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RESUMO

NOLASCO, Lucas da Silva. DeepDFML-NILM: Um modelo baseado em aprendizado
profundo para detecção, extração de características e classificação de sinais de NILM.
2023. 100 f. Dissertação (Mestrado em Engenharia Elétrica e Informática Industrial) –
Universidade Tecnológica Federal do Paraná. Curitiba, 2023.

Nas décadas futuras, o aumento contínuo do consumo de energia elétrica demandará o uso de
recursos renováveis e soluções inteligentes para o gerenciamento do consumo. Neste sentido,
técnicas de Monitoramento Não-Intrusivo de Cargas (NILM) detalham informações de consumo
para usuários, permitindo um gerenciamento melhor da energia elétrica e evitando desperdícios.
Para realizar esse monitoramento, esta técnica é geralmente composta por quatro etapas: detecção
de eventos, desagregação de sinal, extração de características, e identificação da carga. No entanto,
as abordagens do estado-da-arte para o monitoramento de cargas em sinais de alta frequência,
geralmente baseadas em redes neurais, não apresentam uma arquitetura completa de solução.
Para resolver essa questão, este trabalho apresenta um método integrado para a detecção, extração
de características e classificação em sinais de alta-frequência, testado no conjunto de dados
público LIT-Dataset. Para a detecção, os resultados encontrados estiveram acima de 90% para a
maioria dos casos, enquanto os métodos do estado-da-arte apresentam desempenho inferior a
70% para cenários com oito cargas conectadas à rede elétrica. Para a classificação, o desempenho
final nas métricas avaliadas foi equiparável a outros trabalhos recentes, apresentando F-score e
acurácia superiores a 97%. A arquitetura proposta ainda conta com uma estratégia multi-label
para evitar a necessidade de um estágio de desagregação, indicando todas as cargas conectadas
em um dado momento, aumentando o reconhecimento de múltiplas cargas. Esse trabalho ainda
avalia o desempenho do método proposto em cenários com inserção de ruído no sinal de entrada.
Finalmente, também é avaliado o desempenho da arquitetura proposta em um sistema embarcado,
um assunto ainda sub-explorado na literatura recente, demonstrando a exequibilidade para a
análise de sinais em tempo real e aplicações práticas envolvendo monitoramento de cargas.

Palavras-chave: Monitoramento de Cargas. NILM. Redes Neurais. Sistemas Embarcados.



ABSTRACT

NOLASCO, Lucas da Silva. DeepDFML-NILM: A Deep Learning-Based Model for
Detection, Feature Extraction and Classification in NILM Signals. 2023. 100 p. Dissertation
(Master’s Degree in Engenharia Elétrica e Informática Industrial) – Universidade Tecnológica
Federal do Paraná. Curitiba, 2023.

In the coming decades, the growth in energy consumption will require renewable resources
and intelligent solutions to manage consumption. In this sense, Non-Intrusive Load Monitoring
(NILM) techniques emerge as a way to provide detailed consumption information to users,
enabling better power management and avoiding energy losses. These load monitoring techniques
typically require four steps: event detection, signal disaggregation, feature extraction, and load
identification. However, for high-frequency NILM methods, state-of-the-art approaches, mainly
based on deep learning solutions, do not provide a complete NILM architecture that includes
all the required steps. To fill this gap, this work presents an integrated method for the detection,
feature extraction, and classification of high-frequency NILM signals for the publicly available
LIT-Dataset. For detection, the results were above 90% in most cases, while the state-of-the-art
methods were below 70% for eight simultaneous loads. For classification, the performance of
the proposed model on the evaluated metrics was comparable to other recent works, reaching
over 97% for F-score and accuracy. The proposed architecture also includes a multi-label
classification strategy to avoid the disaggregation stage, indicating the loads connected at a
given time and allowing the identification of multiple loads simultaneously. This work also
evaluates the robustness of the proposed method to noise insertion. Finally, this work presents
results in an embedded system, a topic also underexplored in the recent literature, demonstrating
the feasibility of the proposal for real-time signal analysis and practical applications involving
NILM.

Keywords: Load Monitoring. NILM. Neural Networks. Embedded Systems.
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1 INTRODUCTION

Non-Intrusive Load Monitoring (NILM) techniques consist of strategies to identify

the devices connected to an electrical network by taking measurements at a single point on

the network. These techniques estimate the consumption of each appliance in commercial or

residential environments, allowing more effective identification of unnecessary electricity use by

consumers, reducing energy waste and improving energy efficiency (EHRHARDT-MARTINEZ

et al., 2010). Thus, in addition to providing savings for the consumer by helping to improve

energy efficiency, these techniques can also have a positive impact on the environment by helping

to reduce the carbon emissions that result from some forms of electricity generation.

As a non-intrusive technique, NILM methods need to identify the devices in an aggre-

gated waveform, making it a challenging problem. For this reason, NILM solutions typically

have several steps to achieve this goal, namely: (i) event detection, (ii) signal disaggregation, (iii)

feature extraction, and (iv) load classification. In the first step, NILM methods are supposed to

detect a switching event in the voltage and current measurements (NAIT MEZIANE et al., 2017).

Then, in the disaggregation step, the load signal responsible for the event is separated from the

background signal composed of the previously connected loads (KELLY; KNOTTENBELT,

2015). Then, with the signal of the load responsible for the event separated from the rest of the

signal, it proceeds to feature extraction. In this third phase, the features describing the loads

can be extracted manually (WANG et al., 2018) or not (AGUIAR et al., 2021; FAUSTINE;

PEREIRA, 2020). Finally, with the extracted features, the device is identified using classification

methods based on machine learning (LAZZARETTI et al., 2020) or deep learning (FAUSTINE;

PEREIRA, 2020) techniques.

However, the existing solutions for NILM have some complications, the main one being

the significant dependence on the event detection stage. In some studies, such as the one proposed

in Faustine and Pereira (2020), the system performance is analyzed assuming that the moments

of occurrence of the load switching events are known in advance, i.e. without considering the

impact of the detection step on the performance or analyzing the effects that detections with a

significant error in the classification could imply. In Lazzaretti et al. (2020), the detection step

is implemented. However, it is shown that there is a significant loss of performance with the

increase in the number of loads connected to the electrical grid, dropping to 60% accuracy for

detection in the scenario with up to 8 loads.
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Another problem some techniques present is the need for a load disaggregation operation

to identify the device responsible for the switching event in scenarios where the electrical grid

has multiple connected loads. This step has a direct impact on the classification process. In some

cases, it is simply implemented as a subtraction between the signal before and after the event, as

is the case in the work proposed by Mukaroh et al. (2020). The problem with this approach is

that the resulting signal can be deformed in the case of nonlinear loads, which can interfere with

the classification step.

Based on all the above, this project proposes the DeepDFML-NILM1, a model capable

of simultaneously detecting and identifying the activation of loads in current measurements

of the power grid using 1D convolutional neural networks, taking inspiration from ideas that

perform similar functions for images, such as You Only Look Once (YOLO) (REDMON et al.,

2016). In addition, this model has a multi-label architecture (SOROWER, 2010), which allows

the simultaneous identification of multiple devices without the need to perform a disaggregation

step, simplifying and speeding up signal analysis. A general structure of this proposed solution

is shown in Figure 1. This proposal uses deep learning techniques to create a model capable of

detecting switching events and identifying all connected devices from the aggregated current

waveform.

Figure 1 – Overall structure of the proposed solution.
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1 Deep neural network model for Detection, Feature extraction, and Multi-Label NILM classification.
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1.1 MOTIVATION

With the annual increase in demand for electricity, as indicated by the International

Energy Agency (IEA, 2019), comes the need for improved energy efficiency in both commercial

and residential environments. A more direct way to improve energy efficiency is to develop

devices with this feature, a more costly solution. As a result, research in areas such as NILM has

intensified.

With devices implementing NILM algorithms, the user would have more information

about their consumption, thus reducing wasted electricity and consequently improving the energy

efficiency of their home or business (ARMEL et al., 2013). In addition, since NILM has the

characteristic of being a non-intrusive technique, its installation would be easier, requiring only a

single measurement point, which would facilitate the expansion of its use.

In this context, this work aims to contribute to the scenario of seeking more robust

alternatives for NILM solutions. To this end, in addition to the new proposed architecture, noise

robustness and performance tests are performed on an embedded system to analyze the feasibility

of the practical implementation of this solution.

1.2 OBJECTIVES

1.2.1 General Objectives

To develop a model capable of performing feature extraction, detection, and classifica-

tion steps in NILM signals in a unified way.

1.2.2 Specific Objectives

• To study the state-of-the-art of solutions for NILM techniques;

• To study digital signal processing and pattern recognition techniques for building the final

solution;

• To study correlated techniques for object detection in images and videos;

• Study deep learning and multi-task learning techniques;

• To develop a model capable of detecting events in NILM signals;
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• To develop a model capable of identifying connected loads in NILM signals;

• Evaluate the model created in public databases;

• Evaluate the robustness to noise of the system created;

• Evaluate the performance in an embedded system;

• Compare the performance of the proposed method with the state-of-the-art.

1.3 WORK STRUCTURE

This dissertation consists of six chapters. The second chapter presents the working

steps of NILM techniques and the theoretical concepts that will be used in the solution. The

third chapter presents the state of the art and the contributions of this work. The fourth and fifth

chapters present the proposed methodology and the results obtained. Finally, the sixth and last

chapter presents the conclusions of this research.

1.4 PUBLICATIONS

During the development of this dissertation, several topics were addressed. The contri-

butions of these research efforts have been published as scientific papers in international journals.

Mulinari et al. (2022) present a strategy for load classification using Voltage and Current (V-I)

trajectories and Fourier 2-D as an alternative to hand-crafted features, which may be suboptimal,

and neural network models, which require a large amount of data to achieve good performance.

Nolasco et al. (2022) present DeepDFML-NILM, a novel neural network architecture

to simultaneously perform event detection and load identification in NILM signals. This paper,

published in the IEEE Sensors Journal, was listed as one of the journal’s most viewed papers in

its year of publication, resulting in an invitation for the authors to present their work at the IEEE

Sensors Conference 2022, in Dallas, Texas. In addition, the Institute of Electrical and Electronics

Engineers (IEEE) awarded the authors a financial grant to guarantee their attendance at the event.

Finally, Aguiar et al. (2023) discuss the use of scattering transforms in combination

with fully connected neural network layers to perform event detection and multi-label load

classification in NILM signals. This paper is currently under review for publication in the IEEE

Sensors Journal (Impact Factor: 4.325).
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2 THEORETICAL BACKGROUND

This chapter presents the main theoretical concepts involved in this work. For this

purpose, the following sections are organized as follows:

• Section 2.1: Presents more details about NILM techniques, which is the central problem of

this work. This section provides a clearer view of the problems that the method proposed

in this research aims to solve;

• Sections 2.2 and 2.3: Introduces the concept behind the layers composing the neural

network used to create the proposed model. Section 2.2 deals with the feedforward layers,

and Section 2.3 presents the convolutional layers;

• Section 2.4: Presents the activation functions responsible for adding nonlinearity to the

proposed model;

• Section 2.5: Presents the loss functions used to measure the cost of the model’s output

predictions, indicating how close they are to what is expected;

• Section 2.6: This section outlines methods for training a neural net, where the goal is to

decrease the cost of outputs;

• Section 2.7: Introduces the regularization methods used to increase the generalization

ability of the trained model by preventing it from overfitting on the training data;

• Section 2.8: Explains the need for validation sets and presents a strategy for cross-

validation;

• Section 2.9: Introduces the Multi-task Learning technique used to create the architecture

in the approach chosen to solve the problem;

• Section 2.10: Presents the method of event detection in NILM signals used to choose

event-less excerpts that will be used later in the model training;

• Section 2.11: Presents the Additive White Gaussian Noise (AWGN) employed in the noise

robustness tests;

• Section 2.12: Introduces the Scattering Transform (ST), an alternative to CNNs based on

the wavelet transform;
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• Section 2.13: Presents the Receiver Operating Characteristic (ROC) Curves and Confusion

Matrices, which are helpful tools to analyze a model performance in classification tasks.

The content of the following sections of this chapter is heavily inspired by the work

of Goodfellow et al. (2016).

2.1 NON-INTRUSIVE LOAD MONITORING – NILM

The idea of monitoring loads is not new. It was first described by Hart (1992). This

paper proposed to identify the loads connected to the electrical system using only the aggregated

voltage and current signals obtained from a single metering point. This allows voltage and current

readings to be taken directly from the electrical panel, eliminating the need to monitor each

device individually, which characterizes the non-intrusive nature of the technique. In practice,

the NILM technique generally follows a structure composed of four steps, namely: detection,

disaggregation, feature extraction and classification. This structure is shown in Figure 2.

Figure 2 – General sequence of steps for applying the NILM technique.

Detection Disaggregation

Feature
Extraction Classification Appliance A turned on

in sample S

Source: Own work.

The first of these steps is to identify when a new load-switching event has occurred on

the grid. Next, the disaggregation step is performed (KELLY; KNOTTENBELT, 2015), where the

system attempts to separate the signal of the load that caused the new event from the aggregate

measured signal, typically by subtracting the (post and pre-event) signals. From this disaggregated

signal, the system extracts features that are used to classify the connected or disconnected device
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using machine learning (LAZZARETTI et al., 2020) or deep learning (FAUSTINE; PEREIRA,

2020) methods.

2.2 FEEDFORWARD NEURAL NETWORKS

The basis for many pattern recognition applications, neural networks have their origins

in the 20th century. At that time, the name “neural networks” was coined based on the inspiration

for their creation, the representation of information processing in biological systems, i.e. the

functioning of neurons in animal brains. An example of this attempt is the work proposed

by McCulloch and Pitts (1943), where the authors propose a way to represent neural activity

using propositional logic.

However, modern neural networks are closer to function approximation techniques

designed to achieve statistical generalization rather than accurate models of how the brain works.

In this scenario, a feedforward neural network model’s goal is to approximate somehow a

function 𝑓 *, where y = 𝑓 *(x) maps an input x to an output y. To obtain this approximation,

the network defines a mapping from the function 𝑓(x;𝜃), where the parameter 𝜃 is the one

that results in the best approximation of the function 𝑓 *. To obtain 𝜃, the model goes through a

training process, also popularly known as “learning”, which will be covered in more detail in the

following sections (see Section 2.6).

Regarding the idea of networks behind the name neural networks, this is explained

by the fact that the function 𝑓(x) mentioned above is decomposed into a chain of functions

𝑓 (1), 𝑓 (2), 𝑓 (3), ..., 𝑓 (𝑛), where each of these functions represents a layer in the model. In this

scenario, 𝑓 (1) represents the first layer of the network, 𝑓 (2) the second, and so on. Still, regarding

terminology, the term feedforward comes from how the information is propagated through the

network. The input x passes through the first layer, the output of that layer passes through the

next layer, and so on until it passes through all the layers that define 𝑓(x) until the output is

obtained.

Conversely, intermediate functions 𝑓 (𝑖) can be defined as a nonlinear function of the

linear combination between their inputs and weights calculated during training. The following

expression represents the output layer’s result:

h(𝑖) = 𝑔(𝑖)
(︀
W(𝑖)𝑇h(𝑖−1) + b(𝑖)

)︀
, (1)

where W(𝑖) denotes the weight matrix for layer 𝑓 (𝑖), b(𝑖) is a vector of constants calculated
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during the training phase, also known as bias, 𝑔(𝑖) represents the activation function for this

layer, and h(𝑖) is the output for layer 𝑖. This activation function is responsible for adding the

nonlinearity of the layer, which is essential for the model to represent nonlinear functions 𝑓 *.

Some examples of possible activations will be discussed in more detail in the following sections.

2.3 CONVOLUTIONAL NEURAL NETWORKS – CNN

CNNs are a particular type of neural networks. Their use is strongly linked to data

such as images and time series, gaining notoriety because of their high performance in practical

applications. The first mention of CNNs can be found in Le Cun et al. (1989), where this neural

network was used to classify images containing handwritten numbers.

Nevertheless, this approach only became a success with the evolution of hardware, with

the emergence of Graphical Processing Units (GPUs), which allowed the training of models

containing convolutional layers with a much larger volume of data more efficiently. In 2012, the

architecture AlexNet, proposed by Krizhevsky et al. (2012), brought renewed attention to this

type of neural network by achieving a significant reduction of approximately 10% in the error

rate in the image classification task compared to the state-of-the-art at the time of its publication.

One of the main differences between this type of neural network and the feedforward

type is the operation performed in each layer. In this type of network, as the name implies, a

convolution operation is performed between the input and the kernel – the name for the matrix

that stores the weights of this type of layer. Thus, the process performed in a convolutional layer

could be represented as follows:

O(𝑖, 𝑗) = (K * I)(𝑖, 𝑗) =
∑︁
𝑚

∑︁
𝑛

I(𝑖+𝑚, 𝑗 + 𝑛) ·K(𝑚,𝑛), (2)

where I denotes the matrix containing the input data, K denotes the kernel, O represents the

output, and 𝑖 and 𝑗 represent the coordinates of the input matrix at which the convolution is being

done. It is worth noting that the convolution operation requires the kernel to be rotated, which is

not usually done. So, although the idea is similar, the correct name for the action presented in

Equation 2 would be Cross-Correlation.

After the convolution, the output of the layer is further composed of an activation

function, following the same principles as feedforward networks. The other difference for CNNs

is the addition of pooling layers, which act as a sub-sampling layer, usually placed after the

convolutional layers. The pooling layers replace the output of a layer at each of its positions with
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statistical functions of the surrounding outputs. That allows for a decrease in the output size of a

layer and consequently reduces the number of parameters needed by the model. One of the most

popular pooling layers is Max-Polling, which reduces the number of coefficients in a layer by

selecting the maximum value within a rectangular region.

2.4 ACTIVATION FUNCTIONS

The activation functions are responsible for adding the nonlinear transformation to

the output of each network layer. For this purpose, there are many options in the literature for

choosing this type of function, some of the most famous being Rectified Linear Unit (ReLU),

Sigmoid, and Softmax. The following subsections will detail some of these options.

2.4.1 ReLU

The ReLU is one of the most famous activation functions. Its main characteristic is that

it behaves linearly, as its name suggests. However, to present some non-linearity, the rectified part

of the ReLU comes in. Thus, the output for every negative value is zero, creating non-linearity at

the function’s zero point. This behavior can be summarized in the following equation:

𝑔(𝑧) = max{0, 𝑧}. (3)

The linearity and constant derivative make it easy to optimize the model by gradient

descent strategies (see Section 2.6), maintaining a high gradient at any point that the function

is active. The downside of this function, however, is that the gradient is 0 for the negative part,

making the model unable to learn when the activation is zero.

2.4.2 Leaky ReLU

The Leaky ReLU emerged as a way to solve the problem of the ReLU gradient when

the function is inactive. Created by Maas et al. (2013), this activation function proposes a simple

solution in which ReLU could “leak” part of the input to the output when the input values are

negative, hence its name. With this change, the new activation function would take the following

form:

𝑔(𝑧, 𝛼) = max{0, 𝑧}+ 𝛼 ·min{0, 𝑧}, (4)
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where 𝛼 is a user-defined hyperparameter, usually assuming low values like 0.01. This change

will give the function a derivative equal to 𝛼 for negative values, preventing it from stopping

learning for these cases and mitigating the problem cited earlier for ReLU while retaining all the

advantages for the case where 𝑧 is positive.

2.4.3 Sigmoid

Another famous option among the activation functions is Sigmoid. Its main feature is to

saturate to 1 for high input and 0 for low values. To achieve this, its activation function is defined

as follows:

𝜎(𝑧) =
1

1 + exp(−𝑧)
. (5)

Its characteristic of keeping the output within the interval [0, 1] makes Sigmoid efficient

in modeling binary problems that behave like a Bernoulli distribution. However, this saturation

feature causes this activation function to have a 0 gradient over much of its domain, which can

be detrimental to training, as will be detailed later. Because of this, ReLU and Leaky ReLU have

gained ground, with Sigmoid being more common for output layers.

2.4.4 Softmax

Conversely, softmax, like Sigmoid, is generally used as an activation function for output

layers. However, unlike Sigmoid, which is usually applied to binary problems, Softmax excels

in scenarios of a probability distribution among 𝑛 classes. For this, the activation function is

defined as follows:

softmax(𝑧)𝑖 =
exp(𝑧𝑖)∑︀
𝑗 exp(𝑧𝑗)

. (6)

Among other properties, exponentiation keeps the values positive. Normalization keeps

the sum of all output probabilities within the interval [0,1] and with a unit total, resembling a

probability distribution among the 𝑛 classes, as desired.

2.5 LOSS FUNCTIONS

Before training models in a supervised system, it is necessary to have a way to measure

how close the model is to solve the problem it sets out to solve. The correct answers for a given

input are known in advance for supervised learning. Thus, the role of loss functions, also known
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as cost functions, is to indicate the model’s ability to solve the problem it is trying to solve by

comparing the expected output to the predictions made by the model.

This will allow, during the training stage, the optimization algorithm to have an insight

into the improvement, or not, of the performance of the system being trained. Thus, the total cost

of the training set can be defined as follows:

𝐽(𝜃) =
1

𝑚

𝑚∑︁
𝑖=1

𝐿(𝑓(x(𝑖);𝜃),y(𝑖)), (7)

where 𝑚 is the number of training samples, 𝐿 is the function that indicates the loss for each

example, y(𝑖) is the expected output, and 𝑓(x(𝑖);𝜃) is the prediction for input x(𝑖). Since this

cost is calculated only on the training distribution and not for the entire data distribution for the

problem, it is also known as empirical risk.

To better describe the problem for which the model is to be trained, there are different

loss functions (𝐿) depending on the model architecture, the activation function of the output

layers, and the problem at hand. The loss functions used in this work are Categorical Cross-

Entropy (CCE), Binary Cross-Entropy (BCE), Mean Squared Error (MSE), and Sum Squared

Error (SSE). The subsections that follow detail these functions.

2.5.1 Sum Squared Error

Sum Squared Error is one of the simplest functions. It calculates the model error as the

squared distance between the prediction made by the model and what was expected. Because

of this property, this loss function is often used in regression problems, where the goal is to fit

the predictions of a given model to a curve. This loss function can be defined by the following

equation:

𝑆𝑆𝐸 =
𝑁∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖)
2, (8)

where 𝑦𝑖 is the model’s prediction, 𝑦𝑖 is the expected output, and 𝑁 is the number of training

examples.

2.5.2 Cross-Entropy

Cross-Entropy is a cost function aimed at classification models, appearing even in other

machine learning techniques such as Logistic Regression (BISHOP, 2006). In its definition, it
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has the following form:

𝐶𝐸 = −
𝑁∑︁

𝑛=1

𝐾∑︁
𝑘=1

𝑦𝑘𝑛 · log 𝑦𝑘𝑛, (9)

where 𝐾 represents the number of classes in the problem, 𝑁 represents the number of samples,

𝑦𝑘𝑛 denotes the prediction for class 𝑘 of the 𝑛 sample, 𝑦𝑘𝑛 represents the expected prediction for

class 𝑘 of the 𝑛 sample, and 𝑦𝑘𝑛 ∈ {0, 1}.

This cost type is intended for outputs with 𝐾 possible classes, where only one is chosen

at any given time. Because of this, this cost function is generally used with output layers with

a softmax activation function. In this form, Cross-Entropy is also known as Categorical Cross-

Entropy. Here, if the expected for a class is 0, there is no contribution to the total cost. If 𝑦𝑘𝑛

equals 1, the closer the prediction is to 0, the higher the cost. On the other hand, if the forecast is

also 1, the result will be correct – therefore, there will be no contribution to the cost.

An important issue is that if the expected output 𝑦 is 0, this cost function will not work

well, as there would be no contribution to the total cost. To get around this problem, there is

a modified version of this function, also known as Binary Cross-Entropy, for binary output

problems. Since there will be only two classes for the same output, the idea already observed in

Cross-Entropy is followed, adding a new term for the case where the expected prediction is 0.

This modification can be described as follows:

𝐵𝐶𝐸 = −
𝑁∑︁

𝑛=1

[𝑦𝑛 log 𝑦𝑛 + (1− 𝑦𝑛) log(1− 𝑦𝑛)]. (10)

2.6 TRAINING

As presented in Section 2.5, loss functions provide a way to measure how well the

model can generate the expected output. Thus, training aims to improve the system’s performance

on this metric, corresponding to minimizing this cost function. However, due to the nonlinearity

in neural nets, the most relevant loss functions are characterized by being non-convex. This

prevents the loss functions from being minimized directly by a straightforward solution of a

system of equations, requiring iterative methods that reduce the cost based on its gradient.

These iterative methods are based on the mathematical property that says that the

gradients of a function will point in the direction of the function’s growth. Thus, the function can

be minimized iteratively by taking small steps in the direction opposite to the direction indicated

by the gradient. This procedure can be formally defined by the following equation:

x′ = x− 𝜖 · ∇x𝑓(x), (11)
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where x represents the current point of the function, x′ represents the next point where the

function should be evaluated,∇x𝑓(x) represents the gradient of the function at point x, and 𝜖,

also known as the learning rate, is a positive scalar that will determine the size of the step to be

taken in the attempt to find the minimum of the function.

2.6.1 Optimizers

Over the years, as a way to implement this gradient descent strategy, several algorithms

have been developed with modifications that aim to improve the final performance of the

optimization in some way. The following subsections present some of the most famous examples

in more detail.

2.6.1.1 Stochastic Gradient Descent – SGD

Stochastic Gradient Descent (SGD) is one of the most widespread algorithms for

optimization in deep learning. It follows the same gradient descent strategy already presented so

far. However, it also proposes a modification to solve a problem encountered by gradient descent:

performance. Deep learning models need a large amount of data to improve their generalization

power. Thus, there will be many examples when calculating the cost function’s value at each

iteration of the optimization algorithm, negatively impacting performance.

To address this issue, the solution proposed by SGD is to interpret the gradient as an

expectation, i.e., to assume that the total gradient can be approximately estimated by sampling

only a small group of examples. Thus, for each iteration, a subset of samples is defined from the

training group, also known as a mini-batch, where the gradient can be calculated as follows:

g =
1

𝑚′∇𝜃

𝑚′∑︁
𝑖=1

𝐿(𝑓(x(𝑖);𝜃),y(𝑖)), (12)

where 𝑚′ represents the number of examples sampled for the mini-batch, and x(𝑖) and y(𝑖)

represent an example and its correct label sampled for the mini-batch.

Once the gradient is determined, the optimization is performed using the same strategy

as the gradient descent previously presented, taking steps in the opposite direction of the gradient

and using a parameter known as the learning rate to control the step size performed at each

iteration.
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2.6.1.2 Adam

Among optimization algorithms, some also propose an adaptive learning rate. As

presented before, the update during the optimization in SGD depends on two values: the gradient

and the learning rate, which is a user-defined parameter. Thus, it can be complicated to define the

best value for this parameter to get the best performance from the optimization algorithm. Also,

optimization functions can be more sensitive to moves in one direction than the other, which is

not considered within a fixed learning rate. One of the first attempts to solve this problem was

the addition of momentum, which would move not only based on the current gradient but also

consider the last movement made.

One of the most widespread algorithms among those adopting an adaptive strategy is

Adam, a name derived from the expression “adaptive moments”. It uses a two-level momen-

tum strategy. The first momentum takes into account the last calculated gradients and can be

represented as follows:

s = 𝛽1 · s+ (1− 𝛽1) · g, (13)

where s is the first momentum, g represents the gradient of the function (estimated using the

mini-batch strategy proposed by SGD), and 𝛽1 is a decay rate for the momentum with value in

the interval [0,1).

The second momentum takes into account the square of the last gradients and is defined

by the following equation:

r = 𝛽2 · r+ (1− 𝛽2) · (g ⊙ g), (14)

where r is the second momentum, 𝛽2 is a decay rate for the momentum with value in the interval

[0, 1) and g ⊙ g represents the point-to-point multiplication of the gradient with itself, which is

equivalent to the square of each of the partial derivatives that compose g.

However, since both momentums are composed of their previous value, there will be a

more significant error during the first few iterations, where there will not yet be a history. To

avoid this, Adam performs the following correction:

ŝ =
s

(1− 𝛽𝑡
1)
, and (15)

r̂ =
r

(1− 𝛽𝑡
2)
, (16)

where ŝ is the first adjusted momentum, r̂ is the second adjusted momentum, and 𝑡 represents the

iteration in question. Thus, as the iterations go by, the effect of the correction tends to decrease.



28

Finally, with the two momentums adjusted, the movement can be calculated, with

element-by-element operations, from the following equation:

∆𝜃 = −𝜖 ŝ√
r̂+ 𝛿

, (17)

where 𝜖 represents the learning rate, 𝛿 is a small constant to avoid division by zero, and ∆𝜃 is

the move to be made in 𝜃 to minimize the cost function 𝐽(𝜃) that is being optimized.

2.7 REGULARIZATION

During training, the model is only aware of some examples sampled from the data

distribution, the so-called training set. Thus, although training is based on optimizing a cost

function calculated over the training data, decreasing this value too much may cause the model

to over-adapt to the training set data. This phenomenon known as overfitting. That means that

instead of learning the training data distribution, the model will adhere to it, thus reducing its

generalization ability and, consequently, its performance on the test set.

Regularization techniques exist to reduce such model overfitting. They modify the

learning algorithm to reduce the generalization error, even if this means increasing the error in

the training set. For this purpose, there are several techniques based on different approaches,

such as reducing the weights of the model, discarding connections during training, and stopping

training early, among other strategies. The following subsections will present some of the most

common techniques in more detail.

2.7.1 Dropout

One of the most famous forms of regularization is Dropout, proposed in the work

of Srivastava et al. (2014). This strategy uses as inspiration the principle that combining multiple

models can result in improved generalization on the test set (BISHOP, 2006). However, training

multiple models is expensive in the deep learning scenario. Thus, Dropout proposes discarding

some neurons from the network during training to have different networks from the original

architecture.

This discarding strategy consists simply of temporarily removing connections to a

particular node. The choice of this node is made randomly so that at each training iteration, new

neurons are dropped, resulting in a different net. Thus a Dropout probability 𝑝 represents the
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chance of a neuron being discarded each time, creating a new hyperparameter for the model.

This dropout, however, occurs only during the training phase. For the evaluation phase on the

test set, the net uses all neurons in its architecture.

The main advantages of this method, as presented in Srivastava et al. (2014), are its

simplicity, low computational cost, since there is no need to train 𝑛 models separately, and its

capability of being used in conjunction with other regularization methods.

2.7.2 Early-Stopping

The Early-Stopping strategy uses a simple principle. As the name implies, this technique

is about stopping the model’s training early when a model is seen to be overfitting to the training

set. That is because training consists of reducing the cost calculated for the data in the training

set. During training, it is expected that the same will happen for the test set, showing that the

model is adapting to the data distribution. However, as it begins to overfit the training data, the

model’s error on the test data may rise, representing a decrease in the model’s generalization

ability.

Within this context, the idea behind Early-Stopping is to monitor the model’s cost on

the test set to stop training when it gets too high. To avoid using the test set during training,

the ideal solution is to split the training set itself into two parts: training and validation. The

new training will be used to optimize the model, while the validation will be used to monitor

the model on a set not used directly in the optimization. So training will be stopped when the

validation cost starts to rise for a given number of consecutive epochs, also called patience.

2.8 VALIDATION

The simple division of the dataset into training and testing groups can create a problem

during the model training. This problem arises from the need to evaluate the model’s performance

during optimization, either because of a hyperparameter selection or by using an early-stopping

strategy. Because, in this case, assessing its performance against either set would be problematic.

To begin with, scoring on the test set would present a methodological problem. After all,

this would aim to increase the performance on this set directly, biasing the model and preventing

the evaluation on the test set from actually representing what would be found in a real scenario:

unseen data. On the other hand, scoring directly on the training set is not a better solution.
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Because maximizing the performance on the training set can lead the model to over-specialize in

this data set, leading to the so-called overfitting. Thus, the solution is to split the data into a third

set, called the validation set.

This new validation set can be used to evaluate the models during training, either in the

choice of hyper-parameters, where it is possible to choose the values that yield better performance

on the validation set or using a strategy like early-stopping, where the model training could be

halted when observed an increase in the error on the validation set, maximizing the model’s

performance on that set. Thus, it allows the test set to be kept isolated, allowing the model

scoring to be performed on an as-yet-unseen data set.

2.8.1 K-Fold

However, the need for a new group can lead to a new and prevalent problem in deep

learning: the amount of available data. This can result in a validation set that is too small, which

can lead to a noisy model performance estimate during training.

To solve this problem, cross-validation solutions propose using the entire training set

for validation in exchange for a higher computational cost. Among them, one of the most famous

is K-Fold. This technique splits the data set into 𝐾 partitions without overlapping data, with

𝐾 − 1 allocated for training and one for validation.

This technique allows the model’s performance on the validation set to be expressed by

averaging the scores of each model on its own validation set. The downside of this strategy is the

computational cost. Since one model must be trained for each partition as a validation set, 𝐾

models must be trained using this technique.

Also, K-Fold has variations according to how the partitioning is performed. One of the

most common is the stratified division of the partitions. This variation aims to create an even

division of the examples between each partition (FORMAN; SCHOLZ, 2010). This means that

each partition will have an approximately equal number of samples for each class, avoiding some

imbalance that could occur during the division using only K-Fold.

2.9 MULTI-TASK LEARNING

As suggested by Caruana (1993), it may be easier for a model to learn multiple com-

plicated tasks simultaneously than to learn them separately. This technique is also known as
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Multi-Task Learning. In practice, this can be achieved by solving different problems with a

model that shares parameters between tasks. According to Goodfellow et al. (2016), models of

this nature can be divided into two parts:

1. Task-specific parameters. These only benefit the specific output of a task, and are therefore

located near the output layers of that task;

2. Generic parameters. These are shared by all the other outputs of the model and, for this

reason, are located at the very beginning of the network.

This parameter-sharing strategy can increase the model’s generalization ability by

bringing more information about the data to train the system. This benefit, however, can only be

obtained if the tasks for which the model is being trained are related, i.e., if the problems the

model proposes to solve share some information.

2.10 HIGH ACCURACY NILM DETECTOR – HAND

The detection step is critical for a large portion of NILM systems, allowing the iden-

tification of the appliances to be performed later. In this context, one of the existing detection

methods is the HAND (NAIT MEZIANE et al., 2017). It stands out mainly due to the simplicity

of its operation and speed of execution.

The first step of its operation is to detect the signal’s 𝑒𝑑(𝑡) envelope. The proposed

method for this is to find the signal peaks at each power grid cycle (approximately 16.67 ms

for a 60 Hz grid, for example). After this, the points between each consecutive pair of peaks

found are calculated using interpolation. Since this can smooth the signal, eliminating abrupt

changes that can help identify events, the algorithm also proposes that sets of values between

two consecutive peaks with a meager median value be set to zero.

With the envelope prepared, the signal is analyzed. To do this, the envelope signal is

divided into windows of size 𝐿, where this value represents the number of network cycles within

each window. Then, for each window, a method is applied to iteratively compute the mean 𝜇𝑑(𝑡)

and variance 𝜎2
𝑑(𝑡) of the signal, as proposed by the algorithm itself, as follows:

𝜇𝑑(𝑡𝑘) = 𝜇𝑑(𝑡𝑘−1) +
1

𝐿
[𝑒𝑑(𝑡𝑘)− 𝑒𝑑(𝑡𝑘−𝐿)] , and (18)

𝜎2
𝑑(𝑡𝑘) = 𝜎2

𝑑(𝑡𝑘−1) +
1

𝐿− 1

[︀
𝑒2𝑑(𝑡𝑘)− 𝑒2𝑑(𝑡𝑘−𝐿)

]︀
+

𝐿

𝐿− 1

[︀
𝜇2
𝑑(𝑡𝑘−1 − 𝜇2

𝑑(𝑡𝑘)
]︀
, (19)
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where 𝑘 = 𝐿+ 1, ..., 𝑁 . The average will be used to calculate the window variance, which will

be used to identify events in the signal.

An example of this resulting variance curve is presented in Figure 3, where the nor-

malized variance curve for a waveform containing the current of a fan is shown. In this figure,

one can see that the variance calculated from the envelope of the current signal is related to the

events that occurred during that acquisition. When the appliance is turned on, where there is a

greater variation in the current, there is a greater variation in the variance curve as a response. At

the moment the load is turned off, although the variation in the signal is small, it is still possible

to notice a change in the variance curve, allowing the identification of the switching event. Thus,

HAND will identify as an event any variation in the variance curve at which 𝜎𝑑(𝑡) > 𝛾, where 𝛾

is a user-defined threshold.

Figure 3 – Example of the proposed variance curve in HAND calculated for a fan signal.
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This approach, however, is subject to a good definition of the parameters 𝐿 and 𝛾, the

latter being the most important because a low threshold can result in the detection of a large

number of false positives. A high threshold, on the other hand, can result in a large number of

false negatives. Also, being a method based on the signal’s amplitude variation, this strategy

can present difficulties in scenarios with non-linear load combinations, which may result in a

narrower amplitude variation. Another challenge is the power difference between loads. The

variation caused by a low-power appliance may go unnoticed if the power demand of other

devices on the power grid is too high.
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2.11 ADDITIVE WHITE GAUSSIAN NOISE – AWGN

Additive White Gaussian Noise is a famous type of noise with some specific properties.

As defined in Kuo (1996), an essential characteristic of white noise is the mean 0. It also holds

the property that for the noises 𝑛𝑡 and 𝑛𝑠, where 𝑛𝑡 is the noise value at time 𝑡 and 𝑛𝑠 the value

at time 𝑠, they must be independent for 𝑡 ̸= 𝑠.

Thus, white noise is composed of random and independent values, which results in a

signal where all frequencies have a similar amplitude. This idea is what justifies the term “white”

in its name. After all, the same behavior can be observed for the spectrum of white light. Visually,

this noise can be represented as a flat signal without significant variations in amplitude.

On the other hand, the Gaussian part of the acronym AWGN represents that the noise

can be modeled using a Gaussian distribution. Thus, since Gaussian is a probability distribution

function defined by the mean and variance, a given Gaussian white noise can be defined as

follows:

𝑛 ∼ 𝒩 (0, 𝜎2), (20)

where 𝒩 (0, 𝜎2) represents a Gaussian distribution with mean 0 and standard deviation 𝜎. This

will result in a signal around 0 with an amplitude defined by the variance 𝜎2.

Meanwhile, the amplitude of this noise will define the Signal-to-Noise Ratio (SNR),

which states the quality of the signal in relation to the noise present. This ratio is measured in

decibels (dB) and can be calculated as follows:

SNR = 20 · log10
(︂
𝐴𝑠

𝐴𝑛

)︂
, (21)

where 𝐴𝑠 represents the signal amplitude and 𝐴𝑛 represents the noise amplitude. Thus, the

smaller the SNR value, the lower the signal quality since there will be a smaller proportion

of signal to noise. Finally, the additive part of AWGN represents the property that this noise

can be combined with the signal by a simple addition. This makes this noise a great option for

experimentation because it can be easily generated and added to the original signal.

2.12 SCATTERING TRANSFORM

Proposed by Mallat (2012), Scattering Transforms (STs) represents the modulus and

the mean of a Continuous Wavelet Transform (CWT). For this reason, its filters are computed
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beforehand, i.e., they are not learned during the training phase of the model, which results in a

model with fewer trainable parameters, thus reducing the amount of data required to train it.

The ST layer consists of a convolution, a modulus (nonlinearity), and an averaging

operation, and has a structure similar to a CNN, which usually has a convolution, an activation

function (nonlinearity), and a pooling operation. Like CNNs, STs can be stacked in multiple

layers. Thus, the coefficients of a layer 𝑞 of a ST can be expressed by the following equation:

𝑆𝑞 = ||𝑥 *Ψ1,𝑘| ... *Ψ𝑞,𝑘| * Φ𝐽 , (22)

where Φ𝐽 is a low-pass filter, Ψ is a wavelet function, 𝑥 is the input signal, and 𝑆𝑞 are the

coefficients of the 𝑞-th layer. However, the output coefficients of a scattering network are a set of

the coefficients for all the layers, as summarized by the following equation:

𝑆𝑘 = {𝑆𝑞(𝑥)} , (23)

where 0 ≤ 𝑞 ≤ 𝑚, and 𝑚 is the total number of layers in the scattering network.

Furthermore, as presented by Bruna and Mallat (2013), the scattering transform layers

have information loss, with this information being propagated to higher orders (layers). Thus,

the more orders in a scattering transform, the less energy is lost from the input signal. However,

most of the information is conserved in the first orders, with up to 99% conserved in the 0th and

1st orders alone. This property allows numerical applications to limit the number of layers with a

negligible loss of signal energy.

Finally, regarding the interpretation of the coefficients, due to the fact that the scattering

transforms are based on wavelet filters, they are able to transform a time series input signal to

the time-frequency domain (AGUIAR et al., 2021). This property gives ST layers an advantage

over CNN layers, making their output coefficients explicable, which allows the development of

better strategies for dealing with the computed features.

2.13 ROC CURVES AND CONFUSION MATRICES

Receiver Operating Characteristic (ROC) Curves provide a visual way to analyze a

classifier’s balance between hits and false alarms (FAWCETT, 2006). For this purpose, the

Receiver Operating Characteristic (ROC) curve uses the true positive rate (TPrate) and the false

positive rate (FPrate). The following equation defines the true positive rate:

TPrate =
𝑡𝑝

𝑝
, (24)
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where 𝑡𝑝 represents true positives, which indicates the number of instances where the model

correctly identifies the load, and 𝑝 represents total positives, which refers to the number of

instances where the load is connected. The false positive rate, on the other hand, can be calculated

as follows:

FPrate =
𝑓𝑝

𝑛
, (25)

where 𝑓𝑝 indicates the number of false positives, which accounts for instances where the model

mistakenly identifies a load as connected, and 𝑛 indicates the number of negatives, which

accounts for the total number of examples where the load is not connected.

For models that predict a continuous classification probability, it is necessary to set

a threshold, usually 50% in problems with only two classes, to convert that information to a

discrete value that indicates the predicted class. In the case of the ROC Curve, however, the

curve is formed by multiple points obtained when varying this classification threshold, each

point consisting of pairs (FPrate, TPrate), allowing the classifier evaluation for different threshold

values. Thus, the ideal case for a classifier is to be at the point (0, 1), indicating that the model

identifies all positives correctly and no false alarms occur, so the closer to the upper left diagonal,

the better the performance of the classifier. Finally, another performance measure from the ROC

Curve is the Area Under the Curve (AUC), which has a maximum value of 1.

As a complement, confusion matrices are helpful in evaluating the occurrence of false

positives in detail. This technique allows the visualization of the successes and errors of a

classifier by relating the actual labels with those predicted by the model. For multi-label models,

which allow the output for each class to be interpreted as an independent binary classifier, there

will be an independent confusion matrix for each class.
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3 LITERATURE REVIEW

This chapter presents the state of the art of using deep learning techniques in the context

of non-intrusive load monitoring. For this, it first presents works using similar technology and

their results. Finally, it presents the contributions of this work to the NILM field.

3.1 RELATED WORKS

This Section presents the literature review and briefly discusses correlated works from

the NILM setting and their results. Since this work focuses on using deep learning techniques,

which have achieved superior results in the recent literature (SONG et al., 2021; PICCIALLI;

SUDOSO, 2021), this Section will emphasize correlated research within this area in the NILM

field. The advantage of deep learning techniques is to provide an end-to-end architecture, allowing

feature extraction and load classification using only the sampled signal as input to the models,

learning optimized parameters across layers, and increasing the final classification result.

In this context, Kelly and Knottenbelt (2015) presented one of the pioneering works in

using deep learning in this area for low-frequency disaggregation. That work compares three

deep neural network architectures. Using the Long Short-Term Memory (LSTM) architecture, the

model based on recurrent neural network technology presented promising results for loads with

two states, i.e., loads whose mode of operation can be summarized as on or off. Following this

idea, several studies have been presented to disaggregate loads at low frequencies, mainly using

models based on Recurrent Neural Networks (RNN) (SONG et al., 2021; GOMES; PEREIRA,

2020; PENG et al., 2020; D’INCECCO et al., 2020; JIA et al., 2020; PICCIALLI; SUDOSO,

2021; YANG et al., 2020; NALMPANTIS; VRAKAS, 2020).

In a different approach, Li et al. (2023) proposes using a combination of CNN and

RNN to disaggregate loads on low-frequency NILM signals. This strategy achieved a Mean

Absolute Error (MAE) of approximately 4.26 in the REFIT dataset. However, despite the superior

performance on public datasets, such as UK-DALE, REDD, and REFIT, the main limitation of

low-frequency methods is the low resolution for the measured features (RUANO et al., 2019),

which prevents the identification of particular load types (ZOHA et al., 2012).

High-frequency methods, on the other hand, allow a more detailed analysis of the

extracted features, improving the identification of loads and, consequently, the disaggregation of
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the measurements (IQBAL et al., 2021). In Baets et al. (2018), the authors used images generated

by different V-I trajectories as input for a model based on CNNs. For this strategy, the accuracy

obtained for the PLAID and WHITED datasets, both public, was less than 80%.

Liu et al. (2018) proposes a similar approach. A deep learning model, pre-trained

on a dataset for visual recognition, is transferred to train a classifier for NILM using images

generated by color-coded V-I trajectories. This coding allowed adding more information to the

generated image, such as the ratio between active and apparent powers. In contrast, the transfer

learning technique allowed reducing the amount of data needed for training the models and still

significantly increased the accuracy, achieving an F1-Score higher than 95%. Similarly, in Guo

et al. (2020), a method for load identification based on Active Deep Learning (ADL) and the

Discrete Wavelet Transform (DWT) is proposed. The authors presented a combination of three

public datasets that reduced the number of samples required by 33% while maintaining the

F1-Score greater than 90%.

Chen et al. (2022) propose a solution with temporal and spectral representations of

the appliance’s power signature. Combining both, the authors presented the Two-Stream Con-

volutional Neural Network (TSCNN). Both representations are image-based, requiring extra

preprocessing steps to extract the measured signal’s temporal and spectral load signatures. That

also implies 2-D CNN layers, increasing the model complexity, making training more expensive,

and increasing the data needed to achieve good performance results. Despite that, the authors

achieved an F1-Macro superior to 95% for both PLAID and WHITED.

In Mukaroh et al. (2020), a Generative Adversarial Network (GAN) based model

removes background noise from multiple complex waveforms. By combining this model with

a CNN-based classifier, the classification accuracy reached approximately 92%. On the other

hand, Luo et al. (2023) propose a metric-based meta-learning strategy using 1-D CNNs, which

allows the model to train using only a few examples for each appliance. Its goal is to improve

the model’s generalization on practical applications where labeled data is a limited resource.

Using this strategy, the authors achieved an approximate F1 Score of 92% for WHITED and 76%

for PLAID. Despite the promising results for classification, the main limitation for Baets et al.

(2018), Guo et al. (2020), Liu et al. (2018), Mukaroh et al. (2020) is the absence of a detection

stage or an analysis of the impact of event detection on the load identification process.

To overcome the limitation imposed by detection, a method capable of detecting loads

in the electrical grid is discussed in Baets et al. (2019), including the detection and identification
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of devices not previously seen. Electrical appliances are represented by their V-I trajectory and

mapped to the feature space created by a Siamese neural network so that examples of the same

load form compact groups in this designed space. Then, grouping the data with a clustering

algorithm known as Density-Based Spatial Clustering of Applications with Noise (DBSCAN)

resulted in an F1-Macro score within the 80-90% range for the PLAID and WHITED datasets.

Nevertheless, in this context, Zhou et al. (2021) proposes a complete framework for

NILM, including detection, feature extraction, and classification. This framework also imple-

ments an online learning method to infer varied loads using a transfer learning method on a

model with limited measurements. For this, two neural networks were used in two different

stages: (i) LSTM to extract the spatiotemporal features from the gray-scale image generated by

the measurements and (ii) a Probabilistic Neural Network (PNN) to classify the load type. Both

applied models used transfer learning and deep neural network techniques. Finally, the proposed

algorithm was implemented on an embedded device to present the effectiveness of its use in

practice.

A typical limitation observed in the methods presented so far is that, although obtaining

adequate identification of the loads is possible, a disaggregation step is still required. A viable

strategy for this disaggregation step is using a simple current subtraction, as discussed in Laz-

zaretti et al. (2020), Wang et al. (2018), or a filter-based approach, such as the GAN-based model

presented in Mukaroh et al. (2020). These solutions aim to isolate each load in an acquisition

with multiple appliances. However, nonlinearity and overlapping devices with significant power

differences may preclude such strategies’ use. In addition, this strategy’s operation is highly

dependent on the accuracy of the detection method employed. As a solution for this problem,

some recent studies have pointed out that an alternative to such approaches is using a multi-label

classification model, as shown in Tabatabaei et al. (2017).

Following this trend, recently, in Faustine and Pereira (2020), an approach based on

CNNs was presented for the multi-label classification of NILM current signals. In this proposal,

the current signal is represented in image form using Fryze power theory, which allowed this

model to achieve an F1-Score on the order of 90-95% for public datasets. However, the authors

did not discuss the applicability of this method in a real-world scenario through an analysis

of the computational performance of the proposed architecture. Similarly, Manca et al. (2022)

propose a multi-label strategy using V-I trajectories and Weighted Recurrence Graph (WRG). To

improve the multi-label performance, the authors propose to combine a single-label model with a
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multi-label model during the training stage. This solution achieved an F1-Score of approximately

91% on the PLAID dataset.

In a general overview, the practical use of deep learning-based approaches is under-

explored in the literature. In this context, it is worth highlighting the research presented in Baptista

et al. (2018). The authors proposed a model based on convolutional neural networks imple-

mented in hardware to identify loads using voltage and current measurements employing the

V-I trajectory. For the implementation, the authors chose as the platform a Field Programmable

Gate Array (FPGA) board aiming to use parallel processing. This strategy achieved an absolute

accuracy of approximately 78% on the PLAID dataset, with a processing time of about 5.7 ms.

However, this work used only single-loaded waveforms.

Mulinari et al. (2022) present another work that explores the practical implementation

of a NILM model. In this solution, the authors propose representing the loads using features

extracted by a Fourier 2-D series from the signal’s V-I trajectory. The authors then tested those

features with different machine learning classifiers, such as Ensemble, Support Vector Machines

(SVMs), and Decision Trees (DTs) – with the Ensemble yielding the best performance. This

strategy achieved an F1 Macro of approximately 96% when evaluated on the LIT-Dataset, with

an average processing time of 96.6 milliseconds. However, the authors did not explore the

detection problem.

3.2 WORK CONTRIBUTIONS

Based on the criteria exposed up to this point, one can observe that the correlated

works presented have several positive points and some limitations, as summarized in Table 1.

Considering the limitations primarily, the main original contributions of this work can be

summarized as follows:

• A new architecture based on convolutional neural networks to perform detection, feature

extraction, and multi-label classification of the loads in high-frequency signals with a

single model. As will be presented later, this proposed model takes inspiration from the

YOLO (REDMON et al., 2016) architecture, which performs multi-label detection and

classification of objects in images;

• The results obtained are equivalent or superior (in most of the cases analyzed) to the

state-of-the-art methods for the dataset evaluated;
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• The proposed technique can be embedded in an electronic system, showing its applicability

in a real-world use scenario for a NILM system;

• Discussed the applicability of Scattering Transforms (STs) by proposing and evaluating

a deep learning model with ST layers to perform event detection and multi-label load

identification in NILM signals. Although this specific research related to ST is at an early

stage, the experiments performed so far were able to show how scattering transforms can

help reduce the amount of data required to achieve good performance in such tasks.

Table 1 – Related work and contributions of this research. Concerning notation, “Y” indicates that the paper
contains the feature in question, while “–” indicates the absence of such a feature.

Work Detection Multi
Label

High
Frequency Embedded

Li et al. (2023) – Y – –
Song et al. (2021) – Y – –

Gomes and Pereira (2020) – Y – –
Peng et al. (2020) – Y – –

D’Incecco et al. (2020) – Y – –
Jia et al. (2020) Y Y – –

Piccialli and Sudoso (2021) Y Y – –
Yang et al. (2020) – Y – –

Nalmpantis and Vrakas (2020) – Y – Y
Luo et al. (2023) Y – Y –

Chen et al. (2022) – – Y –
Baets et al. (2018) – – Y –

Aguiar et al. (2021) – – Y –
Guo et al. (2020) – – Y –
Liu et al. (2018) – – Y –

Mukaroh et al. (2020) – – Y –
Faustine and Pereira (2020) – Y Y –

Baets et al. (2019) Y – Y –
Zhou et al. (2021) Y – Y –

Mulinari et al. (2022) – – Y Y
Baptista et al. (2018) – – Y Y
Manca et al. (2022) – Y Y –

This work Y Y Y Y
Source: Own work.
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4 METHODOLOGY

This chapter describes the methods used to develop the solution proposed in this work.

It consists of six sections. The first describes the database used to evaluate the model, the second

details the architecture proposed to solve the problem, and the third section presents the procedure

used to train and evaluate the model created. The fourth section describes the evaluation of

the robustness to noise of the proposed solution, while the fifth section details the tests on an

embedded system. Finally, the last section presents the architecture proposed for on the initial

tests using scattering transforms.

4.1 LIT-DATASET

For model training and evaluation, the chosen data source was the LIT-Dataset1. This

database, proposed by the Laboratory of Innovation and Technology in Embedded Systems and

Energy (LIT), comprises three subsets: Natural, Simulated, and Synthetic. For this work, however,

only the Synthetic subset, also known as LIT-SYN, was used since the Natural subgroup, which

is also composed of real load acquisitions, was not yet fully available. Figure 4 shows an example

of a waveform present in this subset of data.

Figure 4 – Example of an octuple waveform containing the loads: (i) Cell phone charger (Motorola), (ii) Fume
Extractor, (iii) Soldering Station, (iv) LED Panel, (v) Vaio Notebook, (vi) Incandescent Lamp, (vii)
Eleganza Hair Dryer, and (viii) Parlux Hair Dryer. In blue is the aggregate current of all loads. In
orange are the load-switching events, where up indicates a turn-on and down indicates a turn-off.
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1 Available at: http://dainf.ct.utfpr.edu.br/~douglas/LIT_Dataset

http://dainf.ct.utfpr.edu.br/~douglas/LIT_Dataset
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The Synthetic subset of the LIT-Dataset (LIT-SYN) comprises acquisitions performed

in a controlled environment using a bench. Here, actual loads are connected, but the activation of

the devices happens in a controlled manner. This subset has 1 664 waveforms of up to 40 seconds,

sampled at 15 360Hz. Concerning the loads, this subset comprises 16 appliances in different

configurations, which result in 26 distinct classes, as detailed in Table 2. This dataset further

provides waveforms of acquisitions with multiple loads connected simultaneously, including the

following scenarios: one load (LIT-SYN-1), two loads (LIT-SYN-2), three loads (LIT-SYN-3),

and eight loads (LIT-SYN-8).

Table 2 – Classes present in the synthetic subset of the LIT Dataset (LIT-SYN).
ID Device Power (W)
0 Microwave Standby 4,5
1 LED Lamp 6
2 CRT Monitor Standby 10
3 LED Panel 13
4 Fume Extractor 23
5 LED Monitor 26
6 Cell phone charger Asus 5
7 Soldering Station 40
8 Cell phone charger Motorola 10
9 Laptop Lenovo 70

10 Fan 80
11 Resistor 80
12 Laptop Vaio 90
13 Incandescent Lamp 100
14 Drill Speed 1 165
15 Drill Speed 2 370
16 Oil heater power 1 520
17 Oil heater power 2 750
18 Microwave on 950
19 Air heater Niko 1120
20 Hair dryer Eleganza - Speed 1 365
21 Hair dryer Eleganza - Speed 2 500
22 Hair dryer Super 4.0 - Speed 1 - Heater 1 660
23 Hair dryer Super 4.0 - Speed 1 - Heater 2 1120
24 Hair dryer Parlux - Speed 1 - Heater 1 660
25 Hair dryer Parlux - Speed 2 - Heater 1 885

Source: Adapted from Renaux et al. (2020).

Another essential feature of this database is the existence of precise annotations (< 5

ms) of the load-triggering events, including the load responsible for such an event. That allows

training not only the classification part of the events but also the detection part, something

necessary for the proposed architecture.
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4.2 PROPOSED METHOD (DEEPDFML-NILM)

Figure 5 presents the model proposed to solve the problems described so far. This model

processes the measured aggregate electric current by a 5-layer block, each composed of a 1D

convolutional layer, a Leaky ReLU activation function, and a Max Pooling layer. In the end, the

resulting signal, after passing through this block, is transformed into an array by a Flatten layer,

resulting in the features extracted from that signal until that point. These features, in turn, are

redirected to three fully connected subnets that indicate the event type (turn-on or turn-off), the

connected appliances, and the moment where an event occurred. During the training step, each of

these sub-networks is optimized, respectively, by the Categorical Cross-Entropy (CCE), Binary

Cross-Entropy (BCE), and Sum Squared Error (SSE) cost functions. The codes for reproducing

the proposed method are publicly available2. It is worth noting, however, that the preprocessing

step does not split the signal. The illustration represents how the model interprets the input,

dividing it into grid regions, as detailed in the following sections.

Figure 5 – Overview of the proposed method.
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4.2.1 Architecture

The proposed model has three main parts, each responsible for predicting different

information. The first of these parts is the event type classification, which indicates whether there

is a load-switching event. If an event exists, the model classifies it as a turn-on or turn-off. The

second part identifies the appliances, which, considering the analyzed signal excerpt, indicates the

devices connected to the monitored electrical grid. Finally, the last part is event detection. This
2 https://github.com/LucasNolasco/DeepDFML-NILM

https://github.com/LucasNolasco/DeepDFML-NILM
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step identifies in which specific signal sample an event occurred, in case there is an event in the

signal excerpt. All three parts share the same convolutional layers to perform feature extraction,

as shown in Figure 6. Sharing features among the outputs aims to improve the generalization

ability of the model by proposing to solve multiple subproblems simultaneously, a strategy

also known as Multi-Task Learning (see Section 2.9). All these combined results in a model

containing 464 990 trainable parameters, also known as weights, to perform all these tasks. The

base architecture, number of layers, and kernel sizes were inspired by the work presented in Ince

et al. (2016), where the authors propose a 1-D CNN-based model for fault detection in motor

current signals. From this base architecture, the model was empirically updated until obtaining

the architecture presented in this work.

Figure 6 – Highlighted are the convolutional layers used to extract features shared by the three subproblems.
The features extracted by this set of layers pass through each subnetwork, which will compute
features for its specific problem.
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4.2.1.1 Model input

The architecture in question considers a division of the input signal into five segments,

thus composing a grid of five positions, each containing ten cycles of the power grid. This

division strategy increased the number of samples in the input signal without impacting the

accuracy of event detection. The increase in the size of the input signal means that there will be

more information about the connected loads, improving the quality of identifying the loads in the
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aggregated signal. However, if there is an event, it also means that there will be a more significant

number of samples when it comes to defining which one is responsible for the detected event,

something mitigated by dividing the signal into grids. Thus, this proposed division of the input

signal enables the model to analyze the signal locally while having a broader view.

In addition to these five segments, the input signal comprises unmapped edges at the

beginning and end of the analyzed signal, each corresponding to 15% of the total mapped

samples, i.e., of the five segments already mentioned. These edges have this name because they

are not mapped to the output labels, so the model is not trained to detect events or identify

appliances that only appear in these signal portions. The idea is to mitigate problems caused by

loads triggering too close to the edge of the analyzed signal, which could result in a low amount

of samples to identify the load responsible for any possible event. With all this, the input signal

will consist of five snippets containing ten network cycles each and the unmapped edges, totaling

16 640 samples, as summarized in Figure 7.

Figure 7 – Representation of the grid division used by the model to interpret the input signal.
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Source: Own work.

4.2.1.2 Feature extraction

The feature extraction step, meanwhile, is the stage where the input signal is analyzed,

and the model computes the features used by the fully connected layers. This stage is composed

of five 1D convolutional layers, where the first one contains 60 filters, and the others have 40,

all of them with a kernel size equal to 9. These convolutional layers use as activation function

Leaky ReLUs with a leakage factor equal to 0.1. It means that for values greater than zero, the

function will behave like the standard ReLU, while for values less than zero, the function will
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allow only 10% of the input value to pass to the output. Furthermore, after each convolutional

layer, the signal is subsampled using max-pooling layers with a factor of 4. That implies that out

of every four samples, only one will move to the output – the one with the highest value.

4.2.1.3 Model output

With the features computed by the convolutional layers, it is possible to proceed to the

predictions. For the identification of the appliances, two fully connected layers containing 300

nodes each are used, with both using as activation function Leaky ReLUs with a leakage factor

equal to 0.1 – the same used for the convolutional layers. In addition, between these two fully

connected layers, there is a dropout layer with a rate of 25%. That will make the training process

randomly drop a quarter of the values before they reach the second fully connected layer. The

output layer’s number of nodes is equal to the number of appliances in the database multiplied

by the number of grid positions of the input signal, i.e., the output will have dimensions 5× 26.

Finally, since the identification of the loads happens in a multi-label scheme, sigmoid was used

as the activation function because it does not assume a relationship between the nodes, which

makes any combination of loads possible. This output was trained using Binary Cross-Entropy

as the cost function, which can be described as follows:

𝐵𝐶𝐸 = − 1

𝑀

𝑀∑︁
𝑖=1

𝑤1 · 𝑝(𝑥𝑖) log 𝑞(𝑥𝑖) + 𝑤0 · (1− 𝑝(𝑥𝑖)) log(1− 𝑞(𝑥𝑖)), (26)

where 𝑀 is the total of examples, 𝑝(𝑥𝑖) is the expected probability for the load 𝑥𝑖, 𝑞(𝑥𝑖) is the

probability calculated by the model, 𝑤1 is the weight for when 𝑝(𝑥𝑖) is 1, and 𝑤0 is the weight

for when 𝑝(𝑥𝑖) is 0. The inspiration for these weights came from the work proposed by King and

Zeng (2001). Here, they are used to lessen the impact of the imbalance between the number of

examples for each load (for the calculation of these weights, see Subsection 4.3.2).

For the event type classification, the extracted features go through a fully connected

layer with ten nodes, which uses as an activation function the same Leaky ReLU with 0.1 leakage

factor already found in other parts of the model. This step’s output uses one-hot encoding to

represent its predictions, which, very briefly, means that the possible scenarios predicted by this

output are mutually exclusive. Thus, three nodes are needed to represent the possible scenarios:

(i) turn-on, (ii) turn-off, and (iii) no events. With this, the last layer presents the total number of

positions in the grid multiplied by three, resulting in a dimension of 5× 3. This output uses a

softmax layer as the activation function and Categorical Cross-Entropy as the cost function. This
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function, meanwhile, can be represented as follows:

𝐶𝐶𝐸 = −
𝑀∑︁
𝑖=1

𝑝(𝑥𝑖) · log 𝑞(𝑥𝑖). (27)

Finally, the sample detection stage indicates precisely where the event has occurred.

This subnetwork presents a similar configuration to the one in the load identification subnetwork –

two fully connected layers separated by a dropout layer. The difference, in this case, is due to

the number of nodes in each fully connected layer, with the first layer containing 200 nodes and

the second 20 nodes. The output layer has dimensions 5× 1 and uses Sigmoid as the activation

function. Thus, this subnetwork predicts a value between 0 and 1 for each grid position in the

input signal. This last layer uses Sum Squared Error as the cost function, which can be calculated

as follows:

𝑆𝑆𝐸 =
𝑀∑︁
𝑖=1

E𝑖 · (𝑦𝑖 − 𝑦𝑖)
2, (28)

where E𝑖 denotes whether there is an event at position 𝑖 of the grid, 𝑦𝑖 is the model prediction

for detection, and 𝑦𝑖 is the expected output for this stage. Unlike the other outputs, which solve

classification problems, detection aims to solve a regression problem, predicting a value between

0 and 1 to represent the sample where the event occurred.

4.2.2 Similarities and differences to YOLO

As stated earlier, this proposed architecture takes inspiration from YOLO (REDMON

et al., 2016), specifically YOLOv3 (REDMON; FARHADI, 2018). The first similarity is the

use of convolutional layers. However, YOLOv3 uses 2D layers, while the proposed architecture

features 1D layers. This change reduces the number of parameters in the model, making training

less expensive.

Another feature in both architectures is multiple outputs sharing the same convolutional

layers for feature extraction. In YOLO’s case, there is only one output for identifying objects

and one for detecting their bounding boxes. In the case of the architecture proposed in this work,

in addition to the outputs for identification and detection, there is also an output to indicate the

type of event found, something necessary for the NILM problem. One more detail common to

both models is the multi-label strategy classification. However, the system proposed by YOLO

uses a hierarchical multi-label scheme based on the hierarchy proposed by WordTree, containing

directly related classes, such as “dog” and “golden retriever”. This concept creates a relationship
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between types, e.g., all golden retrievers will also be dogs. For the NILM scenario, however, that

does not occur, which means that the model proposed in this work should be able to face any

appliance combinations in a signal.

Figure 8 shows a comparison between the output of both models. For the output of the

architecture presented in this work, given the nature of the problem, the detection consists of

only one point. Another piece of information is the event type, which the event mark pointing

downwards indicates as a turn-off event. Finally, regarding identification, the model correctly

identified the eight independent loads present in this example.

On the other hand, YOLO detects objects by predicting a bounding box that defines a

region in the image. In the example presented in Figure 8, the model also identified the detected

object as a bird. Nevertheless, a human being would be able to recognize that this bird is, in fact,

an eagle. That represents the hierarchical concept used for the labels mentioned above. Although

the image shows an eagle, the model can identify it with a more comprehensive but correct

available class. Thus, the model can recognize an eagle as a bird simply by using features shared

by other bird species in the dataset.

Figure 8 – Comparison between predictions generated by the proposed model and by YOLO. On the left is
shown a detection performed by the architecture presented in this work, and on the right is shown
a detection performed by YOLOv3.
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(b) YOLO’s prediction.

Source: Own work.

4.3 TRAINING

Figure 9 describes the steps required to train the architecture presented in Subsec-

tion 4.2.1. The first step is preprocessing the dataset to create the signal clippings and their labels.

After that, the examples are divided into training and testing groups. With the set selected for
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training, the model is trained on a cross-validation scheme with ten folds, allowing a less biased

evaluation of the split between training and validation. After this, the best-performing model

is chosen during validation to evaluate the system’s performance on the test set. The following

subsections present these steps in more detail.

Figure 9 – Overview of the training and evaluation processes of the proposed model.
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4.3.1 Preprocessing

Given that the acquisitions have millions of samples, which is much more than the

model’s input can handle, the first step in this phase is to create clippings of the signal. Therefore,

it is necessary to choose which portions of the signal to use for model training and evaluation.

Selecting these excerpts can be divided into two parts: (i) with events and (ii) without events.

4.3.1.1 Signal excerpts with events

The choice of clippings containing switching events is a simple task since the database

already offers precise markings indicating the sample of occurrence of these events. Thus, to

perform each clipping, the start of the selection window is positioned over the sample where

an event occurs. This window is then moved using a pseudo-random distance smaller than the

number of samples in the window. This procedure aims to improve the distribution of the position

of the events within the clipping made.

4.3.1.2 Signal excerpts without events

For the choice of sections without load-switching events, as most of the signal will not

have events, it is necessary to choose sections that present some interesting behavior that can
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pose a more challenging scenario during the model training. Furthermore, this choice must be

reproducible, allowing the idea to be replicated by other works for performance comparison.

The High Accuracy NILM Detector (HAND) (NAIT MEZIANE et al., 2017) algorithm

was employed to solve this problem. This algorithm aims to detect events in NILM signals using

the signal envelope based on a threshold of signal variation. However, defining such a threshold

is a challenging task and may result in a large number of false positives or false negatives. In

order to take advantage of this characteristic, parameters were chosen to ensure a high sensitivity

of this algorithm to increase the number of false positives found, i.e., allowing the algorithm to

detect variations in the signal that are not actual events.

A window size 𝐿 = 1 power grid cycle and a detection threshold 𝛾 = 1 · 10−5

were used as parameters (see Subsection 2.10). Also, to avoid clippings without actual current

consumption, only detections with at least one load connected are chosen among the detected

events. Furthermore, to avoid creating a clipping that is simply a translation of an existing

example, only points with a distance of at least 50 grid cycles from other already chosen sections

or load-switching events are selected. Finally, the same procedure described previously for the

regions with events (see Subsection 4.3.1.1) is applied to create the clippings for the sections

without events.

Figure 10 shows an example of a clipping obtained from applying HAND using the

strategy presented here. The upper part of the figure shows an acquisition with a single load.

However, as can be seen, after turning it on, the waveform still exhibits a significant current

variation before finally entering the steady state. This current variation can be considered a

switching event even by a human unaware of the load’s behavior, making it a useful example for

model training. This strategy generates 8 316 instances with events and 12 396 without events.

4.3.1.3 Creating the labels

With these signal excerpts, the labels provided for the model during training are created.

Due to the architecture already presented, these labels will have three components: Classification

of the event type, Identification of the loads, and Detection of the Event Samples. Detection

consists of an array with a size equals to the number of grid positions, and its output is calculated
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Figure 10 – Example of applying the HAND algorithm in choosing event-free excerpts in the signal.
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Source: Own work.

as follows:

𝑑𝑖 =

⎧⎪⎨⎪⎩0, if the grid does not have an event,

𝑆𝑒−𝐺𝑖

𝐺𝑙
, if the grid has an event,

(29)

where 𝑑𝑖 represents the value of the detection array for grid position 𝑖, 𝑆𝑒 indicates the index of

the event sample that occurred inside that grid position, 𝐺𝑖 represents the first sample of that grid

position, and 𝐺𝑙 represents the total number of samples in a grid. For the event type, an array

with three slots for each grid position is defined using one-hot coding, where the first slot is for

turn-on events, the second is for turn-off events, and the third is for no events.

In load identification, an array with 26 positions represents the connected loads during

the signal portion of a grid. Each of these positions corresponds to one of the loads present in

the dataset (see Section 4.1). Given that the dataset provides the sample where an appliance is

connected and disconnected, the proposed strategy to create the labels consists of calculating

the intersection between a signal excerpt and each load. Then, for each grid position, if there

is an intersection between that signal portion and an appliance, that appliance is considered

connected in that grid position. Thus, if the appliance is connected even for a single sample of

a grid position, the model will treat it as connected in that grid position. Finally, after creating

the labels, the signal clipping window is extended by 15% on both sides to create the unmapped

edges the proposed architecture considers.
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Figure 11 presents a final example of the clipping created. In this figure, the orange

indication shows the event marking provided by the database. At the same time, the black

divisions represent the separation by grids, containing five central positions in addition to the

two edges, indicated in the figure by the green regions. This excerpt of the signal in question

comes from an acquisition with two loads, more specifically, from when the second load turns

on. For this generated clipping, the label for detection would be:

𝑦det =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Grid 1 0.00

Grid 2 0.00

Grid 3 0.63

Grid 4 0.00

Grid 5 0.00

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (30)

where the center position will be the only one with a non-zero value because it is the only grid

position with a load-switching event, as defined by Equation 29.

Figure 11 – Example of a signal excerpt created using the proposed method.
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As for event types, the training labels will be:

𝑦type =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

On Off None

Grid 1 0 0 1

Grid 2 0 0 1

Grid 3 1 0 0

Grid 4 0 0 1

Grid 5 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (31)

where each line represents a grid position with three possible events, namely: appliance turn-on

(represented by [1 0 0]), appliance turn-off (represented by [0 1 0]), and no switching events

(defined by [0 0 1]).

Finally, the equivalent label for identification will be:

𝑦class =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (32)

where each row represents the connected loads in a given grid position, and each column position

represents one of the loads in the dataset. From the third grid position, where the switching

event occurs, the second load is considered connected and remains so until the end of the signal

excerpt. In this representation, some columns have been hidden simply for easy visualization.

Finally, Algorithm 1 summarizes the procedure for creating these labels.

4.3.1.4 Creating the training and test sets

Finally, with all the clippings done, these examples are divided into two parts, 90%

for the training set and 10% for the testing set. That guarantees a test group, also known as a
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Algorithm 1 – Algorithm for label creation
Input: the sample array 𝑐𝑢𝑟𝑟𝑒𝑛𝑡, the sample 𝑆𝑒 where an event occurs in the signal, and the list 𝐶 with the loads

present in the signal and the samples where their switching events occur.
Output: current excerpt 𝑥 and labels 𝑦𝐷𝑒𝑡 (detection output), 𝑦𝑇𝑦𝑝𝑒 (event type output), and 𝑦𝐶𝑙𝑎𝑠𝑠(classification

output).
1: 𝐺𝑙 ← number of samples for a grid position
2: allocates yType, yDet, yClass
3: 𝑠𝑡𝑎𝑟𝑡← applies the offset on 𝑆𝑒 and places the window over the event
4: 𝑛𝐺𝑟𝑖𝑑𝑠← number of grids used by the model
5: for 𝑔 ∈ [0, 1, 2, ..., 𝑛𝐺𝑟𝑖𝑑𝑠] do
6: 𝐺𝑖 ← 𝑠𝑡𝑎𝑟𝑡+ 𝑔 *𝐺𝑙

7: if there is an event on the grid 𝑔 then
8: yDet[𝑔]← 𝑆𝑒−𝐺𝑖

𝐺𝑙

9: if turn-on event then
10: yType[𝑔]← [1, 0, 0]
11: else
12: yType[𝑔]← [0, 1, 0]
13: end if
14: else
15: yDet[𝑔]← 0
16: yType[𝑔]← [0, 0, 1]
17: end if
18: for load 𝑙 ∈ 𝐶 do
19: if 𝑙 connected in the grid position 𝑔 then
20: yClass[𝑔][𝑙]← 1
21: else
22: yClass[𝑔][𝑙]← 0
23: end if
24: end for
25: end for
26: 𝑥← creates the expanded excerpt to add the unmapped margins
27: return 𝑥, 𝑦𝐷𝑒𝑡, 𝑦𝑇𝑦𝑝𝑒, 𝑦𝐶𝑙𝑎𝑠𝑠

Source: Own work.

hold-out, that will not be used during training, reproducing what would happen during the use of

the model in a real scenario. This division is done in a stratified manner based on the connected

loads, aiming to create a balance between the number of examples for each load in the training

and test sets. This choice is due to the significant imbalance among the loads, in which many

loads have many examples while, at the same time, there are other loads with a small number of

occurrences. That gives the distribution a characteristic known as long-tailed (CUI et al., 2019).

Figure 12 presents the distribution of the number of examples in which each load in the dataset

appears.

4.3.2 Training and model selection

With the signal clippings and labels already prepared, it is finally possible to start

training the model. For that, the k-fold cross-validation strategy is used, with 𝑘 = 10. That
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Figure 12 – Distribution of the number of instances for each load present in the dataset.
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means that the training set will be divided into ten subgroups, where the model will be trained

10 times using each group once as a validation set, while the others will be used for training.

After defining the training set, the input signal is normalized within this subset, keeping the

values within the [−1, 1] range to keep the model weights lower during training, avoiding a high

sensitivity to variations present in the signal, such as noise. Then, to reproduce what would

happen in the actual application of the model, the signals of the validation and test groups are

normalized based on the thresholds obtained for the training set in question.

Still, in the training group, the weights used for training the classification are calculated

(see Equation 26). Since identifying the loads is treated as a binary classification for each device,

the weights are calculated individually. Thus, for each of the loads, there will be a weight for

each of the two possible states (on or off). These weights, meanwhile, are calculated based on

the following equation:

𝑤𝑖 =
𝑁

2 · 𝑛𝑖

, (33)

where 𝑤𝑖 indicates the weight for the 𝑖 state of the load, 𝑛𝑖 represents the number of examples

containing the load in the 𝑖 state, 𝑁 represents the total number of instances, and 𝑖 represents

the states of the load (on or off). This formula is based on the work proposed by King and

Zeng (2001), consisting of the inverse of the frequency for each state. It also divides the inverse

frequency by the number of possible states to decrease the influence of the weights on the
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magnitude of the loss function.

Next, the training step starts. This procedure will use the early stopping strategy as a

form of regularization, aiming to prevent the model from overfitting to the training data, which

could reduce its performance on the test set. For this, the training process will monitor the loss

function on both the training set and the validation set, and if its value for the validation set

shows no reduction after a fixed number of epochs, the training stops. To ensure that the training

process will always stop using the early stopping strategy, the number of epochs is 100 times

greater than the patience. Table 3 lists all the parameters used for training the model. These

parameters were empirically defined, being tuned during the experimentation phase.

Table 3 – Model training parameters.
Parameter Value

Epochs 5 000
Patience (early stopping) 50

Optimizer Adam
Learning rate 10−3

𝛽1 (Adam) 0.9
𝛽2 (Adam) 0.999
Batch size 32

Folds 10

Since this training step aims to optimize three cost functions simultaneously, it was

possible to notice that some parts of the model optimized before others. More specifically,

the load identification output, a more complex problem than the others, could still be more

optimized at the end of training. That happens because the cost function increases faster in the

other outputs, causing the total cost of the model to rise, leading to a stop in training due to the

early stopping strategy. That becomes clear when looking at Figure 13. There, one can see how

the cost of identifying the event type in Figure 13 rises faster than that of the other outputs. A

similar behavior, but to a lesser extent, can also be observed for detection in Figure 13(d). In

identification, on the other hand, the training and validation curves remain close, indicating that

it may be possible to optimize that output further.

To solve this problem, after this first training step, all model layers, except for the

fully connected layers of the load identification output, were frozen for a second training round.

That allows training part of the model without interfering with the other layers. Because of

its characteristic, this technique is usually found in transfer learning works, where layers with

pre-trained weights are used, and in multitask learning works, where layers are shared among

multiple subtasks (KHAN et al., 2020; JIA et al., 2019; SPANGHER et al., 2021). In this second

training stage, where only the identification of the loads is optimized, the same parameters
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Figure 13 – Losses for training and validation sets during model training.
(a) Total Loss.
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(c) Event-Type Classification Loss.
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(d) Detection Loss.
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already listed in Table 3 were used, with a modification only in the learning rate, which decreased

to 10−5.

After training the model using cross-validation, it is time to choose the best-performing

model within its validation set. However, since the architecture discussed here proposes to solve

multiple problems simultaneously, it was necessary to decide how to evaluate which model

performed best among all those trained during cross-validation. Thus, since detection showed

similar performance among all the models trained, only the performance in identifying the loads

was considered to simplify the decision. This performance, in turn, was calculated as follows:

𝐹 =
𝐹on + 𝐹off + 𝐹noev

3
, (34)

where 𝐹on represents the 𝐹1 Macro (see Section 5.1) calculated for the instances containing a

turn-on event, 𝐹off represents the 𝐹1 Macro considering only the instances presenting a turn-off

of a load, and 𝐹no ev represents the 𝐹1 Macro for the instances without events. The idea behind
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this averaging is to increase the influence of the examples with load-triggering events since only

they present the transient characteristics of the devices in the signal.

4.3.3 Evaluating and processing the model output

As previously explained, the model has three outputs, each with different dimensions:

the detection has dimensions of 5 × 1, the event type classification has 5 × 3, and finally, the

identification of the loads has 5×26. Therefore, this subsection aims to describe the steps needed

to create the event indications from all the information provided by the model.

The first step is determining the connected loads during the signal excerpt analyzed.

That is done by identifying as connected loads all those that have a probability greater than

50% in at least one of the five grid positions. In other words, the load is considered connected if

𝑚𝑎𝑥(𝑃𝐿) > 0.5, where 𝑃𝐿 represents the array with the probabilities for a given load 𝐿 in each

of the grid positions that, in this way, will have dimensions 5× 1.

The next step is to determine the events detected by the model. To accomplish this, the

predictions of the output that indicates the type of event are checked. Then, in case of switching

events, the sample where this possible event may have occurred is also checked for each grid

position where a load-switching event occurred. The exact sample of the event occurrence is

calculated from the detection output using the following formula:

𝑆𝑒 = ⌊(𝐷[𝑔] + 𝑔) · 𝑠𝑔⌋, (35)

where 𝑆𝑒 represents the sample number within the mapped region of the clipping, 𝐷 represents

the array with the prediction for detection calculated by the model, 𝑔 indicates the grid position

where an event was detected, and 𝑠𝑔 represents the number of signal samples per grid position.

Thus, the combination of the event sample, event type, and connected loads constitutes a detected

event.

However, this strategy still allows the detection of the same event multiple times by

neighboring positions in the grid. Therefore, event suppression is performed to avoid this situation.

Hence, if more than one event is found for the same clipping, a relevance coefficient (𝐶) is

calculated for each of these events as follows:

𝐶 =
𝑇−1∑︁
𝑖=0

𝑃𝐶𝐿[𝑖], (36)

where 𝑃𝐶𝐿 represents the probability of the loads considered connected at the grid position

where the event was found, and 𝑇 represents the total number of loads considered connected.
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Thus, the relevance coefficient will sum up the probability of the loads believed to be connected

at the grid position where the event was detected. After calculating it for all detected events, the

event with the highest 𝐶 value is kept. Algorithm 2 summarizes this whole procedure of creating

events from the model outputs.

Algorithm 2 – Algorithm to create the events from the predictions
Input: 𝑑 array with the detection predictions, 𝑡 array with the event type predictions and 𝑐 array with the connected

load predictions.
Output: prediction 𝑒𝑣𝑒𝑛𝑡, in case there is an event that will contain the event occurrence sample, the event type,

and the connected loads.
1: 𝐺𝑙 ← number of samples per grid
2: 𝑙← loads on 𝑐 with maximum probability greater than 0.5
3: 𝑒𝑣𝑒𝑛𝑡𝑠← [ ]
4: 𝑛𝐺𝑟𝑖𝑑𝑠← number of grids used by the model
5: for 𝑖 ∈ [0, 1, 2, ..., 𝑛𝐺𝑟𝑖𝑑𝑠] do
6: 𝑡𝑦𝑝𝑒← 𝑎𝑟𝑔𝑚𝑎𝑥(𝑡[𝑖])
7: if 𝑡𝑦𝑝𝑒 ̸= 2 then
8: 𝑒𝑣 ← ⌊(𝑑[𝑖] + 𝑖) ·𝐺𝑙⌋
9: adds (𝑒𝑣, 𝑡𝑦𝑝𝑒, 𝑙) in 𝑒𝑣𝑒𝑛𝑡𝑠

10: end if
11: end for
12: if there is more than one event in 𝑒𝑣𝑒𝑛𝑡𝑠 then
13: 𝑒𝑣𝑒𝑛𝑡← chooses the event with the highest combined probability (see Eq. 36)
14: else
15: 𝑒𝑣𝑒𝑛𝑡← the only event present in 𝑒𝑣𝑒𝑛𝑡𝑠
16: end if
17: return 𝑒𝑣𝑒𝑛𝑡

Source: Own work.

4.4 NOISE

This work includes a set of tests using different noise levels on the aggregated current

signal to verify the proposed architecture’s robustness to variations in the input signal’s quality.

These tests comprise five scenarios in which the signal degradation gradually increases using

Additive White Gaussian Noise (AWGN), going from 50 dB to 10 dB SNR. Figure 14 shows the

comparison of the effect of each of the noise scenarios on the original signal. In it, it is possible

to see a drop in the signal’s quality when decreasing the signal-to-noise ratio. Up to the scenario

with 40 dB SNR there is a slight variation in the signal’s shape. At 30 dB, however, it is possible

to see a more significant influence of the added noise. At 20 and 10 dB SNR, the result is a

considerably modified signal, creating a challenging scenario for the operation of the proposed

model.

This test aims to evaluate the quality required for the sample acquisition system in the

case of developing a system that uses the model proposed in this work. If the system performs
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Figure 14 – Comparison of noise levels applied during the tests.
(a) No noise.
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(c) 40 dB SNR.
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(d) 30 dB SNR.
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(e) 20 dB SNR.
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(f) 10 dB SNR.
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Source: Own work.

poorly for more deteriorated signals, a better acquisition system will be required, consequently

costing more. On the other hand, if the model proves robust in these scenarios, this would

allow the use of a lower-level acquisition device, reducing costs and helping to make it more

commercially viable. It is also worth noting that this type of noise analysis is recurrent in the

NILM literature (WANG et al., 2018).
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4.5 EMBEDDED SYSTEM

Another critical aspect of the applicability of such a system in a real scenario is its

performance. That is because, for the model to be viable, it should be able to process a signal

clipping in less time than it takes to get all those samples. Otherwise, the system would overload

with more data than it can process. Thus, this work includes tests of the proposed architecture on

an embedded system to assess this aspect3.

The NVIDIA Jetson TX1 Developer Kit card was the platform chosen for these tests.

It has a 256-core GPU, an ARM Cortex A-57 processor, 4GB LPDDR4 RAM, and a Linux

environment (NVIDIA, 2015). These features made this board a good choice for the tests

performed since it presents enough computational power to run the proposed model. Moreover,

although the development kit offers considerable dimensions, measuring 170.18×171.45×15.58

mm, as shown in Figure 15(a), its processing module, presented in Figure 15(b), has dimensions

comparable to a credit card, measuring 87× 50 mm. That makes this platform a viable option

for prototyping and, consequently, an ideal scenario to verify the performance of the proposed

model.

Figure 15 – Platform used for performance testing in an embedded system.
(a) Development kit. (b) Processing module.

Source: NVIDIA (2015).

4.6 SCATTERING TRANSFORM – ST

Deep learning models, such as the architecture presented in Section 4.2.1, typically

require a large amount of data to achieve good performance. In an attempt to address this issue,

this work proposes an alternative architecture based on Scattering Transforms (STs). The main
3 The source code and instructions for reproducing the tests on the same embedded system are publicly avail-

able. More information can be found at: https://github.com/LucasNolasco/DeepDFML-NILM/blob/master/
EmbeddedSystem.md

https://github.com/LucasNolasco/DeepDFML-NILM/blob/master/EmbeddedSystem.md
https://github.com/LucasNolasco/DeepDFML-NILM/blob/master/EmbeddedSystem.md
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idea consists in replacing the block of shared CNN layers by a ST layer, reducing the number of

trainable parameters and thus requiring less data to achieve good performance. However, it is

important to emphasize that this is an ongoing research, which means that the results are still

preliminary.

Figure 16 presents the proposed architecture using ST layers. Compared to the model

based on CNNs presented in Subsection 4.2.1, this architecture based on ST layers present

some important differences. The first and most prominent one is the replacement of the shared

CNN block by the scattering network, which consists of a ST layer and some feature selection

strategies.

Figure 16 – Overview of the proposed model using Scattering Transforms (STs).

602
5x26300300

Scattering
Transform

Windowed
Average

Scattering Network

Convolution with Ψλ1
Modulus Operator
Low Pass Filter ΦJ
Flatten
Load Identification

Differences

5x3
300300

Event Type Classification

Event Type
Classification

Load
Identification

602Input

Source: Own work.

The output of the ST layer is a decomposition of the input signal and time and frequency

(see Section 2.12). Thus, it allows the combination of these coefficients to reduce the output size,

which consequently reduces the amount of parameters in the fully connected subnetworks. This

combination consists of a windowed averaging, using the grid division concept used to interpret

the signal, introduced in Subsection 4.2.1.1. Thus, the output coefficients of the ST layer are

divided as shown in Figure 17.

Figure 17 – Grid division applied for the windowed average.

} }} } } } }
Source: Own work.
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Then, the coefficients from each region are averaged and recombined as follows:

𝑆𝑓𝑘
𝑖 =

[︁
𝑓𝑘
𝑖,𝑙 𝑓𝑘

𝑖,1 · · · 𝑓𝑘
𝑖,5 𝑓𝑘

𝑖,𝑟

]︁
, (37)

where 𝑓𝑘
𝑖,𝑙 = 𝑙𝑘𝑖 , 𝑓𝑘

𝑛 = 𝑔𝑘𝑖,𝑛, and 𝑓𝑘
𝑖,𝑟 = 𝑟𝑘𝑖 . For the event-type classification task, there is another

operation performed on the extracted features, the difference between coefficients.

The purpose of this operation is to highlight the variation in the signal caused by a

load switching event. For this reason, the difference for a grid position is calculated as a simple

difference between its two neighbors. The edge case is for the unmapped regions, which have

only one neighbor. For them, the difference is calculated as the difference between them and

their only neighbor. It is important to note that this should not affect performance, since the

model is not trained to detect events on these regions. Therefore, the differences for the 𝑘-th

wavelet filter and the 𝑖-th sample can be calculated as follows:

𝐷𝑘
𝑖 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑑𝑘𝑖,0

𝑑𝑘𝑖,1

𝑑𝑘𝑖,2

𝑑𝑘𝑖,3

𝑑𝑘𝑖,4

𝑑𝑘𝑖,5

𝑑𝑘𝑖,6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑓𝑘
𝑖,1 − 𝑓𝑘

𝑖,𝑙

𝑓𝑘
𝑖,2 − 𝑓𝑘

𝑖,𝑙

𝑓𝑘
𝑖,3 − 𝑓𝑘

𝑖,1

𝑓𝑘
𝑖,4 − 𝑓𝑘

𝑖,2

𝑓𝑘
𝑖,5 − 𝑓𝑘

𝑖,3

𝑓𝑘
𝑖,𝑟 − 𝑓𝑘

𝑖,4

𝑓𝑘
𝑖,𝑟 − 𝑓𝑘

𝑖,5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (38)

Another difference is the output layers of the model. One can notice that the model

has been reduced to only two outputs: Event-Type Classification and Load Identification. The

regression output that predicts the time at which an event occurs has been removed for a couple of

reasons. The first is the fact that the event-type output already provides information about where

an event occurs in an interval of less than 167 ms. This leads to the second reason, which is to

reduce the number of parameters in the model. Finally, the third reason was the poor performance

in the earlier experiments, probably due to the averaging strategy used by the scattering layers.

The averaging strategy also created a challenging scenario for the event-type output,

which motivated the calculation of the differences between features for each grid position. For the

same reason, the subnetwork responsible for the event-type classification task was increased to

two layers with 300 nodes – the same number of layers and nodes used for the load identification

task.

Regarding the training process, the ST-based model uses the same procedure presented

in Subsection 4.3.2. However, since the ST layer is not trainable, the subnetworks can be
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trained separately. This eliminates the need for the weight freezing strategy to retrain the load

identification subnetwork. To make these experiments easily reproducible, the code for this

proposed architecture is publicly available4.

4 https://github.com/LucasNolasco/ST-NILM.

https://github.com/LucasNolasco/ST-NILM
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5 RESULTS

This chapter presents the results obtained from the experiments using the methodology

described in Chapter 4. In addition, it discusses an analysis of these results, as well as a

comparison with other recent results from the literature. First, this chapter introduces the measures

used to evaluate this performance. Then, it presents the results in the following order: (i) Detection

performance; (ii) Classification performance; (iii) Visual example; (iv) Comparison with related

works; (v) Noise robustness tests; (vi) Performance tests on an embedded system; and (vii)

Preliminary results using Scattering Transforms (STs).

5.1 PERFORMANCE MEASURES

This section presents the measures used to assess the model’s performance. For this

purpose, it presents measures that calculate the model’s ability to detect load-switching events

and identify the loads composing the measured aggregate signal (classification).

5.1.1 Detection Performance Measures

This work proposes using two measures to evaluate the system’s performance in the

load detection task, as proposed in Lazzaretti et al. (2020). The first one aims at measuring the

number of correctly detected events. In other words, it informs if the detected events are of

the correct type (turn-on or turn-off) and within a predefined tolerance interval concerning the

correct sample. Meanwhile, the other performance measure aims to calculate the average error

of the correct detections, i.e., how far these predictions are from the actual event.

5.1.1.1 Percentage of Correct detections – PC

This work uses the Percentage of Correct detections (𝑃𝐶) measure to evaluate the

correct detection of load-switching events. The main reason is that it has been used in other

works in the NILM literature (LAZZARETTI et al., 2020), enabling comparison with different

approaches. This measure has two parts: 𝑃𝐶on, focused on turn-on events, and 𝑃𝐶off, which

calculates the percentage of correct detections for turn-off events.

The measure 𝑃𝐶on can be defined as the ratio of the number of correctly detected
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turn-on events (𝐴𝑜𝑛) to the total number of turn-on events recorded in the waveforms (𝑁on). This

definition can be summarized in the following equation:

𝑃𝐶on =
𝐴on

𝑁on
. (39)

A tolerance window of ±10 half-cycles of the power grid (60 Hz) relative to the event’s

actual occurrence has been used to define an event as successfully detected. That corresponds to

a maximum absolute error of 1 280 samples. Thus, any detection within this range is considered

correct (LAZZARETTI et al., 2020).

Similar to the turn-on events, the 𝑃𝐶off is defined as the ratio of the number of correctly

detected turn-off events (𝐴off) to the total number of turn-off events recorded in the waveforms

(𝑁off). This definition results in:

𝑃𝐶off =
𝐴off

𝑁off
, (40)

where again a tolerance window of ±10 half-cycles of the electric grid is used to define a

detection as correct.

5.1.1.2 Average Distance – D

Another performance measure used in this work is the average distance (𝐷) between

a load-switching event and its detection by the model. Like the Percent of Correct detections

(𝑃𝐶), this measure has two parts: 𝐷on, which measures the average distance of detections for

turn-on events, and 𝐷off, which measures the average distance of detections for turn-off events.

The average distance to switch-on events, 𝐷on, can be defined as the ratio of the absolute

sum of the distances (in half-cycles) between detections and the actual event to the total number

of correct detections, 𝐴on (LAZZARETTI et al., 2020). The following equation summarizes this

definition:

𝐷on =
Σ𝐴on

𝑖=1|𝑑on(𝑖)− 𝑒𝑣on(𝑖)|
𝐴on

, (41)

where 𝑑on(𝑖) is the half-cycle in which the detection is located and 𝑒𝑣on is the half-cycle in

which the event actually occurred. Note that only correct detections are taken into account for

this measure, i.e., only those that increased 𝐴on according to the definition presented for the

calculation of 𝑃𝐶on.

The measure 𝐷off can be defined in a similar way. It corresponds to the ratio between the

absolute sum of the distances between turn-off event detections and the total number of correct
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turn-off detections, 𝐴off. Thus, this measure can be represented by the following equation:

𝐷off =
Σ𝐴off

𝑖=1|𝑑off(𝑖)− 𝑒𝑣off(𝑖)|
𝐴off

, (42)

where 𝑑off(𝑖) is the half-cycle of the power grid in which the event was detected, and 𝑒𝑣off(𝑖) is

the half-cycle in which the event occurred.

5.1.2 Classification Performance Measures

In this work, classical performance measures for classification problems, such as ac-

curacy and F1-score, are used to evaluate the identification of the loads that compose a given

aggregated current signal. However, as mentioned in Subsection 4.3.1.4, the number of ex-

amples for the loads is unbalanced. Therefore, the performance measures employed use a

macro-averaging strategy, where the measures are computed individually for each load and

averaged to obtain the final performance estimate.

5.1.2.1 Macro Averaged Accuracy – ACC

Although not an ideal performance measure for multi-label classification problems, this

work uses accuracy because it has been employed in other works in recent literature (MUKAROH

et al., 2020; LAZZARETTI et al., 2020; MULINARI et al., 2022). As a macro averaged measure,

it is calculated as the average of the individual accuracies of each class, reducing the effects of

imbalance present in the dataset (PEREIRA; NUNES, 2017). The following equation summarizes

this definition:

𝐴𝐶𝐶 =
1

𝑌

𝑌∑︁
𝑖=1

𝐴𝐶𝐶𝑖, (43)

where 𝑌 is the total number of loads in the dataset, and 𝐴𝐶𝐶𝑖 is the individual accuracy for each

load. The accuracy of a particular device can then be calculated as follows:

𝐴𝐶𝐶𝑖 =
𝐶𝐶𝐸𝑖

𝑇𝑁𝐸𝑖

, (44)

where 𝐴𝐶𝐶𝑖 is the individual accuracy for each device 𝑖, 𝐶𝐶𝐸𝑖 is the number of correct classified

events for the device 𝑖, and 𝑇𝑁𝐸𝑖 is the total number of load events for each device 𝑖.
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5.1.2.2 F1-Score

The F1-Score, on the other hand, is a measure more commonly found in multi-label

classification scenarios (FAUSTINE; PEREIRA, 2020; TABATABAEI et al., 2017; YANG et

al., 2020; NALMPANTIS; VRAKAS, 2019). As seen for the accuracy, the macro average of the

F1-Score is calculated to deal with the problem of imbalance between the number of examples

for each load. Thus, this measure can be defined by the following equation:

F1 Macro =
1

𝑌

𝑌∑︁
𝑖=1

2 · 𝑡𝑝𝑖
2 · 𝑡𝑝𝑖 + 𝑓𝑝𝑖 + 𝑓𝑛𝑖

, (45)

where 𝑡𝑝𝑖 is the number of true positives for load 𝑖, 𝑓𝑝𝑖 is the number of false positives, and 𝑓𝑛𝑖

is the number of false negatives.

5.2 DETECTION

Table 4 summarizes the results obtained for the detection of load-switching events

using the proposed model and applying the methodology previously presented in this work. As

can be seen, the proposed architecture can correctly identify most of the events, achieving a

𝑃𝐶on > 95% and 𝑃𝐶off > 95% when evaluating the entire database, represented in the table as

the LIT-SYN subset. Furthermore, these detections have a low error regarding the correct event

sample, showing 𝐷on < 1 and 𝐷off < 1, meaning that the event detections are majorly within

less than a power grid half-cycle of the actual event.

Table 4 – Detection results.
Subset PCon (%) PCoff (%) Don Doff

LIT-SYN-1 97.1 100.0 0.9 0.7
LIT-SYN-2 97.6 97.8 0.6 0.6
LIT-SYN-3 96.2 95.7 0.9 0.7
LIT-SYN-8 88.5 90.3 1.0 1.0
LIT-SYN 95.1 95.9 0.8 0.7

Source: Own work.

However, when evaluating individually the groups that compose the LIT-SYN dataset,

one can identify that the performance is superior for the cases where there is a smaller amount

of connected loads, with very close values of 𝑃𝐶on and 𝑃𝐶off for the groups LIT-SYN-1, LIT-

SYN-2, and LIT-SYN-3. On the other hand, there is a drop in performance for the case of the

eightfold acquisitions present in the LIT-SYN-8 set, achieving a 𝑃𝐶on below 90% for the first
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time. Such a drop is to be expected, since more connected loads make it more challenging to

identify a newly connected device.

Figure 18 shows an example of this problem. It presents a scenario where the system

could not correctly detect the load-switching event. In this figure, blue represents the aggregated

current, orange is the detected position for the event, and green is the event marking provided

by the dataset. This signal is composed of eight loads, these being: (i) LED Panel; (ii) Fume

Extractor; (iii) Soldering Station; (iv) Cell phone charger Motorola; (v) Vaio Laptop; (vi)

Incandescent Lamp; (vii) Hair Dryer Eleganza; and (viii) Hair Dryer Parlux.

This error occurs because, besides the high number of connected devices, the load

responsible for the turn-off event, the Soldering Station, has a lower power rating than most other

connected loads. As already presented in Table 2, the Soldering Station has a power of only 40

W. Meanwhile, other connected loads in this example, like the Hair Dryers, stand out among the

devices with the highest power consumption in the database, with the Parlux consuming 660 W

and the Eleganza consuming 365 W.

The result is that the Soldering Station shutdown causes a much lower variation in the

signal, making detecting this event a challenging task, even visually. Despite this, the system

can identify the event and recognize a power off, as shown by the event mark pointing down

in the figure. However, this detection is outside the tolerance of ±10 half-cycles set previously,

which makes this detection incorrect. For a visual intuition of this range, the example delimits

the region where detection would be correct using the dotted red lines.

5.3 CLASSIFICATION

Table 5 summarizes the results obtained for the load identification task using the

methodology proposed in this work. The first point to note in this table is the division of the

calculation of the performance measures into four distinct scenarios based on the event types: (i)

On, (ii) Off, (iii) No events, and (iv) All. The On scenario represents the subset of clippings with

a power-on event. Consequently, the Off scenario comprises instances that have power-off events.

Since this database has no events within a distance smaller than the input size of the proposed

architecture, it is impossible to have examples of signal clippings with two events. Therefore,

the turn-on and turn-off subsets do not overlap. The non-event set, on the other hand, consists

of all instances that do not present an event, i.e., the signal snippets obtained by applying the

HAND algorithm (see Subsection 4.3.1.2). Finally, scenario (iv) counts all examples in the test
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Figure 18 – An example scenario where the model could not correctly detect an event. This clipping represents
an acquisition of the LIT-SYN-8 at the time of the Soldering Station (40 W) shutdown, while
other loads, such as the Hair Dryer Eleganza (365 W) and Hair Dryer Parlux (660 W), were
connected. The indication of the connected loads uses the appliance ID defined in Table 2.
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set, representing the union of the three subsets previously mentioned.

This division aims to facilitate the comparison with related works in the following

sections. One should note that the division by the number of loads in an acquisition (LIT-SYN-1,

..., LIT-SYN-8), as seen in the detection analysis, was not used because of the performance

measures chosen for the classification problem. That is because, in this division per number of

connected devices, not all loads may have positive examples in all subsets for the test set, making

it impossible to calculate the measures individually for the load and, consequently, making it

impossible to use the macro average. Therefore, to simplify the problem, since there is a division

by event type, this strategy of division by the number of loads was discarded for the classification.

That said, based on the macro averaged accuracy (ACC) for all the scenarios evaluated,

the model could correctly identify most of the connected loads, reaching 𝐴𝐶𝐶 > 95% in all

cases. The highlight goes to the instances with no events where the system approached the

maximum accuracy. The possible reason for this is that this scenario presents the connected loads

in all samples of the signal clipping, which can be a problem in the clippings with an event. An

example of such a problem would be a power-on event very close to the end of the window or a

power-off near the beginning, scenarios where the model would have a small number of samples

with one of the loads connected, making it challenging to identify it.

Another point to note, however, is the superior performance for the turn-off scenario
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Table 5 – Classification results.
Scenario ACC (%) F1 Macro (%)

On 97.9 94.9
Off 98.7 96.6

No events 99.9 97.8
Total 99.4 97.1

Source: Own work.

compared to the turn-on scenario. A possible reason for this phenomenon is how the dataset was

created – by alternating the activation angles for all the devices. In LIT-SYN, an acquisition for

each load combination consists of 16 waveforms, each with a different triggering angle, ranging

from 0𝑜 to 337.5𝑜 with steps of 22.5𝑜 (RENAUX et al., 2020). Figure 19 compares the waveform

difference for the power-on and power-off events of a microwave in standby. The figure shows

that the change caused by varying the trigger angle is noticeable when turning on the device. The

waveform has a positive spike when triggered in 0𝑜 but presents a negative spike when triggered

in 225𝑜. On the other hand, the turn-off behavior is very similar even with the change in the

activation angle, which makes it a more straightforward problem to solve, justifying the superior

performance.

However, as mentioned before, accuracy may not be the best way to measure the model’s

performance, as it does not explicitly consider the occurrence of false positives. F1-Score, on

the other hand, does take this into account and, therefore, gives a better estimate of the system’s

performance. When comparing F1 Macro with 𝐴𝐶𝐶, one can identify a slight drop in the values

for all the evaluated scenarios. However, F1 Macro remains above 94% in all cases, reinforcing

the great performance of the proposed architecture. That further shows a low influence of false

positives on the identification of the loads, which means that the proposed architecture can

usually identify a load when it is connected.

Still, about false positives, Figure 20 presents the ROC Curves for the architecture

proposed in the present work and their rounded AUC values. Since the output for identifying the

loads indicates the individual probability of each device being on, each output acts as a binary

classifier of two classes: on or off. Thus, each load will have its curve, all shown in this figure. In

this same figure, one can see that the model presents a homogeneous performance among all

loads evaluated, which is a positive aspect, especially considering the unbalance between the

occurrences of the loads already mentioned in Subsection 4.3.1.4. Moreover, all loads presented

good performance (𝐴𝑈𝐶 > 0.95), with curves that pass near the upper left diagonal.

In addition to the information presented by the ROC Curves, Figure 21 shows the
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Figure 19 – Comparison of the effect of the load triggering angle on the waveform for Microwave Standby
switching events.

(a) Turn-on event when the triggering angle is 0𝑜.
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(b) Turn-on event when the triggering angle is 225𝑜.
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(c) Turn-off event when the triggering angle is 0𝑜.
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(d) Turn-off event when the triggering angle is 225𝑜.
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Source: Own work.

confusion matrices for the proposed model. For ease of visualization, it only presents a subset of

the loads that stood out for some reason (positively or negatively). In this figure, one can observe

the imbalance between positive and negative examples, as there are more examples where the

loads are powered-off than examples where the loads are powered-on. Also, there are loads with

much fewer positive instances, as previously mentioned. Despite this, the model can correctly

identify connected loads most of the few times this occurs, indicating that the balancing strategy

using weights may have collaborated in training the model.

Another point presented by the confusion matrices is a low occurrence of false positives.

In the case of the Lenovo Laptop and the Cell phone charger Asus, despite having more than

2 000 negative examples, the number of false positives is less than 10. Here, the positive highlight

goes to the Air Heater Niko, which had no false positives. The negative highlight, meanwhile,

goes to the Cell Phone Charger Motorola, with 34 false positives. However, although this value

is higher than that obtained by the other loads presented here, this is still a low number compared

to the total of negative examples, reinforcing the great performance.
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Figure 20 – ROC curves for all appliances in LIT-SYN.
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Regarding false negatives, the absolute numbers are also small. For this case, however,

one should note a low total number of positive instances, which increases the impact of these

false negatives. In this scenario, the Air Heater again stands out by not showing a single error.

The negative example this time, however, is the Lenovo Laptop. Although it only has 2 false

negatives, the low number of positives makes this value more significant than the other examples.

These errors are presented visually in Figure 22. Error 1 occurs in a shutdown scenario

containing only the Lenovo Laptop. The model can identify the shutdown event correctly and

within the tolerance limit. However, the identified load is 3, representing the LED Panel, as

indicated in Table 2. In error 2, a similar scenario occurs, where the system can identify the

event correctly but with a mistake in the device’s identity. This time, however, the model can

detect a laptop connected to the grid, represented by ID 12, which indicates the Vaio Laptop.

Interestingly, the system again identifies the LED Panel as connected. A possible cause is the

similar behavior of these loads, which may occur due to how the appliances are built, for reasons

such as using semiconductor devices in their topologies.
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Figure 21 – Confusion matrices for some of the devices in LIT-SYN.
(a) Cell Phone Charger Asus.
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Checking these errors in more detail, one can see that the Lenovo Laptop and LED

Panel waveforms share some similarities, as indicated by the mistakes made by the trained model.

As shown in Figure 23, the LED Panel power-on response shows a current spike followed by a

period of no consumption before returning to exhibit some signal, which one can also observe in

the example presented for the Lenovo Laptop. For switching off events, the waveform is similar

in both cases, at least visually.

Despite the similarity in shape, there is a difference in the scales. Looking at the figures,

one can see that the laptop has a higher current consumption, especially at power-on. There is

also a difference in amplitudes for the switch-off, but it is less than 1A. This more significant

difference at power-on can justify why the model identified a laptop connected in addition to the

LED panel. When turning the load off, only the panel is detected, as there is a smaller current

amplitude difference.

Finally, besides helping to identify these errors, the confusion matrices help reinforce
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Figure 22 – False negatives observed for the Lenovo Laptop.
(a) Error 1.
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(b) Error 2.
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Figure 23 – Examples of waveforms containing the LED Panel.
(a) Power-off example.
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(b) Power-on example.
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the model’s good performance in identifying the loads, already presented by the measures in

Table 5 and by the ROC Curves and their area. Regarding the effect of using weights, adopted to

balance the problem of load identification, Table 6 compares the results obtained for a model

trained without using weights. To facilitate this comparison, Figure 24 presents the performance

achieved with and without weights for all the scenarios evaluated and with both measures used

for classification.

Table 6 – Classification results without using weights.
Scenario ACC (%) F1 Macro (%)

On 90.8 91.0
Off 98.2 98.5

No events 99.3 98.9
All 98.1 98.0

Source: Own work.



76

For 𝐴𝐶𝐶, one can see that using weights outperformed the model trained without

weights. The highlight, however, is the turn-on scenario, where one can notice a performance

increase of more than 5% when using the weights for training. Also, the performance between

the scenarios for the model with weights is much more homogeneous when compared to the case

without weights.

In the case of F1 Macro, the difference is that the performance without weights out-

performs the performance with weights in most scenarios but always with a slight advantage.

The exception is the turn-on scenario, where the performance with weights is again superior.

Furthermore, the power-on scenario has the most significant difference in performance between

the two models (approximately 4%). That is important since the scenario with power-on events

is the most challenging one for the model, as discussed earlier. That demonstrates this strategy as

a simple and viable solution to balance the performance of the proposed architecture, something

important in a multi-label classification scenario where problems tend to be unbalanced (ZHANG

et al., 2020).

Figure 24 – Comparison of the effects of using weights for training the load identification output.
(a) Macro Averaged Accuracy - 𝐴𝐶𝐶.
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5.4 VISUAL EXAMPLE

To bring a more concise visual example of the operation of the proposed system,

Figure 25 presents two examples of LIT-SYN-8 array waveforms processed by the architecture

in question. The top of each figure shows the arrays with the identity of the loads responsible for

each event in occurrence order, represented by 𝑦, and those identified by the model, indicated by

𝑦. Only the devices responsible for the switching event are listed to facilitate visualization.
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Figure 25 – Visual examples with acquisitions of the LIT-SYN-8 subset.
(a) Example 1.
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As the model predicts all the simultaneously connected appliances, it is necessary to

post-process that information to obtain the information presented in Figure 25. For that, the load

with the highest probability difference was chosen between the grid position where the event

occurred and a neighboring position. In the case of a power-on event, the comparison happens

with the previous position, while for power-off, the comparison is with the position just ahead.

The exception is in cases where a switch-on occurs at the first grid position or a switch-off at the

last. For these scenarios, no load is chosen as responsible for the event.

In an effort to minimize this problem and improve the model’s overall performance,

these visual examples were generated by processing the signal in steps smaller than the model’s

input size. It used steps of the size of a grid position, ensuring that the same part of the signal

was analyzed five times, each time from a different point of view. The multiple predictions

are combined using the average for the event detection case and choosing the most frequently

identified load as the one responsible for the events for identification.

The final result, presented in Figure 25, shows the actual events marked in orange and

the detected events marked in green, where the upward markings indicate a turn-on while the

downward markings indicate a turn-off. In these figures, one can see that the loads identified as

the ones responsible for the events were correct in all cases for both examples, even though this

is a more complicated scenario because it has a more significant number of loads. On top of that,

the event detections remained close to what occurred, except for one event in Example 2, where

the detection happened after the event. Despite this, the system could correctly identify the load

responsible for such an event.
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5.5 COMPARISON WITH RELATED WORK

This Section compares the proposed model’s performance with related works from the

literature to better understand the quality of the results achieved in this study. The comparisons

are organized by detection and classification, which allows the comparison with works that do

not approach the detection problem.

5.5.1 Detection

Table 7 summarizes the comparison with the Multi-Agent method proposed in Lazzaretti

et al. (2020). For ease of visualization, the best performance on 𝑃𝐶on and 𝑃𝐶off for each of the

load subsets has been highlighted in bold. For the case of acquisitions containing only one load,

both models show similar performances, with the method proposed in this work excelling for

most subsets in both turn-on and turn-off events.

Table 7 – Comparison of the detection results.
Method Subset PCon (%) PCoff (%) Don Doff

This work

LIT-SYN-1 97.1 100.0 0.9 0.7
LIT-SYN-2 97.6 97.8 0.6 0.6
LIT-SYN-3 96.2 95.7 0.9 0.7
LIT-SYN-8 88.5 90.3 1.0 1.0

Multi-Agent
(LAZZARETTI et al., 2020)

LIT-SYN-1 97.8 96.2 1.3 0.5
LIT-SYN-2 96.3 92.5 1.2 0.7
LIT-SYN-3 91.5 84.5 1.0 0.6
LIT-SYN-8 64.9 60.5 1.0 0.9

Source: Own work.

However, for two-load acquisitions, one can observe a more significant performance

degradation in the correct detection of power-off events for the Multi-Agent method. At the

same time, the architecture proposed in this study remains more stable. When increasing to three

loads, the performance degradation for the Multi-Agent method intensifies, reaching for the

first time a 𝑃𝐶off below 90%, which results in a 5% reduction for 𝑃𝐶on when compared to the

performance with two loads. Meanwhile, the proposed architecture maintains performance close

to that achieved with only two loads, outperforming Multi-Agent by more than 10% for 𝑃𝐶off.

For the LIT-SYN-8 acquisitions, on the other hand, the model proposed in this work

obtains the most relevance. Despite presenting some performance decrease for this group of

waveforms, the proposed architecture remains comparatively stable, reaching a percentage of

correct detections close to 90% for both turn-on and turn-off. The Multi-Agent architecture, on
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the other hand, shows a pronounced decline for this group of loads. The result is a superiority of

approximately 25% for 𝑃𝐶on and 30% for 𝑃𝐶off in favor of the system proposed in this study.

A graphical representation of this comparison is shown in Figure 26. In this figure,

the performance of both models is plotted. For the case of one load, it is noticeable that both

models perform equally well. However, for two loads, it is already possible to notice the model

proposed in this work, represented by the blue and yellow lines, standing out. With three loads,

the performance of the Multi-Agent model, represented by the red and green lines, shows a

significant degradation, which intensifies when moving on to the set of acquisitions with eight

loads.

Figure 26 – Graphical comparison of the detection performance of the methods in Table 7.
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Finally, this comparison demonstrates that the system proposed in this work is more

stable, allowing a superior performance even with an increase in the number of loads connected

to the grid. Furthermore, for the case of turn-on events, the detection error represented by 𝐷on

proved to be lower for most scenarios. Although higher, the 𝐷off obtained for the turn-off events

was still close to that obtained with the Multi-agent system. This results in more correct and

higher-quality detections, getting closer to where the event occurred.

5.5.2 Classification

Table 8 summarizes the comparison with other works that use the LIT-Dataset. The first

notable aspect of this comparison is that the other works do not address the problem of identifying
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power-off events, showing a contribution made by the method proposed in this research.

Regarding the power-on events, using the macro averaged accuracy (ACC) as a measure,

the result obtained by the proposed architecture is close to the works with the best performance in

the state-of-the-art for this dataset, represented by the Multi-Agent method (LAZZARETTI et al.,

2020), the 2-D Fourier (MULINARI et al., 2022) and the Scattering Transforms (AGUIAR et al.,

2021). Furthermore, the method proposed in this work outperforms other strategies in the litera-

ture, such as the Concatenated CNNs (WU; WANG, 2019) and the GAN System (MUKAROH

et al., 2020). Using the F1 Macro as a measure, the performance of the proposed system remains

close to the one presented by the Scattering Transform and the 2-D Fourier Transform, the only

works that calculate such performance measure, showing a difference of less than 3% for both

strategies.

Table 8 – Comparison of classification results between works that use the LIT-Dataset.
Method Scenario ACC (%) F1 Macro (%)

This work On 97.9 94.9
Off 98.7 96.6

Multi-Agent
(LAZZARETTI et al., 2020)

On 99.8 -
Off - -

Scattering Transforms
(AGUIAR et al., 2021)

On 99.9 97.4
Off - -

Concatenated CNNs
(WU; WANG, 2019)

On 69.3 -
Off - -

GAN System
(MUKAROH et al., 2020)

On 92.0 -
Off - -

Fourier 2-D
(MULINARI et al., 2022)

On 96.8 96.2
Off - -

V-I Trajectories
(WANG et al., 2018)

On 93.7 -
Off - -

Source: Own work.

This comparison shows that the method proposed in this work can maintain load

classification levels close to that observed in the state-of-the-art for this task while bringing

other advantages, such as the capability of event detection and the ability to identify loads for

switch-off events – features neglected by the other approaches. It is worth noting, however, that

the LIT-Dataset is still a relatively recent dataset and therefore has a limited number of papers in

the literature that have made use of it, making comparisons challenging.

Furthermore, some of these other works use the event markings provided by the database

to test their classifiers. The result is that there is no analysis of the impact that poor quality

detection, with a significant error compared to the correct event sample, can have on the classifiers

in question. The proposal presented in this study, on the other hand, performs the classification
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with events that occur at several points in the analysis window, which can make this a more

complicated task, as in the case of a power-on event very close to the end of the window (signal

clipping) or a power-off event very close to the beginning. Both scenarios can result in a small

number of samples with the load connected, making it difficult for the system to identify them.

Thus, it enables the evaluation of the system in a scenario closer to reality.

Another issue is that all the works presented in Table 8 do not use the multi-label

classification concept, meaning they identify only one device at a time. For this reason, Table 9

compares the proposed method and other methods in the literature that use the multi-label

concept. However, it is worth noting that the methods presented in this table are not directly

comparable because they use different databases. Nevertheless, this strategy, which can also be

observed in other works in the literature (FAUSTINE; PEREIRA, 2020; LIU et al., 2018), gives

an idea of the order of magnitude of the results.

Table 9 – Comparison of classification results considering only multi-label models.
Method Dataset Results

This work LIT 97.1% (F1 Macro)
Faustine and Pereira (2020) PLAID 94.0% (F1 score)

Tabatabaei et al. (2017) REDD-House1 61.9% (F1 Macro)
Yang et al. (2020) UK-DALE-house1 93.8% (F1 score)

Nalmpantis and Vrakas (2019) UK-DALE-house1 92.5% (F1 score)
Manca et al. (2022) PLAID 91.5% (F1 Macro)

Source: Own work.

Considering only the reported measurements within this context, one can notice that

the proposed method achieves comparable results to the other works presented, obtaining

even superior results. That suggests its potential for NILM applications, reinforcing the good

performance seen in the earlier comparisons. Finally, it is also worth mentioning that, due to the

nature of the proposed architecture, the PLAID, REDD, and UK-DALE databases, used by the

other works, could not be employed due to characteristics of these datasets, such as the fact that

the load aggregations are created from a simple linear combination of acquisitions of a single

load and the lack of precise marking for switching events.

5.6 NOISE

Regarding the noise robustness tests, the following subsections present the results

obtained for both the detection and the load classification tasks when applying the proposed

methodology to signals containing Additive White Gaussian Noise (AWGN).
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5.6.1 Detection

Table 10 summarizes the detection results for the noise levels applied to the signal. For

each of these scenarios, the model was retrained and evaluated using the signals modified by

the noise level for that scenario. To facilitate the visualization and interpretation of these data,

Figure 27 plots the evolution of the detection performance as the signal-to-noise ratio decreases.

In this figure, the 𝑃𝐶on and 𝑃𝐶off measures for each of the LIT-SYN subsets are

arranged graphically, allowing the visualization of the effect of increasing the amount of noise

contained in the signal for each measure. The observed result is a decrease in performance, at

least in some groups, for the higher noise levels, which was to be expected given the significant

decrease in signal quality.

Figure 27 – Evolution of detection performance as the signal quality degrades. The farther to the right on the
x-axis, the higher the noise level relative to the signal. Regarding notation, “-” indicates the signal
without adding noise.
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However, a closer analysis reveals some other points about the behavior of the architec-

ture in noisy scenarios. The first point is the performance stability for the first scenarios, such as

the 50, 40, and 30 dB SNR cases, where there is already some noise. Within these three cases,

i.e., up to an SNR of 30 dB, the detection performance remained high, with 𝑃𝐶on > 80% and

𝑃𝐶off > 80% for all groups in all scenarios. As shown earlier in Figure 2, up to this range of

signal-to-noise ratio, the signal still retains its shape visually, justifying the good performance of

the architecture.

On the other hand, for the 20 dB SNR scenario, a degradation in performance can be

observed for acquisitions with a larger number of loads, represented by the LIT-SYN-3 and
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Table 10 – Comparison of proposed architecture’s event detection performance in noisy scenarios. Regarding
the notation, “-” stands for the original signal, i.e., without added noise.

Subset Signal-to-Noise Ratio (dB) PCon (%) PCoff (%) Don Doff

LIT-SYN-1

- 97.1 100.0 0.9 0.7
50 100.0 100.0 1.0 0.5
40 100.0 100.0 1.0 0.6
30 100.0 97.6 1.2 0.4
20 88.6 97.6 1.1 1.1
10 94.3 95.2 1.2 1.1

LIT-SYN-2

- 97.6 97.8 0.6 0.6
50 97.6 98.5 0.7 0.6
40 96.8 94.9 0.8 0.6
30 96.0 99.3 0.8 0.7
20 96.0 94.2 1.0 0.8
10 89.7 88.3 0.9 0.8

LIT-SYN-3

- 96.2 95.7 0.9 0.7
50 97.5 97.8 0.9 0.9
40 97.5 92.9 1.0 0.9
30 93.7 91.8 1.0 1.1
20 86.2 82.1 1.1 1.2
10 79.9 75.5 1.2 1.4

LIT-SYN-8

- 88.5 90.3 1.0 1.0
50 81.6 87.5 1.0 1.3
40 82.8 87.5 1.0 1.0
30 87.4 86.1 1.3 1.5
20 75.9 79.2 1.1 1.5
10 57.5 54.2 1.4 1.5

LIT-SYN

- 95.1 95.9 0.8 0.7
50 94.3 96.6 0.9 0.8
40 94.3 93.3 0.9 0.8
30 93.6 93.8 1.0 0.9
20 87.2 86.9 1.1 1.1
10 79.4 77.9 1.1 1.2

Source: Own work.

LIT-SYN-8 sets. Meanwhile, the system performance remained stable for up to 2 loads, except

for 𝑃𝐶on for the LIT-SYN-1 set. However, this variation may be related to how the final model

is selected, focusing only on the classification performance within the validation set, creating the

possibility of these slight variations in the detection performance.

Finally, the most pronounced decrease occurs at 10 dB SNR, especially for the LIT-SYN-

8 acquisitions. For this degraded signal, a detection performance below 70% can be observed for

the first time. The triple waveforms of the LIT-SYN-3 also showed a decrease in performance but

to a lesser extent. On the other hand, for the waveforms with up to two loads (LIT-SYN-1 and

LIT-SYN-2), although there is a slight decrease, the values remain at a high level of performance,

exceeding the 90% range. Considering the amount of noise present with an SNR of 10 dB,

which can be visually observed in the example in Figure 14, these results become even more

significant, showing the ability of the proposed architecture to perform well even under such
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adverse conditions.

Regarding the detection error 𝐷, it is possible to observe an increase as the signal

quality degrades, which is to expect given the model performance degradation presented by the

𝑃𝐶on and 𝑃𝐶off measurements. However, even with this increase, an average error greater than

1.5 half-cycles of the power network was not observed. A possible reason for this phenomenon is

that noise tends to affect detection primarily for lower power loads. Thus, for higher power loads,

the switching event remains separated from the background signal, resulting in good quality

detections with low error, keeping the error low even at higher noise levels.

An example of this scenario is shown in Figures 28 and 29. Figure 28 compares two

signal snippets, the one on the left with no added noise and the one on the right with an SNR of

10 dB. There, one can see that the switching event still stands out in the signal. That allows the

model to detect the event very close to the correct position in both signal snippets. However, this

event stands out from the background signal because the load responsible for the switching event

is load 25, the Parlux Hair Dryer at speed 2, which has a power consumption of 660W, one of

the highest in the dataset.

Figure 28 – Comparison of switching a higher power load in scenarios with and without noise addition (10
dB SNR). These signal excerpts include the following devices: Drill (15), Eleganza Hair Dryer
(20), and Parlux Hair Dryer (25).
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Source: Own work.

On the other hand, adding noise can cause the system to fail to detect a switching event

for lower power loads. Figure 29 compares two signal snippets from the same section, one with

no added noise and the other with an SNR of 10 dB. The Motorola cell phone charger, which has

a power of 50W, is responsible for the switching event. For the waveform on the left, where no

noise has been added, the model can identify the event, even though it is not easy to identify it
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visually. However, when noise is added, as shown in the waveform on the right, even the model

cannot detect it.

Figure 29 – Comparison of switching a lower power load in scenarios without noise addition (SNR of 10 dB)
and with noise addition. These signal sections include the devices: Fume Extractor (4), Soldering
Station (7), Motorola Cell Phone Charger (8), Vaio Laptop (12), Incandescent Lamp (13), Drill
(15), and Oil Heater (16).
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(b) 10 dB SNR.
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These tests showed that the proposed architecture maintains stable performance levels

with an input signal up to 30 dB SNR. For lower SNR levels, the system can still maintain

performance for aggregated signals with a smaller amount of loads. However, the performance

degrades for scenarios with a larger amount of connected loads.

5.6.2 Classification

For the problem of identifying the loads that compose the aggregate current signal

measured, Table 11 summarizes the results obtained in the noise robustness tests. To facilitate

the interpretation and visualization of this data, Figure 30 presents this information visually.

In this figure, one can see that the system does not present significant variations in

performance when evaluated by the macro averaged accuracy (𝐴𝐶𝐶), except for the power-on

scenario. For this subset of examples, the performance shows a decrease of about 3% already

in the first noise scenario. It remains stable until it drops again in the scenario with the highest

signal degradation. Nevertheless, the accuracy remains high even with this reduction, with

𝐴𝐶𝐶 > 94% for all noise levels. For the other scenarios, however, the performance variation

is minimal, resulting in a consistently high performance, with 𝐴𝐶𝐶 > 98% for all noise levels

tested.
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Figure 30 – Evolution of classification performance measures as signal degradation increases. The farther to
the right on the x-axis, the higher the noise level relative to the signal.
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For the F1 Macro measure, the observed behavior is similar to that seen for accuracy.

The power-on scenario stands out negatively, showing a drop in performance already at the first

noise level. It then remains stable between 40 dB and 20 dB SNR until it drops back again for

10 dB SNR, where the performance drops below 90% for the first time. For the other scenarios,

it is also possible to observe a drop in performance starting at 20 dB SNR, which eventually

intensifies when the SNR is reduced to 10 dB. Nevertheless, even at the highest noise level, the

performance for these scenarios remains high, with F1 Macro > 94%.

For the 20 and 10 dB SNR cases, the power-on scenario showed the most significant

drop in both performance measures. Furthermore, all event-type scenarios showed performance

degradation when evaluated with the F1 Macro for the same noise levels. Coincidentally, these

noise levels also caused the most significant drop in the event detection model performance.

That may indicate an optimal range of overall model performance stability up to 30 dB SNR –

potentially decreasing as the signal-to-noise ratio decreases.

Despite these drops, the classification performance remains high even at the highest

noise levels, with 𝐴𝐶𝐶 > 94% and F1 Macro > 87% for all scenarios. Examples of this

good performance are shown in Figures 28 and 29, where detection errors are shown. The

model correctly identified all loads connected to the grid for the signal clippings shown in

both figures, including those in the noisiest proposed scenario (SNR of 10 dB). The main

highlight is the one shown in Figure 29. Not only was the event coming from a lower power load,

making it challenging to identify the event visually, but the signal also had a larger number of

simultaneously connected loads.
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Table 11 – Comparison of the performance of the proposed architecture for load identification in noisy
scenarios.

Scenario Signal-to-Noise Ratio (dB) ACC (%) F1 Macro (%)

On

- 97.9 94.9
50 95.2 92.0
40 95.8 90.2
30 95.5 92.3
20 95.8 90.6
10 94.1 87.2

Off

- 98.7 96.6
50 98.9 97.4
40 98.6 95.9
30 99.5 98.3
20 98.7 94.9
10 98.4 93.1

No event

- 99.9 97.8
50 99.8 98.2
40 100.0 97.2
30 99.9 98.1
20 100.0 95.9
10 99.4 95.6

Total

- 99.4 97.1
50 99.0 97.4
40 99.0 95.8
30 99.0 97.3
20 99.0 95.3
10 98.4 94.0
Source: Own work.

5.7 EMBEDDED SYSTEM

This Section presents the results of the tests on the NVIDIA Jetson TX1 platform.

For this purpose, inference tests were performed on the board system using the previously

trained models, monitoring information such as execution time and system resource consumption.

Approximately 4 000 examples were used to obtain the average execution time for each signal

slice. The results of these tests are available in Tables 12 and 13.

Table 12 – Comparison of results on an embedded system. Regarding the notation, “Y” means that the paper
implements this aspect, while “-” means that the paper does not consider this aspect.

Method Detection Classification Window
Size (ms)

Computational
Time (ms)

This work Y Y 833 11.2
Baptista et al. (2018) - Y 333 5.7

Source: Own work.

As can be seen, the results are promising. One of the main positive points is that the

average execution time is significantly lower than the window size. That means that its practical

application is feasible since it takes less time to process a set of samples than to collect them,
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preventing the system from overloading and starting to accumulate unprocessed samples.

In addition, the significant difference between the processing window size and the

execution time allows strategies that include window movements smaller than its size, allowing

the same samples to be analyzed multiple times, resulting in more reliable predictions. A

technique that follows this principle was presented in Section 5.4 and used to generate visual

examples of complete acquisitions. In this case, with each new inference, the window was shifted

by 10 power grid cycles, corresponding to the size of one grid position to the model’s input. Thus,

each of these 10 cycles is analyzed five times, once at each grid position, generating multiple

predictions for the same signal segment.

Regarding the comparison with related works, Table 12 presents the results of a method

proposed in the work by Baptista et al. (2018). It implements a model using 2D convolutional

neural networks embedded in an FPGA. Unfortunately, the different platforms make direct

comparison impossible. However, disregarding this issue, it can be seen that the method proposed

in this work achieves a comparable performance, even superior, if the average time is considered

together with the window size, analyzing the average time for processing 1 second of the signal.

In terms of resource consumption, Table 13 presents the results observed during the

tests. As can be seen, the most used resource during these tests was RAM. This is due to the

fact that during the tests, all signal clipping instances used to evaluate the model are loaded into

memory at the same time, which would not happen in a practical implementation scenario. On

the other hand, the CPU and GPU usage was far from the maximum capacity of the platform.

That indicates that the proposed model could be implemented on lower-cost devices, reducing

the price of the final system and making it easier to implement in practice. Overall, the use of 1D

convolutional layers resulted in a small architecture that, in turn, generates a model with low

hardware requirements while maintaining consistent performance on NILM tasks.

Table 13 – Resource consumption on the embedded system.
Resource monitored System state Value

Maximum CPU temperature Idle 32.5𝑜C
Running 39.5𝑜C

Maximum GPU temperature Idle 29.0𝑜C
Running 35.5𝑜C

RAM Idle 808/3984 Mb (20.3%)
Running 3777/3984 Mb (94.8%)

Average CPU load Idle 8.2%
Running 30.9%

Average GPU load Idle 0.0%
Running 50.6%

Source: Own work.
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5.8 SCATTERING TRANSFORM – ST

The following subsections present the performance of the ST-based model and compare

it to the CNN-based method also proposed in this work. To evaluate the effectiveness of the

ST-based model when dealing with small amounts of data, the performance was measured with

and without the data augmentation strategy proposed in Subsection 4.3.1.2. It is important to

emphasize that the ST-based model is still a work in progress, and thus the results presented here

are still preliminary.

5.8.1 Detection Performance

Table 14 compares detection results for both architectures. The best performance for

each scenario (with and without data augmentation) is highlighted in bold for better visualization.

One can observe that the ST-based model was able to achieve a good performance, reaching

𝑃𝐶𝑜𝑛 and 𝑃𝐶𝑜𝑓𝑓 above 80% for all subsets in every scenario. However, despite that, it was not

enough to outperform the CNN-based model when using data augmentation. Nonetheless, for

the scenario without data augmentation, the ST-based model shows an outstanding performance

for turn-on events when there is a larger number of simultaneous devices, outperforming the

CNN-based model by almost 20%.

Table 14 – Detection performance comparison between ST-based and CNN-based architectures.
Data Augmentation Method Subset 𝑃𝐶𝑜𝑛 (%) 𝑃𝐶𝑜𝑓𝑓 (%)

Yes

ST-based

LIT-SYN-1 88.6 100.0
LIT-SYN-2 92.1 90.5
LIT-SYN-3 88.7 94.0
LIT-SYN-8 80.5 73.6

CNN-based

LIT-SYN-1 97.1 100.0
LIT-SYN-2 97.6 97.8
LIT-SYN-3 96.2 95.7
LIT-SYN-8 88.5 90.3

No

ST-based

LIT-SYN-1 100.0 100.0
LIT-SYN-2 91.1 93.5
LIT-SYN-3 98.7 94.3
LIT-SYN-8 96.5 77.5

CNN-based

LIT-SYN-1 100.0 100.0
LIT-SYN-2 97.8 98.3
LIT-SYN-3 92.6 98.1
LIT-SYN-8 88.4 94.4

Source: Own work.

Furthermore, an interesting phenomenon observed in these tests is that the ST-based

model performs worse when data augmentation is used. A possible explanation lies in how
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the data augmentation is performed. As presented in Subsection 4.3.1.2, the event-free signal

snippets are selected using the HAND algorithm in an attempt to find regions of the signal with

enough amplitude variation, i.e., signal sections that may look like an event but they are not. That

creates a much more challenging scenario for the model, resulting in a weaker performance.

5.8.2 Classification Performance

For the classification task, however, the ST-based model shows promising results.

Table 15 shows the classification performance comparison for both architectures presented in

this work. As can be seen, the ST-based model outperforms the CNN-based model with and

without data augmentation. For the scenario without data augmentation, the ST model is able to

maintain its performance level while outperforming the CNN-based model by more than 15%.

Table 15 – Classification performance comparison between ST-based and CNN-based architectures.
Data Augmentation Method F1 Macro (%)

Yes ST-based 97.7
CNN-based 97.1

No ST-based 97.5
CNN-based 81.0

Source: Own work.

These results show the potential of ST to perform well even under adverse conditions,

such as scenarios with smaller datasets. For example, the model was able to achieve similar

performance when trained with 8 416 instances (without data augmentation) and 20 812 (with

data augmentation). It is also worth noting that the ST-based model was trained without the

weights proposed in Subsection 4.3.2.
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6 CONCLUSIONS AND FUTURE WORKS

In order to reduce energy waste, consumption monitoring techniques such as NILM play

an essential role, allowing users to identify and reduce potential waste. One of the challenges

of NILM techniques to perform this monitoring task is to detect load-switching events in the

electrical grid and to be able to identify the devices that are connected at that moment.

However, the general structure of this technique presented in Section 2.1, with an

event detection step followed by a load disaggregation of the background signal, moving to

feature extraction, and ending with a load classification, has some limitations. The simplest

disaggregation methods use a signal difference that can deform nonlinear load combinations,

extraction methods can be time consuming, and detection methods show decreasing performance

as the number of simultaneous devices increases. For these reasons, this work presents an

architecture capable of simultaneously performing the tasks of detection, feature extraction, and

classification.

Thus, all of the objectives listed in Section 1.2 were achieved through the steps listed

in this document. The techniques and concepts presented in Chapter 2 have been studied in

order to elaborate the final architecture. The state of the art of NILM solutions was also studied,

focusing mainly on deep learning techniques, as presented in Chapter 3. Finally, a model capable

of event detection, feature extraction, and classification in NILM signals was developed using

the methodology presented in Chapter 4.

The results obtained for the proposed solution architecture, presented in Chapter 5, show

that it outperforms other state-of-the-art methods using the same dataset in the detection task,

achieving a general percentage of correct detections for the switch-on events (𝑃𝐶on) of 95.1%

and for the switch-off events (𝑃𝐶off) a general percentage of 95.9%. As for the classification, the

obtained performance was comparable to other methods in the literature, reaching an F1 Macro

of 97.1%. Furthermore, in the noise robustness tests with AWGN, it was possible to observe that

the system remains stable up to scenarios with an SNR of 30 dB, where the system was able

to maintain a 𝑃𝐶on equal to 93.6%, a 𝑃𝐶off equal to 93.8% and an F1 macro of 97.3%. This

indicates that the system should perform well even with a lower-quality capture system where

the signal may contain more noise, thus reducing the cost of a potential end device.

Finally, the results of the tests on the NVIDIA Jetson TX1 platform, detailed in Sub-

section 5.7, demonstrated the feasibility of the proposed architecture in an embedded system,
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allowing its implementation in a real-world scenario. These tests also showed that the perfor-

mance achieved by the proposed model is comparable to other methods in the literature that have

also been embedded. In addition, the tests showed that the requirements for running the model

presented in this work are below the platform’s capabilities. This indicates that the system could

run on a more basic platform at a lower cost, facilitating the creation and deployment of a final

device using the architecture proposed in this work. The codes used in this research are publicly

available1 for testing and replication.

Despite the promising results, the proposed model requires a large amount of data,

which is typical for deep learning techniques. That represented one of the major difficulties

during the elaboration of this work. Although examples without load-switching events are

helpful, the initial division of the signal into positions on a grid would allow the model to be

trained without using them. That is because one example would have a grid position with events,

while the other parts would serve as an example of an event-free signal. This idea of training

without negative examples was tested with a data augmentation tactic that consisted of generating

multiple clippings for the same event, changing the window’s position over the annotated event

in the database, and adding different levels of AWGN noise. This strategy yielded good results.

However, it was discarded since data augmentation is not widely used for the NILM scenario,

which could raise questions about its merit. That led to the solution presented in this work, where

event-free segments of interest are selected based on the amplitude variation of the signal.

Another point observed during the development of this work, which can be improved in

future works, is the need to use an output to indicate the sample where an event occurred. The

event type output can already indicate a grid position where the event occurred. Meanwhile, the

detection output is responsible for indicating in which sample the event occurred within that grid

position. Although the detection output gives the model a better resolution in indicating where an

event occurred, the resolution provided by the event type output may already be sufficient. That

is because it can indicate that an event occurs at an interval of 10 electrical grid cycles (60 Hz),

which is about 167 ms. For consumers, this is a small interval in terms of consumption detail

and, therefore, could be used.

These concepts have been tested on some level in the ST-based model experiments. As

presented in Section 5.8, the ST-based model provides an alternative to perform the detection

and load identification tasks with a smaller amount of data. Despite the lack of an event sample
1 Codes are available at https://github.com/LucasNolasco/DeepDFML-NILM and at https://github.com/

LucasNolasco/ST-NILM.

https://github.com/LucasNolasco/DeepDFML-NILM
https://github.com/LucasNolasco/ST-NILM
https://github.com/LucasNolasco/ST-NILM
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regression output, this model is able to correctly detect more than 80% of the events. The

highlight, however, is the classification task. Even when trained without data augmentation,

with only 8 416 examples, the model is able to achieve a performance comparable to that of the

CNN-based model with data augmentation (20 812 examples). Considering only the scenario

without data augmentation, it outperforms the CNN-based model by more than 15%. This

shows the potential of such a strategy, although the performance of the detection task still needs

improvement.

6.1 FUTURE WORK

As a way to take this work forward, the following ideas are proposed for consideration:

• Perform tests in scenarios where there are simultaneous events within the same signal

clipping to verify the behavior of the proposed system;

• With a database containing a larger number of examples, perform tests that remove the

clippings without load-switching events;

• Investigate the simultaneity factor to learn how many simultaneous appliances are generally

used by an average consumer. With that information, perform tests with a larger number of

simultaneously connected loads to determine the maximum number of connected devices

the model can identify at the same time;

• Investigate different feature selection strategies to improve the detection performance of

ST-based models;

• Analyze the model performances in low-frequency scenarios by sub-sampling the signal.

This test aims to understand the feasibility of implementing this model in a final device

using cheaper low-frequency acquisition systems;

• Analyze the trained models using class activation maps to understand the contribution of

each task in the multi-task learning strategy proposed;

• Perform tests combining the Scattering Transforms with CNN layers. This aims to inves-

tigate if the spatial characteristics from CNNs combined with the time-frequency signal

decomposition from the Scattering Transforms can improve the model’s performance.
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