efficiency of GS. 

Current programs in Brazil run for several generations per year with the goal of 

releasing new cultivars more rapidly. About 6 years is required to obtain a new cultivar 

from initial crosses to lines for value for cultivation and use (VCU) trials. Therefore, 



reducing the time to generate a new cultivar is desirable in breeding programs. 

The objectives of this study were to apply the BayesB GS model to 243 

recombinant inbred lines (RILs) and 81 selected varieties using 4947 genome-wide 

single nucleotide polymorphisms (SNPs) in order to (1) assess the prediction accuracy 

for grain yield (GY), 1000-grain weight (TGW), plant height (PH), days to maturity 

(DM), and insertion of the first pod (IFP); and; (2) evaluate the effect of intrapopulation 

structure on GS accuracy; and (3) compare the efficiencies of phenotypic selection 

and GS in soybean. 

5.2 Materials and Methods of Genomic Selection in Soybean: Accuracy and Time 
Gain in Relation to Phenotypic Selection 

5.2.1 Plant material, field experiments, and phenotyping 

A total of 324 genotypes of 243 RILs obtained from crossing the NA 

5909RG cultivar and the genetically dissimilar NS 5000 IPRO cultivar were used in 

field experiments. Both cultivars are high yielding and NA 5909RG is adapted to a 

waste region in South Central Brazil whereas NS 5000 IPRO is adapted to South  

Brazil environments. The other 81 genotypes consisted of elite material; 46 were 

already registered in Brazil while the others were pre-release cultivars. 

Field experiments were conducted in a randomized complete block 

design with three replications, and were performed at eight locations during the 

2014/15 crop season (Figure 5.1 and Table 5.1). Seeds were sown in September 

2014 in four-row plots (5.0 m long), with 0.50-m spacing between rows, at a density of 

30 plants m−2. Base fertilization consisted of 350 kg ha−1 of 

nitrogen:phosphorus:potassium (02:20:20). Standard practices for soybean cultivation 

were used at all locations. The following traits were evaluated: GY (in kg ha−1) was 

assessed in the two central rows of each plot (5 m2 useful area), with grain moisture 

corrected to 13% (wet basis); TGW (in g) was estimated from seeds harvested in the 

useful area from three replicates of 200 grains; PH (in cm) was measured for 10 plants 

per location at R7 stage; DM was measured when plants reached R8 stage; and IFP 

(in cm) was measured in 10 plants at each location and took into consideration the 



ground level before harvest. For PH, DM, and IFP only one replication was evaluated 

per location since all genotypes were homozygous. 

 
Figure 5.1 – The eight geographical locations in this study. CM, Cândido Mota; COR, Corbélia; MAB, 

Mamborê; PAL, Palotina; REA, Realeza; CAM, Cambé; SJI, São Jorge do Ivaí; SMI, São 
Miguel do Iguaçu. PR, Paraná State; SP, São Paulo State.  

Table 5.1 – Geographical and climatic information on the eight locations selected for evaluation of 324 
soybean genotypes in the 2014/15 crop season.  

Location 
Latitude / 

Altitude (m) Climate 
Longitude 

Cambé-PR 
23°16’ S 

520 Cfa 
51°16’ W 

Cândido Mota-SP 
22°44’ S 

440 Cwa 
50°23’ W 

Corbélia-PR 
24°47’ S 

650 Cfa 
53°18’ W 

Mamborê-PR 
24°19’ S 

715 Cfa 
52°31’ W 

Palotina-PR 
24°17’ S 

330 Cfa 
53°50’ W 

Realeza-PR 
25°46’ S 

520 Cfa 
53°31’ W 

São Jorge do Ivaí-PR 
23°25’ S 

560 Cfa 
52°17’ W 

São Miguel do Iguaçu-PR 
25°20’ S 

290 
 

Cfa 
 54°14’ W 

PR: Paraná State; SP: São Paulo State; Cfa: Humid subtropical climate; Cwa: Monsoon-influenced humid 

subtropical climate according to Köppen–Geiger climate classification (Peel et al., 2007) 
 



5.2.2 Genotyping 

The plants were sown in a greenhouse under controlled temperature 

(25°C ± 3°C), humidity (60% ± 10%), and natural photoperiod in the summer of 

2014/15. Completely developed leaves of 20 plants of each genotype were collected 

at the V6 stage to obtain genetic material for genotyping. The collected leaves were 

immediately frozen in liquid nitrogen and stored at −80°C until use. DNA was 

extracted according to a previously published protocol (ALJANABI & MARTINEZ, 

1997). DNA quantity and quality were analyzed on a Nanodrop spectrophotometer 

(Thermo Fisher Scientific, Waltham, MA, USA), and DNA integrity was verified on a 

0.8% agarose gel. 

Genotyping was performed using the Soy 6K Infinium chip SNP panel 

(Illumina, San Diego, CA, USA) supplied by Eurofins BioDiagnostics (River Falls, WI, 

USA). A total of 5403 SNPs were obtained. Filtering was applied and markers with 

0.01< minor allele frequency < 0.99 and > 10% missing data were removed. The 

missing genotypic data were replaced with corresponding average values for each 

locus. After editing, 4947 SNPs were ultimately retained for analysis. 

5.2.3 Statistical analysis 

5.2.3.1 Phenotypic data 

Phenotypic data were analyzed using linear mixed models to estimate 

genetic values (empirical best linear unbiased prediction, eBLUP) for each individual. 

This method allows estimation of variance components and heritability for each trait. 

The analysis was performed using the lme4 v.1.1-8 package (BATES et al., 2015), 

considering as fixed effects the replication within each location (for TGW and GY) and 

only location information for PH, IFP, and DM. Genotype effects were considered as 

random (containing information from individuals). The statistical model was as follows: 

 
 



where y is the phenotypic value obtained for the analyzed treatment; β is the vector of 

fixed effects, u is the vector of random effects; X and Z are the incidence matrices of 

the fixed (containing replication information within the evaluation site) and random 

(containing information from individuals) effects, respectively; and ε is the vector of 

random errors associated with elements of vector y, with parameters and relationships 

described as follows: 

  and  

where G is the matrix of genetic variances and covariances; A is the matrix of random 

effects correlations; I is an identity matrix;  is the estimation of variance of the 

random effects of individuals; and  is the variance estimate of the residuals. The 

structure of averages, variances, and covariances is as follows: 

 
 

Heritability was calculated using estimates of variance components 

obtained from the restricted maximum likelihood model. Thus, heritability ( ) was 

determined as the ratio between the additive variance of individuals ( ) and the total 

phenotypic variance (additive + environmental variances) (  + ). 

 
 

5.2.3.2 Linkage disequilibrium (LD) – methodology 

The decay of LD for the analyzed population was calculated using 

TASSEL v.5 software (BRADBURY et al., 2007) taking into consideration loci with 

0.01  < frequency < 0.99. Heterozygous loci were discarded and LD was computed in 

windows with intervals of 1000 markers. A graph illustrating the relationship between 

the LD coefficient (r2) and distance (bp) was generated using the ggplot2 package 

(WICKHAM, 2009) in R (R CORE TEAM, 2016). 



5.2.3.3 Intra-population structural analysis 

Correspondence was observed between data obtained for genotyping 

and phenotyping, with viable data for all 324 individuals of the original population. A 

comparison matrix was used to compute the variance at each locus, and these values 

were used for the main coordinate analysis using the ecodist package (GOSLEE et 

al., 2007), which was performed in order to verify the allocation of individuals given the 

intrapopulation structure. 

In addition to principal coordinates analysis, the data were analyzed by 

hierarchical clustering. An array of Euclidean distances was generated; the diagonal 

matrix of genetic distances was subjected to cluster analysis based on the unweighted 

pair group method with arithmetic mean, and a dendrogram of genetic distances was 

constructed using the hclust command in R (R CORE TEAM, 2016). 

 

5.2.3.4 GS analysis 

Data from 4947 SNP markers were used to construct a genotype matrix 

for the 324 individuals of the original population. GS analysis was performed using the 

BayesB model (MEUWISSEN et al., 2001), which was applied using the Bayesian 

generalized linear regression package (PÉREZ & DE LOS CAMPOS, 2014) in R (R 

CORE TEAM, 2016). The analysis was performed by first considering the total set of 

individuals as a single population (3) and then using matrices related to the effects of 

markers in a stratified manner. This analysis considered matrices constructed from 

information unique to individuals in the identified groups (4). The stratification 

corrected for the effects of intrapopulation structure based on correction for the 

population effect in the principal coordinates analysis. Thus, the GS analysis used the 

following models: 

Homogeneous regression (3): 

   
 



Stratified regression (4): 

 
 

where the matrices containing the marker information (  and ) interact either 

together (homogeneous regression) or separately (stratified regression) to predict the 

effects of the markers ( ) in the analysis to obtain GEBVs ( ). 

5.2.3.5 Model accuracy 

Accuracy values were determined based on the correlation between 

GEBV predicted by jackknife and eBLUPs estimated for each genotype with the linear 

mixed model. Cross-validation was used to evaluate the accuracy of the GS model. 

The jackknife procedure was based on the 10-fold-validation methodology. Thus, the 

dataset was randomly divided into 10 equal parts. GEBV prediction was performed for 

one of the groups from values generated with the training set composed of the other 

nine groups. GEBV was obtained through 1,000,000 iterations by random sampling of 

the training and validation models with a burn-in of 50,000 and a value of thinning 

default equal to 5 to avoid autocorrelation between sampled points. The best values 

for these parameters were verified based on the convergence of genetic and residual 

variance graphs. 

 

5.2.3.6 Deviance analysis 

The deviances for each trait and for homogeneous and stratified 

population structures were compared based on the average of five deviance 

information criterion values. The analysis was performed with the following 

parameters: 1,000,000 iterations, burn-in of 50,000, and value of thinning equal to five 

(the same values used for GEBV), and differed only by the omission of the jackknife 

technique. 



5.2.3.7 Efficiency of genomic selection 

The duration of a soybean selection cycle is approximately 6 years. In 

this study, we investigated the gain in selection efficiency using GS as compared to 

phenotypic selection. GS efficiency was measured for the same period as phenotypic 

selection and for a reduction in selection from 6 years to 1 year in a year-by-year 

manner. The efficiency of GS in relation to phenotypic selection was calculated 

according to a previous report (OLIVEIRA et al., 2012): 

 
 

where GA is genotypic accuracy; GB is genomic breeding; PA is phenotypic accuracy; 

and PB is phenotypic breeding. Efficiency was calculated for homogeneous and 

stratified population structures. 

5.3 Results of Genomic Selection in Soybean: Accuracy and Time Gain in Relation to 
Phenotypic Selection 

5.3.1 Population structure analysis 

For the evaluated genotypes, the LD between pairs of SNPs declined 

sharply to r2 = 0.1 at around 7000 kb (Figure 5.2).A total of 4947 SNPs were used to 

verify the population structure of the 324 genotypes. The first two principal coordinates 

explained 52.25% of the molecular variation present in the genotypes (Figure 5.3), 

with principal coordinates 1 and 2 accounting for 38.66% and 13.59%, respectively, of 

the total variance. The scatterplot revealed the formation of two subgroups, G1 and 

G2; the former comprised RILs generated by crossing cultivars NA 5909RG and NS 

5000 IPRO, and the latter comprised elite cultivars and lines from VCU trials. The 

same two subgroups were observed in the dendrogram (Figure 

5.4).



 

Figure 5.2 – Decay of LD (r2) with physical map distances between markers in the examined 
genotypes, as determined by locally weighted polynomial regression.  

 

 
Figure 5.3 – Scatterplot of the two first eigenvalues in a principal coordinates analysis of 4947 SNPs in 

324 Brazilian soybean genotypes clustered into RIL (G1, in green) and elite genotype (G2, 
in red) subpopulations.  

 



 
Figure 5.4 – Dendrogram obtained by cluster analysis of data from 4947 SNP markers in 324 

individuals (divided into two subgroups): G1 (243 RILs, in green) and G2 (81 elite 
genotypes, in red) included in the GS.  

5.3.2 eBLUP for evaluated traits 

The eBLUP indicated that the distribution of traits for the G1 and G2 

subpopulations was close to a Gaussian distribution. In addition, predicted values for 

GY, PH, DM, and IFP were higher for G1 than for G2 (Figure 5.5). GY is the most 

important trait in soybean and therefore, the focus of most breeding programs. The 

highest GY value for G1 was 4500 kg ha−1 as compared to 3750 kg ha−1 for G2. This 

indicates that the breeding program could identify the most productive genotypes in 

crosses. PH was higher in RILs than in cultivars (95 vs. 80 cm). The DM of G1 was 

110–115 days as compared to 105 days for G2. IFP for RILs and cultivars was 12 and 

10 cm, respectively. In contrast to the other traits, average TGW was lower for RILs 

than for cultivars (170 vs. 175 g). 

 



 

Figure 5.5 – eBLUPs predicted by a mixed linear model (lme4) for the analyzed traits. Datasets 
corresponding to RILs and elite genotypes are shown in green and red, respectively. 

5.3.3 Variance and heritability 

The highest variance, both additive and environmental, was obtained for 

GY (Table 5.2). Narrow-sense heritability (h²) ranged from 0.73 for DM to 0.10 for 

TGW. The h² for GY was 0.42. PH, IFP, and TGW had h² values of 0.266, 0.280, and 

0.102, respectively. The variation in magnitude can be explained by differences in the 

complexity of genetic control of the traits. 

Table 5.2 – Coefficients of genetic and environmental variances and heritability determined from 
restricted maximum likelihood model estimates  

  
Trait 

  

GV EV h2 

Plant height 183.54 506.39 0.27 

Days to maturity  63.29 22.91 0.73 

Insertion of the first pod  4.58 11.77 0.28 
Grain yield  261246.26 362821.72 0.42 



Thousand grain weight 152.45 1334.29 0.10 
 

5.3.4 Accuracy of genomic prediction 

The accuracy of GS was similar regardless of whether population 

structure was considered (Table 5.3). DIC values were also similar in five independent 

replicates both with and without correction for population structure (Table 5.4). 

Table 5.3 – Accuracy of GS analysis for five traits in soybean based on the BayesB model and eBLUP 
considering homogeneous or stratified population structures  

Trait 
Accuracy 

Homogeneous Stratified 

Plant height 0.6830 0.6801 

Days to maturity 0.8327 0.8327 

Insertion of the first pod 0.7178 0.7286 

Grain yield 0.7224 0.7291 

Thousand grain weight 0.5010 0.4902 

 

Table 5.4 – Deviance information criterion values obtained for GS analysis* 

Rep 
Plant 

 Height 
Days to 
 Maturity  

Insertion of the  
First Pod  

Grain  
Yield  

Thousand  
Grain Weight 

Homog. Stratified Homog. Stratified Homog. Stratified Homog. Stratified Homog. Stratified 

1 2305.14 2308.68 1839.90 1828.69 1074.53 1076.96 4656.39 4655.92 2278.96 2279.49 

2 2305.40 2306.02 1839.52 1830.69 1074.52 1078.04 4654.19 4650.35 2278.83 2279.47 

3 2305.08 2305.82 1840.10 1828.81 1074.72 1077.76 4662.25 4651.21 2278.46 2277.03 

4 2304.90 2305.11 1839.83 1828.44 1074.22 1076.91 4661.28 4652.66 2278.82 2276.98 

5 2305.15 2306.85 1839.74 1829.40 1074.99 1076.71 4654.74 4649.77 2278.41 2279.51 

Mean 2305.13 2306.50 1839.82 1829.21 1074.60 1077.27 4657.77 4651.98 2278.70 2278.50 
*Homogeneous and stratified analyses were performed for traits of agronomic importance in soybean 

5.3.5 Superiority of genomic selection 

The maximum accuracy of GS was higher than that of phenotypic 

selection (Table 5.5). Even for a selection cycle of 6 years, GS was superior in terms 

of PH, IFP, GY, and TGW traits, whereas accuracy for DM was 2.8% higher for 

phenotypic selection than for GS. 

Considering a homogeneous population structure, GS was superior to 



phenotypic selection for PH, DM, IFP, GY, and TGW (164%, 94%, 171%, 123%, and 

212%, respectively) when the length of the selection cycle was reduced from 6 to 3 

years. When population structure was considered (stratified analysis), GS was 

superior to phenotypic selection for PH, DM, IFP, GY, and TGW (163%, 94%, 175%, 

125%, and 206%, respectively). 

Table 5.5 – Accuracy of GS vs. phenotypic selection 

PB* GB 
Homogeneous  Stratified 

 Plant Height 

PA GA EFF SUP  PA GA EFI SUP 

6 6 0.5157 0.6830 1.3244 32.4413  0.5157 0.6801 1.3188 31.8790 

6 5 0.5157 0.6830 1.5893 58.9296  0.5157 0.6801 1.5825 58.2548 

6 4 0.5157 0.6830 1.9866 98.6620  0.5157 0.6801 1.9782 97.8185 

6 3 0.5157 0.6830 2.6488 164.8827  0.5157 0.6801 2.6376 163.7580 

6 2 0.5157 0.6830 3.9732 297.3240  0.5157 0.6801 3.9564 295.6370 

6 1 0.5157 0.6830 7.9465 694.6481  0.5157 0.6801 7.9127 691.2740 

PB GB  Days to Maturity 

PA GA EFF SUP  PA GA EFI SUP 
6 6 0.8567 0.8327 0.9719 -2.8067  0.8567 0.8327 0.9720 -2.8037 

6 5 0.8567 0.8327 1.1663 16.6320  0.8567 0.8327 1.1664 16.6356 

6 4 0.8567 0.8327 1.4579 45.7899  0.8567 0.8327 1.4579 45.7945 

6 3 0.8567 0.8327 1.9439 94.3866  0.8567 0.8327 1.9439 94.3927 

6 2 0.8567 0.8327 2.9158 191.5799  0.8567 0.8327 2.9159 191.5890 

6 1 0.8567 0.8327 5.8316 483.1598  0.8567 0.8327 5.8318 483.1780 

PB GB  Insertion of First Pod 

PA GA EFF SUP  PA GA EFI SUP 

6 6 0.5291 0.7178 1.3566 35.6643  0.5291 0.7286 1.3771 37.7055 

6 5 0.5291 0.7178 1.6280 62.7972  0.5291 0.7286 1.6525 65.2466 

6 4 0.5291 0.7178 2.0350 103.4965  0.5291 0.7286 2.0656 106.5583 

6 3 0.5291 0.7178 2.7133 171.3287  0.5291 0.7286 2.7541 175.4111 
6 2 0.5291 0.7178 4.0699 306.9930  0.5291 0.7286 4.1312 313.1166 

6 1 0.5291 0.7178 8.1399 713.9860  0.5291 0.7286 8.2623 726.2332 

PB GB  Grain Yield 

PA GA EFF SUP  PA GA EFI SUP 

6 6 0.6470 0.7224 1.1165 11.6538  0.6470 0.7291 1.1269 12.6893 

6 5 0.6470 0.7224 1.3398 33.9845  0.6470 0.7291 1.3523 35.2272 

6 4 0.6470 0.7224 1.6748 67.4807  0.6470 0.7291 1.6903 69.0340 

6 3 0.6470 0.7224 2.2331 123.3076  0.6470 0.7291 2.2538 125.3787 

6 2 0.6470 0.7224 3.3496 234.9614  0.6470 0.7291 3.3807 238.0680 

6 1 0.6470 0.7224 6.6992 569.9227  0.6470 0.7291 6.7614 576.1360 

PB GB  Thousand Grain Weight 

PA GA EFF SUP  PA GA EFI SUP 
6 6 0.3202 0.5010 1.5646 56.4647  0.3202 0.4902 1.5309 53.0918 

6 5 0.3202 0.5010 1.8776 87.7577  0.3202 0.4902 1.8371 83.7102 

6 4 0.3202 0.5010 2.3470 134.6971  0.3202 0.4902 2.2964 129.6377 



6 3 0.3202 0.5010 3.1293 212.9294  0.3202 0.4902 3.0618 206.1836 

6 2 0.3202 0.5010 4.6939 369.3941  0.3202 0.4902 4.5928 359.2755 
6 1 0.3202 0.5010 9.3879 838.7883  0.3202 0.4902 9.1855 818.5509 

*DM, days to maturity; EFF, efficiency [(GA*PB)/(PA*GB)]; GA, genomic accuracy; GB, genomic 
breeding; GY, grain yield; IFP, insertion of the first pod (IFP); PA, phenotypic accuracy; PH, plant 
height; PB, phenotypic breeding; SUP, superiority of genomic selection in % (Oliveira et al., 2012); 
TGW, 1000-grain weight (OLIVEIRA et al., 2012). 

5.4 Discussion of Genomic Selection in Soybean: Accuracy and Time Gain in Relation 
to Phenotypic Selection 

5.4.1 Population structure 

Population structure is an important consideration in GS analysis 

(ISIDRO et al. 2015; MA et al., 2016). In this study, principal coordinates analysis and 

the dendrogram revealed two subpopulations—one formed by RILs and the other by 

cultivars and advanced lines—among the examined genotypes. The population 

structure can generate spurious LD and can artificially inflate GS accuracy (MA et al., 

2016). This can be avoided by correcting for population structure. We used two 

strategies to evaluate the effect of population structure; the first involved the use of the 

BayesB model, which considers the effects of LD associated with linkage and thereby 

rules out the effects of spurious LD, and the second was by stratified regression. 

The prediction accuracy did not change substantially when population 

structure was considered, as evidenced by the similar DIC values for all evaluated 

traits. These results indicate that structural effects such as those observed for this 

population do not necessarily influence selection accuracy. The lack of differences 

among regression models with and without consideration of population structure can 

also be attributed to the use of the BayesB model for the analysis. Thus, this model 

can eliminate false positives and be used for GS in populations that exhibit structure 

effects comparable to those observed in the present analysis. Simpler models can 

also be used for selection based on the accuracy of GS. However, further analysis is 

required to validate the effectiveness of this model. Prediction accuracy was reduced 

to 5.27% for PH and 67.07% for yield per plant with the ridge regression (RR)-BLUP 

model (MA et al., 2016). An analysis using the RR-rrBLUP, Bayesian RR, RKHS, and 



expectation–maximization models also highlighted the need to consider population 

structure to improve prediction accuracy (HUANG et al., 2016). 

The set of cultivars used in this study occupies a large part of the area 

currently cultivated with soybean in the South-Central region of Brazil. Advanced lines, 

however, are materials that are currently being tested in VCU trials and may be 

released as new cultivars for the same region in the coming years. The RILs 

originated from a simple cross between two cultivars that are widely available in Brazil 

(NA 5909RG) and Argentina (NS 5000 IPRO). Thus, our attempt to develop GS in this 

population has real applications for the breeding programs of these populations. It 

should be noted that populations in breeding programs usually have a certain 

structure due to selection and drift as well as inbreeding. Thus, it is interesting to apply 

GS models to actual breeding populations although it is not the best strategy for 

developing GS models. Our results demonstrate that it is not necessary to develop 

populations in attempts to introduce GS to a soybean breeding program. 

5.4.2 Prediction values 

Selection for specific traits may benefit from GS. The selective accuracy 

was high for all traits examined here regardless of whether they were controlled by a 

large or small number of genes. GS can also be useful for altering the selection trends 

observed in a breeding program. 

The use of descriptive statistics can demonstrate how a breeding 

program is being addressed, since the obtained results reflect the selection processes 

carried out in the program. There are several important traits in soybean breeding, 

including GY, PH, IFP, DM, and TGW. TGW is one of the main components of GY. 

IFP directly influences mechanical harvesting, with a larger value facilitating 

harvesting in steep areas, thereby reducing crop losses. DM defines the sowing and 

harvesting window so that the ideal period of development can be targeted and 

adverse periods avoided. This study is unprecedented because it evaluated the gain 

in efficiency by GS compared to phenotypic selection and identified the effects of 

population structure on GS efficiency using agronomic and adaptive traits. 

The average yield of soybean in Brazil is 2,882 kg ha−1 (CONAB, 2017), 



with productivity above 6000 kg ha−1 already being relatively common. The evaluated 

RILs have a productivity much higher than the national average and application of GS 

can help to further improve productivity, given the high selective accuracy obtained for 

GY. The reduction in TGW of RILs does not necessarily represent a problem, as this 

is only one of many factors that affect the GY of soybean crop (along with number of 

plants per area, number of pods per plant, and number of grains per pod) and can be 

compensated for by these other components. Ultimately, a lower TGW may lead to a 

reduction in the amount of seed needed for new planting, and can thus reduce costs 

for the farmer. 

The BayesB model has already been used in several cultures and for 

traits with different genetic architecture and heritabilities (HEFFNER et al., 2011; 

THAVAMANIKUMAR et al., 2015; XAVIER et al., 2016). A prediction accuracy of rGS 

= 0.47 for GY was obtained using ridge RR-BLUP (MA et al., 2016). In our work, 

prediction accuracy was rGS = 0.72 for GY. BayesB was shown to yield better results 

than RR-BLUP in populations with low LD, high heritability, large sample size, and 

lower causal mutation relative to sample size (WIMMER et al., 2002; HABIER et al., 

2007). 

5.4.3 Heritability 

Heritability is among the most important parameters in agriculture and 

plant breeding (VISSCHER et al., 2008) Traits with low heritability can only be 

improved slowly by traditional methods (FALCONER & MACKAY 1996). In this sense, 

GS accelerates genetic progress even for low-heritability traits (HEFFNER et al., 

2009) since it allows better adjustment of models and has greater potential to detect 

genetic variance as compared to phenotypic selection. 

5.4.4 Reduction in time required to complete a selection cycle 

In soybean breeding programs it is desirable to reduce the time required 

between artificial hybridizations, the evaluation of the desired genotypes in VCU trials, 



and the release of a new cultivar. GS is useful in this sense since it overcomes the 

limiting factors of time and financial cost in breeding programs. GS can replace the 

time-intensive phenotypic evaluation of complex traits with GEBVs and shorten 

breeding cycle length, thereby increasing gains per unit time (HEFFNER et al., 2009). 

In addition, gains may be achieved through elimination of intermediate steps between 

the identification of heterozygous genotypes and selection of homozygous lines 

(BASSI et al., 2016; ZHANG et al., 2017). In addition, costs can be reduced at each 

stage of the breeding program (ABELL et al., 2014; GORJANC et al., 2017) by 

eliminating intermediate steps such as driving segregating populations to appropriate 

regions. 

5.4 Conclusions of Genomic Selection in Soybean: Accuracy and Time Gain in 
Relation to Phenotypic Selection 

In this study, high selective accuracy was obtained by GS for all 

examined traits of soybean. We also showed that actual breeding populations can be 

used to determine GS models, without the need to develop specific populations for 

this purpose. Correcting for population structure by stratified regression combined with 

the use of the BayesB model ensured that selection accuracies did not vary 

significantly. Our results demonstrate that GS is superior to phenotypic selection, 

reducing the selection time by 50% increases the selection efficiency from 94% for 

Days to Maturity to 212% in Thousand Grain Weight. For GY, the increase in selection 

efficiency is shown at 123%.  



6 CONCLUSIONS 

Studies that consider the implementation of techniques aimed at the 

identification and selection of genotypes with high productive potential, both for use 

per se and hybridization purposes, are of great relevance in supporting the current 

breeding programs of plants. This demand is more incipient in much improved 

species, such as soybeans, where narrowing of the genetic base has limited genetic 

progress. 

With this approach, considering the quantity/quality of data obtained 

during the experimentation process of this study, it was possible to obtain key answers 

for the selection processes used in soybean breeding programs: i. The results of this 

study allowed the identification of favorable sites for selection during the early 

generations in soybean breeding programs, when seed availability is generally low, 

and the number of genotypes is high. The environments of Chapada-RS and 

Maracaju-MS were considered the best environments for the macro-regions 1 and 2, 

respectively. ii. The results obtained in the present study allowed to infer that it is 

possible to use two replicates, and to obtain a selection accuracy above the range of 

high experimental accuracy in assays with 324 soybean genotypes. These results are 

important for formulating the GWS models, where the number of the phenotypically 

characterized genotypes is high. Moreover, the indicators of experimental accuracy 

provided by the Papadakis method are more favorable when compared to those of the 

randomized block and triple lattice designs. iii. The main cultivars with low and high 

productive performances were identified in the multi-environment assays, and it was 

possible to observe a wide variability in the characteristic yields of grains in a sample 

of the genotypes used in the GWS prediction assay. The cultivar NA 5909 RG, 

parental to the lineages used in the GWS prediction, presented high adaptability, 

stability, and grain yield. This cultivar can be considered as the ideal genotype for the 

analyzed environments. iv. High selection accuracy was obtained for all the traits 

studied, indicating the potential of using genomic selection in the breeding of the 

soybean crop. This suggests that it is possible to use real populations in whole 

genome predictions since the BayesB model is efficient in controlling population 

structuring in genomic selection.” 



Additionally, under the conditions of this research, it was verified that 

genomic selection is superior to phenotypic selection for the evaluated traits. This 

methodology makes it possible to halve the selection time and increase the selection 

efficiency by 123% for grain yield. In this approach, the GWS methodology is 

recommended because of its high accuracy when used in soybean breeding 

programs, provided that phenotyping is highly accurate and the predictive models are 

formulated within the selection environment. 

Finally, it is crucial to mention the importance of the present study for the 

development of future assays in soybean breeding programs, both for the prediction of 

genotypic values by the GWS methodology, and for improving the control of the 

experimental factors through the methodologies used. 
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APPENDICE A – Identification of Core Locations for Soybean Breeding in Southern 
Brazil – Abstract 

 

In plant breeding, the identification of ideal test locations is essential for 

selection in generations with low seed availability. This study aimed to identify core 

locations for evaluation and selection of segregating soybean populations in 

macroregions 1 (M1) and 2 (M2), in Brazil. Value of Cultivation and Use (VCU) trials 

from the 2012–13 to 2015–16 growing seasons were used. The datasets consisted of 

22 soybean genotypes cultivated in 23 locations within soybean M1 and M2. Trials 

were conducted in a randomized complete block design with three replications. All 

analyses were performed used GGEbiplot software. The analyses GGL + GGE 

((genotype main effects plus genotype × location interaction) + (genotype main effects 

plus genotype × environment interaction)) and G (Genotypic effect) vs. GE (genotype 

x environment effects) were used to identify core locations (i.e., locations with high 

representativeness and consistence of results). The locations Chapada-RS, and 

Maracaju-MS turned out as core locations in M1 and M2, respectively. These locations 

were characterized by long vectors and a high genetic correlation with the mean 

environment (lowest angle); thus, they were the most representative and consistent 

over the years of study within each macroregion. Furthermore, these locations offer 

the possibility for selecting superior genotypes in some environments (year + 

location); this selection occurred through genotypic effect, which is desirable. 

Identification of a core location is crucial and most effective for evaluating segregating 

populations because the number of trial locations may reduce to only one per 

macroregion. 



APPENDICE B – Methods of analysis and number of replicates for trials with large 
numbers of soybean genotypes – Abstract 

 

The aim of this study was to evaluate the experimental precision of 

different methods of statistical analysis for trials with large numbers of soybean 

genotypes, and their relationship with the number of replicates. Soybean yield data 

(nine trials; 324 genotypes; 46 cultivars; 278 lines; agricultural harvest of 2014/15) 

were used. Two of these trials were performed at the same location, side by side, 

forming a trial with six replicates. Each trial was analyzed by the randomized complete 

block, triple lattice design, and use of the Papadakis method. The selective accuracy, 

least significant difference, and Fasoulas differentiation index were estimated, and 

model assumptions were tested. The resampling method was used to study the 

influence of the number of replicates, by varying the number of blocks and estimating 

the precision measurements. The experimental precision indicators of the Papadakis 

method are more favorable as compared to the randomized complete block design 

and triple lattice. To obtain selective accuracy above the high experimental precision 

range in trials with 324 soybean genotypes, two repetitions can be used, and data can 

be analyzed using the randomized complete block design or Papadakis method. 



APPENDICE C – Agronomic performance of modern soybean cultivars in multi-
environment trials – Abstract 

 

This study aimed to evaluate the crop performance, adaptability, and 

stability of modern soybean cultivars in multi-environment trials, and to identify the 

ideal genotypes for eight growing environments in Brazil. A complete randomized 

block design, with three replicates, was used to evaluate 46 cultivars in eight 

environments, in the microregions of adaptation 102, 201, and 202, in the 2014/2015 

crop season. Complex genotype × environment interaction occurred with cultivar 

ranking differing between sites. The cultivars NA 5909 RG, M6410IPRO, NS 5959 

IPRO, NS6823RR, M5917IPRO, NS 6767, and 6563RSF IPRO had the highest 

average production rate. The cultivars NA 5909 RG, NS6823RR, M6410IPRO and NS 

5959 IPRO showed high adaptability, stability, and grain yield in the environments 

tested and had values close to those of the ideal genotypes for the study 

environments. Thus, modern soybean cultivars that are adapted, stable, and have 

high yield are available for cultivation in the regions of adaptation 101, 201, and 202 in 

Brazil. 



APPENDICE D – Genomic selection in soybean: Accuracy and time gain in relation to 
phenotypic selection– Abstract 

 

Genomic selection (GS) can potentially accelerate genetic improvement 

of soybean [Glycine max L. (Merrill)] by reducing the time to complete breeding cycles. 

The objectives of this study were to (1) explore the accuracy of GS in soybean; (2) 

evaluate the contribution of intrapopulation structure to the accuracy of GS; and (3) 

compare the efficiencies of phenotypic selection and GS in soybean. The BayesB 

model with cross validation was applied to phenotypic and genotypic data from 324 

soybean genotypes (243 recombinant inbred lines and 81 cultivars). The GS accuracy 

was evaluated according to grain yield, plant height, insertion of first pod, days to 

maturity, and 1000-grain weight at multiple locations; genotyping of 5403 single 

nucleotide polymorphism markers was also performed. We found that genotypic 

accuracy was similar irrespective of population structure, which did not affect the 

accuracy of the model for the evaluated traits. Thus, GS can reduce the time required 

to complete a selection cycle in soybean, which can lead to increased production of 

this commercially important crop. 

 



APPENDICE E– Scatter plots obtained for the five characters using the GWS Bayes B 
methodology in the analysis of the genotypic and phenotypic data of 
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