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RESUMO

AMBROSIO, Jefferson dos Santos. Avanços na classificação de escoamentos bifásicos: um
estudo comparativo de abordagens de aprendizado de máquina e aprendizado profundo
usando dados de sensores Wire-Mesh. 2024. 101 f. Tese (Doutorado em Engenharia Elétrica) –
Universidade Tecnológica Federal do Paraná. Curitiba, 2024.

A classificação do regime de escoamento é essencial para analisar e modelar escoamentos
bifásicos, pois demarca o comportamento do escoamento e influencia a seleção de modelos
preditivos apropriados. Abordagens baseadas em aprendizado de máquina ganharam relevância
na pesquisa de classificação de regime de escoamento nos últimos anos. No entanto, elas ainda
são solidamente baseadas na construção e definição cuidadosa de características. Abordagens de
aprendizado profundo, por outro lado, podem fornecer soluções mais robustas e completas. No
entanto, elas são pouco exploradas e não avaliaram a generalização dos modelos para outros dados
ou sistemas de aquisição. Nesta tese, comparamos duas abordagens diferentes para classificar
padrões de escoamento (agitação, bolhas e slug) usando séries temporais de fração de vazio
de um sensor wire-mesh. Na primeira abordagem, definida como MdG+MVS, a série temporal
é modelada como um processo estocástico de amostras independentes e distribuídas de forma
idêntica com função de densidade de probabilidade descrita por um modelo de mistura gaussiana
(MdG). Os parâmetros estimados da mistura são então alimentados em uma Máquina de Vetor
de Suporte (MVS), produzindo a classificação do padrão de escoamento. Na segunda, definida
como EDA-AP, propomos usar métodos de classificação de séries temporais de baseados em
aprendizado profundo (ResNet, LSTM-FCN e TSTPlus) para padrões de escoamento de duas
fases. Também apresentamos a análise de generalização dos modelos com experimentos entre
conjuntos de dados, treinando o modelo com um conjunto de dados e testando-o com outro
conjunto de dados coletados em outro sistema para dois conjuntos de dados, aqui definidos
como HZDR e TUD. Os resultados demonstram que a abordagem baseada em aprendizado
profundo (EDA-AP) apresenta métricas de classificação superiores em todos os casos avaliados,
particularmente em experimentos entre conjuntos de dados. Com os métodos propostos, todas as
métricas avaliadas (precisão e F1-Score) consistentemente ultrapassam 90% em todos os casos,
enquanto o método MdG+MVS pode diminuir o desempenho abaixo de 80%. Isso demonstra a
relevância da análise proposta aqui para a literatura de classificação de regime de escoamento e
abre um novo conjunto de possibilidades para pesquisa nesta área, visando soluções robustas que
sejam viáveis para uso prático.

Palavras-chave: Máquina de vetores de suporte. Escoamento bifásico. Aprendizado profundo.
Séries Temporais. Modelo de mistura de Gaussianas.



ABSTRACT

AMBROSIO, Jefferson dos Santos. Advancements in Two-Phase Flow Regime Classification:
A Comparative Study of Machine Learning and Deep Learning Approaches Using
Wire-Mesh Sensor Data. 2024. 101 p. Thesis (PhD in electrical and computer engineering) –
Universidade Tecnológica Federal do Paraná. Curitiba, 2024.

Flow regime classification is essential for analyzing and modeling two-phase flows, as it demar-
cates the flow behavior and influences the selection of appropriate predictive models. Machine
learning-based approaches have gained relevance in flow regime classification research in the
last few years. However, they are still solidly based on the construction and careful definition of
hand-crafted features. Deep learning approaches, on the other hand, can provide more robust and
end-to-end solutions. However, they are underexplored and have not evaluated the generalization
of the models to other data or acquisition systems. In this thesis, we compare two different
approaches for classifying flow patterns (churn, bubbly, and slug) using time series of void
fraction from a wire-mesh sensor. In the first, defined as MoG+SVM, the time series is mod-
eled as a stochastic process of independent and identically distributed samples with probability
density function described by a Mixture of Gaussian (MoG) model. The estimated parameters
of the mixture are then fed into a Support Vector Machine (SVM), yielding the flow pattern
classification. The second, defined as SOTA-DL, we propose using end-to-end state-of-the-art
(SOTA) time-series classification methods (ResNet, LSTM-FCN, and TSTPlus) for two-phase
flow patterns. We also present the generalization analysis of the models with cross-dataset
experiments, training the model with one dataset and testing it with another dataset collected
in another system for two datasets, here defined as HZDR and TUD. The results demonstrate
that the deep learning-based approach (SOTA-DL) presents superior classification metrics in all
cases evaluated, particularly in cross-dataset experiments. With the proposed SOTA methods, all
the evaluated metrics (accuracy and F1-Score) consistently surpass 90% in all cases, while the
MoG+SVM method can decrease the performance under 80%. This demonstrates the relevance
of the analysis proposed here for flow regime classification literature and opens up a new set of
possibilities for research in this area, aiming at robust solutions that are viable for practical use.

Keywords: Support Vector Machine. Two-phase flow. Deep learning. Time series. Gaussian
mixture model.
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1 INTRODUCTION

Two-phase flow, the simultaneous flow of two immiscible substances, such as gas and

liquid, is commonly found in various industries, including petroleum, chemical, and nuclear

sectors. One of the most significant types of two-phase flow is liquid-gas flow. Accurate measure-

ment and estimation of flow parameters, such as void fraction, bubble size distribution, phase

velocities, and pressure drop, are critical for efficient system performance and process safety

(GIOIA et al., 2009; POELMA, 2020; NUNNO et al., 2020; Kumar Vandrangi et al., 2022). Of

these parameters, the void fraction, defined as the fraction of the pipe area occupied by the gas

phase, is significant in the study of two-phase flow systems.

Depending on the geometrical distribution of the gaseous and liquid phases, various

flow regimes or patterns can be identified (HEWITT, 2010). Identification of these patterns is

one of the fundamental challenges in two-phase flow studies (YAQUB et al., 2020). Historically,

the flow regime was identified by visual observation in transparent tubes, and the classification

was based on subjective manual work (HEWITT, 1978). While these early approaches provided

valuable insights, they were inherently limited by subjectivity, potentially leading to incorrect

classification and, thus, inaccurate estimation of flow parameters, compromising both system

safety and efficiency (AZZOPARDI; HILLS, 2003).

Machine learning techniques have been increasingly applied to address this challenge

by automating the classification process (BAHRAMI et al., 2024; BAO et al., 2024; KHAN et

al., 2024). For instance, Li et al. (2016a) demonstrated the use of Fisher Discriminant Analysis

(FDA) first to identify flow patterns, followed by the application of a void fraction calculation

model based on Support Vector Machines (SVMs). However, incorrect pattern identification can

result in suboptimal model selection and, subsequently, failed predictions. Moreover, as Yan et al.

(2018) surveyed, while machine learning techniques have been widely applied to measure flow

parameters, flow regime identification remains a specific challenge that requires more robust and

generalizable solutions.

Several studies have addressed flow pattern classification using various techniques.

Costigan and Whalley (1997) pioneered using the void fraction signal’s probability density

function (PDF) to relate flow regimes, although their work focused on qualitative analysis rather

than direct classification. Rosa et al. (2010) applied artificial neural networks (ANNs) and expert

systems for flow regime classification, concluding that while ANNs were effective, expert systems



17

were better suited—albeit more complex and cumbersome. Similarly, Al-Naser et al. (2016)

employed ANNs with preprocessing through Natural Logarithmic Normalization, enhancing

the separability of data for better classification performance. However, these approaches also

required difficult-to-obtain parameters like superficial liquid and gas velocities, limiting their

applicability in real-time monitoring.

Further exploring void fraction analysis, Benito and Mureithi (2017) used fiber optic

sensors to calculate statistical moments of the phase indicator function, which were then used as

input for an SVM classifier. Mahvash and Ross (2008) utilized hidden Markov models (HMMs)

for flow regime identification using similar data. Litak et al. (2017) applied recurrence plots and

quantification analysis for classification. However, these studies relied on fragile or limited sensor

technologies like fiber optics and high-speed cameras, making them impractical for widespread

industrial use.

Despite some success, many existing approaches face a critical limitation: they depend

on hand-crafted features, requiring detailed knowledge of the flow regimes. Such reliance on

domain-specific knowledge makes it difficult to generalize these methods to different datasets or

data collection systems. For example, while Shanthi and Pappa (2017) combined fuzzy logic

with SVMs and Principal Component Analysis (PCA) for improved accuracy, these methods

were tailored to specific data sets, and there was no guarantee they would perform equally well

in different settings. Additionally, Ambrosio et al. (2022) applied Gaussian mixture models as

feature extractors with SVM classifiers, achieving high accuracy, but the reliance on hand-crafted

features limited the potential for broader application. To address this limitation, some recent

studies have explored end-to-end machine learning methods that train the feature extractor

and the classifier within the same architecture. Deep learning, in particular, offers a promising

solution for two-phase flow classification by removing the need for manual feature extraction.

For example, OuYang et al. (2022) developed a deep neural network (DNN) framework for

multiphase classification, while Zhang et al. (2020a) applied convolutional neural networks

(CNNs) for real-time flow regime identification. However, even these approaches have limitations,

as their deep learning models were primarily adapted from vision-based applications rather than

being specifically designed for time-series data, which is the format typical in two-phase flow

studies.

This thesis presents two approaches for two-phase flow classification using void fraction

data acquired by a wire-mesh sensor (WMS). The WMS is widely used in two-phase flow



18

research due to its robustness, high spatial and temporal resolution, and cost-effectiveness

(KIPPING et al., 2016; SILVA et al., 2007). Based on hand-crafted features, the first approach

uses a Gaussian Mixture Model (GMM) to extract features from the void fraction time series,

which are then classified using a Support Vector Machine (SVM). This approach leverages

simpler, more interpretable models and avoids the hyperparameter complexities of deep learning

techniques. Furthermore, it provides a robust solution for industrial environments, where the

WMS can be used without requiring a transparent pipe for visual access. This first approach is

defined as MoG+SVM in this work.

The second approach, an end-to-end approach, explores the application of state-of-

the-art (SOTA) time-series classification methods for flow pattern recognition. These meth-

ods—Residual Networks (ResNet) (WANG et al., 2017), LSTM Fully Convolutional Networks

(LSTM-FCN) (KARIM et al., 2018), and Time Series Transformers (TSTPlus) (ZERVEAS et

al., 2021)—are specifically designed for time-series classification tasks and eliminate the need

for hand-crafted feature extraction. This second approach is defined as SOTA-DL in this work.

In addition to applying these advanced architectures, this thesis introduces a novel

aspect of cross-dataset testing. By training models on one dataset and testing them on another,

we evaluate the generalization capability of the models—a crucial but underexplored aspect in

the related literature.

Through both single-dataset and cross-dataset tests, we compare the performance and

generalization capacity of the two approaches. This research addresses the specific problem

of flow regime identification. It contributes to the broader discussion of how machine learning

methods can be applied to industrial flow metering, offering robust, generalizable solutions

applicable across different datasets and acquisition systems.

1.1 OBJECTIVES

1.1.1 General Objective

The main objective of this thesis is to propose and evaluate two different approaches

(MoG+SVM and SOTA-DL) for classifying two-phase flow patterns using void fraction data

from wire-mesh sensors. The ultimate goal is to identify the most robust method for flow regime

classification that can be applied in both academic research and industrial settings.
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1.1.2 Specific Objectives

To achieve the general objective, the specific objectives of this research are as follows:

1. Development of a Hand-Crafted Approach: Design a methodology that extracts relevant

features from the void fraction data using a Gaussian Mixture Model (GMM). These

features will serve as inputs to a Support Vector Machine (SVM) classifier to perform flow

regime identification. The output of this step will be a fully functional feature extraction

pipeline integrated with the SVM classifier.

2. Implementation of an End-to-End Approach: Evaluate state-of-the-art time-series

classification methods, including Residual Network (ResNet), LSTM Fully Convolutional

Networks (LSTM-FCN), and Time Series Transformer (TSTPlus). These methods will be

applied directly to the void fraction time-series data for flow regime identification. This

step will result in trained models for each method.

3. Evaluation and Dataset Organization: Evaluate and organize the two datasets used in

this work to compare the methods and experiments. This organization involves visual

analysis of the data, exclusion of problematic points or points with measurement failures,

review and annotation of flow patterns, preprocessing, and other structuring necessary for

subsequent objectives.

4. Single-Dataset Performance Evaluation: Train and test both the Hand-Crafted and End-

to-End approaches on the same dataset to assess their performance under consistent data

acquisition conditions. The result of this objective will be a performance analysis report

that includes accuracy, precision, recall, and F1-score metrics.

5. Cross-Dataset Generalization Tests: Assess the generalization capabilities of both ap-

proaches by training the models on one dataset and testing them on a different dataset

collected under different conditions. This step aims to evaluate the robustness of each

method in handling different operating environments, with a comparison report as the

outcome.

6. Comparative Analysis of Approaches: Conduct a detailed comparison of the Hand-

Crafted and End-to-End approaches based on the single-dataset and cross-dataset tests. This
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will provide insights into which method is the most robust for flow regime classification,

along with the strengths and limitations of each approach.

1.2 PUBLICATIONS

During this doctoral project, the following publications directly related to the thesis

were carried out:

• AMBROSIO, Jefferson dos Santos; LAZZARETTI, André Eugenio; PIPA, Daniel Ro-

drigues; SILVA, Marco Jose da. Two-phase flow pattern classification based on void

fraction time series and machine learning. Flow Measurement and Instrumentation,

Elsevier, v. 83, p. 102084, 2022.

• AMBROSIO, Jefferson dos Santos; SILVA, Marco Jose; LAZZARETTI, André Eugenio. A

deep learning-based approach for two-phase flow pattern classification using void fraction

time series analysis. IEEE Access, IEEE, v. 13, p. 11778, 2025.

On the other hand, Table 1 provides insight into the repositories associated with the

thesis, offering access to additional resources and materials related to the conducted research.

Each repository is accompanied by a related section in the document, facilitating the location of

specific information.

Table 1 – Repositories related to this document.

Repository Related Section

https://github.com/ambrosioj/GMM_Nested_CV Section 3.3

https://github.com/ambrosioj/two-phase-time-series-deep-learning Section 3.4

1.3 STRUCTURE OF THIS DOCUMENT

Chapter 1 sets the stage by introducing the research problem and objectives. It provides

an overview of the study’s significance and outlines the structure of the thesis. Chapter 2 presents

multiphase concepts and essential aspects of the machine learning models. Also, a review of

flow pattern classification is presented, detailing classical, machine, and deep learning-based
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methods. Chapter 3 details the two datasets used in this work, the MoG+SVM and the SOTA-

DL. Additionally, preprocessing stages and experiment procedures are discussed to provide a

better understanding of the implementations. Chapter 4 details the results of each experiment,

the generalization analysis, and the advantages and limitations of each procedure, indicating a

possible most appropriate solution for the pattern classification problem. Chapter 5 presents an

analysis of the research findings and their implications. This section acts as the apex of the thesis,

providing valuable conclusions derived from the investigation. The discussion elaborates on

attaining each objective within the thesis and highlights compelling avenues for future research

to broaden and enhance the study’s scope.
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2 MULTIPHASE FLOW AND PATTERN CLASSIFICATION

This chapter will present some fundamental concepts related to the study of multiphase

flow. A literature review will also be provided to contextualize the discussions presented in this

document.

2.1 MULTIPHASE FLOW

Multiphase flow can be defined as the simultaneous flow between different fluids in

various physical states. For example, there is liquid-gas, liquid-liquid, and liquid-liquid-gas flow,

among others. These flows can also involve the same substance in different physical states, as in

the liquid-gas flow with water and water vapor, which appears in several industrial applications.

Another example is liquid-liquid-gas-solid flow (sand-oil-water-natural gas), often encountered

in oil extraction (GIOIA et al., 2009). In the course of this work, the focus will be on liquid-gas

two-phase flow in vertical pipes.

2.1.1 Vertical Two-Phase Flow

One of the most critical issues in studying two-phase flows is the flow patterns. These

patterns are the structures that form at the interfaces that arise between fluids. These interfaces

depend on several factors, such as the fraction and velocity of each phase, surface tension,

operating pressure and temperature, pipe diameter, and inclination, as well as density, viscosity,

and other properties. As can be seen, the classification of patterns depends on many variables,

making it a very complex and sometimes subjective issue. Figure 1 illustrates one way this

differentiation is made, based on the work of Taitel et al. (1980). A brief description of the

patterns is provided below.

Bubbly Flow: This pattern can be observed as tiny bubbles randomly distributed in the

liquid throughout the pipe, where the liquid phase is the continuous phase and the gas is the

dispersed phase.

Slug Flow: With the increase in gas flow rate, some tiny bubbles tend to coalesce,

resulting in elongated bubbles known as Taylor bubbles, which are followed by a liquid piston

that may contain dispersed gas bubbles.
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Figure 1 – Flow regimes in (a) vertical gas-liquid up-flows and (b) horizontal gas-liquid flows. Adapted from
Silva (2008).

Churn Flow: With a further increase in gas flow rate, the Taylor bubbles collapse,

giving rise to a more unstable and chaotic pattern.

Annular Flow: The annular pattern occurs when the gas flow rate is so high that it

generates a central gas column with tiny dispersed liquid droplets.

2.1.2 Flow Parameters and Pattern Classification

Since, in most applications, it is impossible to visualize the flow pattern occurring in the

pipe directly, approaches are needed where it is possible to relate the pattern to some measurable

characteristic. One alternative is to use a void fraction, which indicates the amount of gas in the

flow. First, it is necessary to define some concepts.

2.1.2.1 Phase Indicator Function and Void Fraction

The phase indicator function Pk , as described in the work of Bertola (2014), is a binary

function that describes the presence or absence of phase k at a given point x and time t. Thus,
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Pk(x,t) =











1, if x ∈ phase k

0, if x /∈ phase k ,

(1)

where k = G,L for the gas or liquid phase, respectively.

From this definition, the average void fraction in the cross-section α is obtained from

Equation 2:

α(t) =
1

A

∫

A

PG(x,t)da =
AG

A
, (2)

where PG(x,t) is the gas phase indicator function, A is the total cross-sectional area of the pipe,

and AG is the area occupied by the gas phase. Sampling this average void fraction over a given

time interval generates the time series of the void fraction, as shown in Figures 2 (a), 2 (c), and 2

(e).

2.1.2.2 Superficial Velocity

Next, it is necessary to define an essential parameter called superficial velocity. It is

calculated considering that the phase flows through the pipe occupying its entire cross-sectional

area, as shown in Equation 3:

jk =
Qk

A
, (3)

where Qk is the volumetric flow rate of phase k and A is the cross-sectional area of the pipe.

2.1.2.3 Pattern Classification

The time series is directly linked to the distribution and development of interfaces in

two-phase flow. In works such as Jones and Zuber (1975) and Costigan and Whalley (1997), the

authors propose a methodology in which the time series and its respective histogram are used to

classify the flow pattern.

Using data from Wire-Mesh sensors, the average void fraction in the pipe cross-section

can be calculated, generating a time series of the void fraction. Figures 2 (a) and 2 (b) illustrate

the time series and histogram of a bubbly flow pattern. Due to the occurrence of tiny bubbles,

this pattern shows low void fraction values in the cross-section, which can be observed in both

the time series and the peak for low values in the histogram.
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Figures 2 (c) and 2 (d) provide information about the slug flow pattern. In the time

series, Taylor bubbles can be identified in the higher void fraction peaks, and liquid slugs, where

the void fraction is lower, can also be observed. This is reflected in the bimodal behavior of the

histogram, owing to the flow characteristics.

Figure 2 – (a) Time series of an operation point in bubbly flow; (b) Histogram of the time series in bubbly
flow; (c) Time series of an operation point in slug flow; (d) Histogram of the time series in slug
flow; (e) Time series of an operation point in churn flow; (f) Histogram of the time series in churn
flow.

For churn flow, Figures 2 (e) and 2 (f) indicate the presence of a pattern where the void

fraction is higher, as can be seen in Figure 1.

A widely used methodology in classification is relating the flow pattern to the superficial

velocities of each phase, as shown in Figure 3, where jg and jl are the gas and liquid superficial

velocities, respectively. In Taitel et al. (1980), a model is developed that defines transitions

between patterns, considering superficial velocities, pipe diameter, and fluid properties.

2.2 WIRE-MESH SENSOR

The Wire-Mesh Sensor (WMS) is an advanced imaging device designed for multiphase

flow measurements, combining the principles of intrusive electrode arrays with tomographic

techniques. Initially proposed by Prasser et al. (1998), the sensor measures the local electri-
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Figure 3 – Flow Pattern Map for Vertical Liquid-Gas Two-Phase Flow: This map, based on the model by
Taitel et al. (1980), depicts the relationship between flow patterns and the superficial velocities of
each phase. The flow patterns are categorized as follows: (a) Dispersed Bubbly, (b) Bubbly, (c)
Slug, (d) Churn, and (e) Annular.

cal conductivity of a two-phase mixture, allowing for high-resolution visualization of phase

distribution.

The WMS consists of two parallel electrode grids, where one set functions as transmit-

ters and the other as receivers. When an electrical signal is applied to the transmitting electrodes,

the receiving electrodes measure the resulting conductivity changes, enabling the reconstruction

of spatial phase fraction distributions. This design provides high temporal and spatial resolution,

making it a valuable tool for analyzing complex flow patterns.

Compared to X-ray and gamma-ray tomography, which offer excellent spatial resolution

but at a significantly higher cost, the WMS presents a cost-effective alternative while still

achieving remarkable measurement accuracy (SILVA et al., 2007). Additionally, due to its rapid

acquisition rate, the sensor is particularly suited for studying transient flow dynamics in industrial

applications.

A simplified schematic of a WMS installed in a pipeline is shown in Figure 4(a),

while Figure 4(b) presents an image of a sensor developed at the Helmholtz-Zentrum Dresden-

Rossendorf (HZDR).
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Figure 4 – (a) schematic representation of a Wire-Mesh Sensor; (b) photography of a typical sensor developed
at HZDR. Adapted from Silva (2008).

2.3 RELATED WORKS

This section reviews related works on two-phase flow pattern identification and void

fraction measurement, categorizing them into classical approaches, machine learning methods,

and deep learning techniques. The discussion focuses on key findings and the instrumentation

used, including experimental setups, sensor technologies, and data preprocessing techniques. By

examining these aspects, this review contextualizes existing methodologies, highlighting their

contributions, limitations, and relevance to the present study.

2.3.1 Classical Approaches

2.3.1.1 Theoretical and Mechanistic Modeling

Taitel and Dukler (1976) presents a theoretical model for predicting flow regime tran-

sitions in horizontal gas-liquid two-phase flow. The authors develop analytical criteria for

transitions between five basic flow regimes: smooth stratified, wavy stratified, intermittent (slug

and plug), annular with dispersed liquid, and dispersed bubble. The key achievement is a fully

predictive model based on physical concepts, without relying on empirical flow regime data.

The authors derive dimensionless equations and present a generalized flow regime map. Good

agreement is reported between theoretical predictions and latest available experimental flow

regime maps. The model successfully predicts shifts in transition boundaries for larger pipe
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sizes, high-pressure gases, and slight pipe inclinations. A strength of the work is its basis in

physical mechanisms and first principles. However, the paper lacks an extensive discussion of

instrumentation and experimental validation, relying mainly on comparisons with existing maps.

There is little mention of generalization tests across a wide range of conditions. The authors

acknowledge that some transitions, such as smooth to wavy stratified flow, use approximate

models that could be refined with additional data. Despite these limitations, the paper presents a

significant theoretical advance in predicting gas-liquid flow regimes, providing a foundation for

predicting transitions across various conditions and addressing limitations of purely empirical

maps.

Jones and Zuber (1975) presents a significant advancement in the study of two-phase

flow patterns. The authors developed a fast-response X-ray void measurement system to obtain

statistical measurements in air-water flow within a rectangular channel. Their key achievement

was demonstrating that the probability density function (PDF) of void fraction fluctuations could

serve as an objective and quantitative flow pattern discriminator for bubbly, slug, and annular

flow regimes. The study covered a wide range of mixture velocities from 0.0 to 37m/s. The

authors provided detailed insights into flow characteristics, including film thickness calculations,

slug length and residence time ratios, and spectral density measurements. The instrumentation

used was highly sophisticated for its time, featuring a modified X-ray diffraction unit with fast

response time and high accuracy. The system’s response time to a 100% step change in void

fraction was less than 1m/s. However, the study has some limitations in terms of generalization.

The experiments were conducted in a specific rectangular channel geometry, and the authors

acknowledge that developing flow effects were observed in bubbly flow cases. Additionally, the

bubbly flow runs were not contiguous with the slug and annular flow runs in flow parameters due

to experimental constraints. Despite these limitations, the paper provides a robust methodology

for objective flow pattern determination and offers valuable insights into the structure of two-

phase flows, particularly the concept of slug flow as a periodic time combination of bubbly and

annular flows.

2.3.1.2 Void Fraction Measurement Techniques

Li et al. (2016b) developed a new void fraction measurement method for gas-liquid

two-phase flow in small channels using a laser diode, photodiode array sensor, and machine

learning techniques. They first identified the flow pattern using Fisher Discriminant Analysis,
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then selected a relevant Support Vector Machine model to measure void fraction. Experiments

were conducted in four different small channels with diameters ranging from 1.08 to 4.22 mm.

The method achieved a maximum absolute error of less than 7% compared to reference void

fractions. Key strengths include the low cost and simple structure of the system compared to

conventional laser measurement systems. The use of machine learning allowed them to overcome

the influence of flow patterns on void fraction measurement. However, the authors note that the

number of sensing elements used was not optimal, and further research is needed to determine

the ideal configuration. While they tested the system in multiple channel sizes, there is no explicit

discussion of generalization tests beyond the experimental setup described.

Silva et al. (2007) introduced a new wire-mesh sensor based on capacitance measure-

ments for fast measurement of phase fraction distributions in multiphase flows. Their prototype

sensor comprised two planes of 16 wires each, achieving a time resolution of 625 frames per

second. The sensor showed good stability and accuracy in capacitance measurements, with

uncertainties in the femtofarad range. They demonstrated the sensor’s ability to distinguish

between substances with slight differences in relative permittivity, such as air and silicone oil.

Instrumental noise analysis, substance discrimination tests, and time response assessments eval-

uated the system’s performance. The sensor’s ability to measure in non-conducting or slightly

conducting fluids is a key strength. However, the authors note that the data acquisition card limits

the current frame rate and could be increased to above 10,000 fps with improved electronics.

While they tested the sensor with various substances and in a silicone oil/water two-phase flow,

there is no explicit discussion of generalization tests beyond these experiments.

Costigan and Whalley (1997) developed and tested a conductivity probe for measuring

void fraction in vertical air-water flows. They conducted experiments in a 32mm diameter vertical

tube, covering water superficial velocities from 0 to 1.0m/s and air superficial velocities from

0.05 to 37m/s. The probe showed good accuracy, with measurements within 0.1 of reference

values over the full range of void fractions. Examining void fraction traces and probability

distribution functions, they identified six flow regimes: discrete bubble, spherical cap bubble,

stable slug, unstable slug, churn, and annular flow. They provided statistical data on slug and

bubble lengths through cross-correlation of signals from two probes. A key achievement was

the identification of two different flooding mechanisms associated with transitions to unstable

slug flow and churn flow . The instrumentation appears robust, with constant air flows ensured

by critical flow nozzles. However, the authors note that their conductivity-based method is
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primarily responsive to conductivity rather than capacitance, which could limit its applicability

to non-conductive fluids. While they tested the system over a wide range of flow conditions,

there is no explicit discussion of generalization tests beyond their experimental setup.

2.3.1.3 Statistical and Signal Analysis Methods

Litak et al. (2017) investigated two-phase air-water flow patterns in a mini channel

using recurrence plots and recurrence quantification analysis. The authors observed the evolution

of air bubbles and slugs by changing air and water flow rates. They used a digital camera for

qualitative visualization and a laser-phototransistor sensor to record light transmission time

series for detailed analysis. The study achieved the identification of particular flow patterns

using recurrence quantifiers obtained from the laser time series. The instrumentation included a

high-speed camera and laser sensor, providing visual and quantitative data. However, the paper

does not mention generalization tests for other flow conditions or geometries.

Figueiredo et al. (2020) proposed a method to classify flow patterns in two-phase

vertical water-air flows using a single ultrasonic transducer. The authors developed a classifier

based on the coefficient of variation of the energy of ultrasonic pulses reflected by the dispersed

phase. The technique achieved high recognition rates, with 100% accuracy for dispersed bubbles

and 98.9% for slug and churn flows. The instrumentation included a single ultrasonic transducer,

making it a relatively simple and non-intrusive setup. However, the study was limited to specific

pipe diameters and fluid properties, and the authors acknowledge that further tests are needed to

confirm the applicability to different operational conditions.

Vieira et al. (2021) presented a method for determining parameters in two-phase gas-

liquid flow, precisely the velocity of Taylor Bubbles, using differential pressure measurements.

The authors analyzed a normalized signal’s time and frequency signature and its coupling

with void fraction waves. They proposed a phase difference estimator based on the cross-

spectra between differential pressure signals. The study demonstrated a coupling between

differential pressure signals and void fraction kinematic waves in a specific frequency region.

The instrumentation included differential pressure sensors, providing non-intrusive measurements.

However, the study focused only on intermittent slug flow, and the authors note that further work

is needed to extend the approach to different flow patterns.

Poelma (2020) This review paper discussed various measurement techniques for charac-

terizing dispersed multiphase flows that are not accessible by conventional optical methods. The
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author highlighted several techniques, including ultrasound velocimetry, magnetic resonance

velocimetry, and X-ray imaging. The paper emphasized the potential of these techniques for

providing time-averaged and time-resolved velocity fields in opaque flows. However, the author

noted that the impact of these techniques will depend on the development of acquisition and

measurement protocols specifically for fluid mechanics, rather than clinical imaging. The review

stressed the need for systematic development and careful validation experiments. A key limitation

highlighted was the lack of standardized ’benchmark’ flows for multiphase systems, which are

necessary for proper validation of these techniques.

2.3.2 Machine Learning Approaches

Shanthi and Pappa (2017) developed an artificial intelligence system to classify two-

phase flow patterns using image processing and machine learning techniques. They extracted

textural and shape features from images of six different flow patterns and used fuzzy logic, support

vector machine (SVM), and SVM with principal component analysis (PCA) for classification.

Their best results were achieved using SVM with PCA, obtaining classification accuracy of over

98%. However, the study was limited to a single experimental setup with fixed pipe dimensions,

and no generalization tests were reported for different flow conditions or geometries.

Mahvash and Ross (2008) applied continuous hidden Markov models (CHMMs) to

identify two-phase flow patterns using local void fraction signals from an optical fiber probe.

They compared different feature extraction methods, including Walsh-Hadamard transform,

autoregressive modeling, and a novel passage length-based approach. The passage length method

with maximum total likelihood achieved the best results, showing good agreement with theoretical

flow maps and experimental photographs. Their system achieved over 96% success rate in flow

pattern identification. However, the study was limited to a single vertical pipe geometry, and the

generalization capability to different pipe orientations or diameters was not explored.

Yan et al. (2018) provided a comprehensive review of soft computing techniques applied

to multiphase flow measurement. They discussed various approaches including artificial neural

networks (ANNs), support vector machines (SVMs), genetic algorithms (GAs), and adaptive

neuro-fuzzy inference systems (ANFIS). The review highlighted that multi-sensor systems

combined with soft computing techniques can achieve higher accuracies in estimating phase

flowrates and fractions. For example, some studies reported errors less than ±2% for liquid

mass flowrate measurements using Coriolis flowmeters with ANNs. However, the review also
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noted that most studies were limited to specific experimental setups, and there is a need for more

generalization tests and in-field training to adapt models to real-world conditions.

Al-Naser et al. (2016) developed an artificial neural network (ANN) model for flow

pattern identification using dimensionless inputs and a preprocessing stage with natural logarith-

mic normalization. They used three dimensionless parameters: Liquid Reynolds Number, Gas

Reynolds Number, and Pressure Drop Multiplier. The model achieved over 97% accuracy in

classifying flow patterns for a wide range of flow conditions. The authors validated their approach

using both simulated and experimental data. The use of dimensionless inputs allowed the model

to be applied to pipes with various diameters and fluids with different properties. However,

while the study showed improved performance at transition regions, some misclassifications

still occurred in these areas, indicating room for further improvement in handling complex flow

transitions.

Liu et al. (2023) investigated two-phase flow pattern identification in horizontal gas-

liquid swirling pipe flow using machine learning methods. They observed five swirling flow

patterns through visualization experiments and extracted void fraction data using image process-

ing. Statistical analysis of void fraction probability density functions (PDFs) was performed, and

four parameters describing PDF characteristics were proposed as inputs for machine learning

algorithms. Five machine learning algorithms were tested, with RUSBoost tree performing best at

97.4% accuracy. The study used a robust experimental setup with high-speed imaging and image

processing, allowing for detailed flow visualization and quantitative data extraction. However,

generalization tests to other flow conditions or geometries were not reported.

Sestito et al. (2023) compared artificial neural networks (ANNs) and support vector

machines (SVMs) for classifying flow patterns in vertical tube bundles based on vibration data.

They used a minimally invasive instrumented tube to collect frequency response data. Multiple

ANN and SVM architectures were tested, with the best performers being ANN with log-sigmoid

output (90% accuracy) for bubble flow, SVM with RBF kernel for churn flow, and SVM with

linear kernel for intermittent flow. The study used a well-designed experimental setup mimicking

industrial heat exchangers. However, limited data for churn flow patterns affected the reliability

of those results. Generalization tests to other geometries or flow conditions were not reported.

Benito and Mureithi (2017) developed a support vector machine (SVM) classifier for

two-phase flow pattern identification in tube arrays. They used optical probe measurements to

obtain void fraction data and extracted statistical moments and probability density functions



33

(PDFs) as flow pattern indicators. The SVM classifier was trained on these features to identify

flow patterns. The study used a simplified test section with good visual access. Performance

metrics were not explicitly reported, but the authors stated the SVM provided "quantitative and

accurate classifiers". The main limitation was the use of a simplified geometry that may not fully

represent industrial tube arrays.

Rosa et al. (2010) compared various artificial neural networks (ANNs) and expert

systems for flow pattern classification in vertical gas-liquid flows. They used a resistivity probe

to measure void fraction and extracted statistical moments and PDFs as inputs. Multiple ANN

architectures were tested, with multi-layer perceptrons (MLPs) with multiple outputs performing

best (96-100% accuracy). Expert systems showed comparable performance to single-output

ANNs (70-91% accuracy). The study used a well-designed experimental setup with a large

number of flow conditions. However, the imbalanced dataset with more samples for certain flow

patterns may have affected the results. Generalization tests to other pipe sizes or orientations

were not reported.

Our previous research in Ambrosio (2019), presented an initial method for flow pattern

classification, employing a Gaussian mixture model and a support vector machine classifier,

which yields high accuracy and low classification errors compared to conventional techniques.

The development used void fraction data from a wire-mesh sensor, leveraging data from the

TOPFLOW test facility at HZDR, Germany. However, the study acknowledges limitations of the

data source as a limitation for generalization analysis and a more detailed analysis of the features

and the obtained results, which has motivated the proposal of the present research.

2.3.3 Deep Learning Techniques

OuYang et al. (2022) developed a deep neural network framework for two-phase flow

pattern identification using multivariate time series data from a four-channel conductance sensor.

Their model combined BiLSTM and CNN with attention mechanisms and residual connections.

They achieved a high recognition accuracy of 99.32% for five flow patterns. The model showed

good noise immunity, maintaining over 93% accuracy with added Gaussian noise. However, the

study was limited to vertical gas-water flows and did not test generalization to other flow types

or pipe orientations.

Zhu et al. (2022) proposed a machine learning approach for flow regime detection

using a gamma-ray-based multiphase flowmeter. They experimented with CNN, LSTM, and
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CNN-LSTM models, achieving the highest accuracy of 99.6% using LSTM with regularization

and data preprocessing. Their approach could predict flow regimes at a horizontal pipe entrance

using measurements from a vertical Venturi throat section. While innovative, the study was

limited to a single experimental setup and did not explore generalization to other flowmeter types

or flow conditions.

Zhang et al. (2020a) developed a flow regime identification method using liquid phase

velocity information from ultrasound Doppler velocimetry and various machine learning algo-

rithms. They achieved 93.1% accuracy for real-time identification using SVM and proposed

novel parameters for identifying plug and decaying slug flows. For transient flow regime iden-

tification, they used LSTM and CNN, achieving 94% accuracy with CNN. The study used

high-quality instrumentation, including synchronized high-speed camera visualization. However,

generalization was limited, as the experiments focused on horizontal air-water flows in a single

pipe diameter.

Hobold and da Silva (2019) developed neural network models to predict heat flux

in nucleate boiling using only visual information from boiling process imaging. The models

were able to encode bubble morphology and correlate it with heat flux, achieving errors as

low as 7% compared to experimental measurements. This represents a significant improvement

over existing prediction methods for boiling heat transfer. The authors demonstrated that these

models could be implemented on inexpensive computers like Raspberry Pi to infer heat flux in

real-time from visualization. A key achievement was that neural networks can learn to quantify

heat transfer using only visual data without prior knowledge of governing equations. The study

used high-quality experimental data from shadowgraph imaging but did not extensively test

generalization to different boiling conditions or geometries. Overall, this work demonstrated

the potential of machine learning to provide non-intrusive measurement of complex multiphase

flows.

Nunno et al. (2020) developed machine learning models to predict the equivalent

diameter and aspect ratio of air bubbles near a plunging jet. The authors used a shadowgraph

technique to obtain experimental data and trained various algorithms including Random Forest, K-

Star, and Support Vector Regression. For predicting equivalent diameter, the best models achieved

R2 values > 0.97 and mean absolute errors < 0.1mm. Aspect ratio predictions were less accurate,

with R2 values around 0.5. A key contribution was using unsupervised clustering to objectively

define flow regimes before classification. The experimental setup provided high-resolution void
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fraction measurements, but was limited to a single geometry and adiabatic conditions. The

authors did not extensively test generalization to other flow conditions or geometries. Overall,

this work demonstrated the potential of machine learning to analyze complex multiphase flows,

but highlighted challenges in predicting certain bubble properties.

Breitenmoser et al. (2023) developed a novel two-step machine learning approach for

automatic flow regime recognition in helical two-phase flows. The authors used unsupervised

clustering to objectively identify flow regimes, followed by supervised classification. The clas-

sifiers achieved excellent accuracy >98%, with K-Nearest Neighbors reaching 100% accuracy.

This represents a significant improvement over previous studies which had errors > 14% for

some regimes. The work used high-resolution X-ray radiography data, providing detailed void

fraction measurements. However, experiments were limited to a single helical coil geometry and

adiabatic conditions. The authors compared results to existing flow regime models, revealing

significant discrepancies and highlighting limitations in current predictive capabilities for helical

flows. While generalization was not extensively tested, this work demonstrated the potential of

machine learning to objectively analyze flow regimes and improve understanding of complex

multiphase flow dynamics.

2.3.4 Limitations of recent works and contributions of this thesis

The studies detailed so far have illustrated the breadth of methods being explored

for two-phase flow analysis, from classical mechanistic models and statistical methods to

advanced machine learning and deep learning frameworks. In general, the combination of

traditional physical modeling and emerging AI-based approaches shows promise in addressing

the limitations of each individual technique.

However, one can formulate different limitations for different approaches. In machine

learning methods, depending on the method chosen for feature extraction, the result may be

negatively impacted (LIU et al., 2023; SESTITO et al., 2023), especially for flow patterns in

transitions between classes (BENITO; MUREITHI, 2017). In other cases, the interpretability

of the model, especially in terms of features (SHANTHI; PAPPA, 2017; YAN et al., 2018),

may impact a more detailed analysis of error cases or even make it difficult to use the proposed

approaches in practical cases, given the lack of relationship between the calculated features and

physical aspects of the flow.

In this sense, our first proposal, MoG+SVM, which extends the work initially done
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in Ambrosio (2019), in addition to promoting quantitative results comparable to those in the

literature, also promotes the use of more interpretable features with a physical relationship to the

phenomenon. For example, the classical approaches of Jones and Zuber (1975) and Costigan and

Whalley (1997), in which the time series and its respective histogram are used to classify the

flow pattern, have a direct relationship with the features calculated by the MoG model, which,

when combined with an SVM, result in classification performances above 90%, training and

testing with the same dataset.

Regarding our second approach, SOTA-DL, we observed that not all works compare

recent state-of-the-art architectures for the problem in question. Furthermore, some works use

input data that is different from the present proposal. Additionally, and more relevant in the

context proposed here, the models were not evaluated in generalization situations, with cross-

dataset experiments, which makes it difficult to evaluate the proposals in situations closer to real

operating situations (training and testing in different data collection situations). Hence, the main

contributions of the SOTA-DL approach w.r.t. the literature can be summarized as follows:

• Propose using end-to-end SOTA time-series classification methods (ResNet, LSTM-FCN,

and TSTPlus) for two-phase flow patterns, promoting robustness provided by those ap-

proaches in our generalization analysis.

• Present the generalization analysis of the models with cross-dataset experiments, training

the model with one dataset and testing it with another dataset collected in another system.

• A detailed comparison of both approaches (MoG+SVM and SOTA-DL), demonstrating lim-

itations and situations that each approach is more promising, particularly in generalization

analysis.

Overall, this thesis builds upon these advancements by integrating deep learning models

with feature extraction techniques, specifically addressing the need for improved generalization

across different flow conditions. By enhancing flow regime identification accuracy and exploring

novel void fraction measurement methodologies using state-of-the-art time-series analysis, this

work aims to contribute significantly to the field of two-phase flow analysis. Hence, we believe

that the second approach, SOTA-DL, may be the most relevant contribution of this work.
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3 PROPOSED METHODS

This chapter outlines methods for classifying two-phase flow patterns using sensor

data from the HZDR and TUD datasets. It begins by describing the datasets in detail, focusing

on the void fraction time series and associated flow patterns. For a classical machine learning

approach (MoG+SVM), with handcrafted features, the Gaussian Mixture Model (GMM), along

with Maximum Likelihood Estimation and the Expectation-Maximization (EM) algorithm, are

introduced for modeling the data. Following this, Multiclass Support Vector Machines are used

for classification, with Nested Cross-Validation employed to evaluate model performance.

The second part of the chapter discusses the time series approach (SOTA-DL), including

the preprocessing steps required for these data. State-of-the-art models for time series classifi-

cation are presented, followed by details on the training process and cross-dataset experiments

to assess model generalizability. The chapter concludes by explaining the performance metrics

used for evaluation and providing information on the implementation of the entire pipeline.

3.1 OVERVIEW OF THE PROPOSED METHODS

To better understand the process as a whole, Figure 5 presents the general overview of

the proposed method. Initially, the data from the HZDR and TUD datasets were organized, con-

sidering they were composed of time series from wire-mesh sensors. Then, each time series from

each dataset undergoes a preprocessing step involving standardization of sampling frequency,

resampling when necessary, and windowing with normalization. In this step, the division into

folds is also performed to evaluate each dataset and perform cross-validation. Subsequently, the

MoG+SVM model is trained for each dataset, as well as the SOTA-DL classification methods.

Finally, the final classification is evaluated (a three-class classification problem, i.e., bubbly, slug,

and churn), generating the comparison metrics. Each step of this method will be detailed below.

3.2 HZDR DATASET

The first dataset we used is wire-mesh air-water vertical flow data generated in the

TOPFLOW test facility (Transient TwO-Phase Flow) at HZDR, Germany. In short, A vertical

pipe of 52.3 mm internal diameter (DN50 pipe) is fed with air and water to form a two-phase flow,
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Figure 5 – General overview of the proposed method.

which is monitored by a WMS at the end of the test section. Figure 6 shows a simplified scheme

of the vertical test section, in which the accessory equipment, such as the pump, tanks, and

the gas-liquid separator, was omitted. More details on the plant, methodology, and experiments

can be found in the technical report (SCHÜTZ et al., 2007). The facility was conceived with

the initial aim of studying nuclear reactor safety. Several experiments on vertical two-phase

flows were carried out to obtain reliable data for developing and validating Computational Fluid

Dynamics (CFD) codes. Due to the quality of the measurements and the amount of information

available in the project mentioned above, several studies were developed using the high-quality

data, for instance (BANOWSKI et al., 2017) and (LUCAS et al., 2010a; LUCAS et al., 2010b).

The experiments carried out by the HZDR cover a wide combination of experimental

Figure 6 – Simplified schema of the vertical 52.3 mm i.d. (DN50) test section of the HZDR’s TOPFLOW.
WMS is placed at 7.9 m from gas injection point, i.e. length to diameter ratio L/D = 151
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Table 2 – Main Parameters

Superficial Velocity Ranges Flow Pattern Experimental Points

jg = 0.0025 to 12.14 m/s
Bubbly 35

Slug 19

jl = 0.0405 to 4.047 m/s
Churn 13

Total 67

parameters, conditions, and applications. The complete data set includes void fraction data

for WMS placed in different measurement positions. Among all of them, we selected the

experimental points with the most significant distance from the mixing point (i.e., length to

diameter ratio L/D = 151) so that the flow is considered fully developed. Furthermore, from the

available 70 operating points, we also selected a subset containing 67, thus excluding 3 points

for a flow type called annular flow (see more details on the flow pattern types below). As this

work proposes to use a supervised learning technique, only 3 points for training and testing the

annular pattern are unfeasible. A summary of the operational points used in this work is shown

in Table 2. Figure 7 shows the data used according to the classification map from mechanistic

flow modeling defined in (TAITEL et al., 1980). Each operating point is determined by a pair

of superficial liquid velocity jl and gas superficial velocity jg, obtained by reference sensors.

Measurements were performed using 16 × 16 conductive wire-mesh sensors with an internal

diameter of 52.3 mm. The sampling frequency used is 2.5 kHz with superficial gas velocity

varying between 0.0025 and 12.14 m/s, the liquid superficial velocity varying between 0.0405

and 4.047 m/s, and a sampling period of 10 seconds.
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Figure 7 – HZDR data classified according to the map defined in (TAITEL et al., 1980)
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Table 3 – Parameters of the TUD Dataset.

Volume Flow Ranges Flow Pattern Experimental Points

jg = 0.02 to 8.49 m/s
Bubbly 38
Slug 35

jl = 0.03 to 1.86 m/s
Churn 30
Total 103

3.3 TUD DATASET

The second dataset utilizes data from a specialized test facility designed to evaluate the

performance of the algorithm proposed in (KIPPING, 2014). The experimental setup consists of

a vertical pipeline with an inner diameter of 50 mm, where fluids are injected at varying velocities

to create distinct flow regimes. Flow behavior is closely monitored using a programmable logic

controller (PLC) and a differential pressure transducer strategically placed along the test section.

The facility, originally constructed to replicate all typical flow patterns in vertical upward flows,

has been the foundation for numerous experiments aimed at providing high-fidelity data for

validating computational fluid dynamics models.

This dataset offers an extensive range of experimental scenarios covering various

parameters, operating conditions, and practical applications. Data were primarily gathered using

magnetic-inductive flowmeters (MID) located at different axial points along the pipe. For this

study, our analysis concentrated on the data corresponding to an L/D ratio of around 40, ensuring

the flow was fully developed. The operational conditions used in this analysis are detailed in

Table 3. Each experimental condition is defined by the superficial velocities of the gas jg and

liquid jl, both measured using reference sensors. Data were collected using a 16 × 16 WMS,

which provided high-resolution measurements. The experiments were conducted with a sampling

frequency of 10 kHz, with gas superficial velocities ranging from 0.02 to 8.49 m/s and liquid

superficial velocities ranging from 0.03 to 1.86 m/s.

The configuration of the test rig, including the modifications to the gas injection system

and the L/D ratio, ensures that the flow regimes are fully developed before measurement. The

core of the test apparatus is a 3-meter vertical test section composed of multiple acrylic glass

segments, each outfitted with various sensor connections for comprehensive data collection.

Further details about the measurement instruments, their operating ranges, and associated

uncertainties are provided in (KIPPING, 2014).
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Figure 8 – TUD data classified according to the map defined by Taitel et al. (1980).

3.4 VOID FRACTION HISTOGRAM AND FLOW PATTERNS (MOG+SVM APPROACH)

The work by Jones and Zuber (1975) is a pioneer in the use of histograms of void

fraction time series as a discriminant of flow patterns. In later works, for example, (COSTIGAN;

WHALLEY, 1997), such histograms are applied to identify the flow pattern and transition

regions.

In the development of this work, void fraction data obtained by the wire-mesh sensor,

such as exemplary shown in Figure 9, is used. In this selected example, it is possible to observe

the difference between each flow pattern, both by looking directly at the void fraction time series

or by observing the histograms generated by each series.

First, we have the bubbly flow pattern. Figure 9(a) shows the time series of the void

fraction, while Figure 9(b) shows the histogram. Figure 9(c) presents an illustration of the phase

distribution for the bubbly pattern. With this visualization, it is easier to understand why the time

series presents minor variations in the void fraction. Figures from 9(d) to 9(f) are relative to the

slug pattern. It is possible to visualize two main structures; the first is the liquid slug, which may

contain dispersed bubbles, as illustrated in Figure 9(f). The second structure, commonly called

the Taylor bubble, is a large gas pocket. Figures 9(g)-(i) present information about the churn

pattern. As the gas flow increases, the Taylor bubbles end up collapsing into more misshapen

structures, thus generating a slightly more chaotic pattern, as can be seen in Figure 9(i). Finally,

the figures from 9(j) to 9(l) show the time series, histogram, and representation of the annular

pattern, respectively. This flow pattern is characterized by the highest gas phase velocity among
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Figure 9 – Time series, histograms, and theoretical phase distribution in pipes for bubbly, slug, churn, and
annular flow patterns.
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the pattern, thus producing a central column of gas, which may contain dispersed liquid droplets,

as seen in Figure 9(l).

In analyzing these distributions, it can be inferred that the slug flow pattern represents a

composite behavior that incorporates characteristics of both the bubbly and annular flow patterns.

In this case, the liquid slug would correspond to the bubbly pattern, and the Taylor bubble

would correspond to the annular pattern. Hence, in a possible simple heuristic, an observer could

identify the flow pattern by deciding upon the histogram format. Such behavior of the histogram

depends on the flow pattern that has been discussed, for instance, by (COSTIGAN; WHALLEY,

1997). Different flow patterns will describe a different histogram. In this way, transitioning from

one flow pattern to another follows a movement of the peaks of the histograms. A single-phase

flow of liquid would have a void fraction distribution similar to a Dirac delta centered at zero

since, ideally, there is no gas in the system. In the bubble flow pattern, there is a relatively narrow

uni-modal distribution with the average at a low void fraction value. On the other end, similarly,

a pipe filled with air would have a distribution similar to a Dirac delta centered on 100%, and the

annular flow pattern would have a uni-modal distribution with an average in high void fraction

values. The slug flow pattern, on the other hand, presents a pseudo-periodic alternation between

large gas bubbles (so-called Taylor bubbles) and a slug body (which could be seen as bubbly

flow), generating a bi-modal histogram, as shown in Figure 9(d). In this case, the peak in low void

fractions represents liquid slugs, which usually contain some dispersed bubbles, and the high

void fraction represents Taylor bubbles. As the gas flow increases, the slug pattern transitions to

the churn pattern (which is characterized by more chaotic behavior), generating a more prominent

peak in the higher void fraction values. Due to this varying multimodal behavior ranging from

a uni-modal distribution with low void fractions, passing through bi-modal distributions with

low and high void fractions, and then reaching a uni-modal distribution at high void fraction

values, a Gaussian Mixture Model (GMM) seems to be the natural choice to cope with all flow

pattern and their transitions of gas-liquid flows, hence allowing to classify the pattern based on

the extracted and reduced parameter set.

It is noteworthy that the proposed approach does not directly consider temporal aspects,

particularly the frame-to-frame correlation. In the first part of this work, we decided to concentrate

fully on the automatic analysis of the void fraction signal histogram. This type of analysis has

been widespread and used by specialists since its initial proposal by (COSTIGAN; WHALLEY,

1997). Here, the visual analysis generally performed by the experts was replaced by an analytical
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model of the histogram (Mixture of Gaussians) combined with a pattern classification method.

3.4.1 Gaussian mixture model and void fraction data

The void fraction signal is modeled as a stochastic process of independent and identically

distributed (i.i.d) samples with probability density function described by a Gaussian mixture

model. Although the independence assumption does not accurately represent the physics involved,

it reduces the number of parameters and facilitates their estimation for classification (BOLóN-

CANEDO et al., 2015). Furthermore, it resembles the experimental observations as discussed in

earlier works, e.g., (COSTIGAN; WHALLEY, 1997).

Let p(x|µ, σ) be a Gaussian probability density function (PDF):

p(x|µ, σ) = 1√
2πσ

exp

{
−(x− µ)2

2σ2

}
, (4)

where µ is the mean of the distribution and σ the standard deviation. We define the mixture

model as follows:

g(x|Θ) =
K∑

j=1

φjp(x|µj, σj), (5)

where θj = (φj, µj, σj), Θ = (θ1, . . . , θK), K is the number of components in the model and

φ a proportion factor for each component, such that
∑K

j=1 φj = 1. Hence, each void fraction

time series will generate a vector of parameters Θ = (θ1, . . . , θK) that are calculated using the

concept of Maximum Likelihood and the Expectation-Maximization (EM) algorithm (BILMES

et al., 1998).

3.4.1.1 Maximum likelihood function

The likelihood is analyzed according to the parameters and with a set of fixed data, and

one of the ways of interpreting it is that the likelihood function indicates how well the parameters

explain the observed data in a given distribution. With that, the objective is to find Θ∗, such that:

Θ∗ = argmax
Θ

L(Θ|x), (6)

Which is the set of parameters that best explains the observed data. Often, the natural logarithmic

of the likelihood function, i.e., ln (L(Θ|x)) is maximized, as it is analytically simpler, especially

for densities of the exponential family. Equation 6 defines what is commonly called the maximum

likelihood estimator (MLE), which consists of estimating the parameters that best represent a set
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of data by maximizing the likelihood function. The next section 3.4.1.2 will deal with one of

the possible MLE algorithms that will be used to estimate parameters for the Gaussian mixture

model.

3.4.1.2 Expectaion maximization algorithm

The Expectation-Maximization algorithm is a general method of estimating parameters

by the maximum likelihood that alternates between two stages until convergence. The idea of the

algorithm is to maximize the function ln (L(Θ|x)) to estimate the parameter vector Θ.

There are two main applications for the EM algorithm. The first occurs when the data

have unobserved values due to problems or limitations in the observation process. The second

occurs when the optimization of the likelihood function is analytically intractable. Still, it can

be simplified by assuming the existence of additional values or parameters but not observed

(BILMES et al., 1998). Therefore, a variable z is introduced such that,

z = (x,y), (7)

p(z|Θ) = p(x,y|Θ) = p(y|x,Θ)p(x|Θ), (8)

with p being a distribution function, x the incomplete data set, y the unobserved data set and z

the complete data set.

Expectation step: first, it is necessary to define an initial value for the parameter vector

(Θ(0)). With each iteration, this value will be updated. This defines a function Q(Θ|Θ(k)) that

takes into account the initial value, or the previous iteration, as seen in Equation 9. This function

is obtained by calculating the expected value of the likelihood function L(Θ|x,y) once the

observed data set x and the previous value of the parameter vector Θ(k).

Q(Θ|Θ(k)) = E
{
lnL(Θ|x,y)|x,Θ(k)

}
. (9)

Maximization Step: after defined, it is necessary to find the vector Θ(k+1) that maxi-

mizes the function Q(Θ|Θ(k)), as shown in Equation 10:

Θ(k+1) = argmax
Θ

Q(Θ|Θ(k)). (10)

These two procedures are performed alternately until convergence.

In short: An initial value for the parameter vector is defined, Θ(0). Thereafter, in the

expectation step, a function dependent on Θ is defined, which considers the observed data and
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the initial value defined for the parameter vector Q(Θ|Θ(0)). Then, the maximization step is

performed, where a value Θ(1) is found that maximizes the function Q(Θ|Θ(0)). This process

is performed k times until convergence when the likelihood function stops increasing, and the

value of the estimated parameters tends to be asymptotic. When this happens, the vector Θ(k) is

the vector of the final estimate of the parameters, as can be seen in the flowchart of Figure 10.
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Figure 10 – Flowchart of the Expectation-Maximization algorithm.

3.4.2 Machine learning and flow pattern classification

Once the features of the time series data have been extracted, it is necessary to define

an approach that will use the information collected to realize pattern identification. In the first

part of this work, the approach chosen will be supervised learning, specifically, using a support

vector machine.

3.4.2.1 Binary support vector machine

The support vector machine consists of defining a hyperplane that maximizes the

distance between the samples of each class. This technique can be used in cases where classes

overlap or not (HAYKIN, 2008). This hyperplane is defined through the supervised training

process, where the data are made available in N pairs (x1,y1), . . . ,(xn,yn) such that xi ∈ R
p are

the sample values and yi ∈ {−1,1} the two possible classes. Thus, the support vector machine
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approach aims to build a classifier in the form (VAPNIK, 1995):

y(x) = sign

(
N∑

k=1

αkykK(x,xk) + b

)
, (11)

where αk are real and positive constants, b is a real constant, and K(·,·) is the kernel function,

which in this work, can be linear: K(x,xk) = xT
k x; polynomial of order d: K(x,xk) = (γxT

k x+

r)d or Radial basis function (rbf): K(x,xk) = exp
(
−γ ‖x− xk‖2

)
, where γ, r and d are

hyperparameters.

3.4.2.2 Multiclass Support Vector Machine and Nested Cross-Validation

In this work, the classification problem involves three classes, which are the flow patterns

present in the data set. In the training phase, NC(NC−1)
2

binary SVM classifiers were trained,

with NC being the number of classes. This approach is often referred to as “one-versus-one” or

“one-against-one” (BISHOP, 2006).

The diagram in Figure 11 illustrates the flow pattern classification approach proposed in

this work. First, in the Preprocessing stage, the void fraction data is measured by the wire-mesh

sensor, and the feature extraction is conducted using the Gaussian Mixture Model (section 3.4.1).

Then, we have the model selection and generalization stages.

The generalization process consists of an outer loop implemented through a 10-fold

cross-validation process. In this process, data are split between the outer training set and the

test set. The outer training set goes through the model selection process (inner loop), where

it is divided again between the inner training set and validation set. It goes through a 5-fold

cross-validation process, where the best hyperparameters are selected from a grid search (which

is explained in detail in section 3.2) technique. After model selection in the inner loop, the best

model (defined by the hyperparameter from the inner loop) is tested with the test set defined at

the beginning of the outer loop. That is, as the outer loop uses a 10-fold cross-validation process,

the model evaluation runs 10 times, and on each run, the test dataset is different. It does not

contain any overlap with the other test datasets in this step.

It is noteworthy that the Model Selection and Generalization stages can be viewed

as a nested cross-validation procedure, with the parameters adjusted in the inner loop (model

selection) and the generalization analysis in the outer loop. As discussed by Cawley and Talbot

(2010), nested cross-validation estimates the generalization error of the underlying model and its

parameter search. To better illustrate this approach, Figure 11 provides a diagram of the nested
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cross-validation process, and Figure 12 provides a diagram that specifies the split of data.

Outer Loop

Inner Loop
 

Void Fraction  
Time-series

Wire-mesh Sensor

GMM 
Parameters

Feature Extraction  
by GMM

10-fold 
Cross-validation

Test Set  
(Unseen)

SVM  
Training

Performance 
Evaluation

Outer Training Set

1) Preprocessing

2) Model Selection

3) Generalization

5-fold  
Cross-Validation and 

Grid Search

Model with best parameters

Average
scores

Figure 11 – Block diagram of the approach used in this work. Three subsequent steps are considered. The first
(Preprocessing) is to acquire the data, which, in this case, were obtained from HZDR experiments.
Then, feature extraction is performed using the Gaussian mixture model. In the second stage
(Model Selection), the best SVM hyperparameters are selected with a 5-fold cross-validation
procedure. Finally, in the Generalization stage, the performance is conducted by a 10-fold cross-
validation outer loop, providing the generalization analysis.

3.5 SOTA-DL APPROACH

3.5.1 Time Series Preprocessing

The databases utilized in this study for model training and testing were the HZDR and

TUD datasets, which contain comprehensive measurements of two-phase flow patterns essential

for developing a robust classification model. However, the sampling frequencies of the two

databases were different, necessitating a preprocessing step to ensure consistency. Specifically,
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Original Dataset

10-Fold Cross Validation

Inner Loop5-Fold Cross Validation + Grid Search

Average Scores

Outer Loop

Test Set 1 Test Set 2 Test Set 10

Outer Training Set 1

Outer Training Set 2

Outer Training Set 10

Test Set 1 Test Set 2 Test Set 10

Inner Training Set Validation Set

Figure 12 – Diagram of data division during the entire nested cross-validation process. First, the original data
is separated between the outer training set and test set in the outer loop, which corresponds to
the generalization step performed from the 10-fold cross-validation. Then, in the model selection
step, an inner loop is executed, and the outer training data undergoes a second split, where the
outer training data is separated into an inner training set and validation set through a 5-fold
cross-validation process.

the TUD dataset, sampled initially at 10kHz, was downsampled to 2.5kHz to match the sampling

frequency of the HZDR dataset. This adjustment is crucial to avoid any bias from varying data

resolutions and to ensure that the model learns from uniformly sampled data.

Normalization is a critical preprocessing step in time series processing, ensuring that

the features have a consistent scale. For this study, a min-max scaler normalization was applied

to both databases, transforming the data to a range of [0,1]. This technique stabilizes the learning

process of the neural network and accelerates convergence by preventing features with more

extensive numerical ranges from dominating those with smaller ranges.

To enhance the size and variability of the dataset, a windowing technique with overlap-

ping was employed. This approach involves segmenting the time series data into overlapping

windows, which are then treated as individual samples. Empirical tests determined a window size

of 4000 samples with an overlap of 1000 samples, effectively augmenting the dataset and provid-

ing more training instances for the model. This technique captures local patterns and temporal
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Table 4 – Parameters of the HZDR Dataset after Preprocessing.

Superficial Velocity Ranges Flow Pattern Experimental Points

jg = 0.0025 to 12.14 m/s
Bubbly 770

Slug 418

jl = 0.0405 to 4.047 m/s
Churn 286

Total 1474

Table 5 – Parameters of the TUD Dataset after Preprocessing.

Volume Flow Ranges Flow Pattern Experimental Points

jg = 0.02 to 8.49 m/s
Bubbly 5586
Slug 5145

jl = 0.03 to 1.86 m/s
Churn 4410
Total 15141

dependencies within the data, leading to improved model performance and generalization.

3.5.2 Time-Series Models

The choice of SOTA Time-Series Models models was based on three distinct types

of architectures, all with comparable results in the most recent state-of-the-art time series

classification (FOUMANI et al., 2024; TORRES et al., 2021; GUPTA et al., 2020), the first

being a convolutional approach, the second with recurrent models, and the third with attention

mechanism, given its relevance in several areas of machine and deep learning, in recent literature.

Therefore, the following models were selected: ResNet Model (WANG et al., 2017), LSTM-FCN

Model (GERS et al., 2000), and TST Model (ZERVEAS et al., 2021), detailed as follows.

3.5.2.1 Resnet Model

As previously stated, our approach is based on SOTA time-series classification methods.

The first one, Resnet, is an end-to-end model based on the ResNet idea. As claimed by the

original authors (WANG et al., 2017), the model provides a superior generalization capability

compared to other approaches, mainly designed for real-world applications. ResNet enhances

neural networks by incorporating shortcut connections in each residual block, allowing the

gradient to flow directly through the lower layers. In the proposed architecture, each residual

block consists of a convolutional layer, a batch normalization layer, and a ReLU activation layer.

The convolution operation (⊗) uses three 1-D kernels (W) with sizes of 8, 5, and 3. Each block

receives an input (the first one is the input signal x) and generates an output ĥ with the following
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subsequent operations:

y1 = W1 ⊗ x+ b1,

s1 = BN(y1),

h1 = ReLU(s1),

y2 = W2 ⊗ h1 + b2,

s2 = BN(y2),

h2 = ReLU(s2),

y3 = W2 ⊗ h2 + b2,

s3 = BN(y3),

h3 = ReLU(s3),

y = x+ h3,

ĥ = ReLU(y). (12)

Following guidance from the original ResNet model (HE et al., 2016), pooling op-

erations were omitted to reduce overfitting risk. Batch normalization (BN) is implemented to

accelerate convergence and enhance generalization (IOFFE; SZEGEDY, 2015). The architecture

consists of three residual blocks containing 64, 128, and 128 filters. Instead of a fully connected

layer, a global average pooling layer is used after the convolutional blocks, significantly reducing

the model’s parameter count. A softmax layer produces the final classification. The general

architecture is illustrated in Figure 13.

Figure 13 – Architecture of the Resnet Model.

The ResNet is trained with the Adam optimizer, with the learning rate of 0.001, β1 = 0.9,

β1 = 0.999, and ε = 10−8, as suggested in Wang et al. (2017). The loss function is the categorical
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cross-entropy, defined as (TIAN et al., 2022):

−
M∑

c=1

yo,c log(po,c), (13)

in which M is the number of classes, y is the binary indicator (0 or 1) if class label c is the

correct classification for observation o, and p the predicted probability observation o is of class c.

3.5.2.2 LSTM-FCN Model

The second approach used in this work, LSTM-FCN, integrates fully convolutional

networks with long short-term memory recurrent neural network sub-modules, as described in

Karim et al. (2018). The architecture comprises two distinct feature extraction segments detailed

in Figure 14.

Figure 14 – Architecture of the LSTM-FCN Model.

The first segment is a fully convolutional block. In the previous ResNet model (WANG

et al., 2017), the authors reinforced that temporal convolutions have strong performance for

time series classification tasks. Hence, Fully Convolutional Networks (FCNs) using temporal

convolutions are commonly employed as feature extractors, with global average pooling applied

to minimize model parameters before the classification stage. The convolutional structure includes

three sequential temporal convolutional blocks with filter sizes of 128, 256, and 128. Each
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block mirrors the convolution block used in the CNN design suggested by Wang et al. (2017).

These blocks contain a temporal convolutional layer, paired with batch normalization (IOFFE;

SZEGEDY, 2015) (using a momentum of 0.99 and ε of 0.001), and conclude with a ReLU

activation (ZEILER, 2012). Global average pooling is applied after the last convolutional layer

to complete the architecture.

In the proposed methods, this fully convolutional component is enhanced by adding

an LSTM block, followed by dropout (SRIVASTAVA et al., 2014). LSTMs offer a solution to

the vanishing gradient issue that typically hampers standard recurrent neural networks (RNNs).

LSTMs mitigate this challenge by incorporating gating mechanisms within their state dynamics,

enabling them to maintain and regulate information across time steps more effectively (HOCHRE-

ITER; SCHMIDHUBER, 1997). In each time step, an LSTM unit manages two vectors: a hidden

state vector, h, and a memory cell vector, m, which together control how information is updated

and output. The specific computations at each time step t as follows (GRAVES, 2012):

gu = σ(Wuht−1 + Iuxt),

gf = σ(Wfht−1 + Ifxt),

go = σ(Woht−1 + Ioxt),

gc = tanh(Wcht−1 + Icxt),

mt = gf �mt−1 + gu � gc,

ht = tanh(go �mt), (14)

in which σ is the logistic sigmoid function, � represents element-wise multiplication, Wu; Wf ;

Wo; Wc are recurrent weight matrices and Iu; If ; Io; Ic are projection matrices.

The fully convolutional block and LSTM block process the same time series data from

distinct perspectives (KARIM et al., 2019). The fully convolutional block interprets the series as

a sequence of single-variable observations across multiple time steps. For a time series of length

N , this block processes the data across N sequential time steps.

Conversely, the LSTM block in this architecture treats the input time series as a multi-

variate series with just a one-time step. This is achieved through a dimension shuffle layer, which

rearranges the temporal dimension. As a result, a univariate series of length N is transformed

into a multivariate series with N features at a single time step. Without this dimension shuffle,

the LSTM block’s performance degrades significantly, leading to rapid overfitting on smaller

datasets and an inability to capture long-term dependencies in larger datasets.
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Furthermore, using dimension shuffle significantly boosts the model’s efficiency, reduc-

ing training time substantially. Without dimension shuffling, an LSTM working with a dataset

of N time steps and M variables requires N time steps to process each batch of M variables.

Dimension shuffling allows the LSTM to reverse this order, handling each batch of N variables

in just M time steps instead. This results in a significant speed advantage when M is much

smaller than N . Given that the datasets in this work are univariate, the LSTM component only

needs a single time step to manage a batch of N variables (YOSINSKI et al., 2014).

In the original approach (KARIM et al., 2018), the authors introduced a refinement

technique to iteratively enhance a pre-trained model’s performance. As Huang et al. (HUANG et

al., 2017) note, the optimization process often encounters multiple local minima along its path.

After a model reaches a local minimum in initial training, it can be re-trained with an increased

learning rate to move beyond this point and potentially get a more optimal minimum. Gradually

decreasing both the learning rate and batch size during this re-training phase allows for a more

precise search toward an improved local optimum. Thus, refinement consists of adapting the

learning rate and batch size to increase the final performance of the model.

Finally, as illustrated in Figure 14, the output of the global pooling layer and the LSTM

block are concatenated and passed onto a softmax classification layer to generate the final output.

3.5.2.3 TST Model

The core of the TST model (ZERVEAS et al., 2021) is an adaptation of the transformer

encoder from (VASWANI et al., 2017), modified to handle univariate and multivariate time series

data instead of sequences of discrete word indices. The general overview of the TST is presented

in Figure 15, detailed as follows.

Firstly, given a training set X ∈ R
w×m, i.e., a multivariate time series of length w and

m variables in which each feature vector is defined as xt ∈ R
m, the first layer of the model is a

linear projection onto a d-dimensional vector space, where d is the dimension of the transformer

model sequence element representations (defined as model dimension):

ut = Wpxt + bp, (15)

in which Wp ∈ R
d×m and bp ∈ R

d are learnable parameters. This equation presents the

operation for a single time step; however, all input vectors are embedded concurrently by a single

matrix-matrix multiplication in the full formulation.
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Figure 15 – Architecture of the TST Model.

Because the transformer is a feed-forward architecture and does not inherently account

for input order, positional encodings Wpos ∈ R
w×d are added to the input vectors U ∈ R

w×d to

make them aware of the sequential nature of the time series: U′ = U +Wpos. In the original

transformer formulation (VASWANI et al., 2017), positional encodings inject information about

the position of samples in a sequence, helping the model understand order, which it otherwise

lacks due to its feed-forward architecture. Typically, sinusoidal functions are used to generate

these values because they allow the model to generalize across different sequence lengths.

However, for TSTs, rather than using deterministic sinusoidal encodings, entirely learnable

positional encodings are employed, as the authors found these to perform better on most datasets

in their study, as also detailed by Zheng et al. (2022) and Zhao et al. (2023).

Subsequently, the representation U′, which captures the meaning of each value of the

time series together with the positional encoding, is fed into the transformer encoder, which

utilizes the self-attention mechanism to enable the model to relate different values within the

features. Self-attention works by creating three matrices: a query Q, a key K, and a value V. The

model calculates attention scores between each pair of samples by computing the dot product

between the query and the key, scaling and normalizing these scores to represent their relevance

to each other. The result is used to weight the value vectors, with each token ultimately described

as a weighted sum of all samples in the sequence, capturing contextual relationships effectively.

This process is further extended in multi-head attention, where multiple self-attention heads

capture various aspects of the data, and their outputs are concatenated and linearly transformed to

enrich the representation. This mechanism allows transformers to model complex dependencies
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without relying on sequence order.

More formally, the attention matrix, A, is calculated using Eq. 16, with the softmax

function ensuring that the sum of the values in each row equals one:

A(K,Q,V) = softmax

(
QKT

√
d

)
V. (16)

Each row in matrix A captures the contextual meaning derived from the input em-

bedding, indicating both the position in the time series through positional encoding and each

time-stamp’s interaction across the sequence. This operation is referred to as single-head attention.

The TST model generally leverages a multi-head attention mechanism to enhance performance.

In multi-head attention, as with the single-head setup, the input sequence is transformed into three

key matrices: Q, a key K, and a value V. These matrices are then multiplied by learnable weight

matrices WK , WQ, and WV , all ∈ R
d×d, to adjust the embedding representation. Following this,

the output is split into smaller sub-matrices of dimension d/nh, where nh represents the number

of parallel attention heads. Each attention head thus processes the entire input sequence but

focuses on a different aspect of each embedding by working with these smaller representations.

This approach enables each head to contribute uniquely, capturing diverse features and nuances in

the data. The attention score for each head is calculated from these segmented matrices, allowing

for richer representations across heads, such that (CIESLAK et al., 2024):

Aheadi

(
KWK

i ,QW
Q
i ,VWV

i

)
= zt. (17)

The final representation vectors zt for all time steps are concatenated into a single

vector zt, which is the input to a linear output layer with parameters W0 and b0. The prediction

vector ŷ is passed through a softmax function for classification tasks to produce a probability

distribution over the classes:

ŷ = W0z̄+ b0. (18)

The classification loss is the cross-entropy between this predicted distribution and the

categorical ground truth labels.

3.6 MODEL TRAINING AND CROSS-DATASET EXPERIMENTS

The model training and testing were conducted using various scenarios to evaluate

performance comprehensively. First, the datasets were split into training and testing sets within

each database, ensuring that the model was trained and tested on the same dataset. This scenario



57

helps in understanding the model’s performance when exposed to data with s. Still, its statistical

properties. In the second scenario, cross-dataset evaluation was performed, where the model was

trained on one dataset (e.g., HZDR) and tested on the other (e.g., TUD), as illustrated in Fig.

16. This scenario is critical for assessing the model’s generalization capability and robustness

when applied to data from different sources, which may have inherent variances due to other

measurement conditions and sampling methodologies.

Figure 16 – General overview of the cross-dataset experiments.

3.7 PERFORMANCE METRICS

Evaluating the performance of a classification model is crucial to understanding its

effectiveness and reliability. In this study, several performance metrics were used to assess the

model, each providing unique insights into various aspects of classification performance. The

metrics used include Accuracy, Precision, Recall, F1-Score, and Balanced Accuracy (HASTIE et

al., 2009; RASCHKA; MIRJALILI, 2019).

Accuracy is the most straightforward performance metric, defined as the ratio of

correctly predicted instances to the total number of cases. It provides a general sense of the

model’s performance but can be misleading in the presence of class imbalance, where the model

might predict the majority class correctly most of the time while performing poorly on the

minority class:

Accuracy =
Number of Correct Predictions

Total Number of Predictions
.
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Precision measures the accuracy of the positive predictions made by the model. It is

defined as the ratio of true positive predictions to the total number of positive predictions (true

positives plus false positives). Precision is instrumental in scenarios where the cost of false

positives is high:

Precision =
True Positives

True Positives + False Positives
.

Recall, also known as Sensitivity or True Positive Rate, measures the model’s ability

to correctly identify all relevant instances. It is defined as the ratio of true positive predictions

to the total number of actual positives (true positives plus false negatives). The recall is crucial

when the cost of false negatives is high:

Recall =
True Positives

True Positives + False Negatives
.

F1-Score is the harmonic mean of Precision and Recall, providing a single metric that

balances both concerns. It is beneficial when there is an uneven class distribution and when both

Precision and Recall are important:

F1-Score = 2 · Precision · Recall

Precision + Recall
.

Balanced Accuracy addresses the issue of class imbalance by averaging the recall

obtained on each class. It provides a more representative performance measure when dealing

with imbalanced datasets, ensuring that the performance of the minority class is considered

equally with the majority class:

Balanced Acc. =
1

2

(
True Positives

True Positives + False Negatives
+

True Negatives

True Negatives + False Positives

)
.

These performance metrics collectively provide a comprehensive evaluation of the

classification model, ensuring that it is not only accurate in its predictions but also effective

across all classes and sensitive to the specific requirements of the application.

3.8 IMPLEMENTATIONS

Implementing the proposed methods in this thesis involved several tools and frameworks,

which were carefully selected to ensure efficient processing and analysis of the data. The

development was primarily carried out in the Google Colab Pro environment to leverage better

computational resources, particularly for executing tasks that required higher processing power.

Below are the details of the key implementation aspects:
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• Development Environment: The codebase was developed using Google Colab Pro,

which provided access to enhanced runtimes, including more powerful GPUs and CPUs

with additional threads. This setup was crucial for efficiently handling both time-series

classification and SVM model training tasks that demanded significant computational

resources.

• SVM and Grid Search: The support vector machine was implemented using the sklearn

library (PEDREGOSA et al., 2011). The GridSearchCV method was employed to op-

timize hyperparameters. Given the high dimensionality of the parameter space, nested

cross-validation was also implemented using sklearn. This process took advantage of

multithreading and the maximum number of CPU cores available in the Colab runtime, as

sklearn does not support GPU acceleration. This optimization was necessary to reduce the

computational time of the cross-validation process, which could otherwise be prohibitive.

• Time-Series Classification Models: For time-series classification, the TSAI library (OGU-

IZA, 2023) was utilized. TSAI, which builds on fastai (HOWARD et al., 2018) and

TensorFlow (ABADI et al., 2015), offers state-of-the-art methods for time-series analysis.

However, implementing models using TSAI required some adaptation due to differences

in syntax and usage compared to more standard machine learning libraries. Despite the

availability of documentation, some aspects were not entirely clear, which introduced

additional complexity in this part of the implementation.

• Data Analysis and Preprocessing: Data analysis was conducted using the pandas li-

brary (MCKINNEY, 2010), one of Python’s most widely adopted libraries for data manip-

ulation. Time-series preprocessing, an essential step before model training, was performed

using a combination of NumPy (HARRIS et al., 2020) and Pandas libraries. These steps

ensured that the time-series data was formatted correctly and cleaned, making it suitable

for both the machine-learning models and time-series classifiers.

• Saving Data and Models: Throughout the testing and validation phases, all relevant data,

including training and testing sets, as well as the trained models, were saved. This practice

ensured that the experiments could be replicated or reviewed later. The models were stored

in formats compatible with the respective libraries (e.g., pickle for sklearn models and

native formats for TSAI models), and the data was saved in standard formats such as CSV

and numpy arrays for easy access.
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4 RESULTS

This chapter presents the results for the MoG+SVM and SOTA-DL models. For the

MoG+SVM approach, we perform a preliminary study to validate a classical machine learning

approach utilizing handcrafted features, detailing feature selection and hyperparameter tuning.

In this initial study, the preprocessing steps detailed in Section ?? were not applied; instead,

void fraction data from the HZDR were used without windowing, overlapping, or normaliza-

tion. Beyond validating the proposed approach, the preliminary study also helped establish the

optimal number of components for the Gaussian mixture model (GMM). Following this prelimi-

nary phase, comprehensive preprocessing steps and both single-dataset and cross-dataset tests

were conducted, as outlined in the Proposed Method chapter, Section 3.6, for both approaches

(MoG+SVM and SOTA-DL). Throughout the Sections, qualitative results and comparisons are

also presented.

4.1 PRELIMINARY STUDY FOR THE MOG+SVM MODEL

4.1.1 Feature Selection

First, it is necessary to define how many components will be used in the mixture model.

By a preliminary analysis of the experimental data, it was found that the histograms of the time

series showed uni-, bi-, or tri-modal behavior, depending on the point of operation and the flow

pattern. Thus, we defined K = 3 in Equation 5. In this case, and for all others where K < 3, the

GMM will adapt, resetting the values of the parameters that do not contribute to the mixture,

that is, that are unnecessary to represent a given PDF. Therefore, the model is prepared for all

circumstances in which K ≤ 3. We also did not observe patterns that require K > 3. Hence, the

Gaussian mixture model (GMM) generates a vector:

Θ = (φ1,φ2,φ3,µ1,µ2,µ3,σ1,σ2,σ3), (19)

for each operation point. Figure 17 shows an exemplary operational point histogram and approxi-

mated PDF with the GMM approach and EM algorithm.

Then, once the parameters were obtained, an analysis was performed to verify how

these parameters are related to the given flow patterns. Hence, Figures 18, 19 and 20 show how

the GMM parameters, namely φi, µi and σi (where i = 1,2,3) behave by the different flow
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Figure 17 – PDF approximation by the Gaussian mixture model.

patterns. In order to present in a compact manner, the time-averaged void fraction is used in the

x-axis. It is possible to observe that all parameters present some degree of dependence on the

flow pattern. However, the best one, with the lowest overlap, is the mean values µ. The second

best parameter with moderate overlap between flow patterns is the proportion factors φ. Finally,

the feature σ shows the most accentuated overlap, which can degrade the performance of the

latter classification algorithm.
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Figure 18 – Relationship between the proportion factors φ of the Gaussian mixture model and the flow
patterns.

4.1.2 Flow pattern classification

To realize the classification, the “one-against-one” approach is used for the multiclass

SVM. In this step, tests were performed with different features, kernels, and parameters. This

type of approach is widely used, mainly to avoid overfitting and underfitting, and has been
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Figure 19 – Relationship between the means µ of the Gaussian mixture model and the flow patterns.
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Figure 20 – Relationship between standard deviations σ of the Gaussian mixture model and the flow patterns.

present in diverse papers in the field of multiphase flow pattern classification with machine

learning (EYO et al., 2019; WANG; ZHANG, 2009; ZHANG et al., 2020b).

To test the performance of the classifiers, the nested cross-validation methodology was

used, as mentioned in section 3.4.2.2. As explained above, to determine the performance of

the classifiers, an internal 5-fold cross-validation step was used to determine the best set of

hyperparameters. After that, an outer loop performs the assessment of the best models using

10-fold cross-validation.

In the inner loop, the parameters in the grid search are:

• Optimization parameter of SVM: C ∈ {1, 10, 1× 102, 1× 103};

• Rbf kernel: γ ∈ {1× 10−4, 1× 10−3, 1
7
, 1
5
, 1
3
};

• Polynomial kernel: γ ∈ {1× 10−1, 1, 10}, d ∈ {1, 2, 3, 4}, and r ∈ {0, 1× 10−1, 1, 10}.

It is noteworthy that for the linear kernel, the only hyperparameter used is the opti-

mization of the SVM itself. To perform the feature selection step, the Figure 11 process was

performed for each set of test features, where N = 3 represents the vector with all the features
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φ, µ and σ, N = 2 corresponds to the vector with features φ and µ, and N = 1 is a vector with

feature µ.

Table 6 summarizes the results obtained by the proposed method. As explained earlier,

the outer loop is executed 10 times (10-fold cross-validation), and in each of these runs, the inner

loop output is the best hyperparameter set found in a grid search. As the process is repeated

for three feature configurations, we have a total of 30 realizations. In the three cases where

the polynomial kernel appears as the best alternative, the hyperparameters d and r are equal to

3.0 and 0.0, respectively, as also shown at the bottom of the table. The “N” column indicates

which feature configuration was used, and the “Frequency” column indicates how many times

that set of hyperparameters appeared in the process. When the value of column “Frequency” is

higher than 1, it is implied that the accuracy and F-score values are the mean values between all

occurrences. The results were ordered taking into account frequency and greateAccuracycy, as

done in other works that use this nested cross-validation process, e.g., Krstajic et al. (2014).

Table 6 – SVM results of testing phase from outer cross-validation.

kernel C γ N Frequency Accuracy F-Score
rbf 1 1× 10

−3 3 3 0.9563± 0.0754 0.9427± 0.1007

rbf 1 1× 10
−3 1 3 0.9476± 0.0850 0.9369± 0.1077

rbf 1 1× 10
−3 2 3 0.9476± 0.0850 0.9369± 0.1077

rbf 100 1× 10
−3 1 3 0.9357± 0.0897 0.9076± 0.1462

rbf 100 1× 10
−3 2 3 0.9357± 0.0897 0.9076± 0.1462

rbf 10 1× 10
−4 1 2 0.9548± 0.0796 0.9445± 0.1062

rbf 10 1× 10
−4 2 2 0.9548± 0.0796 0.9445± 0.1062

rbf 10 1× 10
−4 3 2 0.9488± 0.0821 0.9371± 0.1026

linear 1 − 3 2 0.9488± 0.0576 0.9302± 0.0880

poly 1 1× 10
−1 1 1 0.9571± 0.0655 0.9322± 0.1165

poly 1 1× 10
−1 2 1 0.9571± 0.0655 0.9322± 0.1165

poly 1 1× 10
−1 3 1 0.9571± 0.0655 0.9241± 0.1269

rbf 100 1× 10
−3 3 1 0.9548± 0.0694 0.9305± 0.1209

rbf 10 1× 10
−3 3 1 0.9381± 0.0762 0.9185± 0.1018

linear 1 − 1 1 0.9286± 0.0714 0.8905± 0.1376

linear 1 − 2 1 0.9286± 0.0714 0.8905± 0.1376

For the polynomial kernel, the values of hyperparameters d and r found in the inner loop were 3.0 and 0.0, respectively.

It is interesting to verify that the three best classifiers have the same set of hyperpa-

rameters (kernel rbf with C = 1 and γ = 1× 10−3), but with different feature configurations.

The classifier that considers the three features (i.e., φ, µ and σ) presents the best performance

witAccuracycy equals to 0.9563± 0.0754, and F-Score equals to 0.9427± 0.1007. This classifier

also has the highest accuracy and F-Score values along with the lowest standard deviations.
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4.2 HYPERPARAMETER TUNING FOR SOTA-DL MODELS

The full nested or cross-validation is unfeasible for the SOTA-DL models due to the

high computational complexity in model training. In this case, we chose to follow the recom-

mendations of the original authors of the papers (KARIM et al., 2018; WANG et al., 2017;

ZERVEAS et al., 2021), in addition to a specific refinement of some parameters, using only a

hold-out validation, with the dataset being split with 80% of the HZDR data used for training and

20% for the validation. Table 7, 8, and 9 present the final hyperparameters used in the ResNet,

LSTM-FCN, and TST classification models, respectively.

Table 7 – Hyperparameters used in ResNet classification model.

Parameter Description Value
block number of conv. blocks 3
n number of classes 3
– number of conv. layers per block 3
k1 number of filters layer 1 64
k2 number of filters layer 2 128
k3 number of filters layer 3 128

activation activation function ReLU

Table 8 – Hyperparameters used in LSTM-FCN classification model.

Parameter Description Value
block number of conv. blocks 3
n number of classes 3
– number of conv. layers per block 1
k1 number of filters layer 1 128
k2 number of filters layer 2 256
k3 number of filters layer 3 128
h number of LSTM hidden units 100

activation activation function ReLU

Table 9 – Hyperparameters used in TST classification model.

Parameter Description Value
m number of features 8
n number of classes 3
w time steps 50
d dimension of the model 128
nh number of attention heads 16
dk size of queries and keys 32
dv size of values 32
dff dimension of the FC layer 256

dropout dropout in the encoder 0.1
activation activation function GELU

nl number of sub-encoder-layers 3
dropoutfc dropout of FC layer 0

pe positional encoder Uniform
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4.3 COMPARISONS

In this section, after the preliminary study, which aimed to validate the proposed

approach for SVM with feature extraction using MoG and hyperparameter tuning through nested

cross-validation, we present the results of our experiments using two datasets: HZDR and TUD.

We evaluate the performance of various models using standard metrics, including Accuracy,

Precision, Recall, F1-Score, and Balanced Accuracy. For single dataset evaluations, we employ

3-fold Cross-Validation. Additionally, we perform cross-dataset evaluations where models trained

on one dataset are tested on the other to assess model generalization. For the MoG-SVM, in the

single-dataset comparison, the nested cross-validation process was rerun to identify the best

hyperparameters for the preprocessed datasets. For the cross-dataset studies, however, the same

hyperparameters were retained to enable an analysis of the model’s generalization capacity.

4.3.1 HZDR Dataset

Table 10 summarizes the performance metrics for different models. The results indicate

that ResNet achieves the highest overall performance across all metrics, with an average Accuracy,

Precision, Recall, and F1-Score of 0.986 ± 0.004 and a Balanced Accuracy of 0.983 ± 0.005.

LSTM-FCN also performs well, showing robust results with an average Accuracy, Precision, and

Recall of 0.957± 0.01 and an F1-Score of 0.956± 0.01. TSTPlus performs with slightly lower

metrics, achieving an Accuracy of 0.91±0.004 and a Balanced Accuracy of 0.898±0.003. MoG-

SVM demonstrates moderate performance with an Accuracy, Precision, Recall, and F1-Score of

0.949± 0.007 and a Balanced Accuracy of 0.941± 0.01.

Figure 21 illustrates the confusion matrices for each model, providing further insight

into their performance on the HZDR dataset. ResNet (Figure 21(a)) demonstrates excellent

classification capabilities, with only a single misclassification in the Bubbly and three in Slug

categories, and no errors in identifying Churn, resulting in the highesAccuracycy of 98.64%.

LSTM-FCN (Figure 21(b)) also shows strong performance, with minor misclassifications, partic-

ularly in the Slug category, leading to an overall accuracy of 96.95%. TSTPlus (Figure 21(c))

has more difficulty differentiating between the Slug class and other categories, resulting in the

lowesAccuracycy of 90.17% among the models evaluated. Finally, MoG-SVM (Figure 21(d))

performs better than TSTPlus but still exhibits misclassification, especially in identifying Slug,

with an overall accuracy of 94.58%. These results highlight the challenges in classifying the Slug
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category accurately, which is common across all models.

Table 10 – Performance metrics for different models on the HZDR dataset using 3-Fold Cross-Validation.

Model Accuracy Precision Recall F1-Score Balanced Acc.
ResNet 0.986± 0.004 0.986± 0.004 0.986± 0.004 0.986± 0.004 0.983± 0.005

LSTM-FCN 0.957± 0.01 0.957± 0.01 0.957± 0.01 0.956± 0.01 0.951± 0.013

TSTPlus 0.91± 0.004 0.913± 0.006 0.91± 0.004 0.911± 0.005 0.898± 0.003

MoG-SVM 0.949± 0.007 0.949± 0.008 0.949± 0.007 0.949± 0.007 0.941± 0.01
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Figure 21 – Confusion matrices for models trained with the HZDR dataset. (a) ResNet. (b) LSTM-FCN. (c)
TSTPlus. (d) MoG-SVM.

4.3.2 TUD Dataset

The TUD dataset is also evaluated using 3-fold Cross-Validation, as shown in Table 11.

ResNet again exhibits superior performance, achieving an average Accuracy, Precision, Recall,

and F1-Score of 0.992± 0.002, along with a Balanced Accuracy of 0.993± 0.001. LSTM-FCN
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follows closely, showing high consistency across all metrics, each at 0.986± 0.001, indicating

its robustness. TSTPlus, while performing well, has slightly lower metrics, with an Accuracy

of 0.961 ± 0.003 and a Balanced Accuracy of 0.962 ± 0.004. MoG-SVM shows the lowest

performance among the models, with consistent metrics across Accuracy, Precision, Recall, and

F1-Score, all at 0.954± 0.002, indicating some challenges in classification tasks on the TUD

dataset.

Table 11 – Performance metrics for different models on the TUD dataset using 3-Fold Cross-Validation.

Model Accuracy Precision Recall F1-Score Balanced Acc.
ResNet 0.992± 0.002 0.992± 0.002 0.992± 0.002 0.992± 0.002 0.993± 0.001

LSTM-FCN 0.986± 0.001 0.986± 0.001 0.986± 0.001 0.986± 0.001 0.986± 0.001

TSTPlus 0.961± 0.003 0.962± 0.003 0.961± 0.003 0.961± 0.003 0.962± 0.004

MoG-SVM 0.954± 0.002 0.954± 0.002 0.954± 0.002 0.954± 0.002 0.954± 0.002

Figure 22 illustrates the confusion matrices for the models trained on the TUD dataset,

further aiding in understanding their generalization performance. ResNet (Figure 22(a)) exhibits

almost perfect classification across all categories, a trait consistent across datasets, which supports

its high generalization capacity. LSTM-FCN (Figure 22(b)), while nearly matching ResNet

in performance, displays minor discrepancies in classification, hinting at potential areas for

improving its generalization to different contexts. TSTPlus (Figure 22(c)) shows more confusion

among categories compared to ResNet and LSTM-FCN, reflecting its more limited generalization.

MoG-SVM (Figure 22(d)) struggles more across datasets, confirming its comparative difficulty in

generalizing.

Comparing this performance with that on the HZDR dataset reveals notable insights

into the models’ generalization abilities. Both ResNet and LSTM-FCN consistently perform well

across datasets, validating their robustness and adaptability. MoG-SVM and TSTPlus performed

worse than the other two models. TSTPlus was the only model that showed relatively poorer

performance in the case of the HZDR dataset, possibly indicating the need for more data to

properly train the model since the TUD, with larger data availability, presented comparable per-

formance among SOTA models. In general, SOTA models present superior average performance

for each dataset evaluated, indicating that choosing this approach is more promising for time

series generated for classifying flow patterns.
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Figure 22 – Confusion matrices for models trained with the TUD dataset. (a) ResNet. (b) LSTM-FCN. (c)
TSTPlus. (d) MoG-SVM

4.3.3 Qualitative Analysis

4.3.3.1 Time series

By analyzing the confusion matrices presented in Figures 21 and 22, a clear pattern of

misclassification emerges. Most misclassifications are found in operational points associated

with the Slug flow pattern that were incorrectly classified as Bubbly, as well as operational points

of the Bubbly flow pattern misclassified as Slug. This trend is observed in both the MoG+SVM

and SOTA-DL approaches.

To gain further insight into this behavior, we generated figures illustrating samples of

the preprocessed time series selected at random. Figure 23 displays 25 time-series of the Bubbly

pattern for the HZDR dataset, Figure 24 shows 25 time-series of the Churn pattern for the same
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dataset, and Figure 25 presents 25 time-series of the Slug pattern. Examining these samples

allows us to identify signal characteristics that may contribute to the observed misclassifications

between the Slug and Bubbly patterns.

Figure 23 – Plot of randomly selected observations from time series of the Bubbly flow pattern in the HZDR
dataset.

Analyzing each figure in more detail allows us to draw further conclusions about the

characteristics contributing to the misclassification between the Slug and Bubbly patterns. In

Figure 23, which depicts time series classified as Bubbly, certain series exhibit characteristics

resembling those of the Slug pattern. Notable examples include observations 606, 755, and 600,

which display features that align more closely with the typical Slug series. This resemblance

suggests a degree of overlap in the signal attributes of these two patterns that likely contributes

to the observed misclassification in the confusion matrices.
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Figure 24 – Plot of randomly selected observations from time series of the Churn flow pattern in the HZDR
dataset.

To better understand this overlap, we can compare the series from observations 606,

755, and 600 in Figure 23 with those in observations 117 and 188 in Figure 25, which represent

samples of the Slug pattern. Both series sets share visual similarities, reinforcing the hypothesis

that certain operational conditions or signal behaviors are common to both patterns, making them

challenging to differentiate through automated classification.

In contrast, the series associated with the Churn pattern, as displayed in Figure 24,

exhibit distinct characteristics that set them apart from both the Bubbly and Slug patterns shown

in Figures 23 and 25. The Churn series tends to display a unique behavior that does not overlap

with the Bubbly and Slug characteristics, which may explain why the Churn pattern has lower

misclassification rates in most cases compared to the other two. This distinctiveness highlights the
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Figure 25 – Plot of randomly selected observations from time series of the Slug flow pattern in the HZDR
dataset.

more separable nature of the Churn pattern within the dataset, suggesting that the classification

methods are more effective in identifying it compared to the more visually similar Bubbly and

Slug patterns.

This similarity in time series patterns for the Slug and Bubbly flows may occur at points

close to the pattern transition area on the map that was used for the initial pre-qualification. It

is worth noting that this map serves as an approximate model for classification and may not

fully capture the nuances in boundary regions where flow characteristics can overlap. As a result,

the proximity of operational points to these transition areas may contribute to the challenge of

correctly classifying these flow patterns.

Similar figures were generated for the TUD dataset. Figure 26 presents 25 randomly
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Figure 26 – Plot of randomly selected observations from time series of the Bubbly flow pattern in the TUD
dataset.

chosen time series of the Bubbly pattern, Figure 27 shows 25-time series of the Churn pattern,

and Figure 28 displays 25 time series of the Slug pattern for the TUD dataset. Observing

Figures 26 and 28 reveals similarities between the time series of the Bubbly and Slug patterns,

echoing the behavior observed in the HZDR data. This pattern of similarity likely contributes to

misclassification in the same way, with certain operational points for Bubbly flow being classified

as Slug and vice versa.

Since the TUD dataset contains a larger amount of data, this increased data volume

positively impacted the performance of both classification approaches on this dataset. The greater

data diversity allowed the models to better capture the nuances between patterns, potentially

reducing the misclassification rate compared to the HZDR dataset.
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Figure 27 – Plot of randomly selected observations from time series of the Churn flow pattern in the TUD
dataset.

Again, the time series for the Churn pattern, as shown in Figure 27, exhibit a distinct

behavior that sets them apart from the Bubbly and Slug series in Figures 26 and 28. This distinct

behavior of the Churn pattern likely contributes to its lower misclassification rates and reinforces

the observation that Churn is more easily separable than the other two patterns.

4.3.3.2 Histogram and Gaussian Mixture Model

To gain deeper insights into the performance of the MoG+SVM approach, Figures 29

through 34 illustrate various aspects of the time series data for each flow pattern. In each figure,

the first and fourth rows contain randomly selected time series samples, visually representing the
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Figure 28 – Plot of randomly selected observations from time series of the Slug flow pattern in the TUD
dataset.

raw data for each pattern. The second and fifth rows present the data’s histograms, highlighting

the distribution characteristics for each sample set. Finally, the third and sixth rows display

the approximated PDF based on the parameters obtained from the Gaussian mixture model,

offering a statistical approximation of the underlying data distribution. Figure 29 shows data

from the Bubbly pattern of the HZDR dataset, Figure 30 presents data from the Churn pattern

of the HZDR dataset, and Figure 31 displays data from the Slug pattern of the HZDR dataset.

For the TUD dataset, Figure 32 contains data for the Bubbly pattern, Figure 33 for the Churn

pattern, and Figure 34 for the Slug pattern. Together, these figures facilitate comparative analysis

across different flow patterns and datasets, allowing for a closer examination of the MoG+SVM

approach’s ability to capture and differentiate the statistical characteristics of each flow regime.
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Figure 29 – A panel of plots with the following information: Rows 1 and 4 show time series randomly selected
from the Bubbly flow pattern in the HZDR dataset. Rows 2 and 5 display the corresponding
histograms, while rows 3 and 6 present the approximated PDFs based on a Gaussian mixture
model.
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Figure 30 – A panel of plots with the following information: Rows 1 and 4 show time series randomly selected
from the Churn flow pattern in the HZDR dataset. Rows 2 and 5 display the corresponding
histograms, while rows 3 and 6 present the approximated PDFs based on a Gaussian mixture
model.
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Figure 31 – A panel of plots with the following information: Rows 1 and 4 show time series randomly selected
from the Slug flow pattern in the HZDR dataset. Rows 2 and 5 display the corresponding
histograms, while rows 3 and 6 present the approximated PDFs based on a Gaussian mixture
model.
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In Figure 29, representing the Bubbly pattern for the HZDR dataset, the Gaussian

mixture model frequently generates right-skewed PDFs. Notably, for observations like 66 and

203, the model parameters produce identical PDFs where the estimated air presence is nearly null.

This deviation from the actual data indicates limitations in capturing air-related dynamics in the

time series. However, Figure 32, which shows data for the Bubbly pattern from the TUD dataset,

does not exhibit this behavior, suggesting that the issue may be dataset-specific or influenced by

data distribution within the HZDR dataset.

For the Churn pattern in the HZDR dataset, shown in Figure 30, the model primarily

generates left-skewed multimodal PDFs, suggesting complex, overlapping flow characteris-

tics within this pattern. This left-skewed, multimodal behavior appears less frequently in the

Churn pattern data for the TUD dataset (Figure 33), indicating potential differences in flow

characteristics or sensor responses between the two datasets.

For the Slug pattern, both the HZDR dataset (Figure 31) and the TUD dataset (Figure 34)

exhibit multimodal PDF distributions with characteristic modes at low and high void fractions.

These modes likely represent distinct phases within the flow, where low void fractions correspond

to liquid pistons and high void fractions indicate air slugs or Taylor bubbles. This consistent

multimodal behavior across datasets underscores the model’s capacity to capture the Slug

pattern’s defining characteristics effectively.

4.3.4 Cross-Datasets

To evaluate the model generalization, we conduct cross-dataset experiments. In these

experiments, models trained on one dataset are tested on the other. The results are summarized in

two parts: first, models trained on the HZDR dataset and tested on the TUD dataset, and second,

models trained on the TUD dataset and tested on the HZDR dataset.

4.3.4.1 Train with HZDR dataset and test with TUD dataset

Table 12 shows the performance metrics for models trained on the HZDR dataset and

tested on the TUD dataset. The results reveal a general decline in performance compared to

single-dataset evaluations, highlighting the challenges of model generalization. ResNet exhibits

a relatively high Accuracy of 92.17%, along with Precision, Recall, and F1-Score slightly above

92%, and a Balanced Accuracy of 91.97%. LSTM-FCN maintains solid performance as well,
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Figure 32 – A panel of plots with the following information: Rows 1 and 4 show time series randomly selected
from the Bubbly flow pattern in the TUD dataset. Rows 2 and 5 display the corresponding
histograms, while rows 3 and 6 present the approximated PDFs based on a Gaussian mixture
model.
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Figure 33 – A panel of plots with the following information: Rows 1 and 4 show time series randomly selected
from the Churn flow pattern in the TUD dataset. Rows 2 and 5 display the corresponding
histograms, while rows 3 and 6 present the approximated PDFs based on a Gaussian mixture
model.
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Figure 34 – A panel of plots with the following information: Rows 1 and 4 show time series randomly
selected from the Slug flow pattern in the TUD dataset. Rows 2 and 5 display the corresponding
histograms, while rows 3 and 6 present the approximated PDFs based on a Gaussian mixture
model.
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with an Accuracy of 91.42% and slightly higher Precision and F1-Score. TSTPlus shows a

more significant degradation in performance with an Accuracy of 84.19%, indicating specific

challenges in adapting to the TUD dataset. MoG-SVM performs better than TSTPlus, with an

Accuracy of 87.50%, despite its generally lower performance in single-dataset evaluations.

Table 12 – Performance metrics for different models trained on the HZDR dataset and tested on the TUD
dataset.

Model Accuracy Precision Recall F1-Score Balanced Acc.
ResNet 0.9217 0.9268 0.9217 0.9223 0.9197

LSTM-FCN 0.9142 0.9234 0.9142 0.9152 0.9112
TSTPlus 0.8419 0.8619 0.8419 0.8434 0.8453

MoG-SVM 0.8750 0.8813 0.8750 0.8760 0.8741

Figure 35 provides the confusion matrices for models trained on the HZDR dataset and

tested with the TUD dataset. ResNet (Figure 35(a)) shows impressive specificity with Slug but

experiences some classification challenges with Churn. LSTM-FCN (Figure 35(b)) also performs

well, particularly in distinguishing Slug, but like ResNet, it misclassifies a notable number of

Churn instances. TSTPlus (Figure 35(c)) and MoG-SVM (Figure 35(d)) both display increased

errors across all categories, especially in misclassifying the Bubbly and Churn patterns, which

significantly impacts their performance metrics.

When compared to the single-dataset results where models showed higheAccuracycy

and more stable metrics (e.g., ResNet and LSTM-FCN both achieving over 98% in HZDR and

TUD datasets), the cross-dataset results underscore the challenges in generalization. Notably,

while MoG-SVM generally underperforms in single-dataset scenarios, it shows comparative re-

silience in cross-dataset testing, particularly outperforming TSTPlus accuracy and other metrics.

4.3.4.2 Train with TUD dataset and test with HZDR dataset

Table 13 presents the performance metrics for models trained on the TUD dataset

and tested on the HZDR dataset. Contrary to earlier evaluations, TSTPlus emerges as the top

performer, with an Accuracy of 86.23% and nearly consistent scores across Precision, Recall,

and F1-Score, showing strong generalization. ResNet, while maintaining reasonable metrics,

sees a significant drop in performance compared to its single-dataset evaluations, with an

Accuracy of 75.37%. LSTM-FCN displays slightly higher betteAccuracycy at 77.07%, but still

below TSTPlus. MoG-SVM again shows the lowest performance, particularly struggling with

generalization, as evidenced by its Accuracy of 70.42% and the lowest Balanced Accuracy.
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Figure 35 – Confusion matrices for models trained with the HZDR dataset and tested with the TUD dataset.
(a) ResNet. (b) LSTM-FCN. (c) TSTPlus. (d) MoG-SVM

Table 13 – Performance metrics for different models trained on the TUD dataset and tested on the HZDR
dataset.

Model Accuracy Precision Recall F1-Score Balanced Acc.
ResNet 0.7537 0.8536 0.7537 0.7682 0.8144

LSTM-FCN 0.7707 0.8525 0.7707 0.7837 0.8077
TSTPlus 0.8623 0.8698 0.8623 0.8636 0.8584

MoG-SVM 0.7042 0.7502 0.7042 0.7060 0.7502

Figure 36 illustrates the confusion matrices for models trained with the TUD dataset and

tested with the HZDR dataset. TSTPlus (Figure 36(c)) shows the best performance in correctly

classifying the majority of instances across all classes with fewer misclassifications compared

to other models. ResNet (Figure 36(a)) and LSTM-FCN (Figure 36(b)) exhibit some difficulty,

reflecting their lower accuracy metrics. MoG-SVM (Figure 36(d)) struggles significantly across

all categories, particularly with a high misclassification rate in the Bubbly category, which greatly

affects its overall performance.
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Figure 36 – Confusion matrices for models trained with the TUD dataset and tested with the HZDR dataset.
(a) ResNet. (b) LSTM-FCN. (c) TSTPlus. (d) MoG-SVM

This section contrasts sharply with the results observed when models were trained on

the HZDR dataset and tested on the TUD dataset. TSTPlus, which had performed worse in

the previous setting, shows adaptability and generalization when trained on TUD and tested

on HZDR. This inversion highlights the model’s sensitivity to training conditions and dataset

characteristics. ResNet and LSTM-FCN, while generally robust, exhibit a decline in perfor-

mance, suggesting their potential overfitting to the TUD dataset characteristics or an inability

to generalize as effectively to the HZDR dataset’s conditions. MoG-SVM’s consistently lower

performance in cross-dataset evaluations further underscores its challenges with generalization

compared to other models.

This detailed analysis reveals the intricate balance between high performance in familiar

settings versus robustness in diverse scenarios, emphasizing the importance of evaluating models

across different datasets to fully understand their generalization capabilities and reinforcing the
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need for end-to-end models for this task. Using handcrafted features, the MoG-SVM-based model

can become specialized for one dataset, reducing performance in others and indicating possible

overfitting for this strategy. This characteristic may make practical applications.

4.3.5 Qualitative Analysis

The study of flow classification across different datasets revealed distinct challenges,

especially in classifying the Slug and Bubbly flow patterns. A significant number of misclassifi-

cations were observed between these two classes across all models. When analyzing the time

series for both classes from the HZDR and TUD datasets, a noticeable pattern emerged that could

help explain the high misclassification rate, as shown in Fig. 37 for the HZDR dataset and Fig. 38

for the TUD dataset. The similarities between Bubbly and Slug patterns were evident in both

datasets, with cases from the HZDR dataset (Fig. 37) and the TUD dataset (Fig. 38) displaying

almost indistinguishable characteristics. The distinction between these two flow patterns becomes

even less obvious when the analysis window is adjusted, especially for the TUD dataset, as

observed in Fig. 39, where a cross-dataset comparison further highlights the overlap in flow

characteristics.

A deeper analysis of the misclassifications suggests that the transition region between

Bubbly and Slug patterns might be critical for real-world applications. Such regions may warrant

the inclusion of transition classes for better evaluation. Despite the misclassifications, models

demonstrated overall strong performance, with metrics exceeding 90% for most of the flow

patterns. The misclassification patterns, particularly in the transition zones, are represented in

the figures where the flow regions are categorized according to mechanistic modeling (TAITEL

et al., 1980). Figs. 40 and 41 show the misclassified instances for the HZDR and TUD datasets,

with the misclassification regions highlighted and zoomed in for better visualization.

In the cross-dataset evaluation, models trained on the HZDR dataset and tested on the

TUD dataset showed varying performance, particularly with the Slug class achieving the highest

accuracy. The Churn class, however, exhibited substantial misclassification across three of the

four models, suggesting that the Churn pattern contains features that do not generalize well

across datasets. On the other hand, models trained on the TUD dataset and tested on the HZDR

dataset experienced a sharp drop in performance across all models except for the TSTPlus model,

which exhibited more stable results. Despite this, a large portion of Bubbly data was misclassified

as Churn, highlighting the overlapping features that make class differentiation challenging.
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Figure 37 – Comparison between two time-series from the HZDR dataset with different flow patterns:
The first column displays a time series with the Bubbly flow pattern, its histogram, and the
approximated PDF from a Gaussian mixture model. The second column presents the same
information for a time series with the Slug flow pattern.

Figure 38 – Comparison between two time series from the TUD dataset with different flow patterns: The first
column displays a time series with the Bubbly flow pattern, its histogram, and the approximated
PDF from a Gaussian mixture model. The second column presents the same information for a
time series with the Slug flow pattern.
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Figure 39 – Comparison between two time series from different datasets and flow patterns: The first column
shows a time series with the Bubbly flow pattern from the TUD dataset, along with its histogram
and the approximated PDF from a Gaussian mixture model. The second column presents the
same information for a time series with the Slug flow pattern from the HZDR dataset.
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right corner, a detail of the error region is shown.
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Figure 41 – TUD data misclassified according to the map defined in (TAITEL et al., 1980). In the upper right
corner, a detail of the error region is shown.

These findings are corroborated by the analysis of Figures 37 through 39, which

show time series, histograms, and Gaussian Mixture Model (GMM) PDFs for representative

examples from both datasets. Figure 37 compares Bubbly and Slug flow patterns in the HZDR

dataset, revealing similarities in their statistical features. Similarly, Fig. 38 highlights similar

characteristics between Bubbly and Slug patterns in the TUD dataset. Figure 39 illustrates a

comparison between the TUD Bubbly and HZDR Slug data, emphasizing the overlap in flow

characteristics that further complicates accurate classification across datasets.
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5 CONCLUSIONS AND FUTURE WORKS

This work proposed and evaluated two distinct approaches for classifying two-phase

flow patterns using void fraction data from wire-mesh sensors: the traditional MoG+SVM

approach, which combines a Gaussian Mixture Model (MoG) for feature extraction with Support

Vector Machines (SVM) for classification, and the more modern SOTA-DL (State-of-the-Art

Deep Learning) approach, which leverages advanced time-series classification models including

ResNet, LSTM-FCN, and TSTPlus. The main objectives of this thesis were to compare the

performance of these methods, focusing mainly on their ability to generalize across different

datasets in cross-dataset experiments.

5.1 SUMMARY OF KEY FINDINGS

In the first approach, MoG+SVM, we proposed a combination of feature extraction using

the Gaussian Mixture Model with the supervised learning algorithm Support Vector Machine.

Various kernel functions (linear, polynomial, and Radial Basis Function) were tested, and the

optimal parameters were selected using nested cross-validation. The results showed that the

MoG+SVM model achieved excellent performance with an average accuracy of 95% when

evaluated on the HZDR dataset and 95,4% when evaluated on the TUD dataset. The method also

proved to be effective in terms of interpretability, offering a direct relationship with the physical

phenomenon, as described in Jones and Zuber (1975) and Costigan and Whalley (1997). This

approach demonstrated that feature engineering using physically meaningful parameters can

yield competitive results, particularly when dataset characteristics are well understood.

In contrast, the SOTA-DL approach, which utilized deep learning models like ResNet,

LSTM-FCN, and TSTPlus, provided an end-to-end solution for flow regime classification,

moving beyond the need for hand-crafted features. The results revealed that the deep learning

models, particularly ResNet and LSTM-FCN, achieved higher accuracy and F1-scores than the

MoG+SVM on single-dataset evaluations, with ResNet showing superior performance, surpassing

98% accuracy on both the HZDR and TUD datasets. However, a key limitation of these models

was their performance degradation in cross-dataset scenarios. While ResNet and LSTM-FCN

showed good performance on single-dataset evaluation but worse performance considering both

cross-dataset tests, TSTPlus, despite its lower performance in single-dataset evaluations, showed
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better resilience across datasets, achieving a cross-dataset accuracy of 86.23% when trained on

TUD and tested on HZDR, the best performance on this case.

These findings underline the critical importance of model generalization, particularly in

real-world applications where data from different acquisition systems may vary. While the SOTA

methods are robust within a specific dataset, their performance can be sensitive to shifts in data

distribution, especially when models are exposed to data collected with different instrumentation

or under varying operational conditions. This highlights the need for future research to explore

ways to improve model robustness and generalization capabilities.

5.2 CONTRIBUTIONS AND ACHIEVEMENTS

This thesis has made several key contributions to the field of two-phase flow pattern

classification:

1. Development of a Hand-Crafted Approach: The MoG+SVM method, as presented in

Section 3.4, showed competitive results with an average accuracy exceeding 95% on the

HZDR dataset. This approach emphasizes the value of using interpretable features derived

from physical models, thus contributing a unique perspective in flow regime classification.

2. Implementation of End-to-End Deep Learning Models: The SOTA-DL approach, de-

tailed in Section 3.5, introduced modern deep learning architectures like ResNet, LSTM-

FCN, and TSTPlus, which allowed for direct classification from raw time-series data. This

method demonstrated the potential of deep learning models in overcoming the limitations

of hand-crafted features and setting new benchmarks in flow regime classification.

3. Evaluation and Dataset Organization: Two distinct datasets, HZDR and TUD, were

utilized in this study. Sections 3.2 and 3.3 provided a comprehensive overview of the

datasets and the necessary preprocessing steps for their use in flow regime classification.

The careful organization of these datasets facilitated rigorous experiments and meaningful

comparisons across methods.

4. Single-Dataset and Cross-Dataset Performance Evaluation: A comprehensive evalua-

tion of the performance of both approaches on single datasets and in cross-dataset scenarios

was conducted in Section 4.3. This comparison revealed the strengths and weaknesses
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of each method, with the SOTA-DL models outperforming MoG+SVM in single-dataset

scenarios but demonstrating a need for improvement in generalization across datasets.

5. Comparative Analysis of Approaches: Section 4.3 also presented a detailed quantitative

and qualitative comparison of the proposed methods, shedding light on their relative

advantages, such as the high interpretability of MoG+SVM and the scalability of the deep

learning models.

5.3 CONCLUSIONS

In conclusion, this thesis advanced state of the art in two-phase flow classification by

comparing two fundamentally different approaches: the MoG+SVM method, based on hand-

crafted features, and the SOTA-DL method, based on deep learning models. The results demon-

strate that while deep learning models such as ResNet and LSTM-FCN show remarkable perfor-

mance on single datasets, their generalization across datasets remains a challenge. On the other

hand, the MoG+SVM method, although not as powerful in terms of accuracy, provides a more

interpretable approach that leverages physical features related to the flow phenomenon, offering

a unique advantage in terms of transparency and application in scenarios where explainability is

crucial.

This study highlights the trade-offs between accuracy and interpretability in the context

of two-phase flow pattern recognition. While SOTA methods offer significant improvements

in classification performance, their deployment in real-world applications requires careful con-

sideration of their generalization capabilities. Future work should focus on overcoming these

limitations by enhancing the generalization capacity of deep learning models, improving the

interpretability of complex models, and exploring hybrid approaches that combine the strengths

of both deep learning and traditional machine learning techniques.

5.4 FUTURE WORKS

Several avenues for future research are identified based on the findings of this thesis:

1. Improving Generalization: Future work should focus on enhancing the generalization

capabilities of deep learning models through more sophisticated training techniques, regu-

larization methods, or hybrid model architectures that combine the strengths of traditional
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and deep learning models.

2. Computational Complexity and Embedded Systems: Analyzing the computational

complexity of the proposed models is crucial for their application in embedded systems.

Future research could focus on optimizing these models for real-time deployment in

industrial environments.

3. Model Interpretability: Further investigation into the interpretability of deep learning

models is needed. Research could explore methods for improving the transparency of

these models, such as by examining the importance of specific layers or operations in the

decision-making process.

4. Multimodal Models and Sensor Fusion: The possibility of multimodal models or sensor

fusion, incorporating additional data sources (e.g., visual or acoustic sensors), could

significantly enhance the robustness and accuracy of flow regime classification systems.

5. Expanding the Dataset and Classifying Additional Flow Regimes: The models devel-

oped in this work should be tested in a broader range of datasets, including datasets from

different operational conditions, and further refined to handle additional flow regimes,

particularly transition states between flow patterns.

6. Hybrid Approaches for Real-Time Applications: Future studies could explore hybrid

approaches that combine the strengths of both hand-crafted features and deep learning

methods, optimizing for real-time classification and dynamic flow conditions.

By addressing these challenges, future work can significantly advance the application

of machine learning and deep learning techniques in two-phase flow classification, improving

the accuracy, robustness, and interpretability of models in industrial applications such as oil and

gas, nuclear reactors, and other multi-phase flow systems.
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