UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

JOSÉ HENRIQUE BRANDÃO PIRES

DESENVOLVIMENTO DE ALGORITMO COMPUTACIONAL PARA DIMENSIONAMENTO E SELEÇÃO DE TROCADOR DE CALOR DO TIPO CASCO E TUBO

LONDRINA

JOSÉ HENRIQUE BRANDÃO PIRES

DESENVOLVIMENTO DE ALGORITMO COMPUTACIONAL PARA DIMENSIONAMENTO E SELEÇÃO DE TROCADOR DE CALOR DO TIPO CASCO E TUBO

Computational algorithm development for sizing and selection of shell and tube heat exchanger

Trabalho de Conclusão de Curso apresentada como requisito para obtenção do título de Bacharel em Engenharia Mecânica da Universidade Tecnológica Federal do Paraná (UTFPR). Orientador: Prof. Dr. Rafael Sene de Lima

LONDRINA

2023

Esta licença permite compartilhamento, remixe, adaptação e criação a partir do trabalho, mesmo para fins comerciais, desde que sejam atribuídos créditos ao(s) autor(es). Conteúdos elaborados por terceiros, citados e referenciados nesta obra não são cobertos pela licença.

JOSÉ HENRIQUE BRANDÃO PIRES

DESENVOLVIMENTO DE ALGORITMO COMPUTACIONAL PARA DIMENSIONAMENTO E SELEÇÃO DE TROCADOR DE CALOR DO TIPO CASCO E TUBO

Trabalho de Conclusão de Curso de Graduação apresentado como requisito para obtenção do título de Bacharel em Engenharia Mecânica da Universidade Tecnológica Federal do Paraná (UTFPR).

Data de aprovação: 28/novembro/2023

Rafael Sene de Lima Doutorado em Engenharia Mecânica Universidade Tecnológica Federal do Paraná

Ricardo de Vasconcelos Salvo Doutorado em Engenharia Mecânica Universidade Tecnológica Federal do Paraná

Ismael de Marchi Neto Doutorado em Engenharia Mecânica Universidade Tecnológica Federal do Paraná

> LONDRINA 2023

Dedico este trabalho à minha família, pelo eterno apoio.

AGRADECIMENTOS

Agradeço ao meu orientador Prof. Dr. Rafael Sene de Lima, pela sabedoria com que me guiou nesta trajetória, e principalmente pela compreensão nos momentos difíceis.

RESUMO

Formalmente trocadores de calor são os dispositivos responsáveis pela transferência de energia térmica entre dois ou mais fluidos em diferentes temperaturas, dispositivos estes que são essencial para engenheiros e a indústria em geral. O projeto de um trocador de calor do tipo casco e tubo passa por vários níveis de complexibilidade, e o método desenvolvido por Kern (1983) pode ser utilizado para o dimensionamento e seleção do trocador de calor. O objetivo geral é automatizar os cálculos de dimensionamento e seleção de trocadores de calor do tipo casco e tubo, através de um algoritmo computacional completamente livre, desenvolvido na linguagem *Visual Basic for Applications*, com uma janela de interação onde o usuário deve inserir os *inputs* para os cálculos de dimensionamento. O aplicativo atingiu todos os objetivos do projeto, oferecendo uma interface intuitiva, e uma velocidade no processo de seleção do trocador, através da inclusão direta dos dados no código simplifica o processo de dimensionamento.

Palavras-chave: trocador de calor; casco e tubo; método de Kern; *Visual Basic for Applications*.

ABSTRACT

Formally heat exchangers are devices responsible for the transfer of thermal energy between two or more fluids at different temperatures, devices essential for engineers and the industry in general. The design of a shell and tube heat exchanger goes through several levels of complexity, and the method developed by Kern (1983) can be used for dimensional selection of the proposed heat exchanger. The overall goal is to automate the sizing and selection calculations of shell and tube heat exchangers through a fully free computational algorithm developed in the Visual Basic for Applications language, with an interactive window where the user must enter inputs for the sizing calculations. The application has achieved all project objectives, offering an intuitive interface, and speed in the exchanger selection process, through the direct inclusion of data in the code, simplifying the sizing process.

Keywords: heat exchanger; shell and tube; Kern's method; Visual Basic for Applications.

LISTA DE ILUSTRAÇÕES

Figura 1 – Secção através de uma torre de resfriamento.	.17
Figura 2 – Trocadores de calor de placa aletado.	.17
Figura 3 – Trocador de calor do tipo casco e tubo	.18
Figura 4 – (a) Correntes paralelas, (b) contracorrente, e (c) corren	tes
cruzadas	. 19
Figura 5 – Balanço de energia para fluidos quente e frio de um trocador	' de
calor de dois fluidos.	.23
Figura 6 – Entrada e saída do casco e dos tubos	.25
Figura 7 – Distribuição de temperaturas dos fluidos em um trocador	de
calor	.27
Figura 8 – Diagrama de Circuito Térmico	.31
Figura 9 – <i>Layout</i> do ângulo dos tubos	.36
Figura 10 – Passo dos tubos para <i>layout</i> quadrado e triangular	.37
Figura 11 – Botões para navegar nas páginas	.49
Figura 12 –Primeiro frame da página Dados	.50
Figura 13 – Segundo frame da página Dados	.50
Figura 14 – l'erceiro frame da pagina Dados	.51
Figura 15 – Quarto frame da pagina Dados	.52
Figura 16 – Pagina Tabelas	.52
Figura 17 – Tabela Tubos Comerciais	.53
Figura 18 – Pagina Calcular	.53
Figura 19 – Seleção do diametro do casco e número de tubos a partir	
Labela Securidania da Tabela D2 do Ariexo D	.74
Figura 20 – Resultados oblidos via algoritmo	.00
Fluxograma 2 - Eluxograma de cálculo itoretivo	.42
Fluxograma 2 – Fluxograma de parda de carga	.44
Fluxograma A Eluxograma complete de processo	.40
Gráfico A1 Estor do correção do tomporatura para 1 passo no casco	.40
nasses nos tubos (ou múltiplos de 2) 50	6 2
Gráfico A2 - Eator de correção de temperatura para 2 passe no casco	۰ <i>۱</i>
rasses nos tubos (ou múltiplos de 4)	50
Gráfico A3 - Fator de correção de temperatura para 3 passe no casco	e 6
nasses nos tubos (ou números nares maiores)	60
	.00

LISTA DE TABELAS

Tabela 1 – <i>Input</i> s para solução de validação	54
Tabela 2 – Propriedades físicas do fluido nos tubos	69
Tabela 3 – Propriedades físicas do fluido no casco	70
Tabela 4 – Resultados obtidos com cálculo manual	55
Tabela 5 – Erro entre o método manual e o método do algoritmo	55
Tabela B1 – Dados dimensionais para tubos comerciais	62
Tabela B2 – Layouts de casco e tubos	63
Tabela B3 – Coeficiente de transferência de calor global aproximado	para
análise preliminar	66
Tabela B4 – Resistência a incrustação para água	67

LISTA DE SÍMBOLOS

А	Área total de troca de calor dos tubos, a partir do diâmetro externo	$[m^{2}]$
A_1	Área projetada do arranjo tubular	$[m^2]$
A_i	Área de troca de calor dos tubos, a partir do diâmetro interno	$[m^2]$
A_o	Área de troca de calor dos tubos, a partir do diâmetro externo	$[m^2]$
A_s	Area de fluxo normal à linha de centro do escoamento do	$[m^{2}]$
A_{tn}	Área de escoamento nos tubos	$[m^2]$
ι,ρ		[]
В	Espaçamento entre chicanas	[m]
С	Espaço entre tubos adjacentes, conforme Figura 10	[m]
Cp	Calor específico a pressão constante	$\begin{bmatrix} kJ \\ kgK \end{bmatrix}$
c_{p_b}	Calor específico a pressão constante do fluido do casco	$\begin{bmatrix} k \\ k \\ k \\ k \\ k \\ k \\ k \end{bmatrix}$
(CL)	Constante do layout dos tubos	U
(CTP)	Constante referente aos passes dos tubos	
d_i	Diâmetro interno dos tubos	[m]
d_o	Diâmetro externo dos tubos	[m]
D_e	Diâmetro equivalente	[m]
D_s	Diâmetro interno do casco	[m]
F	Fator de correção de temperatura para fluxo em	
f	contracorrente Eator de atrito de Darov-Weisbach	
J f.	Fator de atrito de Darcy-Weisbach para o fluido no casco	
\int_{t}^{s}	Fator de atrito de Darcy-Weisbach para o fluido nos tubos	
2 -		r. 1
G	Fluxo mássico no casco	$\frac{kg}{s}$
uş		m^2
		$\left[kg\right]$
G_t	Fluxo mássico nos tubos	$\frac{7}{m^2}$
dh	Entalpia infinitesimal, na forma específica	$\begin{bmatrix} kJ \\ ka \end{bmatrix}$
h _i	Coeficiente convectivo no diâmetro interno dos tubos	$\begin{bmatrix} W \\ m^2 \end{bmatrix}$
h	Coeficiente convectivo no diâmetro externo dos tubos	$\begin{bmatrix} V m^2 K \end{bmatrix}$
n ₀		$\lfloor m^2 K \rfloor$
k_b	Condutividade térmica do fluido do casco	$[^{W}/_{mK}]$

k_t	Condutividade térmica do fluido nos tubos	$[W/_{mK}]$
k_w	Condutividade térmica da parede dos tubos	$[^W/_{mK}]$
L	Comprimento efetivo dos tubos do trocador de calor	[m]
'n	Taxa de fluxo de massa	$\left[\frac{kg}{s}\right]$
$\dot{m_t}$	Taxa de fluxo de massa nos tubos	$\left[\frac{kg}{s}\right]$
Ν	Número de passes no casco	LJ
Nu	Número de Nusselt	
Nu _i	Numero de Nusselt do escoamento nos tubos	
N_b	Número de tubos	
N_P	Número de passes nos tubos	
Δp_r	Perda de carga nos tubos, devido às curvaturas	[<i>Pa</i>]
Δp_s	Perda de carga no escoamento do casco	[Pa]
Δp_t	Perda de carga nos tubos, devido ao comprimento	[<i>Pa</i>]
$\Delta p_{t_{total}}$	Perda de carga total nos tubos	[Pa]
P P	Elicacia de temperatura Pressão relativa	
PR	Razão de distância entre os tubos	
P_T	Distância entre os tubos (passo)	[m]
dQ	Taxa de transferência de calor infinitesimal	[kW]
Q	Carga termica do trocador de calor	[kW]
$\sum R_{t}$	Somatório de todas as resistências térmicas, ou seja, a	$[K/_{M}]$
	resistência térmica total	[///]
K D	Razao de capacidade caloniica	[<i>K</i> /]
R _{t,conv} .		$\begin{bmatrix} I \\ W \end{bmatrix}$
R _{t,cond} .	Resistência térmica de condução	[¹ /W]
$R_{f,i}$	na superfície tubular interna	$\begin{bmatrix} m^2 K \\ W \end{bmatrix}$
$R_{f,o}$	Resistência térmica devido a incrustação do casco, baseado	$\left[\frac{m^{2}K}{W}\right]$
R_w	Resistência térmica de condução de calor na parede dos	$\begin{bmatrix} K \\ W \end{bmatrix}$
Re	Número de Revnolds	
Re_s	Número de Reynolds no casco	
$Re_{d,i}$	Número de Reynolds do fluido nos tubos	
dT	Variação infinitesimal de temperatura	[K]
ΔT	Diferença de temperatura global	[<i>K</i>]
ΔT_1	Diferença de temperaturas conforme equação (8) ou (9)	[K] [V]
ΔI_2	Temperatura de entrada do fluido frio	[K]
$T_{h1}^{c_1}$	Temperatura de entrada do fluido quente	[K]

$\Delta T_{lm,cf}$	Média logarítmica das diferenças de temperaturas, para vários passes de tubos ou fluxo em contracorrente	[K]
ΔT_m	Média apropriada de diferença de temperatura	[K]
T_{c2}	Temperatura de saída do fluido frio	[K]
T_{h2}	Temperatura de saída do fluido quente	[K]
T_w	Temperatura da parede dos tubos	[K]
Uo	Coeficiente global de transferência de calor, baseado no diâmetro externo dos tubos	$\left[{}^{W}/{}_{m^{2}K} \right]$
u_m	Velocidade média do escoamento nos tubos	$[^{m}/_{s}]$

SÍMBOLOS GREGOS

- ϕ_s Fator de correção de viscosidade dinâmica
- μ_b Viscosidade dinâmica do fluido do casco
- μ_t Viscosidade dinâmica do fluido nos tubos
- $\mu_{\rm w}$ Viscosidade dinâmica do fluido do casco na temperatura da parede
- ρ_t Densidade do fluido nos tubos

LISTA DE SUBSCRITOS

С	Referente ao fluido frio
h	Referente ao fluido quente
b	Referente ao fluido no casco
tew	Referente ao fluido nos tubos

SUMÁRIO

1	INTRODUÇÃO	16
2	OBJETIVOS	
3	JUSTIFICATIVA	22
4	REVISÃO BIBLIOGRÁFICA	23
4.1	Análise térmica	23
4.1.1	Análise da carga térmica	23
4.1.2	Análise da área de troca de calor	25
4.1.3	Análise da diferença de temperatura dos fluidos	26
<u>4.1.3.1</u>	Cálculo do fator de correção F	28
4.1.4	Análise do coeficiente global de transferência de calor	29
4.1.5	Análise do coeficiente convectivo no lado do casco	32
4.1.6	Análise do coeficiente convectivo no lado dos tubos	32
4.2	Análise geométrica	34
4.2.1	Número de tubos	34
4.2.2	Constante de número de passes	35
4.2.3	Constante do layout	36
4.2.4	Diâmetro do casco	37
4.2.5	Diâmetro equivalente	38
4.2.6	Área normal ao centro do escoamento do casco	38
4.3	Análise de perda de carga	39
4.3.1	Análise de perda de carga no lado do casco	39
4.3.2	Análise de perda de carga no lado dos tubos	40
5	METODOLOGIA	41
5.1	Cálculo não iterativo	41
5.2	Estimativas iniciais	44
5.3	Cálculo iterativo	44
5.4	Critério de parada	46
5.5	Perda de carga	46
5.6	Fluxograma do algoritmo	47
5.7	Desenvolvimento do aplicativo	48
5.7.1	Página de dados	
5.7.2	Página de tabelas	
5.7.3	Página calcular	
6	VERIFICAÇÃO DO ALGORITMO	54
7	COMPARAÇÃO DE RESULTADOS OBTIDOS	
8	CONCLUSÃO	
•	REFERÊNCIAS	
	ANEXO A – Gráficos do fator de correção F	58
	ANEXO B – Tabelas de referência do método de Kern	61
	APÊNDICE A – Cálculos de verificação do algoritmo	68
A.1.	CÁLCULO NÃO ITERATIVO	
A.2	PRIMEIRA ITERAÇÃO	73
A.2.1	Determinando diâmetro do casco e número de tubos do trocador	73
A.2.2	Cálculo do coeficiente convectivo no casco	74
A.2.3	Cálculo do coeficiente convectivo nos tubos	
A.2.4	Cálculo do coeficiente global de transferência de calor	75
A.2.5	Critério de parada	76
-		-

A.3	SEGUNDA ITERAÇÃO	.77
A.3.1	Determinando diâmetro do casco e número de tubos do trocador	.77
A.3.2	Cálculo do coeficiente convectivo no casco	.77
A.3.3	Cálculo do coeficiente convectivo nos tubos	.77
A.3.4	Cálculo do coeficiente global de transferência de calor	.78
A.3.5	Critério de parada	.78
A.4	TERCEIRA ITERAÇÃO	.79
A.4.1	Determinando diâmetro do casco e número de tubos do trocador	.79
A.4.2	Cálculo do coeficiente convectivo no casco	.79
A.4.3	Cálculo do coeficiente convectivo nos tubos	.79
A.4.4	Cálculo do coeficiente global de transferência de calor	.80
A.4.5	Critério de parada	.80
A.5	PERDA DE CARGA	.81
A.5.1	Perda de carga no casco	.81
A.5.2	Perda de carga nos tubos	.81
	-	

1 INTRODUÇÃO

Atualmente, os trocadores de calor são amplamente difundidos e encontram aplicação não apenas na indústria para a conversão de energia, nas indústrias de base e de transformação, mas também em utensílios domésticos, como geladeiras, aparelhos de ar-condicionado, aquecedores e até mesmo em componentes eletrônicos.

Em virtude de sua importância para a indústira, é interessante realizar um dimensionamento eficaz desses equipamentos para garantir não apenas o seu correto funcionamento e eficiência, mas também para otimizar a utilização dos recursos utilizados para sua construção, assegurando que desempenhem sua função conforme projetado.

Formalmente, segundo Kakaç (2012), trocadores de calor são os dispositivos responsáveis pela transferência de energia térmica entre dois ou mais fluidos em diferentes temperaturas. Estes equipamentos possuem uma ampla variedade de aplicações, como produção de energia, processamento químico, aquecimento e condicionamento de ambientes, recuperação de calor, dentre outras.

Frente ao avanço no desenvolvimento dos trocadores de calor, surgiram classificações definidas, as quais se baseiam no processo de transferência de calor, na geometria de sua construção, no mecanismo de transferência de calor e na disposição dos fluxos.

No que se refere ao processo de transferência de calor, os trocadores de calor são categorizados em contato direto e indireto. No caso de contato direto, ocorre a mistura dos fluidos, enquanto nos trocadores de contato indireto, a troca de calor se dá por meio de uma parede que separa os fluidos. Exemplos comuns de trocadores de contato direto incluem torres de resfriamento, exemplificada na Figura 1.

Figura 1 – Secção através de uma torre de resfriamento.

Fonte: Özisik (1990)

Quanto à sua geometria, os trocadores de calor são categorizados em trocadores de placa, exemplificado na Figura 2, trocadores de superfície estendida e trocadores tubulares. Estes últimos são subdivididos em trocadores de casco e tubo, ilustrado na Figura 3, tubo duplo e de espiral.

Figura 2 – Trocadores de calor de placa aletado.

Fonte: Özisik (1990)

Figura 3 – Trocador de calor do tipo casco e tubo.

Fonte: Nitsche (2015)

No que diz respeito ao mecanismo de transferência de calor, os trocadores são categorizados em convecção de fase única em ambos os lados, convecção de fase única em um lado e dupla no outro, e convecção de fase dupla em ambos os lados.

No tocante à disposição dos fluxos, os trocadores podem adotar a configuração de corrente em paralelo, como representado na Figura 4 (a), onde os fluidos escoam na mesma direção e sentido. Alternativamente, podem apresentar a configuração em contracorrente, conforme ilustrado na Figura 4 (b), em que, apesar da direção ser a mesma, os fluidos escoam em sentidos opostos. Outra possibilidade é o fluxo em corrente cruzada, exemplificado na Figura 4 (c), indicando escoamentos perpendiculares entre si.

Figura 4 – (a) Correntes paralelas, (b) contracorrente, e (c) correntes cruzadas.

Fonte: Adaptado de (Kakaç, 2002)

Os principais métodos para o dimensionamento, análise e seleção de trocadores de calor, segundo IIT Delhi (2015) é o método de Kern e o método de Bell-Delaware.

Conforme IIT Delhi (2015), as primeiras iniciativas para desenvolver cálculos de queda de pressão e coeficiente de transferência de calor em trocadores de calor baseavam-se em correlações derivadas empiricamente a partir de dados coletados de instalações de trocadores de calor.

O método de Kern se ajusta a essa abordagem, ao correlacionar dados encontrados com equações análogas de análise de escoamento em tubos. No

entanto, esse método possui limitações, restringindo-se à utilização de chicanas fracionárias com um corte de 25%. Além disso, não representa de maneira precisa a recirculação entre a chicana e o casco, assim como entre a chicana e os tubos. Apesar dessas imprecisões e simplificações nos cálculos, os resultados são considerados suficientes para uma análise preliminar em aplicações de engenharia.

Segundo IIT Delhi (2015), o método de Bell-Delaware é mais amplamente aceito e proporciona resultados mais precisos, sendo derivado da análise primária do método de Kern. Segundo IIT Delhi (2015), esse método teve origem em uma pesquisa conduzida no Departamento de Engenharia Química da Universidade de Delaware em 1947, com apoio e patrocínio da ASME. Inicialmente focado em trocadores de calor de tubos, o método evoluiu para incorporar análises em trocadores de calor do tipo casco e tubo. Corporações relacionadas à engenharia e trocadores de calor contribuíram com programas experimentais de medição de transferência de calor e perda de carga em escoamentos tubulares. O relatório final foi publicado em 1963.

O método empregado fundamenta-se na formulação apresentada por Kern (1950), incorporando as leis já consolidadas e validadas no estudo da termodinâmica, o método utiliza uma variedade significativa de gráficos e aproximações matemáticas desenvolvidas empiricamente. Essas ferramentas conduzem à obtenção de coeficientes fundamentais empregados no projeto do trocador. O objetivo deste trabalho é implementar um código que realize automaticamente o dimensionamento de trocadores de calor do tipo casco e tubo.

2 OBJETIVOS

O presente trabalho tem como objetivo geral automatizar os cálculos de dimensionamento e seleção de trocadores de calor do tipo casco e tubo, através de um algoritmo computacional completamente livre, desenvolvido na linguagem VBA (*Visual Basic for Applications*).

Seguem os objetivos específicos deste trabalho:

- Revisão da literatura acerca do tema proposto;
- Adaptação à ferramenta de trabalho utilizada, no caso a linguagem VBA;
- Desenvolvimento e implementação do algoritmo para dimensionamento e seleção de trocadores de calor do tipo casco e tubo;

3 JUSTIFICATIVA

O estudo de dispositivos trocadores de calor é de relevância tanto para acadêmicos quanto para profissionais ligados à engenharia. Esses dispositivos desempenham um papel quase constante em projetos associados à área térmica e possuem significativa importância no cenário industrial.

Entretanto, a compreensão integral é desafiadora devido às características iterativas dos métodos utilizados para o estudo e dimensionamento dos trocadores de calor. Isso impõe uma carga significativa de trabalho manual ao aluno ou responsável pelo projeto. Além disso, os métodos dependem de constantes extraídas visualmente de gráficos e tabelas, o que dificulta a comparação de resultados e a validação das respostas.

Em virtude desses desafios, este trabalho proporciona aos acadêmicos e profissionais da área uma oportunidade de conduzir atividades práticas de maneira mais produtiva e eficiente. Além disso, serve como uma base de estudo valiosa para profissionais recém-ingressados na área ou interessados em projetos relacionados a trocadores de calor.

4 REVISÃO BIBLIOGRÁFICA

O projeto de um trocador de calor envolve diversos níveis de complexidade, desde a decisão de que esse dispositivo é a solução ideal para um problema até o seu dimensionamento estrutural e econômico. Nesta seção, serão discutidas equações amplamente aceitas na comunidade científica para realizar a análise dimensional do trocador de calor proposto.

4.1 Análise térmica

Uma análise primária para o dimensionamento de um trocador de calo é feita por Kakaç (2012) e apresentada na Figura 5, um diagrama representando um corte longitudinal da interface de troca de calor de duas tubulações de um trocador de calor.

Na porção superior da figura, o fluido frio escoa pela tubulação com taxa de capacidade térmica $(\dot{m}c_p)_c$, com temperaturas de entrada e saída T_{c1} e T_{c2} . Já na porção inferior, o fluido que escoa pela tubulação é o fluido quente, com taxa de capacidade térmica $(\dot{m}c_p)_p$, com temperaturas de entrada e saída T_{h1} e T_{h2} .

A Figura 5 analisa a fronteira infinitesimal de troca de calor, entre as linhas pontilhadas, onde o fluido quente transfere dQ para o fluido frio, através de uma área dA, elevando sua temperatura em dT_c .

4.1.1 Análise da carga térmica

Fonte: Adaptado de (Kakaç, 2002)

Aplicando a Primeira Lei da Termodinâmica para sistemas abertos, onde há um fluxo de massa que atravessa as fronteiras do sistema infinitesimal analisado (pontilhado na Figura 5), é possível estimar a quantidade de calor transferido para ou do sistema. Isso ocorre em condições de regime permanente e fluxo constante, desprezando a variação de energia mecânica.

$$dQ = \dot{m}dh \tag{1}$$

Segundo Çengel (2013), considerando líquidos e sólidos como incompressíveis, e uma variação infinitesimal de temperatura, pode-se admitir que o calor específico em processos seja considerando constante. Portanto, neste caso é usual a simplificação de que a variação infinitesimal da entalpia *dh* pode ser escrita como o produto entre o calor específico a pressão constante do fluido e sua variação infinitesimal de temperatura, assim como é mostrado na equação (2):

$$dh = c_p dT \tag{2}$$

Como a entalpia é uma função do estado termodinâmico do fluido, seu valor depende apenas das condições termodinâmicas do estado e não do caminho pelo qual o sistema chegou até estas condições.

É possível portanto realizar uma integral definida das equações (1) e (2) com os limites de integração sendo o estado inicial com índice 1 e o final com índice 2, conforme pode ser visto na Figura 6, assim como é realizado na equação (3):

$$\int_{1}^{2} dQ = \int_{1}^{2} dh = \int_{1}^{2} c_{p} dT$$

$$Q_{1-2} = h_{2} - h_{1} = c_{p}(T_{2} - T_{1})$$
(3)

Figura 6 – Entrada e saída do casco e dos tubos

Fonte: Adaptado de (Parisher, 2011)

Utilizando a relação definida na equação (3), considerando que todo o calor do fluido do casco é transferido para os tubos, é possível igualar as energias dos fluidos frio (subíndice c) para o fluido quente (subíndice h), são adicionados os índices para uma análise inicial típica de trocadores de calor, como mostrado na Figura 5, obtém-se:

$$Q = \left(\dot{m}c_p\right)_c (T_{c2} - T_{c1}) = \left(\dot{m}c_p\right)_h (T_{h1} - T_{h2})$$
(4)

A equação (4), derivada da Primeira Lei da Termodinâmica na equação (1), é de suma importância para a análise que se deseja realizar, pois fornece a carga térmica do trocador de calor em função da vazão, calor específico e temperaturas de entrada e saída do fluido frio ou do fluido quente.

4.1.2 Análise da área de troca de calor

Segundo Kakaç (2002), para se calcular a área de troca de calor, a equação (5) pode ser utilizada, que é uma expressão análoga a Lei de Resfriamento de Newton, ficando explícito o que é esperado de um trocador de calor, que o seu tamanho

depende proporcionalmente a carga térmica Q, de forma que quanto maior a carga necessária, maior também será o trocador de calor. A equação também mostra a dependência inversamente proporcional com o coeficiente global de transferência de calor U_o , e a média apropriada da diferença de temperatura entre os fluidos ΔT_m , fazendo com que quanto numericamente maior eles sejam, menor o trocador precisará ser.

Existe uma imprecisão em utilizar a média ΔT_m , como na primeira versão da equação (5), pois ela não considera que a diferença entre as temperaturas dos fluidos quente e frio varia conforme a posição no trocador de calor, e não considera a não uniformidade de distribuição de temperatura ao longo do casco e dos tubos. Para corrigir este fato, respectivamente, deve ser utilizado a média logarítmica das diferenças de temperaturas, e o fator de correção *F*, conforme mostrado na segunda versão da equação (5):

$$A_o = \frac{Q}{U_o \Delta T_m} = \frac{Q}{U_o F \Delta T_{lm,cf}}$$
(5)

É interessante vincular esta área de troca de calor baseada no diâmetro externo d_0 dos tubos com termos que abranjam características de projeto do trocador de calor. A área de troca de calor é obtida pelo produto da circunferência do tubo escolhido, multiplicando o comprimento efetivo dos tubos *L* do trocador e o número de tubos N_t , assim como é mostrado na equação (6):

$$A_o = \pi d_o N_t L \tag{6}$$

4.1.3 Análise da diferença de temperatura dos fluidos

A diferença entre as temperaturas dos fluidos quente e frio ΔT varia conforme sua posição no trocador de calor, como pode ser observado na Figura 7, onde a figura (a) representa a distribuição de temperatura dos fluidos em um trocador com escoamento em paralelo, e em (b) com escoamento em contracorrente. A figura elucida os termos posteriormente utilizados, onde ΔT_1 representa a diferença entre a temperatura da entrada do fluido quente T_{h1} e a temperatura da saída do fluido frio T_{c2} para escoamento em contracorrente, ou com a entrada do fluido frio T_{c1} para escoamento em paralelo. Da mesma forma, ΔT_2 representa a diferença entre a temperatura da saída do fluido quente T_{h2} e a temperatura da entrada do fluido frio T_{c1} para escoamento em contracorrente ou com a saída do fluido frio T_{c2} para escoamento em paralelo.

Figura 7 – Distribuição de temperaturas dos fluidos em um trocador de calor

Utilizando as hipóteses de que o trocador de calor se encontra isolado, de forma que a única troca de calor está entre os fluidos, e a condução no sentido axial pela parede dos tubos é desprezível, pode ser derivado a partir das curvas da Figura 7 e análise feita na Figura 5 uma função para a diferença ΔT , mostrado por Incropera e Dewitt (2007) como o método das diferenças da média logarítmica de temperaturas, definido pela equação (7):

$$\Delta T_{lm,cf} = \frac{\Delta T_1 - \Delta T_2}{ln \left(\frac{\Delta T_1}{\Delta T_2}\right)}$$
(7)

Os parâmetros $\Delta T_2 e \Delta T_1$ são dependem da disposição dos fluidos no trocador, devido ao sentido que os fluidos entram e saem, sendo que a equação (8) mostra os valores para um fluxo em paralelo, e a equação (9) para um fluxo em contracorrente.

$$Paralelo: \begin{cases} \Delta T_1 = T_{h1} - T_{c1} \\ \Delta T_2 = T_{h2} - T_{c2} \end{cases}$$
(8)

Contra corrente:
$$\begin{cases} \Delta T_1 = T_{h1} - T_{c2} \\ \Delta T_2 = T_{h2} - T_{c1} \end{cases}$$
(9)

4.1.3.1 Cálculo do fator de correção F

Como pode ser observado na equação (5) em sua segunda versão, deve-se ainda multiplicar um fator de correção *F* para que a diferença de temperatura média ΔT_m seja a diferença de temperatura média logaritima $\Delta T_{lm,cf}$, encontrada na equação (7). O fator de correção *F* é utilizado para considerar a não uniformidade de distribuição de temperatura ao longo do casco e dos tubos, e pode ser visualizado nos gráficos Gráfico A1 até Gráfico A3 do Anexo A. Para ser determinado, se faz necessário os valores da eficácia de temperatura *P*, da razão de capacidade calorífica *R*, e definir o número de passes no casco.

A razão de capacidade calorífica R é medida a partir da razão do quanto a temperatura do fluido quente foi diminuída por quanto a temperatura do fluido frio foi elevada, obtida pela equação (10):

$$R = \frac{T_{h1} - T_{h2}}{T_{c2} - T_{c1}} \tag{10}$$

A constante *P* inicialmente foi desenvolvida por Bowman (1940) para uma situação de um trocador de calor com um passe no casco e dois nos tubos, e é uma medida da razão entre o quanto a temperatura do fluido frio foi elevada, pela diferença entre a temperatura de entrada do fluido quente e a temperatura de entrada do fluido frio, assim como mostrado na equação (11):

$$P = \frac{T_{c2} - T_{c1}}{T_{h1} - T_{c1}} \tag{11}$$

Segundo Bowman (1940), o valor de P se altera para diferentes composições de número de passes no casco e nos tubos, portanto é interessante generalizar o valor de P para um trocador com N passes no casco e 2N passes nos tubos, que é feito a partir equação (12),:

$$P_{N,2N} = \frac{1 - \left(\frac{1 - P.R}{1 - P}\right)^{N}}{R - \left(\frac{1 - P.R}{1 - P}\right)^{N}}$$
(12)

Como *P* se altera para diferentes composições de número de passes no casco e nos tubos, consequentemente o valor de *F* também deve variar em função da composição do trocador. No intuito de facilitar a compreensão da equação, previamente duas variáveis auxiliares são definidas para se encontrar o valor de *F*, mostradas nas equações (13) e (14):

$$W = \frac{1 - P_{N,2N} \cdot R}{1 - P_{N,2N}} \tag{13}$$

$$\Gamma = \frac{\sqrt{R^2 + 1}}{R - 1} \tag{14}$$

Seguindo a mesma ideia de generalização das variáveis, para se encontrar o valor de *F* para um trocador com *N* passes no casco e 2N passes nos tubos, segundo Bowman (1940), pode ser utilizado a equação (15):

$$F_{N,2N} = \frac{\Gamma(\ln W)^{N}}{\ln\left(\frac{1+W^{1/N}-\Gamma+\Gamma W^{1/N}}{1+W^{1/N}+\Gamma-\Gamma W^{1/N}}\right)}$$
(15)

4.1.4 Análise do coeficiente global de transferência de calor

Para sistemas compostos, é comumente feita uma análise de um coeficiente global de transferência de calor, por uma expressão análoga a Lei de Resfriamento de Newton, apresentada na equação (5). Segundo Incropera e Dewitt (2007), a taxa de transferência de calor para sistemas compostos pode ser avaliada a partir do circuito térmico equivalente, conforme apresentado na equação (16), onde $\sum R_t$ referese à resistência térmica total do sistema, e já formulada para se adequar ao problema apresentado na Figura 8:

$$Q = \frac{\Delta T}{\sum R_t} = \frac{(T_h - T_c)}{\sum R_t}$$
(16)

Inserindo a equação (16) na equação (5), é possível definir a equação (17), finalmente definindo o coeficiente global de transferência de calor U_o , que é o objeto de análise:

$$U_o = \frac{1}{\sum R_t A_o} \tag{17}$$

Para tornar a equação (17) explicita em termos que serão calculados neste trabalho, resta definir a resistência térmica total. Na Figura 8, que representa um corte de um tubo do trocador de calor, é disposto o diagrama do circuito térmico que será avaliado. Partindo do centro do tubo, por onde o fluxo do fluido frio escoa em temperatura T_c e com transferência de calor em método de convecção, com coeficiente convectivo h_i , posteriormente analisado. Nas paredes internas do tubo, com o funcionamento do trocador de calor, será observado com o tempo o fenômeno da incrustação, que causa uma resistência térmica R_{fi} , definida na Tabela B9 do Anexo B. O próximo elemento que causa resistência térmica é o próprio tubo, onde o calor atravessa por condução, com condutividade térmica k_w . Da mesma forma que nas paredes interiores, nas paredes externas do tubo também ocorre o fenômeno de incrustação, causando a resistência térmica R_{fo} , também definida a partir da Tabela B9 do Anexo B. Finalmente chegamos até o último ponto do circuito térmico, o fluxo do fluido quente, tem temperatura T_h , com coeficiente convectivo h_o .

Segundo Incropera e Dewitt (2007), a resistência térmica para sistemas radiais para convecção é definido a partir da equação (18), dependendo do coeficiente convectivo do sistema, e a área por onde o fluxo tem contato, sendo avaliado para o fluxo interno ou externo ao tubo:

Fluxo Interno:
$$R_{t,conv.} = \frac{1}{\pi d_i L h_i} = \frac{1}{A_i h_i}$$

Fluxo Externo: $R_{t,conv.} = \frac{1}{\pi d_o L h_o} = \frac{1}{A_o h_o}$
(18)

Para a resistência térmica de condução para sistemas radiais, é definido pelo autor a partir da equação (19):

$$R_{t,cond.} = \frac{ln \left(\frac{d_o}{d_i}\right)}{2\pi k_w L} \tag{19}$$

É possível então definir o termo $\sum R_t$, somando-se todas as contribuições de resistência térmica do sistema, como é mostrado na equação (20):

$$\sum R_t = \frac{1}{A_i h_i} + R_{f,i} + \frac{\ln \left(\frac{a_o}{d_i}\right)}{2\pi k_w L} + R_{f,o} + \frac{1}{A_o h_o}$$
(20)

Figura 8 – Diagrama de Circuito Térmico

Fonte: Próprio Autor (2023)

Para que o coeficiente global de transferência de calor seja uma equação mais resumida, cabe definir um termo resistência térmica de condução de calor na parede dos tubos R_w , conforme mostrado na equação (17):

$$R_{w} = \frac{\ln \left(\frac{d_{o}}{d_{i}}\right)}{2\pi k_{w}L}$$
(21)

O coeficiente global de transferência de calor, considerando incrustação, é obtido inserindo a equação (20) e (21) na equação (17), e rearranjando a equação conforme é mostrado na equação (22):

$$\frac{1}{U_o} = \frac{d_o}{d_i} \left(\frac{1}{h_i} + R_{f,i} \right) + A_o R_w + R_{f,o} + \frac{1}{h_o}$$
(22)

A principal alteração matemática é a alteração das relações de área interna e externa para diâmetro interno e externo, por ser mais fácil de localizar os valores dos diâmetros do que das áreas que foram calculadas.

4.1.5 Análise do coeficiente convectivo no lado do casco

O coeficiente convectivo no diâmetro externo dos tubos h_o para uma faixa turbulenta de Reynolds entre 2000 e 1000000, que deve abranger a maior parte das soluções, segundo Kakaç (2002), pode ser calculado a partir da correlação de McAdams, definida na equação (23), utilizada para escoamentos externos em tubulações:

$$\frac{h_o D_e}{k_b} = 0.36 \left(\frac{D_e G_s}{\mu_b}\right)^{0.55} \left(\frac{c_{p_b} \mu_b}{k_b}\right)^{\frac{1}{3}} \left(\frac{\mu_b}{\mu_w}\right)^{0.14}$$
Para 2 x10³ < Re_s = $\frac{G_s D_e}{\mu}$ < 1 x10⁶
(23)

Para o escoamento no lado do casco, é utilizado por Kakaç (2002) o número de Reynolds conforme equação (24), onde o diâmetro equivalente D_e é definido pelas equações (43) e (44), e o fluxo mássico G_s pela equação (46):

$$Re_s = \frac{G_s D_e}{\mu} \tag{24}$$

As propriedades físicas com índice *b* são referentes ao fluido presente no casco calculado em sua temperatura média, enquanto a propriedade com índice *w*, aparecendo apenas em μ_w , refere-se à viscosidade dinâmica do fluido do casco na temperatura da parede dos tubos T_w , definida na equação (25).

$$T_{w} = \frac{1}{2} \left(\frac{T_{c1} + T_{c2}}{2} + \frac{T_{h1} + T_{h2}}{2} \right)$$
(25)

4.1.6 Análise do coeficiente convectivo no lado dos tubos

O coeficiente convectivo interno dos tubos h_i pode ser calculado segundo

Incropera e Dewitt (2007) utilizando a definição do número de Nusselt, que correlaciona o coeficiente convectivo h_i com a condutividade térmica do fluido no lado dos tubos k_t (calculado na temperatura média do fluido), e o diâmetro interno dos tubos d_i . Como a intenção é conseguir o valor para o coeficiente convectivo, a equação da correlação é apresentada na equação (26) como uma solução para h_i :

$$h_i = \frac{Nu_b \cdot k_t}{d_i} \tag{26}$$

Para se calcular o número de Nusselt Nu_b , inicialmente se faz necessário encontrar o número de Reynolds para o escoamento, definido na equação (27), onde as propriedades físicas com índice t são referentes ao fluido nos tubos, e são calculadas em sua temperatura média entre entrada e saída do fluido nos tubos:

$$Re_{d,i} = \frac{\rho_t u_m d_i}{\mu_t} \tag{27}$$

Para se encontrar o número de Reynolds, é necessário a velocidade média do escoamento nos tubos através da equação (28), relacionando a vazão mássica total do fluido nos tubos, sua densidade, e a área de escoamento definida na equação (29):

$$u_m = \frac{\dot{m}_t}{\rho_t A_{t,p}} \tag{28}$$

Para calcular a velocidade média do escoamento, primeiramente é necessário encontrar a área de escoamento nos tubos, que segundo Kakaç (2002) é o produto entre a área transversal interna de um tubo com a divisão do número de tubos pelo número de passes, conforme mostrado na equação (29):

$$A_{t,p} = \frac{\pi d_i^2}{4} \cdot \frac{N_t}{N_p} \tag{29}$$

O último passo para se chegar ao valor do coeficiente convectivo é se encontrar o número de Nusselt, e o fator o fator de atrito de Darcy-Weisbach dos tubos. Dado o objetivo de um dispositivo trocador de calor, quanto maior a turbulência dos fluidos, maior será a troca, portanto nesta seção são apresentadas apenas soluções para altos números de Reynolds, sugerindo que o trocador deve operar em situação de escoamento turbulento.

Para uma faixa turbulenta de $Re_{d,i}$, com o número de Prandtl do respectivo fluido dentro do intervalo de 0,5 até 2000, são utilizadas correlações de Petukhov-Kirillov, mostradas nas equações (30) e (31):

$$f_t = \left[0,79 \ln \left(Re_{d,i}\right) - 1,69\right]^{-2}$$

$$Para \ 1 \ x 10^4 < Re_{d,i} = \frac{\rho_t u_m d_i}{\mu_t} < 5 \ x 10^6 \ e \ para \ 0,5 < P_r < 2000$$
(30)

$$Nu_{i} = \frac{\binom{f_{t}}{2}Re_{d,i}P_{r}}{1,07 + 12,7\binom{f_{t}}{2}^{1/2}\binom{P_{r}^{2/3}}{2} - 1}$$
(31)

$$Para \ 1 \ x 10^4 < Re_{d,i} = \frac{\rho_t u_m d_i}{\mu_t} < 5 \ x 10^6 \ e \ para \ 0.5 < P_r < 2000$$

Para uma faixa mais baixa do número de Reynolds, e aplicável também a região de transição de escoamento laminar para turbulento, é possível utilizar as correlações de Gnielinski:

$$f_t = \left[1,58 \ln \left(Re_{d,i}\right) - 3,28\right]^{-2}$$

$$Para\ 2300 < Re_{d,i} = \frac{\rho_t u_m d_i}{\mu_t} < 1\ x10^4$$
(32)

$$Nu_{i} = \frac{\binom{f_{t}}{2}(Re_{d,i} - 1000)P_{r}}{1 + 12.7\binom{f_{t}}{2}^{1/2}(P_{r}^{2/3} - 1)}$$
(33)

$$Para \ 2300 < Re_{d,i} = \frac{\rho_t u_m d_i}{\mu_t} < 1 \ x 10^4$$

4.2 Análise geométrica

4.2.1 Número de tubos

Para se determinar o número total de tubos N_t , Kakaç (2012) sugere uma

aproximação apresentada na equação (34). Esta aproximação verifica quantos tubos podem ser acomodados na área de seção transversal do casco, dividindo esta área pela área projetada A_1 para um layout de tubo, e multiplicando pela constante (*CTP*), ambos comentados posteriormente.

$$N_t = (CTP)\frac{\pi D_s^2}{4A_1} \tag{34}$$

A constante A_1 , definida pela equação (35),é uma área aproximada da área hachurada na Figura 10, de forma que para conforme o arranjo tubular, a constante (*CL*) se altera, de forma que para arranjos de 45° e 90°, a área é o quadrado formado ao ligar os centros das tubulações, e para arranjos de 30° e 60°, o valor de (*CL*) é menor, compensando o valor da área A_1 :

$$A_1 = (CL)P_T^2 \tag{35}$$

Inserindo a equação (35) na equação (34), é possível chegar em uma função para o número de tubos:

$$N_t = \frac{(CTP)}{(CL)P_T^2} \frac{\pi D_s^2}{4}$$
(36)

4.2.2 Constante de número de passes

Segundo Kakaç (2012), a constante (*CTP*) é um fator de correção que leva em consideração a parte da seção transversal do casco que não possui tubulação devido à folga necessária entre os tubos e o casco e o raio de curvatura para que mais passes sejam acomodados no casco do trocador. Este valor é dado em função número de passes no casco do trocador de calor, e possui os valores conforme mostrado na equação (37):

$$(CTP): \begin{cases} Um \ passe & (CTP) = 0.93\\ Do is \ passes & (CTP) = 0.90\\ Tr \hat{e}s \ passes & (CTP) = 0.85 \end{cases}$$
(37)
4.2.3 Constante do layout

O layout da disposição dos tubos é classificado de acordo com a sua angulação, de acordo com a Figura 9 resultando na constante (*CL*) de layout de tubos, que é definida por Kakaç (2012) na equação (38). Para um layout triangular, ou seja, com 30°, a quantidade de tubos é otimizada, portanto é a melhor opção de escolha, a não ser que outras características impeçam o uso deste layout:

$$(CL): \begin{cases} 45^{\circ} e \ 90^{\circ}: (CL) = 1,0\\ 30^{\circ} e \ 60^{\circ}: (CL) = 0,87 \end{cases}$$
(38)

Fonte: Adaptado de (Kakaç, 2002)

O passo P_T , ou distância entre os tubos, é exemplificado na Figura 10, onde um layout quadrangular e triangular são apresentados. Como a Tabela B3 do Anexo B limita as possibilidades de passos entre tubos, é possível resumir todas as possibilidades de passo P_T em uma variável chamada razão de passo PR, definida na equação (39).

$$PR = \frac{P_T}{d_o} \tag{39}$$

Figura 10 – Passo dos tubos para layout quadrado e triangular

Fonte: Adaptado de (Kakaç, 2002)

4.2.4 Diâmetro do casco

Após definido todas as constantes relacionadas ao cálculo do número de tubos N_t , é prosseguido com o raciocínio da equação (36) a fim de se definir um cálculo para o diâmetro do casco, que pode ser feito isolando D_s da mesma, e inserindo a equação (6) no lugar de N_t para que o valor de D_s não dependa da aproximação de número de tubos. Fazendo estas alterações temos que:

$$D_s^2 = \frac{4(CL)P_T^2}{\pi(CTP)} \frac{A}{\pi d_o L}$$

$$D_s = \frac{2P_T}{\pi} \sqrt{\frac{(CL)}{(CTP)} \frac{A_o}{d_o L}}$$
(40)

Rearranjando a equação (40), o diâmetro do casco é apresentado por Kakaç (2012) da seguinte forma:

$$D_{s} = 0,637 \sqrt{\frac{(CL)}{(CTP)}} \frac{A_{o} \left(\frac{P_{T}}{d_{o}}\right)^{2} d_{o}}{L}$$
(41)

4.2.5 Diâmetro equivalente

Segundo White (2010), o diâmetro equivalente é utilizado para aproximar a seção transversal do layout dos tubos como se fosse uma seção de tubo circular, e segundo pode ser definida por:

$$D_e = \frac{4 \cdot [\text{Å}rea \ de \ escoamento]}{[Per(metro \ molhado]]}$$
(42)

O diâmetro equivalente D_e difere entre os dois modos de arranjo tubular, devido a alteração na área de escoamento, quadrado e triangular, de forma que para o arranjo quadrangular o diâmetro equivalente é definido pela equação (43), e para o arranjo triangular pela equação (44):

- 2

$$D_e = \frac{4 \cdot \left(P_T^2 - \frac{\pi d_o^2}{4}\right)}{\pi d_o} \tag{43}$$

$$D_{e} = \frac{4 \cdot \left(\frac{P_{T}^{2}\sqrt{3}}{4} - \frac{\pi d_{o}^{2}}{8}\right)}{\frac{\pi d_{o}}{2}}$$
(44)

4.2.6 Área normal ao centro do escoamento do casco

A área do fluxo normal à linha de centro do escoamento do casco é dada pela equação (45), que observando a Figura 10 pode ser simplificada em:

$$A_{s} = \frac{D_{s}CB}{P_{T}} = \frac{D_{s}(P_{T} - d_{o})B}{P_{T}}$$
(45)

A única utilização da área A_s é de calcular o fluxo mássico do fluido para este escoamento, que é utilizado pelas equações (23), (24) e (51), e é dado por:

$$G_s = \frac{\dot{m}_h}{A_s} \tag{46}$$

4.3 Análise de perda de carga

4.3.1 Análise de perda de carga no lado do casco

Para o escoamento no casco, segundo Kakaç (2012) a perda de carga do fluido no casco depende do fator de atrito f_s para o casco, do número de chicanas N_b , do diâmetro do casco D_s calculado a partir da equação (41), do fluxo mássico G_s dado pela equação (46), do diâmetro equivalente D_e definido pelas equações (43) e (44), e do fator de correção de viscosidade dinâmica para o casco ϕ_s .

O fator de atrito para o escoamento no casco é mostrado na equação (47), onde deve ser utilizado o Re_s calculado conforme já mostrado na equação (24):

$$f_{s} = exp (0,567 - 0,19 \ln Re_{s})$$

$$Para 400 < Re_{s} < 1x10^{6}$$
(47)

Segundo Kakaç (2012) o número de chicanas é calculado conforme mostrado na equação (48):

$$N_b = \frac{L}{B} - 1 \tag{48}$$

Para o espaçamento entre as chicanas *B*, é recomendado por Kakaç (2012) ser utilizado entre 0,4 e 0,6 do diâmetro do casco D_s . É utilizado a média dos valores como referência, conforme mostrado na equação (49):

$$B = 0.5N_s \tag{49}$$

O fator de correção de viscosidade dinâmica para o casco, segundo Kakaç (2012), é calculado conforme a equação (50):

$$\phi_s = \left(\frac{\mu_b}{\mu_w}\right)^{0.14} \tag{50}$$

Finalmente, com todos os valores calculados anteriormente, é possível calcular a perda de carga no lado do casco, conforme a equação (51):

$$\Delta p_s = \frac{f G_s^2 (N_b + 1) D_s}{2\rho_s D_e \phi_s} \tag{51}$$

4.3.2 Análise de perda de carga no lado dos tubos

Para os tubos, a perda de carga devido ao comprimento dos tubos pode ser calculada conforme equação (52), onde o valor de f_t é referente as equações (30) e (32), e a velocidade média nos tubos u_m é calculado pela equação (28):

$$\Delta p_t = 4f_t \frac{LN_p}{d_i} \rho_t \frac{u_m^2}{2} \tag{52}$$

A perda de carga devido à curvatura dos tubos é dada por:

$$\Delta p_r = 4N_p \frac{\rho_t u_m^2}{2} \tag{53}$$

Portanto, a perda de carga total para os tubos, definida na equação (54), é dada pela soma das contribuições referentes ao comprimento dos tubos, e devido a sua curvatura, em uma soma simples das equações (52) e (53):

$$\Delta p_{t_{total}} = \Delta p_t + \Delta p_r \tag{54}$$

5 METODOLOGIA

Todo o código deste aplicativo foi desenvolvido usando a linguagem VBA (*Visual Basic for Applications*) no ambiente do Excel. Para a entrada de dados, o direcionamento de cálculos e a apresentação de resultados são utilizados Formulários e Módulos, que são ferramentas integradas na linguagem VBA. Os Formulários são responsáveis pelas interfaces de janela do programa, enquanto os Módulos cuidam dos cálculos e da lógica do programa em si.

Cada formulário possui seu próprio conjunto de códigos, os quais estão principalmente relacionados aos botões de controle do programa. Além disso, esses códigos também incluem lógicas para prevenir erros. Por exemplo, eles impedem que o usuário insira valores inválidos em caixas de texto, como letras em um campo onde apenas valores numéricos são aceitos, o programa mostrará uma mensagem de erro em vez de prosseguir com um cálculo que resultaria na interrupção da execução.

A lógica básica para o projeto de um trocador de calor se inicia no reconhecimento, por parte do corpo de engenharia, que este dispositivo é necessário para resolver um problema. Em seguida, o tipo de trocador de calor que melhor se adequa a situação deve ser selecionado. A metodologia apresentada a seguir considera que estes dois primeiros passos já foram realizados, e um trocador de calor do tipo casco e tubo foi selecionado.

Os requisitos iniciais que se deve ter em mãos para o início dos cálculos são:

- Composição dos fluidos que serão utilizados;
- Vazão dos fluidos inseridos no trocador;
- Temperaturas de entrada e saída, de ambos os fluidos;
- Características construtivas do trocador de calor

5.1 Cálculo não iterativo

Nesta seção é abordado a parte da resolução que não dependem das estimativas iniciais, ou seja, não serão inclusos na parte iterativa. O algoritmo desta porção do cálculo é apresentado no Fluxograma 1.

Fluxograma 1 – Fluxograma de cálculo não iterativo

Fonte: Próprio Autor (2023)

Inicialmente são definidas as propriedades termodinâmicas dos fluidos, é utilizado um método de interpolação linear junto a um banco de dados inserido no algoritmo a partir das tabelas de propriedades termodinâmicas de Incropera e Dewitt (2007). É utilizado pelo algoritmo como estado de avaliação a temperatura média entre entrada e saída, e estado físico líquido dos respectivos fluidos.

A partir da equação (4), é calculado a carga térmica (Q) do trocador, considerando as hipóteses comentadas junto a equação.

A partir dos dados de temperatura de entrada e saída de ambos os fluidos, com a equação (7) é possível determinar a média logarítmica da diferença das temperaturas $\Delta T_{lm,cf}$.

A partir da quantidade de passos no casco e nos tubos, e das temperaturas de entrada e saída dos fluidos, são calculadas a partir das equações de (10) até (15) as variáveis R, P, W e Γ para com a equação (15) calcular o fator de correção F.

Após encontrados estes valores, o algoritmo reconhecerá se foi dado pelo usuário um ID referente ao tubo a ser utilizados, que estão dispostos em um banco de dados pré-cadastrado referente à Tabela B1 do Anexo B, disponível para visualização pelo usuário dentro do próprio software, para então se obter o diâmetro interno (d_i) e externo (d_o) da tubulação.

A partir da equação (25) é possível se determinar a temperatura na superfície da tubulação (T_w), que será utilizada como base pelo código para que seja definido a viscosidade (μ_w) na superfície do tubo.

Com os dados de composição do fluido a ser utilizado no processo de troca de calor, o algoritmo irá buscar na Tabela B9 do Anexo B as constantes de resistência a incrustação, que serão utilizadas nas equações (22).

O valor de (*CTP*) e (*CL*), mostrados respectivamente nas equações (37) e (38), dependem do número de passes no casco e do arranjo tubular, que deve ter sido informado pelo usuário.

A partir da equação (39) será determinado o valor para a razão de passo entre os tubos P_T , que define a distância entre os centros dos tubos, relacionando o valor já definido de d_o com o valor de *PR* que é definido pelo usuário.

5.2 Estimativas iniciais

Para que possa se iniciar o cálculo iterativo, se faz necessário um valor do coeficiente global de transferência de calor U_o , e do comprimento efetivo *L* dos tubos.

A Tabela B7 do do Anexo B correlaciona fluidos comumente utilizados em trocadores de calor com um faixa de valores de U_o apropriados, e o código seleciona um valor médio para que a primeira iteração seja feita, ou utilizar um valor sugerido pelo usuário.

Em relação ao comprimento *L*, deve ser inserido um valor condizente com a quantidade de passes nos tubos e o espaço físico destinado ao projeto.

5.3 Cálculo iterativo

A partir das estimativas iniciais, todos os cálculos subsequentes possuem relação direta com essas estimativas. Eles são obtidos após a conclusão do cálculo, podendo ser reutilizados para uma nova iteração. O algoritmo do cálculo iterativo é apresentado no Fluxograma 2.

A partir da equação (5) e as informações obtidas na seção de cálculo não iterativo, é possível se obter a área externa aos tubos de troca de calor. Para a primeira iteração o valor de U_o utilizado é estimado, porém para as iterações seguintes

Fonte: Próprio Autor (2023)

o valor utilizado deve vir do último processo de cálculo.

A partir da área externa aos tubos, obtido na equação (5), com a equação (6) pode ser encontrado o comprimento efetivo dos tubos do trocador de calor. Para a primeira iteração este processo é suprimido, e deve ser utilizado o comprimento L estimado inicialmente.

Com as informações colhidas até então, é possível calcular a partir da equação (41) o diâmetro do casco (D_s).

Após o cálculo equacionado do diâmetro do casco, a partir da Tabela B3 do Anexo B deve ser selecionado um diâmetro para os layouts sugeridos por Kakaç (2012). A Tabela B3 do Anexo B apresenta subdivisões para situações específicas, nomeadas aqui de tabelas secundárias, que combinam três variáveis: o diâmetro externo dos tubos d_o , a razão de passo entre os tubos *PT*, e o layout de tubos (*CL*). Para cada uma das combinações possíveis das três variáveis, podem ser selecionados o diâmetro do casco D_s e o número de tubos N_t , a partir do número de passes N_p .

Para fazer a seleção, inicialmente o algoritmo localiza a partir das variáveis d_o , *PT* e (*CL*) qual tabela secundária será utilizada, e então é selecionado a linha correspondente ao menor valor de diâmetro de casco que seja maior que o diâmetro D_s calculado na equação (41), e então o valor da primeira coluna é selecionado, substituindo na memória do aplicativo o valor de D_s . Na mesma linha, cruzando com a coluna relativa ao número de passes N_p , é obtido o número de tubos N_t .

Os coeficientes convectivos inicialmente h_o e h_i serão determinados a partir dos fluidos escolhidos e da características físicas do trocador, tanto inseridas pelo usuário, como calculadas já pelo software neste ponto.

Utilizando-se as equações (42) até (46) são obtidas as entradas necessárias para se calcular o coeficiente de transferência de calor por convecção no casco h_o , a partir da equação (23). É importante notar que para a equação (23), as constantes k e μ são referentes ao fluido que está em contato com o tubo. Para o espaçamento *B* entre as chicanas, é recomendado por Kakaç (2012) ser utilizado entre 0,4 e 0,6 do diâmetro do casco D_s .

Utilizando-se as equações (27) até (33) são obtidas as entradas necessárias para se calcular o coeficiente de transferência de calor por convecção nos tubos h_i , a partir da equação (26).

Com a equação (21), e o material escolhido para os tubos, é determinado a resistência térmica de condução de calor na parede dos tubos R_w com o comprimento efetivo *L*.

Com todos os valores necessários para utilizar a equação (22) e se encontrar o coeficiente global de transferência de calor *U*_o

5.4 Critério de parada

Após concluir o cálculo e chegar em um valor de coeficiente global de transferência de calor, deve ser aplicado um critério de parada, mostrado na equação (55), que compara o valor de U_o da iteração anterior com o valor de U_o da iteração atual, e verificar se a diferença foi maior que 1,00%. Caso positivo, deve-se calcular novamente toda a parte iterativa do algoritmo, substituindo os valores que foram encontrados mais atualizados.

$$\left| \frac{U_{o_{Iteração} anterior}}{U_{o_{Iteração} atual}} - 1 \right| > 1,00\%$$
(55)

5.5 Perda de carga

Após o critério de parada da equação (55) ser atingido, deve ser avaliado se a queda de pressão para os tubos e para o casco está dentro do esperado para o projeto, conforme mostrado no Fluxograma 3.

Fluxograma 3 – Fluxograma de perda de carga

Fonte: Próprio Autor (2023)

Para se calcular a perda de carga Δp_s do casco se faz necessário encontrar a área de fluxo normal à linha de centro do escoamento a partir da equação (45), e a velocidade mássica do fluido do casco pela equação (46), possibilitando o cálculo do

número de Reynolds do casco, pela equação (24). Posteriormente o fator de correção da viscosidade e o fator de atrito devem ser obtidos a partir das equações (47) e (50). Restando apenas o número de chicanas e espaçamento entre elas, mostrados nas equações (49) e (48), então é possível a partir da equação (51) chegar ao valor da perda de carga perda de carga Δp_s do casco, que vai passar por um critério de aceitação e falha dado pelo usuário.

A partir da equação (52) é possível se obter a perda de carga devido ao comprimento dos tubos, e pela equação (53) a perda de carga devido à curvatura dos tubos. A soma da perda de carga para os tubos é apresentada na equação (54), que será utilizado para avaliar se o projeto atende ao critério de pressão estipulado.

5.6 Fluxograma do algoritmo

O processo todo do algoritmo pode ser visualizado no Fluxograma 4, se iniciando pela inserção dos *inputs* pelo usuário, posteriormente pela parte não iterativa do cálculo, e a estimativa inicial. Após a primeira iteração, é avaliado um critério de parada, onde caso negativo o processo iterativo é refeito com valores atualizados, caso positivo o algoritmo avança para o cálculo da perda de carga. O último critério é avaliado, onde se a perda de carga não for aceitável para o projeto os *inputs* devem ser alterados, e o cálculo todo reiniciado, e caso for aceitável o processo se finaliza e o trocador está selecionado com sucesso.

Fluxograma 4 – Fluxograma completo do processo

5.7 Desenvolvimento do aplicativo

O aplicativo é dividido em uma estrutura VBA chamada *Multi Pages*, utilizada para a melhor organização e usabilidade do aplicativo. As páginas disponíveis são nomeadas de "DADOS", "TABELAS" e "CALCULAR", na sequência que possivelmente serão utilizadas, e através dos botões laterais, circulados de vermelho na Figura 11, o usuário pode navegar entre elas.

DMENSIONAMENTO CASCO & TUBO

Figura 11 – Botões para navegar nas páginas

Fonte: Próprio Autor (2023)

Nas figuras Figura 12 até Figura 15 utilizadas neste capítulo de Manual de Utilização estão preenchidos com os Inputs que serão utilizados no capítulo de Validação do Algoritmo e contam com balões numerados que se referem à primeira coluna "ID" na Tabela 1 de *Inputs* de dados.

Todos os selecionadores de informações do tipo *Combo Box* e caixas para inserir textos *Text Box* permitem que usuário selecione apenas opções válidas, impedindo que o algoritmo tente utilizar valores impossíveis ou informações não cadastradas.

5.7.1 Página de dados

A página "DADOS" é dedicada aos *Inputs* do usuário, que foram classificados e divididos em estruturas do VBA chamadas *Frame*.

O primeiro frame, mostrado na Figura 12, engloba os dados relacionados ao fluido frio, que passa dentro das tubulações do trocador. A primeira informação a ser selecionada é qual fluido será utilizado como frio (ID 1). A segunda informação, que é a vazão do fluido frio na unidade toneladas por hora (ID 2), o usuário deve decidir se irá inserir, ou selecionar a caixa "Calcular", que indicará ao algoritmo que o usuário deseja inserir a vazão do outro fluido, e então este input será calculado por

consequência da equação (4). A terceira e quarta informação são as temperaturas de entrada (ID 3) e saída (ID 4) deste fluido, que devem ser inseridas em graus Celsius.

LADO DOS TUBOS (FLUIDO FRIO)						
Fluido frio (nos tubos) Água de	• 1					
Vazão Frio [ton./h]	11 Calcular 2					
Temp. Frio 1 (Entra) [°C]	10 3					
Temp. Frio 2 (Sai) [°C]	40 4					

Figura 12 – Primeiro frame da página Dados

Fonte: Próprio Autor (2023)

O segundo frame, mostrado na Figura 13, engloba os dados relacionados ao fluido quente, que passa no casco do trocador. A primeira informação a ser selecionada é qual fluido será utilizado como quente (ID 5). A segunda informação, que é a vazão do fluido frio na unidade toneladas por hora (ID 6), o usuário também deve decidir se irá inserir, ou selecionar a caixa "Calcular", que indicará ao algoritmo que o usuário deseja inserir a vazão do outro fluido, e então este input será calculado por consequência da equação (4). A terceira e quarta informação são as temperaturas de entrada (ID 7) e saída (ID 8) deste fluido, que devem ser inseridas em graus Celsius.

Fonte: Próprio Autor (2023)

O terceiro frame, mostrado na Figura 14, engloba os dados relacionados a tubulação do trocador de calor. A primeira informação a ser inserida é o layout dos tubos (ID 9), referente aos comentários da Figura 9.

A segunda informação, é a razão de passo entre os tubos (ID 10), que define se os tubos irão ficar mais ou menos afastados entre si, definida na equação (39). No campo de a seguir deve ser inserido qual material será utilizado (ID 11). A última informação a ser inserida é o código de qual tubo será utilizado (ID 12), disposto na página Tabelas, que será discutida na seção 5.7.3.

- TUBULAÇÃO
Layout 60° (Triangular)
Razão de passo entre tubos (PR) 5/4 10 Passo entre tubos tem distância do OD multiplicado pelo PR
[W/m.K] Material Aço Carbono 11 54
ID do Tubo 21 ? (12)
Diâmetro Externo do Tubo [m] 0,0254
Diâmetro Interno do Tubo [m] 0,023622 12

Figura 14 – Terceiro frame da página Dados

Fonte: Próprio Autor (2023)

O quarto frame, mostrado na Figura 15, engloba os dados relacionados ao casco do trocador de calor. A primeira informação a ser inserida é a combinação de número de passes no casco e nos tubos (ID 13), referente aos comentários da equação (37) e dos *inputs* necessários para se calcular a constante (*CTP*). A segunda informação é referente ao tipo de fluxo (ID 14), referente aos comentários das equações (8) e (9). A terceira informação é a estimativa inicial do comprimento efetivo dos tubos do trocador de calor (ID 15), que deve estar ao redor do valor de comprimento esperado, já que o *software* compensará a falta ou excesso de comprimento inicial no diâmetro do casco.

j Tho casco e 2 hos u	ibos 🔽 🚺
Tipo de Fluxo Contra Corrente	• 14
Estimativa Inicial do Comprimento Efetivo dos Tubos L [m]	0,5
	1000

Figura 15 – Quarto frame da página Dados

Fonte: Próprio Autor (2023)

5.7.2 Página de tabelas

A página de tabelas possui apenas a informação de armazenar as tabelas que o usuário necessita para utilizar o algoritmo. Assim como pode ser visualizado na Figura 16, existe apenas uma entrada em que o usuário pode selecionar qual tabela cadastrada ele deseja visualizar.

Figura 16 – Página Tabelas

TABELAS	
<u> </u>	_

Fonte: Próprio Autor (2023)

A primeira tabela que pode ser visualizada é a Tabela B1 do Anexo B de forma resumida, apresentando os dados de tubos comerciais cadastrados no algoritmo, assim como é mostrado na Figura 17. A primeira coluna refere-se ao número de identificação de cada um dos tubos cadastrados, aqui nomeado de ID. Este número é o valor que deve ser inserido no item (ID 12) mostrado e comentado na Figura 14, para que então seja localizado pelo algoritmo os valores referentes a esta tubulação.

BELAS			
Tubos Comer	ciais	•	
1			
ID	DIÂMETRO EXTERNO (Ø _o)	ESPESSURA	$\frac{\emptyset_o}{\emptyset_i}$
2	3/4=	0,134*	1,556016598
3	3/4* 19.05mm	0,12* 3.048mm	1,470588235
4	3/4* 19,05mm	0,109* 2,7686mm	1,409774436
5	3/4" 19,05mm	0,095* 2,413mm	1,339285714
6	3/4" 19,05mm	0,083* 2,1082mm	1,284246575
7	3/4" 19,05mm	0,072" 1,8288mm	1,237623762
8	3/4" 19,05mm	0,065* 1,651mm	1,209677419
9	3/4" 19,05mm	0,058" 1,4732mm	1,1829653
10	3/4" 19,05mm	0,049* 1,2446mm	1,150306748
11	3/4" 19,05mm	0,035* 0,889mm	1,102941176
12	1" 19,05mm	0,165* 4,191mm	1,492537313
13	1" 25,4mm	0,134* 3,4036mm	1,366120219
14	1* 25,4mm	0,12* 3,048mm	1,315789474
15	1" 25,4mm	0,109" 2,7686mm	1,278772379

Figura 17 – Tabela Tubos Comerciais

Fonte: Próprio Autor (2023)

5.7.3 Página calcular

A página calcular é dedicada para rodar o cálculo do algoritmo através do botão "CALCULAR", e apresentar os resultados obtidos, conforme pode ser visualizado na

Calcular		Calcular Perda	a de Carga	
Num Tubos [un]	Pe (C	rda de Carga 'asco) [kPa]		
Diametro Casco [m]	Pe (T	rda de Carga ubos) [kPa]		
Comprimento Efetivo dos Tubos L [m]				
Coef. de TC Global Uo [W/m² K]				

Fonte: Próprio Autor (2023)

6 VERIFICAÇÃO DO ALGORITMO

Na presente seção é proposto a solução de um problema na intenção de verificar se o algoritmo do aplicativo consegue os mesmos resultados que um cálculo manual, que é apresentado em detalhes no Apêndice A.

Dado que o método empregado já foi comentado tanto na revisão bibliográfica como na metodologia, o Apêndice A se limitará a apresentar os cálculos, fazendo referência as equações utilizadas.

Os parâmetros que foram selecionados para a solução de exemplo são apresentados na Tabela 1, que é uma situação corriqueira de utilização de um trocador de calor do tipo casco e tubo.

ID	Parâmetro	Símbolo	Input
1	Fluido Frio		Água destilada tratada para caldeira
2	Vazão do Fluido Frio	$\dot{m_c}$	(Calculado por consequência)
3	Temperatura de entrada do fluido frio	T_{c1}	10 °C
4	Temperatura de saída do fluido frio	T_{c2}	40 °C
5	Fluido Quente		Água destilada condensada
6	Vazão do Fluido Quente	$\dot{m_h} = \dot{m_t}$	21 ton/h
7	Temperatura de entrada do fluido quente	T_{h1}	60 °C
8	Temperatura de saída do fluido quente	T_{h2}	45 °C
9	Layout da Tubulação		60° Triangular
10	Razão de Passo		5/4
11	Material da tubulação	k_w	Aço Carbono, 54 $^{W}/_{mK}$
			1" com 0.035" de parede
12	Tubo Utilizado	d_o	0,0254m de diâmetro externo
		d_i	0,023622 de diâmetro interno 1" com 0.035" de parede
12	Tubo Utilizado	d_o	0,0254m de diâmetro externo
		a_i	0,023622 de diametro interno
13	Passes de tubulação	N = 1 $N_p = 2$	1 passe no casco e 2 nos tubos
14	Tipo de Fluxo Estimativa Inicial do	-	Contracorrente
15	Comprimento Efetivo dos Tubos do Trocador	L	0,5 m

Tabela 1 – Inputs para solução de validação

Fonte: Próprio Autor (2023)

7 COMPARAÇÃO DE RESULTADOS OBTIDOS

Na Tabela 2, são apresentados os resultados obtidos manualmente, enquanto os resultados provenientes do algoritmo com os mesmos inputs estão representados na Figura 19. Na Tabela 3, é possível visualizar o erro entre os dois métodos.

Propriedade	Encontrado			
Número de Tubos	$N_{t} = 16$			
Diâmetro do Casco	$D_s = 0,2032m = 8$ "			
Comprimento Efetivo dos Tubos do Trocador	L = 1,05m			
Coeficiente Global de Transferência de Calor	$U_o = 1038,65 \frac{W}{m^2 K}$			
Perda de Carga no Casco	$\Delta p_s = 27,04 \ kPa$			
Perda de Carga nos Tubos	$\Delta p_{total} = 5,98 kPa$			
Eonto: Próprio Autor (2023)				

Fonte: Próprio Autor (2023)

Calcular		Calcular Perda d	e Carga
Num Tubos [un]	16	Perda de Carga (Casco) [kPa]	26,8521715631946
Diametro Casco [m]	0,2032	Perda de Carga (Tubos) [kPa]	5,95294969718164
Comprimento Efetivo dos Tubos L [m]	1,04214773137067		
Coef. de TC Global Uo [W/m² K]	1038,55501630909		

Fonte: Próprio Autor (2023)

Tabela 3 – Erro entre o método manual e o método do algoritmo	Tabela	3 – Erro	o entre o	método	manual	ео	método	do	algoritmo
---	--------	----------	-----------	--------	--------	----	--------	----	-----------

Propriedade	Erro [%]			
Número de Tubos	0			
Diâmetro do Casco	0			
Comprimento Efetivo dos Tubos do Trocador	0,13%			
Coeficiente Global de Transferência de Calor	0,00%			
Perda de Carga no Casco	0,19%			
Perda de Carga nos Tubos	0,02%			
Easta: Dráznia Autor (2022)				

Fonte: Próprio Autor (2023)

8 CONCLUSÃO

O *software* desenvolvido alcançou todos os objetivos estabelecidos no projeto. A interface foi cuidadosamente elaborada para proporcionar uma experiência de uso intuitiva, minimizando a probabilidade de erros durante a inserção de dados.

O acesso às funcionalidades do projeto VBA é coerente e facilmente compreensível por meio dos botões disponíveis.

A inclusão de todos os dados e tabelas necessários para o dimensionamento diretamente no código do programa simplifica significativamente o processo. Isso significa que o código em si é a única ferramenta que o usuário precisa para concluir o dimensionamento, tornando o processo mais eficiente e conveniente.

Existe um erro na diferença entre os dois métodos, que foi exibido na Tabela 3, que como esperado permaneceu menor que 1%, que foi o critério de parada adotado. Este erro advém principalmente devido ao fato que para o cálculo manual foram utilizadas apenas duas casas significativas após a vírgula, enquanto o algoritmo utiliza os valores cheios com todas as casas.

REFERÊNCIAS

INCROPERA, F. P., DEWITT, D. P., **Fundamentos de Transferência de Calor e de Massa**, Ed. John Wiley & Sons, 2007.

KAKAÇ, S., LIU, H., PRAMUANJAROENKIJ, A., **Heat Exchangers – Selection, Rating, and Thermal Design**, Ed. Taylor & Francis, 2012.

ÇENGEL, Y. A., CIMBALA, J. M., Termodinâmica, Ed. Mc Graw Hill, 2013.

KERN, D. Q., Process Heat Transfer, International Student Edition, 1983.

IIT Delhi. **Design fundamentals of shell and-tube heat exchangers.** Disponível em: http://web.iitd.ac.in/~pmvs/courses/mel709 /SHTE.pdf Acesso em: 28 abr. 2022.

NITSCHE, M., GBADAMOSI, R. O., Heat Exchanger Design Guide, Elsevier, 2015.

BOWMAN, R. A., MUELLER, A. C., NAGLE, W. M., Mean temperature difference in design, ASME, 1940.

PARISHER, R. A., Rhea, R. A., **Mean temperature difference in Pipe Drafting and Design**, Ed. Gulf Professional Publishing; 3rd ed., 2011.

ÖZISIK, M. N., Transferência de Calor, Ed. Guanabara-Koogan, 1990.

ANEXO A – Gráficos do fator de correção F

No Anexo A são dispostos graficamente os valores da eficácia de temperatura *P* e da razão de capacidade calorífica *R*, preparados por Bowman (1940):

Fonte: (Kakaç, 2002)

Gráfico A2 – Fator de correção de temperatura para 2 passe no casco e 4 passes nos tubos (ou múltiplos de 4)

Fonte: (Kakaç, 2002)

Gráfico A3 – Fator de correção de temperatura para 3 passe no casco e 6 passes nos tubos (ou números pares maiores)

Fonte: (Kakaç, 2002)

ANEXO B – Tabelas de referência do método de Kern (1983)

Tabela B1 – Dados	dimensionais	para tubos	comerciais

							(conti	nua)
d _o [in]	BWG Gauge	Espessura [in]	Área Interna [in²]	Superfície externa por pé [ft²]	Superfície interna por pé [ft²]	Peso por pé [lb]	<i>d_i</i> [in]	d_o/d_i
1/4	22	0.028	0.0295	0.0655	0.0508	0.066	0.194	1.289
1/4	24	0.022	0.0333	0.0655	0.0539	0.054	0.206	1.214
1/4	26	0.018	0.0360	0.0655	0.0560	0.045	0.214	1.168
3/8	18	0.049	0.0603	0.0982	0.0725	0.171	0.277	1.354
3/8	20	0.035	0.0731	0.0982	0.0798	0.127	0.305	1.233
3/8	22	0.028	0.0799	0.0982	0.0835	0.104	0.319	1.176
3/8	24	0.022	0.0860	0.0982	0.0867	0.083	0.331	1.133
1/2	16	0.065	0.1075	0.1309	0.0969	0.302	0.370	1.351
1/2	18	0.049	0.1269	0.1309	0.1052	0.236	0.402	1.244
1/2	20	0.035	0.1452	0.1309	0.1126	0.174	0.430	1.163
1/2	22	0.028	0.1548	0.1309	0.1162	0.141	0.444	1.126
5/8	12	0.109	0.1301	0.1636	0.1066	0.602	0.407	1.536
5/8	13	0.095	0.1486	0.1636	0.1139	0.537	0.435	1.437
5/8	14	0.083	0.1655	0.1636	0.1202	0.479	0.459	1.362
5/8	15	0.072	0.1817	0.1636	0.1259	0.425	0.481	1.299
5/8	16	0.065	0.1924	0.1636	0.1296	0.388	0.49s	1.263
5/8	17	0.058	0.2035	0.1636	0.1333	0.350	0.509	1.228
5/8	18	0.049	0.2181	0.1636	0.1380	0.303	0.527	1.186
5/8	19	0.042	0.2298	0.1636	0.1416	0.262	0.541	1.155
5/8	20	0.035	0.2419	0.1636	0.1453	0.221	0.555	1.136
3/4	10	0.134	0.1825	0.1963	0.1262	0.884	0.482	1.556
3/4	11	0.120	0.2043	0.1963	0.1335	0.809	0.510	1.471
3/4	12	0.109	0.2223	0.1963	0.1393	0.748	0.532	1.410
3/4	13	0.095	0.2463	0.1963	0.1466	0.666	0.560	1.339
3/4	14	0.083	0.2679	0.1963	0.1529	0.592	0.584	1.284
3/4	15	0.072	0.2884	0.1963	0.1587	0.520	0.606	1.238
3/4	16	0.065	0.3019	0.1963	0.1623	0.476	0.620	1.210
3/4	17	0.058	0.3157	0.1963	0.1660	0.428	0.634	1.183
3/4	18	0.049	0.3339	0.1963	0.1707	0.367	0.652	1.150
3/4	20	0.035	0.3632	0.1963	0.1780	0.269	0.680	1.103
7/8	10	0.134	0.2892	0.2291	0.1589	1.061	0.607	1.441
7/8	11	0.120	0.3166	0.2291	0.1662	0.969	0.635	1.378
7/8	12	0.109	0.3390	0.2291	0.1720	0.891	0.657	1.332
7/8	13	0.095	0.3685	0.2291	0.1793	0.792	0.685	1.277
7/8	14	0.083	0.3948	0.2291	0.1856	0.704	0.709	1.234
7/8	16	0.065	0.4359	0.2291	0.1950	0.561	0.745	1.174
7/8	18	0.049	0.4742	0.2291	0.2034	0.432	0.777	1.126
7/8	20	0.035	0.5090	0.2291	0.2107	0.313	0.805	1.087
1	8	0.165	0.3526	0.2618	0.1754	1.462	0.670	1.493
1	10	0.134	0.4208	0.2618	0.1916	1.237	0.732	1.366
1	11	0.120	0.4536	0.2618	0.1990	1.129	0.760	1.316
1	12	0.109	0.4803	0.2618	0.2047	1.037	0.782	1.279
1	13	0.095	0.5153	0.2618	0.2121	0.918	0.810	1.235
1	14	0.083	0.5463	0.2618	0.2183	0.813	0.834	1.199
1	15	0.072	0.5755	0.2618	0.2241	0.714	0.856	1.167
1	16	0.065	0.5945	0.2618	0.2278	0.649	0.870	1.119
1	18	0.049	0.6390	0.2618	0.2361	0.496	0.902	1.109
1	20	0.035	0.6793	0.2618	0.2435	0.360	0.930	1.075
1-1/4	7	0.180	0.6221	0.3272	0.2330	2.057	0.890	1.404
1-1/4	8	0.165	0.6648	0.3272	0.2409	1.921	0.920	1.359
1-1/4	10	0.134	0.7574	0.3272	0.2571	1.598	0.982	1.273
1-1/4	11	0.120	0.8012	0.3272	0.2644	1.448	1.010	1.238

Tabela B2 – Dados dimensionais para tubos comerciais

							(conclu	são)
d _o [in]	BWG Gauge	Espessura [in]	Área Interna [in²]	Superfície externa por pé [ft²]	Superfície interna por pé [ft²]	Peso por pé [lb]	<i>d_i</i> [in]	d_o/d_i
1-1/4	12	0.109	0.8365	0.3272	0.2702	1.329	1.032	1.211
1-1/4	12	0.095	0.8825	0.3272	0.2773	1.173	1.060	1.179
1-1/4	14	0.083	0.9229	0.3272	0.2838	1.033	1.084	1.153
1-1/4	16	0.065	0.9852	0.3272	0.2932	0.823	1.120	1.116
1-1/4	18	0.049	1.042	0.3272	0.3016	0.629	1.152	1.085
1-1/4	20	0.035	1.094	0.3272	0.3089	0.456	1.180	1.059
1-1/2	10	0.134	1.192	0.3927	0.3225	1.955	1.232	1.218
1-1/2	12	0.109	1.291	0.3927	0.3356	1.618	1.282	1.170
1-1/2	14	0.083	1.398	0.3927	0.3492	1.258	1.334	1.124
1-1/2	16	0.065	1.474	0.3927	0.3587	0.996	1.370	1.095
2	11	0.120	2.433	0.5236	0.4608	2.410	1.760	1.136
2	13	0.095	2.573	0.5236	0.4739	1.934	1.810	1.105
2-1/2	9	0.148	3.815	0.6540	0.5770	3.719	2.204	1.134
				Eanta: (Kakac	2002)			

Fonte: (Kakaç, 2002)

Tabela B3 – Layouts de casco e tubos

(continua)

D _s [in]	$N_p = 1$	$N_p = 2$	$N_p = 4$	$N_p = 6$	$N_p = 8$
$d_0 = 3/4''_{2}$	$P_{\rm T} = 1$ ",	layout tr	riangular	(30° ou	60°)
8	37	30	24	24	
10	61	52	40	36	
12	92	82	76	74	70
13¼	109	106	86	82	74
15¼	151	138	122	118	110
17¼	203	196	178	172	166
19¼	262	250	226	216	210
21¼	316	302	278	272	260
23¼	384	376	352	342	328
25	470	452	422	394	382
27	559	534	488	474	464
29	630	604	556	538	508
31	745	728	678	666	640
33	856	830	774	760	732
35	970	938	882	864	848
37	1074	1044	1012	986	870
39	1206	1176	1128	1100	1078
D _s [in]	$N_p = 1$	$N_p = 2$	$N_p = 4$	$N_p = 6$	$N_p = 8$
$d_o = 1$ ", P_1	r = 1,25	, layout t	riangula	r (30° ou	60°)
8	21	16	16	14	
10	32	32	26	24	
12	55	52	48	46	44
13¼	68	66	58	54	50
15¼	91	86	80	74	72
17¼	131	118	106	104	94
19¼	163	152	140	136	128
21¼	199	188	170	164	160
23¼	241	232	212	212	202
25	294	282	256	252	242

Tabela B4 – Layouts de casco e tubos

(continuação)

D _s [in]	$N_p = 1$	$N_p = 2$	$N_p = 4$	$N_p = 6$	$N_p = 8$
$d_o = 1", P$	$_{T} = 1,25^{"}$, layout t	riangula	r (30° ou	60°)
27	349	334	302	296	286
29	397	376	338	334	316
31	472	454	430	424	400
33	538	522	486	470	454
35	608	592	562	546	532
37	674	664	632	614	598
39	766	736	700	688	672
D, [in]	$N_n = 1$	$N_n = 2$	$N_n = 4$	$N_n = 6$	$N_n = 8$
$d_0 = 3/4", 1$	$P_{T} = 1^{"}, la$	yout qua	adrangula	ar (45° o	u 90°)
8	32	26	20	20	
10	52	52	40	36	
12	81	76	68	68	60
13¼	97	90	82	76	70
151/4	137	124	116	108	108
171/4	177	166	158	150	142
19¼	224	220	204	192	188
D, [in]	$N_n = 1$	$N_n = 2$	$N_n = 4$	$N_n = 6$	$N_n = 8$
$d_{a} = 3/4"$	$P_{T} = 1^{"}.$ la	vout qua	adrangula	ar (45° o	u 90°)
211/2	277	270	246	240	234
231/4	341	324	308	302	292
25	413	394	370	356	346
20	/81	460	132	120	108
20	553	526	480	468	400
23	657	640	400 600	590	560
22	740	710	600	676	649
33	749	/ 10	700	0/0	040
35	845	824	780	766	748
37	934	914	886	866	838
<u>39</u>	1049 N - 1	1024 N - 2	<u>982</u>	968 N - C	948 N - 9
$D_{\rm s}$ [III]	$N_p = 1$ - 1 25" 1/	$N_p = 2$	$N_p = 4$	$n_p = 0$	$\frac{N_p}{0.00} = 0$
$u_0 = 1, P_T = 0$	= 1,23 , la	<u>ayout qu</u>	auranyu	ai (45 0	ju 90 j
0	21	10	14	24	
10	32	32	20	24	20
12	48	45	40	38	36
131/4	61	56	52	48	44
151/4	81	76	68	68	64
171⁄4	112	112	96	90	82
19¼	138	132	128	122	116
21¼	177	166	158	152	148
23¼	213	208	192	184	184
25	260	252	238	226	222
27	300	288	278	268	260
29	341	326	300	294	286
31	406	398	380	368	358
33	465	460	432	420	414
35	522	518	488	484	472
37	596	574	562	544	532
39	665	644	624	612	600
D _s [in]	$N_p = 1$	$N_p = 2$	$N_p = 4$	$N_p = 6$	$N_p = 8$
$d_0 = 3/4",$	$P_{\rm T} = 0,94$	", layout	triangula	ar (30° oi	u <mark>60°)</mark>
8	36	32	26	24	18
10	62	56	47	42	36
12	109	98	86	82	78
13¼	127	114	96	90	86

Tabela B5 – Layouts de casco e tubos

(continuação)

D _s [in]	$N_p = 1$	$N_p = 2$	$N_p = 4$	$N_p = 6$	$N_p = 8$
$d_0 = 3/4$ ",	$P_{\rm T} = 0,94$	", layout	triangula	ar (30° oi	u 60°)
15¼	170	160	140	136	128
17¼	239	224	194	188	178
19¼	301	282	252	244	234
21¼	361	342	314	306	290
23¼	442	420	386	378	364
25	532	506	468	446	434
27	637	602	550	536	524
29	721	692	640	620	594
31	847	822	766	722	720
33	974	938	878	852	826
35	1102	1068	1004	988	958
37	1240	1200	1144	1104	1072
ی ا مال	$\frac{1377}{N-1}$	N - 2	1200 N - 4	1240 N - 6	Z Z
$U_{\rm s}$ [III]	$N_p - 1$	$N_p = 2$	$N_p - 4$	$N_p = 0$	$N_p = 0$
$u_0 = 1,25$, P	T = 1, 50, 16	12	10	ular (45	ou 90 j
10	30	2/	22	16	16
131/	32	24	30	22	22
151/4	44	40	37	35	31
171/4	56	53	51	48	44
191/4	78	73	71	64	56
21¼	96	90	86	82	78
231⁄4	127	112	106	102	96
25	140	135	127	123	115
27	166	160	151	146	140
29	193	188	178	174	166
31	226	220	209	202	193
33	258	252	244	238	226
35	293	287	275	268	258
37	334	322	311	304	293
39	370	362	348	342	336
D _s [in]	$N_p = 1$	$N_p = 2$	$N_p = 4$	$N_p = 6$	$N_p = 8$
$d_0 = 1, 5'', P_T$	$= 1,88^{"},$	layout qu	uadrangu	<u>ular (45°</u>	ou 90°)
12	16	16	12	12	
13/4	22	22	16	16	22
13/4	29	29	24	24	22
1774	29	39 40	34 45	JZ 42	29
1974 211/	50	40 60	40 57	43 54	39 50
21/4	78	74	70	66	50 62
25	970 97	00	86	8/	78
23	112	108	102	98	94
29	131	127	120	116	112
31	151	146	141	138	131
33	176	170	164	160	151
35	202	196	188	182	176
37	224	220	217	210	202
39	<u>25</u> 2	246	237	<u>23</u> 0	224
D _s [in]	$N_p = 1$	$N_p = 2$	$N_p = 4$	$N_p = 6$	$N_p = 8$
$d_{o} = 1, 5",$	$P_{\rm T} = 1,88^{\circ}$	", layout	triangula	ar (30° ou	u <mark>60°)</mark>
12	18	14	14	12	12
13¼	27	22	18	16	14
15¼	26	34	32	30	27

Tabela B6 – Layouts de casco e tubos

(conclusão)

D _s [in]	$N_p = 1$	$N_p = 2$	$N_p = 4$	$N_p = 6$	$N_p = 8$
$d_o = 1, 5'', H$	$P_{\rm T} = 1,88$	", layout	triangula	ar (30° ou	ı 60°)
17¼	48	44	42	38	36
19¼	61	58	55	51	48
21¼	76	78	70	66	61
23¼	95	91	86	80	76
25	115	110	105	98	95
27	136	131	125	118	115
29	160	154	147	141	136
31	184	177	172	165	160
33	215	206	200	190	184
35	246	238	230	220	215
37	275	268	260	252	246
39	307	299	290	284	275
D _s [in]	$N_p = 1$	$N_p = 2$	$N_p = 4$	$N_p = 6$	$N_p = 8$
$d_0 = 1,25",$	$\mathbf{P}_{\mathrm{T}}=0,56$	^{5″} , layout	triangul	ar (30° o	u 60°)
10					
10	20	18	14		
12¼	32	30	26	22	20
13¼	38	36	32	28	26
15¼	54	51	45	42	38
17¼	69	66	62	58	54
19¼	95	91	86	78	69
21¼	117	112	105	101	95
23¼	140	136	130	123	117
25	170	164	155	150	140
27	202	196	185	179	170
29	235	228	217	212	202
31	275	270	255	245	235
33	315	305	297	288	275
35	357	348	335	327	315
37	407	390	380	374	357
39	449	436	425	419	407

Fonte: Adaptado de (Kakaç, 2002)

Tabela B7 – Coeficiente de transferência de calor global aproximado para análise preliminar

(continua)

$U_o\left[W/m^2K\right]$
1300-2500
1000-2500
10-250
50-170
110-340
370-750
240-650
25-400
2200-3500
1000-3400
850-1500
280-1000
25-240

Tabela B8 – Coeficiente de transferência de calor global aproximado para análise preliminar

(conclusão)

Fluidos	$U_o \left[\frac{W}{m^2 K} \right]$				
Vapor para orgânicos leves	490-1000				
Vapor para orgânicos médios	250-500				
Vapor para orgânicos pesados	30-300				
Orgânicos leves para orgânicos leves	200-350				
Orgânicos médios para orgânicos médios	100-300				
Orgânicos pesados para orgânicos pesados	50-200				
Orgânicos leves para orgânicos pesados	50-200				
Orgânicos pesados para orgânicos leves	150-300				
Petróleo bruto para óleo diesel	130-320				
Trocador de calor de placas: água para água	3000-4000				
Evaporadores: vapor para água	1500-6000				
Evaporadores: vapor para outros fluidos	300-2000				
Evaporadores de refrigeração	300-1000				
Condensadores: vapor para água	1000-4000				
Condensadores: vapor para outros fluidos	300-1000				
Caldeira a gás	10-50				
Banho de óleo para aquecimento	30-550				
Fonte: Traduzido de (Kakaç, 2002)					

Temperatura de aquecimento médio	Até 1	15°C	115°C até 205°C		
Temperatura da água	Até !	50°C	Acima de 50°C		
Velocidade da água $[{}^{m}\!/{}_{S}]$	0.9 ou menos	Acima de 0.9	0.9 ou menos	Acima de 0.9	
Torre de resfriamento e					
lagoa artificial de					
pulverização					
Água de reposição tratada	0.000176	0.000176	0.000352	0.000352	
Água de reposição não tratada	0.000528	0.000528	0.000881	0.000705	
Água de cidade ou poço	0.000176	0.000176	0.000352	0.000352	
Água do rio					
Água do rio mínima	0.000352	0.000176	0.000528	0.000352	
Água do rio média	0.000528	0.000352	0.000705	0.000528	
Água turva ou lamacenta	0.000528	0.000352	0.000705	0.000528	
Água dura (mais de 15 g/gal)	0.000528	0.000528	0.000881	0.000881	
Camisa de água	0.000176	0.000176	0.000176	0.000176	
Água destilada ou em ciclo					
fechado					
Condensada	0.000088	0.000088	0.000088	0.000088	
Água de descarga de caldeira	0.000352	0.000352	0.000352	0.000352	

Tabela B9 – Resistência a incrustação para água

Fonte: (Kakaç, 2002)

APÊNDICE A – Cálculos de verificação do algoritmo

A.1. CÁLCULO NÃO ITERATIVO

A presente seção trata da parte não iterativa do cálculo, que não depende das estimativas inseridas pelo usuário.

Contra corrente:
$$\begin{cases} \Delta T_1 = T_{h1} - T_{c2} = 60 - 40 = 20,00 \text{ °C} \\ \Delta T_2 = T_{h2} - T_{c1} = 45 - 10 = 35,00 \text{ °C} \end{cases}$$
(9)

$$\Delta T_{lm,cf} = \frac{\Delta T_1 - \Delta T_2}{ln \left(\frac{\Delta T_1}{\Delta T_2}\right)} = \frac{20 - 35}{ln \left(\frac{20}{35}\right)} = 26,80 \,^{\circ}C$$
(7)

Com o valor de $\Delta T_{lm,cf}$ são calculadas as propriedades dos fluidos para esta temperatura, conforme pode ser visualizado nas tabelas Tabela 4 e Tabela 5:

Fluido	Propriedade	Símbolo	Valor
Frio	Calor específico	c _{p_c}	4181,60 $J/_{kg \cdot K}$
Frio	Densidade	$ ho_t$	997,00 ^{kg} / _{m³}
Frio	Viscosidade	μ_t	8,90036 \cdot 10 ⁻⁴ $N \cdot s / m^2$
Frio	PrandtL	P _r	6,13688
Frio	Condutividade	k _t	$0,60646 \frac{W}{m \cdot K}$

Tabela 4 – Propriedades físicas do fluido nos tubos

Fonte: Próprio Autor (2023)

Fluido	Propriedade	Símbolo	Valor
Quente	Calor específico	$c_{p_h} = c_{p_b}$	4182,30 ^J / _{kg · K}
Quente	Densidade	$ ho_s$	986,85 ^{kg} / _{m³}
Quente	Viscosidade	μ_b	$5,24357 \cdot 10^{-4} N \cdot s / m^2$
Quente	Condutividade	k_b	0,64333 $^{W}/_{m \cdot K}$

Tabela 5 – Propriedades físicas do fluido no casco

Fonte: Próprio Autor (2023)

$$T_w = \frac{1}{2} \left(\frac{T_{c1} + T_{c2}}{2} + \frac{T_{h1} + T_{h2}}{2} \right) = \frac{1}{2} \left(\frac{10 + 40}{2} + \frac{60 + 45}{2} \right) = 38,75 \,^{\circ}C$$
(25)

Viscosidade do fluido na superfície dos tubos d: $\mu_w = 6,68392 \cdot 10^{-4} N \cdot s / m^2$.

$$Q = (\dot{m}c_p)_h (T_{in_h} - T_{out_h}) = 21 \cdot \frac{1}{3,6} \cdot 4182,30 * (60 - 45) = 365951,25 W$$
(4)

$$Q = (\dot{m}c_p)_c (T_{out_c} - T_{in_c})$$

$$365951,25 = (\dot{m} \cdot 4181,60)_c (40 - 10)$$

$$\dot{m}_c = 2,917 \, kg/s$$
(4)

$$U_o = \frac{2500 + 1300}{2} = 1900 \frac{W}{m^2 K}$$
(5)

Da Tabela B7 do Anexo B.

$$R = \frac{T_{h1} - T_{h2}}{T_{c2} - T_{c1}} = 0,50$$
(10)

$$P = \frac{T_{\rm c2} - T_{\rm c1}}{T_{\rm h2} - T_{\rm h1}} = 0,60 \tag{11}$$

$$P_{1,2} = \frac{1 - \left(\frac{1 - P \cdot R}{1 - P}\right)^{N}}{R - \left(\frac{1 - P \cdot R}{1 - P}\right)^{N}} = \frac{1 - \left(\frac{1 - 0.6.0.5}{1 - 0.6}\right)^{1}}{0.5 - \left(\frac{1 - 0.6.0.5}{1 - 0.6}\right)^{1}} = 0.60$$
(12)

$$W = \frac{1 - P_{1,2} \cdot R}{1 - P_{1,2}} = \frac{1 - 0.6 \cdot 0.5}{1 - 0.6} = 1.75$$
(13)

$$\Gamma = \frac{\sqrt{R^2 + 1}}{R - 1} = \frac{\sqrt{0.5^2 + 1}}{0.5 - 1} = -2,236 \tag{14}$$

$$F_{1,2} = \frac{\Gamma(\ln W)^{N}}{\ln\left(\frac{1+W^{1/N}-\Gamma+\Gamma W^{1/N}}{1+W^{1/N}+\Gamma-\Gamma W^{1/N}}\right)}$$

$$F_{1,2} = \frac{-2,236.\,(\ln 1,75)^{1}}{\ln\left(\frac{1+1,75^{1/1}-(-2,236)+(-2,236)1,75^{1/1}}{1+1,75^{1/1}+(-2,236)-(-2,236)1,75^{1/1}}\right)} = 0,883$$
(15)

$$(CTP) = 0.93$$
 (37)

Por consequência de selecionar um passe no casco e dois nos tubos.

$$(CL) = 0.87$$
 (38)

Por consequência de selecionar o padrão triangular 60°.

$$P_T = PR \cdot d_o = \frac{5}{4} \cdot 1 \cdot = 1.1/4" = 0,03175 \text{ m}$$

Consequência de escolher Razão de Passo (PR) como 5/4, e tubos de diâmetro externo 1".

$$R_{f,i} = 0,000176 \ \frac{m^2 K}{W}$$
 (Fluido Frio, Tubos)

71
$$R_{f,o} = 0,000088 \frac{m^2 K}{W}$$
 (Fluido Quente, Casco)

Da Tabela B9 do Anexo B.

$$D_e = \frac{4 \cdot \left(\frac{P_T^2 \sqrt{3}}{4} - \frac{\pi d_o^2}{8}\right)}{\frac{\pi d_o}{2}} = \frac{4 \cdot \left(\frac{0.03175^2 \sqrt{3}}{4} - \frac{\pi 0.0254^2}{8}\right)}{\frac{\pi 0.0254}{2}} = 0.01836 \ m \tag{44}$$

Utilizada a equação (44) como consequência de selecionar o arranjo tubular como triangular.

A.2 PRIMEIRA ITERAÇÃO

As seções A.2 até A.4 apresentam a parte iterativa do cálculo, onde os parâmetros dependem dos valores de U_o e *L* inicialmente estimados.

$$A_o = \frac{Q}{U_o F \Delta T_{lm,cf}} = \frac{365951,25}{1900 \cdot 0,883 \cdot (26,80 + 273,15)} = 0,73 \ m^2 \tag{5}$$

A.2.1 Determinando diâmetro do casco e número de tubos do trocador

$$D_{s} = 0.637 \sqrt{\frac{(CL)}{(CTP)}} \frac{A_{o} \left(\frac{P_{T}}{d_{o}}\right)^{2} d_{o}}{L}$$
(41)

$$D_s = 0,637 \sqrt{\frac{0,87}{0,93} \cdot \frac{0,73 \cdot \left(\frac{31,75}{25,4}\right)^2 \cdot 25,4 \cdot 10^{-3}}{0,5}} = 0,14831 m$$

Encontrando a tabela secundária da Tabela B3 do Anexo B para as variáveis de diâmetro externo $d_o = 1$ ", $P_T = 1$. 1/4", e padrão triangular, é selecionado a tabela secundária "*1-in. OD tubes on 1 1/4-in. triangular pitch*", mostrada na Figura 20.

A linha onde está presente o menor valor de diâmetro de casco, que seja maior que o diâmetro do casco $D_s = 5,84$ " calculado a partir da equação (41) é a primeira, circulada de vermelho na Figura 20. Na mesma linha circulada em vermelho, para um número de passes nos tubos $N_p = 2$ é circulado em azul o número de tubos $N_t = 16$ sugerido, resultando na seguinte combinação:

$$D_s = 8" = 0,2032 m$$

 $N_t = 16$

Shell ID (in.)	1-P	2-P	4-P	6-P	8-P
1-in. OD	tubes on	1 1/4	-in. triangu	lar pitch	
8	21	16	16	14	
10	32	32	26	24	
12	55	52	48	46	44
131/4	68	66	58	54	50
151/4	91	86	80	74	72
171/4	131	118	106	104	94
191/4	163	152	140	136	128
211/4	199	188	170	164	160
231/4	241	232	212	212	202
25	294	282	256	252	242
27	349	334	302	296	286
29	397	376	338	334	316
31	472	454	430	424	400
33	538	522	486	470	454
35	608	592	562	546	532
37	674	664	632	614	598
39	766	736	700	688	672

Figura 20 – Seleção do diâmetro do casco e número de tubos a partir de tabela secundária da Tabela B3 do Anexo B

Fonte: Próprio Autor (2023)

A.2.2 Cálculo do coeficiente convectivo no casco

Escolhendo $B = 0.5 \cdot D_s$, temos:

$$A_{s} = \frac{D_{s}(P_{T} - d_{o})B}{P_{T}} = \frac{0,2032 \cdot (0,03175 - 0,0254) \cdot (0,5 \cdot 0,2032)}{0,03175}$$

$$A_{s} = 4,12902 \cdot 10^{-3} m^{2}$$
(45)

$$G_s = \frac{\dot{m}_h}{A_s} = \frac{21}{4,12902 \cdot 10^{-3}} \cdot \frac{1}{3,6} = 1412,76 \frac{kg}{m^2 \cdot s}$$
(46)

$$\frac{h_o D_e}{k_b} = 0.36 \left(\frac{D_e G_s}{\mu_b}\right)^{0.55} \left(\frac{c_{p_b} \mu_b}{k_b}\right)^{\frac{1}{3}} \left(\frac{\mu_b}{\mu_w}\right)^{0.14}$$

$$h_o = \frac{0.36 \cdot k_b}{D_e} \left(\frac{D_e G_s}{\mu_b}\right)^{0.55} \left(\frac{c_{p_b} \mu_b}{k_b}\right)^{\frac{1}{3}} \left(\frac{\mu_b}{\mu_w}\right)^{0.14}$$
(23)

$$h_{o} = \frac{0.36 \cdot 0.64333}{0.01836} \left(\frac{0.01836 \cdot 1412.76}{5.24357 \cdot 10^{-4}}\right)^{0.55} \left(\frac{4182.30 \cdot 5.24357 \cdot 10^{-4}}{0.64333}\right)^{\frac{1}{3}} \left(\frac{5.24357 \cdot 10^{-4}}{6.68392 \cdot 10^{-4}}\right)^{0.14}$$
$$h_{o} = 7006.74 W/m^{2}K$$

A.2.3 Cálculo do coeficiente convectivo nos tubos

$$A_{t,p} = \frac{\pi d_i^2}{4} \cdot \frac{N_t}{N_p} = \frac{\pi \cdot 0.023622^2}{4} \cdot \frac{16}{2} = 0.00350601m^2$$
(29)

$$u_m = \frac{\dot{m}_t}{\rho_t A_{t,p}} = \frac{2,917}{997 \cdot 0,00350601} = 0,83450 \ m/s \tag{28}$$

$$Re_{d,i} = \frac{\rho_t u_m d_i}{\mu_t} = \frac{997 \cdot 0,83450 \cdot 0,023622}{8,90036 \cdot 10^{-4}} = 22081,60$$
(27)

$$f = \left[0,79 \ln \left(Re_{d,i}\right) - 1,69\right]^{-2} = \left[0,79 \ln \left(22081,60\right) - 1,69\right]^{-2} = 0,02591$$
(30)

$$Nu_{i} = \frac{\left(\frac{f}{8}\right)\left(Re_{d,i} - 1000\right)P_{r}}{1 + 12.7\left(\frac{f}{8}\right)^{\frac{1}{2}}\left(P_{r}^{\frac{2}{3}} - 1\right)}$$

$$Nu_{i} = \frac{\left(\frac{0.02591}{8}\right)\left(22081.60 - 1000\right) \cdot 6.13688}{1 + 12.7\left(\frac{0.02591}{8}\right)^{\frac{1}{2}}\left(6.13688^{\frac{2}{3}} - 1\right)} = 155.20$$
(31)

$$h_i = \frac{Nu_b \cdot k_t}{d_i} = \frac{155,20 \cdot 0,60646}{0,023622} = 3984,53\frac{W}{m^2 K}$$
(26)

A.2.4 Cálculo do coeficiente global de transferência de calor

$$R_{w} = \frac{\ln \left(\frac{d_{o}}{d_{i}}\right)}{2\pi k_{w}L} = \frac{\ln \left(\frac{0.0254}{0.023622}\right)}{2\pi \cdot 54 \cdot 0.5} = 0.42778 \cdot 10^{-3} \ K/W$$
(21)

$$\frac{1}{U_o} = \frac{d_o}{d_i} \left(\frac{1}{h_i} + R_{f,i} \right) + A_o R_w + R_{f,o} + \frac{1}{h_o}$$
$$\frac{1}{U_o} = \frac{0.0254}{0.023622} \left(\frac{1}{3984.53} + 0.000176 \right) + 0.73 \cdot \frac{0.42778}{10^3} + 0.000088 + \frac{1}{7006.74}$$
(22)
$$U_o = 997.90 \frac{W}{m^2 K}$$

A.2.5 Critério de parada

Como critério de parada, será verificar se o valor de U_o calculado nesta iteração variou mais que 1% em relação à iteração anterior. Caso positivo, continuaremos com mais uma iteração.

$$\left| \frac{U_{o_{inicial}}}{U_{o_{calculado}}} - 1 \right| = \left| \frac{1900}{997,90} - 1 \right| = 90,40\% > 1,00\%, positivo$$

A.3 SEGUNDA ITERAÇÃO

$$A_o = \frac{Q}{U_o F \Delta T_{lm,cf}} = \frac{365951,25}{997,90 \cdot 0,875 \cdot (26,80 + 273,15)} = 1,40 \ m^2 \tag{5}$$

$$A_o = \pi d_o N_t L$$

$$1,40 = \pi \cdot 0,0254 \cdot 16 \cdot L$$

$$L = 1,10 m$$
(6)

A.3.1 Determinando diâmetro do casco e número de tubos do trocador

$$D_{s} = 0,637 \sqrt{\frac{(CL)}{(CTP)}} \frac{A_{o} \left(\frac{P_{T}}{d_{o}}\right)^{2} d_{o}}{L}$$

$$D_{s} = 0,637 \sqrt{\frac{0,87}{0,93}} \cdot \frac{1,40 \cdot \left(\frac{31,75}{25,4}\right)^{2} \cdot 25,4 \cdot 10^{-3}}{1,10} = 0,13847 m$$
(41)

Da Tabela B3 do Anexo B, com "*1-in. OD tubes on 1 1/4-in. triangular pitch*" – Tubos são de 1", e PT de 1.1/4", com 2 passes nos tubos, obtemos:

$$D_s = 8" = 0,2032 m$$

 $N_t = 16$

A.3.2 Cálculo do coeficiente convectivo no casco

Como os valores de D_s e N_t não se alteraram, consequentemente o coeficiente convectivo no casco permanece o mesmo.

$$h_o = 7006,74 \frac{W}{m^2 K}$$

A.3.3 Cálculo do coeficiente convectivo nos tubos

Como os valores de D_s e N_t não se alteraram, consequentemente o coeficiente

convectivo nos tubos permanece o mesmo.

$$h_i = 3984,53 \frac{W}{m^2 K}$$

A.3.4 Cálculo do coeficiente global de transferência de calor

$$R_{w} = \frac{\ln \left(\frac{d_{o}}{d_{i}}\right)}{2\pi k_{w}L} = \frac{\ln \left(\frac{0.0254}{0.023622}\right)}{2\pi \cdot 54 \cdot 1.10} = 0.19444 \cdot 10^{-3} \, K/W$$
(21)

$$\frac{1}{U_o} = \frac{d_o}{d_i} \left(\frac{1}{h_i} + R_{f,i} \right) + A_o R_w + R_{f,o} + \frac{1}{h_o}$$
$$\frac{1}{U_o} = \frac{0,0254}{0,023622} \left(\frac{1}{3984,53} + 0,000176 \right) + 1,40 \cdot \frac{0,19444}{10^3} + 0,000088 + \frac{1}{7006,74} \tag{22}$$
$$U_o = 1039,45 \frac{W}{m^2 K}$$

A.3.5 Critério de parada

$$\left|\frac{U_{o_{inicial}}}{U_{o_{calculado}}} - 1\right| = \left|\frac{996,29}{1039,45} - 1\right| = 4,15\% > 1,00\%, positivo$$

A.4 TERCEIRA ITERAÇÃO

$$A_o = \frac{Q}{U_o F \Delta T_{lm,cf}} = \frac{365951,25}{1039,45 \cdot 0,875 \cdot (26,80 + 273,15)} = 1,34 \ m^2 \tag{5}$$

$$A_o = \pi d_o N_t L$$

$$1,34 = \pi \cdot 0.0254 \cdot 16 \cdot L$$

$$L = 1.05 m$$
(6)

A.4.1 Determinando diâmetro do casco e número de tubos do trocador

$$D_{s} = 0,637 \sqrt{\frac{(CL)}{(CTP)}} \frac{A_{o} \left(\frac{P_{T}}{d_{o}}\right)^{2} d_{o}}{L}$$

$$D_{s} = 0,637 \sqrt{\frac{0,87}{0,93} \cdot \frac{1,34 \cdot \left(\frac{31,75}{25,4}\right)^{2} \cdot 25,4 \cdot 10^{-3}}{1,05}} = 0,13866 m$$
(41)

Da Tabela B3 do Anexo B, com "1-in. OD tubes on 1 1/4-in. triangular pitch" – Tubos são de 1", e PT de 1.1/4", com 2 passes nos tubos, obtemos:

$$D_s = 8'' = 0,2032 m$$

 $N_t = 16$

A.4.2 Cálculo do coeficiente convectivo no casco

Como os valores de D_s e N_t não se alteraram, consequentemente o coeficiente convectivo no casco permanece o mesmo.

$$h_o = 7006,74 W/m^2 K$$

A.4.3 Cálculo do coeficiente convectivo nos tubos

Como os valores de D_s e N_t não se alteraram, consequentemente o coeficiente convectivo nos tubos permanece o mesmo.

$$h_i = 3984,53 \frac{W}{m^2 K}$$

A.4.4 Cálculo do coeficiente global de transferência de calor

$$R_{w} = \frac{\ln \left(\frac{d_{o}}{d_{i}}\right)}{2\pi k_{w}L} = \frac{\ln \left(\frac{0.0254}{0.023622}\right)}{2\pi \cdot 54 \cdot 1.05} = 0.20370 \cdot 10^{-3} \, K/W$$
(21)

$$\frac{1}{U_o} = \frac{d_o}{d_i} \left(\frac{1}{h_i} + R_{f,i} \right) + A_o R_w + R_{f,o} + \frac{1}{h_o}$$
$$\frac{1}{U_o} = \frac{0,0254}{0,023622} \left(\frac{1}{3984,53} + 0,000176 \right) + 1,34 \cdot \frac{0,20370}{10^3} + 0,000088 + \frac{1}{7006,74}$$
(22)
$$U_o = 1038,65 \frac{W}{m^2 K}$$

A.4.5 Critério de parada

$$\frac{U_{o_{inicial}}}{U_{o_{calculado}}} - 1 = \left| \frac{1039,45}{1038,65} - 1 \right| = 0,08\% < 1,00\%, negativo$$

A.5 PERDA DE CARGA

A.5.1 Perda de carga no casco

$$N_b = \frac{L}{B} - 1 = \frac{1,05}{(0,5 \cdot 0,2032)} - 1 = 9,33$$
⁽⁴⁸⁾

$$Re_s = \frac{G_s D_e}{\mu} = \frac{1412,76 \cdot 0,01836}{5,24357 \cdot 10^{-4}} = 49466,82$$
(24)

$$f = exp(0,567 - 0,19 \ln Re_s) = exp(0,567 - 0,19 \ln 49466,82) = 0,22611$$
(47)

$$\phi_s = \left(\frac{\mu_b}{\mu_w}\right)^{0,14} = \left(\frac{5,24357 \cdot 10^{-4}}{6,68392 \cdot 10^{-4}}\right)^{0,14} = 0,96659$$
(50)

$$\Delta p_s = \frac{f G_s^2 (N_b + 1) D_s}{2\rho_s D_e \phi_s}$$

$$\Delta p_s = \frac{0,22611 \cdot 1412,76^2 \cdot (9,33 + 1) \cdot 0,2032}{2 \cdot 986,85 \cdot 0,01836 \cdot 0,96659} = 27044,84 Pa$$
(51)

A.5.2 Perda de carga nos tubos

$$\Delta p_t = 4f \frac{LN_p}{d_i} \rho_t \frac{u_m^2}{2} = 4 \cdot 0,02591 \cdot \frac{1,05 \cdot 2}{0,023622} \cdot 997 \cdot \frac{0,83450^2}{2} = 3198,51 \, Pa \quad (52)$$

$$\Delta p_r = 4N_p \frac{\rho_t u_m^2}{2} = 4 \cdot 2 \cdot \frac{997 \cdot 0,83450^2}{2} = 2777,20 \ Pa$$
(53)

$$\Delta p_{total} = \Delta p_t + \Delta p_r = 3198,51 + 2777,20 = 5975,71 \ Pa \tag{54}$$