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RESUMO 

O projeto de coxinização é extremamente importante para garantir um bom 

isolamento de um equipamento que gera excitação vibratória, seja ele um motor, 

uma bomba hidráulica, um compressor, entre outros. Para o projeto de coxinização, 

o posicionamento do coxim e a sua rigidez são características importantes que 

influenciam no comportamento da independência das direções do movimento e 

também no desempenho de isolamento e devem ser adequadamente selecionados 

para garantir o alto desempenho de isolamento em motopropulsores. Outro fator 

no projeto do coxim é a “pureza modal”, a qual quantifica o desacoplamento entre 

os graus de liberdade. Quanto maior for a pureza modal, maior será o 

desacoplamento de cada grau de liberdade em cada direção. Isso é importante 

para reduzir os efeitos vibracionais transmitidos de uma determinada força em uma 

determinada direção e também para o melhor controle da distribuição vibracional 

do sistema. Para a descrição da pureza modal, é necessário ter a informação das 

frequências naturais e dos modos de vibração do motopropulsor suspenso nos 

coxins. Já para a avaliação do desempenho de isolamento, a transmissibilidade, 

que é dependente da rigidez,  deve ser a mais alta possível pois ela quantifica o 

quanto a vibração da fonte será atenuada pelo coxim. Neste trabalho, soluções 

analíticas são desenvolvidas levando-se em consideração os parâmetros de 

rigidez, amortecimento do coxim, posição das coordenadas dos coxins, ângulo dos 

coxins, massa e tensor de inércia. Com essas soluções analíticas torna-se possível 

desenvolver um processo de otimização, realizado através de um algoritmo de 

ponto interior primal-dual com barreira logarítmica, com o objetivo de obter um alto 

desempenho de isolamento vibracional e alta pureza modal. Com esse processo 

de otimização será possível melhorar a eficiência no desenvolvimento do projeto 

reduzindo a quantidade de protótipos e testes. Após a otimização foi observado, 

por meio dos resultados, um aumento de isolação vibracional entre 1 a 7 dBs 

quando comparado com a isolação antes da otimização. Em relação à pureza 

modal, os resultados também apresentaram melhorias significativas onde a pureza 

modal de cada grau de liberdade foi, no geral, superior a 85%, sendo que antes da 

otimização existiam purezas modais abaixo de 50%. 

 

Palavras-chave: Coxim; Motopropulsor; Isolamento; Pureza modal; Otimização. 



 

   

ABSTRACT 

The mount project is extremely important to ensure good isolation of equipment that 

generates vibration, be it a motor, a hydraulic pump, a compressor, among others. 

For the mount project, the positioning of the mount and its stiffness are very 

important characteristics, as they influence the behavior of the independence of the 

movement directions and also the isolation performance. For the application of 

mount project in powertrains, this is not different, as the high isolation performance 

of the mount is extremely important to ensure the reduction of vibration transmission 

from the powertrain and, for this, the stiffness of the mount and its attachment point 

must be adequately selected. Another important factor in the mount project is the 

modal purity, which quantifies the decoupling between the degrees of freedom, and 

the greater the modal purity, the greater the decoupling of each degree of freedom 

in each direction. This is important to reduce the vibrational effects transmitted from 

a given force in a given direction and also for better control of the vibrational 

distribution of the system. To describe the modal purity, it is necessary to have 

information on the natural frequencies and vibration modes of the powertrain 

suspended on the mounts. To evaluate the isolation performance, the stiffness and 

damping of the mount must be carefully determined to ensure good isolation. 

Analytical solutions are developed taking into account the parameters of stiffness, 

mount damping, mount position, mount angle, mass and the inertia tensor. With 

these analytical solutions, it was possible to develop an optimization process using 

optimization algorithms with the objective of finding the parameters that generate 

high vibrational isolation performance and high modal purity. With this optimization 

process, it will be possible to improve efficiency in project development by reducing 

the number of prototypes and tests. After optimization, an increase in vibrational 

isolation between 1 and 7 dB was observed through the results when compared 

with the isolation before the optimization. Regarding the modal purity performance, 

the results also showed significant improvements, where the modal purity of each 

degree of freedom was generally higher than 85%, whereas, before optimization, 

there were modal purities below 50%. 

 

Key-words: Mount; Powertrain; Isolation; Modal Purity; Optimization. 
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1 INTRODUCTION  

 

The effect and perception of vibration have always been relevant in the operation 

of dynamic systems. This relevance has led to the development and application of 

vibration analysis to prevent unforeseen issues. For instance, vibration analysis is 

widely used in predictive maintenance, enabling the diagnosis of faults—especially in 

their early stages—thereby reducing cost impact and supporting decision-making to 

prevent critical issues (Chu, Nguyen, Yoo and Wang, 2024). 

Another example is the application of vibration analysis in the automotive industry 

from a comfort perspective, where the driver’s physiological responses were 

investigated through a whole-body vibration model. The study identified vibration-

induced effects such as muscle spasms and abdominal pain (Sezgin; Arslan, 2012). 

Many material studies have been conducted—and continue to be—to improve the 

efficiency of vibration isolation. One example is the use of metamaterials, which are 

meticulously designed at the micro- or nano-scale to enhance vibration isolation 

performance (Rifaie; Abdulhadi; Mian, 2022). 

There are two types of isolation systems for mounts. The first type of isolation is 

passive, in which techniques using rubber elements or mechanical springs are used. 

Isolation is achieved by limiting the capacity of vibration transmitted from the source to 

the structure to be isolated. This is done through a mechanical connection that 

dissipates or redirects the vibration energy before it reaches the structure to be 

isolated. Passive methods sometimes involve electromechanical controls to adjust the 

system, but the isolation mechanism is passive. Passive systems are economical, and 

their relative simplicity makes them more reliable and safer. Elastomers used in the 

automotive industry to isolate powertrains are one of the most used passive isolators. 

Additionally, passive isolation systems also offer good performance, low cost, high 

reliability, and relative simplicity. The second type of isolation is active isolation, which 

consists of an insulating material, for example, hydraulic fluid, a vibration sensor, an 

electronic circuit, and an actuator. The vibration from the powertrain is read by the 

vibration sensor, which transmits the information to the electronic circuit, which 

calculates in real-time the necessary displacement compensation. This displacement 

compensation is transmitted to the actuator to cancel the vibrations. The performance 
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of active isolators is superior to that of passive actuators; however, cost and complexity 

issues hinder their application. 

Despite these technical differences in isolation technologies, the physical 

parameters to obtain a high isolation performance are the same. 

The isolation performance is a complex study because it varies according to the 

frequency and the interactions of the mount and the fixation also play a critical behavior 

in the isolation performance. One of the things that contribute to the performance of 

the mount project is the modal purity because it implies that once some direction is 

excited the other will not be if the modal purity is high. The Experimental Modal 

Analysis (EMA) is used to study many structural properties, one of them being the 

modal purity. The EMA technique can be applied to evaluate the rigid body modes of 

the powertrain, which can induce low-frequency vibration when excited by the track or 

from the powertrain itself if the modal purity is low. 

The effectiveness of a mount project’s isolation performance is not limited to 

modal purity. It is influenced by factors such as dynamic stiffness, local modes of the 

metal part of the mount, mass-spring mode of the rubber or isolator material, load 

variation, etc. All these parameters cause the isolation to change across different 

frequencies.  

Therefore, it is important to have robust virtual models, effective measurement 

methodologies, and practical experience to properly consider the variables that 

influence isolation performance and determine which changes should be made to 

improve the mount project. 

Currently, optimization tools have been used in different applications of science 

and are powerful in solving many complex problems with effective results concerning 

time and performance, so within this context, optimization tools are used in this work 

to explore the mount project aiming to define the variables that result in the best 

performance within certain restrictions that are imposed by the criterion of the mount 

project.   

1.1 MOTIVATION AND OBJECTIVES 
 

The isolation performance of the mount system is of paramount importance to 

achieve good quality perception and durability of mechanical systems. To achieve high 

isolation performance is very common to have only the stiffness as the variable to 
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define the mount project performance, in fact, the stiffness is really critical in the 

isolation performance, however, the mount position is also important because it 

influences the rigid body mode behavior. Depending on the mount position, it can have 

or not have coupled body modes for the same mount stiffness. Thus, the objective of 

this work is to expand and extend the possibility of achieving a high-isolation 

performance by including more variables that somehow contribute to the isolation 

performance as it is the case of the mount position.  

With that in mind, this work focuses on obtaining the best possible combination 

exploring not only the stiffness but the mount position as well. 

The primary goal of this work is to develop an analytical model to calculate the 

modal purity of the rigid body modes of a powertrain suspended on its mounts and, at 

the same time, to assess the transmissibility function, which quantifies numerically the 

isolation performance. To do this study, an optimization algorithm is used to figure out 

the best decoupling performance among the rigid body modes and transmissibility. The 

analytical model is generic in terms of number of mounts, their position, and stiffness. 

However, other parameters like damping and mount angle can be assessed as fixed 

parameters.  

Since the rigid body modes are in a low-frequency region, which is only part of 

the isolation performance problem, an analytical model is built and integrated into the 

optimization process to evaluate the transmissibility performance of the mounts 

together with the modal purity. 

The combination of evaluating the rigid body modes and the transmissibility 

function is an effective approach to achieving good isolation performance. However, it 

is important to note that the transmissibility function in this model is limited to mid-

frequency evaluations. High-frequency evaluations will not be performed due to the 

presence of many resonances, and the linear approach of the mount transmissibility 

cannot be considered valid. 

1.2  ORGANIZATION OF THE TEXT 
 

This text is divided into six chapters. Chapter 1 presents the motivation and 

objectives of this work. Chapter 2 discusses the available literature on vibration 

isolation explaining at the same time the most important features and the types of 

mounts used in the automotive sector. 
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Chapter 3 presents the analytical model of a generic mount system of six DOF 

and the math approach to build it. On the sequence the concepts that formed the 

model to evaluate the performance of the transmissibility function are  presented. 

Chapter 4 presents the methodology used to apply the optimization process 

and shows the principles of the algorithm used to carry out the optimization of the 

developed objective function and gives more details of it. 

In Chapter 5 the model of six DOF is validated using results of simulation 

already used on the market and in sequence the optimization results are presented. 

Chapter 6 presents the conclusions and possibilities for future works are 

discussed. 

1.3 SCOPE OF THE STUDY 
 

Since the field of vibration studies is quite broad, it is essential to clearly define 

the limitations of this work. 

This research focuses on the development and analysis of a vibration isolation 

system for engine mounts, with a particular emphasis on enhancing comfort. The 

study evaluates vibration isolation performance based on two key aspects: rigid body 

mode decoupling and transmissibility within the frequency range of 1 to 600 Hz. 

Accordingly, modal purity and transmissibility are used as output criteria to assess 

whether the predefined performance targets are met. 

The primary objective is to assess the system’s effectiveness in attenuating 

vibrations transmitted from the engine to the vehicle frame, with particular attention, 

though not limited, to the low-frequency range, where human sensitivity to vibration is 

more pronounced. This research aims to provide guidance for mount isolation system 

designers in selecting the appropriate parameters to ensure high levels of comfort. 

The scope of the study is limited to analyses concerning stiffness, 

transmissibility, and mount positioning. The mount’s characteristics, such as 

frequency-dependent performance, are modelled and simulated. However, long-term 

durability, material degradation, and fatigue effects are not considered. Likewise, 

thermal influences and manufacturing tolerances fall outside the scope of this work. 



34 
 

 

   

2 BIBLIOGRAPHY REVIEW 

2.1 PHYSICAL PARAMETERS OF VIBRATION ISOLATORS 
 

Vibrational isolation, as mentioned earlier, is of utmost importance to achieve 

greater comfort within the context of the motor mount project. Therefore, some 

characteristics and parameters that involve the study of this vibrational isolation 

phenomenon are highlighted. 

Regarding the influence of transmissibility, the evaluation of behavior for a 

mass-spring-damper system, from which important information is derived, is based on 

one degree of freedom (DOF) with the excitation as shown in Figure 1. 

Figure 1: Model of a single degree of freedom system being driven by the base. 

 

Source: adapted from Griffin (1990). 

Considering the force input at the base and using the concepts of mechanical 

impedance, the transmissibility, as demonstrated in Griffin (1990), can be obtained as  

𝐻(𝜔) =  
𝑘 + 𝑖𝜔

𝑘 + 𝑖𝜔𝑐 − 𝜔2𝑚
 , (1) 

where 𝐻(𝜔) is the transmissibility of the system, which is dependent on the stiffness 

𝑘, the angular frequency 𝜔, the mass 𝑚 and the damping constant 𝑐. 

The module of transmissibility, |𝐻(𝜔)|, is often expressed as a function of 𝑟 =

𝑓/𝑓𝑛 and the damping ratio 𝜁, so |𝐻(𝜔)| is expressed as |𝐻(𝑟)| 

|𝐻(𝑟)| =  [
1 + (2𝜁𝑟)2

(1 − 𝑟2)2  +  (2𝜁𝑟)2 
]

1
2

. (2) 

The behavior of the transmissibility while keeping 𝑟 constant and varying 𝜁 can 

be observed in Figure 2. 
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Figure 2: Effect of damping on the transmissibility of a single degree of freedom model with vibrational 
excitation at the base. 

 

Source: adapted from Harris and Piersol (2002). 

As can be observed, there is a significant influence of damping on the 

transmissibility response. Increased damping markedly reduces the transmissibility in 

the vicinity of the natural frequency, 𝑓𝑛. In this region, the higher the 𝜁 the lower the 

transmissibility value. However, the transmissibility remains the same for different 

values of 𝜁 when the ratio 𝑟 is √2, and after this value, the transmissibility increases as 

the damping ratio increases. The ratio 𝑟 is used only with the objective of showing, 

whatever is the natural frequency, before, at and after √2 the transmissibility function 

behaves with a specific trend in one degree of freedom of the mass-spring system. 

Thus, it becomes clear the influence of damping on the vibrational filtering effect and 

how it should be carefully evaluated for each type of application. As mentioned by 

Ewins (1984),  it is worth noting that this transmissibility model was built considering a 

system with viscous damping. However, for multiple degrees of freedom (MDOF) 

systems, hysteric damping is more appropriate as it shows a dependency of damping 

on frequency, which does not occur in the viscous model used here. Despite this more 

complex behavior for real structures, the SDOF model provides clear information about 

the influences that damping can have on the transmissibility function. To find the 

damping values of the mounts, the Complex Spring (CS) model described in Graesser 

and Wong (1991) is used. In this model, there is the complex modulus 𝑘∗ = 𝑘1 + 𝑖𝑘2, 

consisting of 𝑘1, the “storage modulus”, and 𝑘2, the “loss modulus”. The absolute value 

of 𝑘∗, |𝑘∗|, is the dynamic stiffness. 

𝑓/𝑓𝑛 
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As mentioned by Ooi and Ripin (2010) the cross receptance 𝐻21 resulting from 

the cross dynamic stiffness 𝑘21 is expressed as   

𝐻21(𝑖𝜔) =  
1

𝑘 + 𝑖𝑐𝜔
 . (3) 

The cross-dynamic stiffness 𝑘21 is the inverse of 𝐻21 and the loss factor is given 

by 𝑡𝑎𝑛𝜑 = 𝑐𝜔/𝑘, so rearranging the Eq. (3) 𝑘21 is expressed as 

𝑘21 = 𝑘(1 + 𝑖𝑡𝑎𝑛𝜑). (4) 

It is possible to see that 𝑡𝑎𝑛𝜑 is taking the position of the loss modulus 𝑘2. The 

model is constructed based on the concepts illustrated in Figure 3. 

Figure 3: Concept of cross dynamic stiffness transfer.  

 

Source: adapted from Ooi and Ripin (2010). 

As 𝜑 represents the phase angle between the force 𝐹2 and the displacement 𝑥1, 

so the loss modulus can be found through the receptance 𝐻21 where the loss factor η 

is extracted. 

η = 𝑡𝑎𝑛𝜑 = 
−𝐼𝑚{𝐻21(𝑖𝜔)}

𝑅𝑒𝑎𝑙{𝐻21(𝑖𝜔)}
. (5) 

The loss modulus 𝑘2 is given by  𝑘2 =  𝑘1η.  

From the information of the loss modulus, the damping ratio 𝜁 can be 

determined. 

As mentioned in sources such as Gade and Herlufsen (1994) and Soovere and 

Drake (1985), the correlation between 𝜁 used is η = 2𝜁 =
1

𝑄
, where 𝑄 is the quality 

factor. 
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This correlation is often accepted, however, its accuracy depends on the 

damping value. The correlation between these three parameters is given by the 

following expression (Nashif; Jones; Henderson, 1985) and (Graesser; Wong, 1991): 

𝑄−1 = 2𝜁 =  √1 +  𝜂 − √1 −  𝜂 . (6) 

After some algebraic manipulations, the relationship between 𝜁 and 𝜂 can be 

written as 

𝜂 = 2𝜁√1 − 𝜁2 . (7) 

 The relationship from de 𝜂 = 2𝜁 remains within 5% accuracy if 𝜂 is between 0 ≤ 

η ≤ 0.3. Figure 4 shows the difference between 𝜂 = 2𝜁 and 𝜂 = 2𝜁√1 − 𝜁2. 

Figure 4: Relationship between loss factor η and the damping ratio ζ with the two mathematical 
relationships used above.  

 

Source: adapted from Petrone (2014). 
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2.2 RUBBER MOUNTS 
 

Elastomeric mounts have been used to isolate engines for decades. Many 

changes have been made over the years to improve the performance of this type of 

system. 

Elastomeric mounts are designed with stiffness values to achieve good 

vibrational isolation in all directions. Due to the elastomeric material being cheaper and 

the production process simpler compared to other types of mounts, its cost ends up 

being more competitive. Additionally, these mounts are more compact and do not 

require maintenance. As mentioned by Swanson (1993), elastomeric mounts can be 

represented by the Kelvin-Voigt model, with the base being rigidly fixed and the force 

and displacement coming from the suspended mass. Figure 5 shows a graphical 

representation of this model. 

Figure 5: Model of a single degree of freedom system being driven by the mass. 

 

Source: adapted from Griffin (1990). 

It is worth mentioning that Figure 1 shows a system with different behavior of 

the system of Figure 5 since in the former there is no restriction of motion on the base.  

Swanson (1993) also stated that elastomeric mounts present a linear dynamic 

stiffness, which increases with frequency due to the damping effect. This behavior is 

depicted in Figure 6. 
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Figure 6: Dynamic stiffness of an elastomeric mount. 

 

Source: adapted from Yu, Naganathan and Dukkipati (2001). 

Designing a mounting system that meets a wide range of project requirements 

is a challenging task. A mount with high stiffness or high damping can provide high 

vibrational isolation at low frequencies, but its performance at high frequencies may 

result in low vibrational isolation, leading to undesired project performance levels. On 

the other hand, low stiffness and low damping result in high vibrational isolation 

performance at high frequencies, but low-frequency phenomena involving rigid body 

modes may be induced due to excitations, such as transient vibration signals. 

To meet the pre-established requirements of mounts project, a compromise is 

necessary to achieve a balance between isolating the powertrain and preventing 

unwanted rigid body mode movements.  

According to Rivin (1985), there are several ways to achieve the desired 

performance between low and high frequencies. For example, the application of 

Constant Natural Frequency (CNF) mounts, where the stiffness is proportional to the 

load on the mount. However, since the natural frequency in this type of system is 

directly proportional to stiffness and inversely proportional to load, the load's influence 

is canceled out, leading the CNF mount to have a constant natural frequency, obviously 

within a load range. Another possibility mentioned by Rivin (1985) is the use of a 

system where there is a spring in series with the Kelvin-Voigt model damper. In this 

condition, it is possible to have a high dependence of stiffness and damping on 

frequency. 
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Figure 7: Comparison between the Kelvin-Voigt model and the Modified Kelvin-Voigt model with a spring 
K2 in series with the damper. Assuming K2 has the same stiffness as K1. Consideration of the model 
with input motion at the base. 

 

Source: the author. 

As can be seen in Figure 7, the Modified Kelvin-Voigt system with the spring 𝐾2 

 in series with the damper generated a high stiffness dependence on frequency. It is 

worth noting that the spring 𝐾2  does not refer to the loss modulus. It is important to 

mention that in the graph of Figure 7, a smaller damping was used in the modified 

model.  

These alternatives described only contribute to a better utilization of the 

elastomeric mount's performance. However, as previously described, the solution for 

a conventional elastomeric mount is a compromise between isolating the powertrain 

and preventing unwanted rigid body mode movements.  

For electric motor applications, it is necessary to take into account the natural 

frequency of the rubber mount itself. As explained by Lion (2020) the frequency 

excitation of electric synchronous motor, which are most used in vehicles, typically 

operates within a frequency range from 10 to 300 Hz. However, the influence of the 

harmonics of electromagnetic orders of the stator and the number of poles can extend 

the frequency to a much higher frequency range as mentioned by Jagasics and Vajda 
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(2016). For instance, the natural frequency value of a cylindrical rubber mount would 

be about 630 Hz according to Lion (2020). 

Therefore, analyzing mount isolation becomes more complex and the rigid body 

approach of the motor cannot also be considered. 

One of the technologies developed to deal with electric motors is the second-

stage mount model (Zhang; Liu, 2022), which presents a better vibration damping 

performance than original rubber mounts (Kruse; Carre, 2012). One way to predict the 

isolation performance of the rubber mount is to use constitutive models, for example, 

Kelvin-Voight and Maxwell models to obtain the dynamic stiffness through the finite 

element simulation method (Lee; Shin; Msolli, 2017, Cao; Sadeghi; Stacke, 2016, 

Davalos; Caldino-Herrera; Cornejo-Monroy, 2021). Another way to predict the isolation 

performance of the mount is to use the dynamic models, such as the fractional 

derivative model, to obtain the dynamic stiffness through the analytical calculation 

method (Shi; Wu, 2016, Lin; Schomburg, 2003).  

Peng (2021) calculated the dynamic stiffness of the rubber isolator from 10-

1000Hz through the finite element method by the generalized Maxwell model and 

presented how the parameters of the model were identified. The calculation of the force 

at the base end and at the motor end of the rubber isolator under high-frequency 

excitation was performed by the differential method and the segment method (Lion, 

2020). 

Hazra (2020) and Kruse and Carre (2012) calculated the high-frequency 

dynamic stiffness (50-2000 Hz) of a rubber mount with second-stage isolation through 

finite element simulation, on top of that a comparison with the original mount was done 

and the second-stage isolation mount presented a better vibration damper 

performance. 

Zhang and Liu (2022) proposed a high-frequency dynamic model by the 

fractional derivative method for the second-stage mount. A graphical representation of 

the model is shown in Figure 8, where kcc, kzz1, kzz2 are the stiffness of springs; bc, 

bz1 and bz2 are the viscous force damping coefficients of the fractional derivative 

elements; ac, az1 and az2 are the fractional derivative orders of the fractional derivative 

elements. 
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Figure 8: High-frequency dynamic model utilizing the fractional derivative method.  

 

Source: adapted from Zhang and Liu (2022). 

With this model they compare the dynamics stiffness of the first and second-

stage with a finite element model. Figures 9 and 10 present the comparison of the 

fractional derivative model and the finite element model. 

Figure 9: Comparison of the dynamic stiffness result of the first-stage isolation of the finite element 
model versus the fractional derivative model. 

 

Source: adapted from Zhang and Liu (2022). 

 

 

 

 

 

 



43 
 

 

   

Figure 10: Comparison of the dynamic stiffness result of the second-stage isolation of the finite element 
model versus the fractional derivative model. 

 

Source: adapted from Zhang and Liu (2022). 

As it can be seen, the fractional derivative model presented a very good 

correlation with the finite element model in high-frequency for the first and second-

stage. 

2.3 HYDRAULIC PASSIVE MOUNTS 
 

The need for a mount with high damping at low excitation frequencies and low 

damping at high excitation frequencies has led to the development of new isolation 

concepts, such as the hydraulic mount.  

There are several types of hydraulic mounts, such as the single orifice hydraulic 

mount, the hydraulic mount with an inertia track, and the hydraulic mount with an inertia 

track and a decoupler. Follow the sequence for more details about the hydraulic mount 

with an inertia track and a decoupler, as it provides a clear understanding of the 

concepts and advantages of hydraulic mounts. 

The hydraulic mount with an inertia track and a decoupler is a device that 

provides the desired damping characteristics by implementing a mechanical switching 

mechanism known as a decoupler along with a narrow channel that produces high fluid 

restriction. This channel is technically called an inertia track, as mentioned by Flower 

(1985). Figure 11 presents more details of the components of the hydraulic mount. 
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Figure 11: Hydraulic mount with inertia track and decoupler image. 

  

Source: adapted from Christopherson, Mahinfalah and Jazar (2012). 

Large amplitudes in the low-frequency ranges transmit significant fluid 

movement, enough to force the decoupler to the bottom of the cage surrounding it, 

thus forcing the fluid to flow through the inertia track to the lower chamber. The inertia 

track is a long, narrow tube that extends circumferentially around the mount, providing 

a highly restrictive flow path between the upper and lower chambers. 

Due to the restrictive nature of the inertia track, there is an increase in viscous 

damping in the system. This increase in damping acts to reduce transmissibility at low 

excitation frequencies. However, at high frequencies, the decoupler does not reach the 

bottom of the cage. Instead, it moves up and down freely, providing little flow restriction. 

Because of the low flow restriction that the decoupler now has, the flow redirects 

from the inertia track to the decoupler, thereby reducing damping. The effects of the 

inertia track on the mount performance were studied by Lee, Choi and Hong (1994) 

and the assessed parameters were the diameter and the length of the inertia track.  

The increase of the area of the inertia track increases the amplitude, frequency 

and damping of the mount. Figures 12 and 13 show these effects. 
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Figure 12: Effect of the intertia track in the amplitude and frequency. 𝐴𝑖 is the area of the inertia track. 

 

Source: adapted from Lee, Choi and Hong (1994). 

Figure 13: Effect of the intertia track in the damping. AI is the area of the inertia track. 

 

Source: adapted from Lee, Choi and Hong (1994). 

Many authors tried to create a dynamic hydraulic mount model of one degree of 

fredroom (Bernuchon, 1984, Clark, 1985, Corcoran; Ticks, 1984, Lee; Choi; Hong, 

1994, Royston; Singh, 1995, Seto; Sawatari, 1991), however a more detailed analysis 

of the hydraulic mount requires the consideration of the fluid mass, therefore more 

degrees of freedom are necessary (Seto; Sawata, 1991, Lee; Choi; Hong, 1994, 

Royston; Singh, 1995). The classical hydraulic mount is illustrated in Figure 14. It is 

clearly perceptible that the hydraulic mount is similar to the rubber mount with the 

addition of the fluid mass 𝑚 and the stiffness 𝑘2 representing the stiffness of the 

chambers which contain the fluid. 
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Figure 14: Model of the hydraulic mount. 

 

Source: adapted from Yu, Naganathan and Dukkipati (2001). 

When modeling the inertia track, the assumptions usually made are (Wang; Lu; 

Ichiro, 2001): 

• The fluid is incompressible; 

• The influence of gravity is neglected; 

• The properties are uniform at cross-sections at the beginning and the 

end of the inertia track; 

• The relative velocity of the fluid along the track is constant; 

• The inertia track is straight; 

• Cross-sections taken along the track have the same shape. 

The hydraulic inertance is defined as the pressure per unit volume velocity 

(Massey; Ward-Smith, 2006). For a circular tube, the following equation can be used 

to estimate 𝐼𝑖, the inertance of the inertia track: 

𝐼𝑖 =
𝜌𝑙𝑖
𝐴𝑖

, (8) 

where 𝑙𝑖 is the effective length of the inertia track, 𝐴𝑖 is the cross-sectional area of the 

inertia track and 𝜌 is the density of the fluid. According to Adiguna et al. (2003) this is 

an acceptable approximation as more accurate approximations would require lengthy 

analysis. The effective length is not necessarily the actual length. It is likely to be 

between 1.0 and 1.33 times greater. This is because when the track stops the flow 

does not cease, but carries on into the chamber a short way. 
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Generally, the resistance to flow 𝑅 relates the change in pressure 𝑝 across a 

tube to the flow rate through the tube 𝑞 as  

𝑞 =
𝑝

𝑅
 . (9) 

The resistance to flow was assumed by Singh, Kim and Ravindra (1992) to be 

constant and given by: 

𝑅𝑖 =
128𝜇𝑙𝑖

𝜋𝑑𝑖
4  , (10) 

where 𝜇 is the viscosity of the fluid and 𝑑𝑖 is the hydraulic diameter. For this the flow is 

assumed to be laminar and through a circular tube. 

The resistance to flow is, in fact, the gradient of the graph of the steady state 

pressure drop Δ𝑝12 versus the steady flow rate q𝑖 (Adiguna et al., 2003). This 

relationship is non-linear. The linear equation underestimates the actual resistance as 

it does not take into account end effects and pressure drop due to cornering. It also 

does not take into account turbulent flow that might be caused by the sharp edge 

orifice. A more suitable equation is suggested by Adiguna et al. (2003) to describe the 

non-linear relationship between Δ𝑝12 and q𝑖; the sharp edge orifice formula: 

𝑞𝑖 = 𝐶𝑑𝐴𝑖√
2Δ𝑝12

𝜌
 , (11) 

where 𝐶𝑑 is the coefficient of discharge, is dependent on the edges, surface finishes 

and roundness of the hole. For a perfectly sharp edge 𝐶𝑑 is 0.60, a chamfered edge 

can change it to be up to 0.90 and a radius could increase it to 0.98 (Baillio, 2003). 

However, chamfers and radius are difficult to recreate and can create extra 

variables to consider when trying to predict flow. The best method for getting a value 

for resistance is by curve fitting to experimental results. However, in the work of 

Adiguna et al. (2003) the non-linear sharp edge orifice formula gives a value of the 

right order of magnitude, whereas their values with the linear formula differed by an 

order of magnitude. 

Ohadi and Maghsoodi (2007) also consider turbulent terms for the resistance to 

flow. Ahmadi et al. (2008) studied this effect both experimentally and using a computer 



48 
 

 

   

fluid behaviour simulation. They found close agreement between the model and the 

experiment and the curve was quadratic (see Figure 15). They found the relationship 

to be: 

Δ𝑝12 = 2.23𝑞𝑖
2  +  0.07𝑞𝑖 . (12) 

Figure 15: Pressure flow relantionship for the inertia track. 

 

Source: adapted from Ahmadi et al. (2008). 

2.4 OPTIMIZATION CONCEPTS  
 

The goal of the optimization is to identify a point that minimizes a function, 

subject to equality and/or inequality constraints, as described by Arora (2012). In 

mathematical terms, an optimization problem is formulated as follows: 

                                     𝑚𝑖𝑛 𝑓({𝑿}) 

 ℎ𝑗({𝑿}) = 0; 𝑗 = 1 𝑡𝑜 𝑝 (13) 

                                          𝑔𝑖({𝑿}) ≤ 0; 𝑖 = 1 𝑡𝑜 𝑚, 

where {𝑿} represents the set (vector) of the design variables (the adjustable 

parameters during the optimization process), 𝑓 denotes the objective function, ℎ𝑗 

corresponds to the equality constraints, and 𝑔𝑖 to the inequality constraints. 

There are some techniques to solve the problem of Eq. (13) and one of the them 

is the interior-point using the primal-dual logarithmic barrier method (PDLB) which is 

considered a robust and efficient approach (Delgado, 2016). 
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In the PDLB method, the inequality constraints from Eq. (13) are transformed 

into equalities by introducing positive slack variables 𝑠𝑖. This leads to the modified 

problem presented in Eq. (14) 

                                    𝑚𝑖𝑛 𝑓({𝑿}) 

 ℎ𝑗({𝑿}) = 0; 𝑗 = 1 𝑡𝑜 𝑝 (14) 

                                          𝑔𝑖({𝑿}) + 𝑠𝑖 = 0;  𝑖 = 1 𝑡𝑜 𝑚. 

Subsequently, a logarithmic barrier function is added to the objective function to ensure 

the non-negativity of the slack variables, as shown in Eq. (15). 

𝑚𝑖𝑛 𝑓({𝑿}) − μ∑𝑙𝑛(𝑠𝑖)

𝒊

 

 ℎ𝑗({𝑿}) = 0; 𝑗 = 1 𝑡𝑜 𝑝 (15) 

                                          𝑔𝑖({𝑿}) + 𝑠𝑖 = 0;  𝑖 = 1 𝑡𝑜 𝑚, 

where 𝜇 is referred to as the barrier parameter and the 𝑙𝑛(𝑠𝑖) is called the logarithmic 

barrier function.   

Thus, the following logarithmic barrier Lagrangian function is obtained: 

𝐿({𝑿𝒌}) = 𝑓({𝑿𝒌}) + μ∑𝑙𝑛(𝑠𝑖)

𝑚

𝑖=1

+ ∑𝑢𝑘,𝑖

𝑚

𝑖=1

∇2𝑔𝑖({𝑿𝑘}) +  ∑𝑣𝑘,𝑖

𝑝

𝑖=1

∇2ℎ𝑖({𝑿𝑘}). (16) 

The necessary condition of 1st order is applied to the barrier Lagrangian 

logarithmic barrier function, Eq. (16), resulting in a system of nonlinear equations as 

shown in Eq. (17): 

∇𝐿({𝑿𝒌}) =

[
 
 
 
 ∇𝑓({𝑿}) + [𝑱ℎ]𝑇{𝒗} + [𝑱𝑔]

𝑇
{𝒖}

{𝒖} − 𝜇{𝒔}−1

{𝒉({𝑿})}

{𝒈({𝑿})} + {𝒔} ]
 
 
 
 

= 0, (17) 

here [𝑱𝑔] denotes the Jacobian of the constraint functions {𝒈({𝑿})} and [𝑱ℎ] denotes 

the Jacobian of the constraint functions {𝒉({𝑿})}. 

The solution of the nonlinear system is given by the Newton’s Method as in Eq (18) 

 [𝑾]Δ{𝒅} = −∇𝐿({𝑿𝒌}), (18) 
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where Δ{𝒅}𝑇 = (Δ{𝑿}, Δ{𝒔}, Δ{𝒖}, Δ{𝒗}) and [𝑾] is given by 

 [𝑾] =

[
 
 
 
 
[𝑯] 0

 0 −𝜇[𝐒]−1    
[𝑱ℎ]𝑇 [𝑱𝑔]𝑇

0  [𝑰] 
[𝑱ℎ] 0
[𝑱𝑔] [𝐈]

    
        0      0
      0       0  ]

 
 
 
 

. (19) 

[𝑯] is referred to as the Hessian matrix of the Lagrangian function where: 

[𝑯] = ∇𝑥𝑥
2 𝐿({𝑿𝒌}) = ∇2𝑓({𝑿𝒌}) + ∑𝑢𝑘,𝑖

𝑚

𝑖=1

∇2𝑔𝑖({𝑿𝑘}) +  ∑𝜈𝑘,𝑖

𝑝

𝑖=1

∇2ℎ𝑖({𝑿𝑘}). (20) 

And the submatrix [𝐒] is give by  

 [𝑺] =

[
 
 
 
 

𝜇

(𝑠1)2
0 0

0 ⋱ 0

0 0
𝜇

(𝑠𝑚)2]
 
 
 
 

. (21) 

The vector of the variables {𝑿}, {𝒔}, {𝒖} and {𝒗} are updated according to  

{𝑿𝑘+1} =  {𝑿𝑘} + 𝛼𝑝Δ{𝑿𝑘} 

 {𝒔𝑘+1} =  {𝒔𝑘} + 𝛼𝑝Δ{𝒔𝑘} (22) 

{𝒗𝑘+1} =  {𝒗𝑘} + 𝛼𝑑Δ{𝒗𝑘} 

{𝒖𝑘+1} =  {𝒖𝑘} + 𝛼𝑑Δ{𝒖𝑘}, 

𝛼𝑝 and 𝛼𝑑 are the steps used in the update of the primal and dual variables, 

respectively. 

In case of interest on how the 𝛼𝑝 and 𝛼𝑑 are calculated further details can be 

found in Granville (1994) and Torres, Quintana and Medina (2000). 
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3 SIX DOF MOTOR MODEL AND MOUNT ISOLATION MODEL 

 

In order to begin evaluating the vibrational behavior of the mount project, the 

first step is to create an analytical model of six degrees of freedom for a general case 

of N mounts, bearing in mind that, afterward, the model can be used for any mount 

project whatever be the number of mounts.  

The analytical model developed in this chapter is essential to estimate the modal 

parameters of the system required in the optimization process to reach a high modal 

purity. 

As part of the optimization problem, the isolation performance is evaluated. A  

transmissibility model of the mount is created and integrated into the problem together 

to the modal purity problem with the objective to optimize the isolation performance of 

the mount in the mid-frequency range. 

3.1 MATHEMATICAL MODEL OF SIX DOF OF THE MOTOR FIXED WITH MOUNTS 
 

To determine the rigid body modes of the motor, the first step is to develop a 

mathematical model for this purpose. There are six degree of fredoom for a rigid body 

mode, three modes of translation and another three of rotation (Lin; Tsay, 2011). For 

the construction of the model, an important condition must be satisfied, which is the 

suspension of the structure on slightly rigid springs (Park; Singh, 2010). The 

importance of this condition is to ensure a high modal modal purity. According to Tahir 

(2018) a high modal purity of a mode means a high kinetic energy of this respective 

mode, the kinetic energy of the mode will be discussed in further detail in Chapter 4. 

The greater the modal purity, the greater the decoupling of each degree of 

freedom in each direction. This is important to reduce the vibrational effects transmitted 

given the input of a certain force in a certain direction and also for better control of the 

vibrational distribution of the system in the low-frequency range. 

For the model of the motor suspended on the mounts, six degrees of freedom 

(DOF) are used to determine the rigid body modes. A schematic representation of the 

suspended motor is shown in Figure 16. 
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Figure 16: Schematic illustration of a motor suspended on four mounts. 

 

Source: adapted from Park and Singh (2010). 

Considering that the forces and displacements of a motor are assumed to be 

periodic, they can be expressed as the sum of harmonic functions (Hafidi; Martin, 

2010). This assumption allows for a simplified, but at the same time quite reasonable 

approach. They are represented as: 

{�̃�}
𝐺

= {𝐑}𝐺𝑒𝑖𝜔𝑡, (23) 

{�̃�} =  {𝐅}𝑒𝑖𝜔𝑡. (24) 

The motion equation will be formulated in matrix form based on the vector {𝑹}𝐺, 

which represents the displacement vector at the center of gravity (CG) in global 

coordinates. 

{𝑹}𝐺 = [
{𝑹𝒕}𝐺
{𝑹𝜽}𝐺

] . (25) 

The motion equation is formed by the reaction forces of elastic and damping 

nature, and is given by the following relation: 

[𝐌]{�̈�}
𝐺

+ [𝐂]{�̇�}
𝐺

+ [𝐊]{𝐑}𝐺 = {𝐅}. (26) 

As it deals with harmonic displacements and forces, Eq. (26) can be rewritten 

as: 
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−𝝎𝟐[𝐌]{𝐑}𝐺 +  𝑖𝛚[𝐂]{𝐑}𝐺 + [𝐊]{𝐑}𝐺 = {𝐅}. (27) 

The displacement {𝑹𝒊}𝐺 at each mount in the global coordinate located at the 

CG (in this case, the center of mass and center of gravity are coincident) can be written 

based on the displacement of the motor’s center of mass by the following equation: 

{𝑹𝒊}𝐺 =  {𝑹𝒕}𝐺 + {𝑹𝜽}𝐺 × {𝒓𝒊}𝐺 , (28) 

where {𝑹𝒕}𝐺 represents the translational displacement vector in the global coordinate,  

{𝑹𝜽}𝐺 represents the rotational displacement vector in the global coordinate, and {𝒓𝒊}𝐺 

represents the position vector of the i-th mount in the global coordinate. 

The vector {𝑹𝒊}𝐺 can also be written as: 

{𝑹𝒊}𝐺 =  [[𝐈][𝐇𝒊]]{𝐑}𝐺 , (29) 

where [𝐈] is the 3 x 3 identity matrix and [𝐇𝒊] is a skew-symmetric matrix (Haug, 2021): 

[𝐇𝒊] =   [

0  𝑟𝑖𝑧 −𝑟𝑖𝑦
−𝑟𝑖𝑧 0   𝑟𝑖𝑥
𝑟𝑖𝑦 −𝑟𝑖𝑥 0

].  (30) 

If there are rotations in the local coordinate system of each mount, it is 

necessary to apply the rotation transformation matrix. Therefore, the displacement 

vector of the i-th mount in the local coordinate {𝑹𝒊}𝐿 is given by: 

{𝑹𝒊}𝐿 = [
{𝑹𝒊,𝒕}𝐿
{𝑹𝒊,𝜽}𝐿

] = [𝚯𝒊] [
[𝐈] [𝐇𝒊]

𝟎 [𝐈]
] {𝐑}𝐺 . (31) 

where [𝚯𝒊]  is the rotational transformation matrix of the i-th mount constructed with 

the Euler angles around the global coordinate system in the sequence X, Y, and Z 

(Crede, 1965). Here, 𝜃1𝑖, 𝜃2𝑖 e 𝜃3𝑖 are the rotation angles around the respective X, Y, 

and Z axes. 

[𝚯𝒊] =  [

−𝐶𝜃2𝑖𝐶𝜃3𝑖   𝑆𝜃1𝑖𝑆𝜃2𝑖𝐶𝜃3𝑖 − 𝐶𝜃1𝑖𝑆𝜃3𝑖     𝐶𝜃1𝑖𝑆𝜃2𝑖𝐶𝜃3𝑖 + 𝑆𝜃1𝑖𝑆𝜃3𝑖

   𝐶𝜃2𝑖𝑆𝜃3𝑖 𝑆𝜃1𝑖𝑆𝜃2𝑖𝐶𝜃3𝑖 + 𝐶𝜃1𝑖𝑆𝜃3𝑖   𝐶𝜃1𝑖𝑆𝜃2𝑖𝐶𝜃3𝑖 − 𝑆𝜃1𝑖𝑆𝜃3𝑖

−𝑆𝜃2𝑖 𝑆𝜃1𝑖𝐶𝜃2𝑖 𝐶𝜃1𝑖𝐶𝜃2𝑖

] , (32) 

where 𝐶 and 𝑆 represent the cosine and sine functions. 



54 
 

 

   

From Eq. (31), it is possible to find the local translational force {𝒇𝒊,𝒕}𝐿 at each 

mount: 

{𝒇𝒊,𝒕}𝐿 = [𝒌𝑖]𝐿{𝑹𝒊,𝒕}𝐿 = [𝒌𝑖]𝐿[𝚯𝒊][[𝐈] [𝐇𝒊]]{𝐑}𝐺 , (33) 

where [𝒌𝑖]𝐿 is the diagonal matrix at the local coordinate, given by: 

[𝒌𝑖]𝐿 =  [

𝑘𝑖𝑥 0 0

0 𝑘𝑖𝑦 0

0 0 𝑘𝑖𝑧

] . (34) 

The vector {𝒇𝒊}𝐺 is given by the translational forces and the moments produced 

from the translational forces {𝒇𝒊,𝒕}𝐺, represented by the following expression: 

{𝒇𝒊}𝐺 = {
{𝒇𝒊,𝒕}𝐺
{𝒇𝒊,𝜽}𝐺

} = {
{𝒇𝒊,𝒕}𝐺

{𝒓𝒊}𝐺 × {𝒇𝒊,𝒕}𝐺
}  =  [

[𝐈]

[𝐇𝒊
T]

] {𝒇𝒊,𝒕}𝐺 . (35) 

It is important to note that Eq. (35) considers only the torque produced by the 

translation of the motor and disregards the torque from rotational stiffness as it is a 

non-dominant component in this type of system (Hafidi, 2010). 

However, {𝒇𝒊,𝒕}𝐺 can also be written as {𝒇𝒊,𝒕}𝐺 = [𝚯𝒊]
−1{𝒇𝒊,𝒕}𝐿, but since the 

transformation matrix [𝚯𝒊] is orthogonal, then , {𝒇𝒊,𝒕}𝐺 = [𝚯𝒊]
𝑇{𝒇𝒊,𝒕}𝐿. Thus, {𝒇𝒊}𝐺 takes 

the following form shown: 

{𝒇𝒊}𝐺 = [
[𝐈]

[𝐇𝒊
T]

] [𝚯𝒊]
𝑇[𝒌𝑖]𝐿[𝚯𝒊][[𝐈] [𝐇𝒊]]{𝐑}𝐺 . (36) 

The global matrix stiffness [𝒌𝑖]𝐺 appears as the product of  [𝚯𝒊]
𝑇[𝒌𝑖]𝐿[𝚯𝒊]  and 

the position matrix [𝐁𝒊]  as [[𝐈] [𝐇𝒊]]. 

Thus {𝒇𝒊}𝐺 can be rewritten as: 

{𝒇𝒊}𝐺 = [𝑩𝑖]
𝑇[𝒌𝑖]𝐺[𝑩𝒊]{𝐑}𝐺 . (37) 

Therefore, the total reaction force {𝐅𝒌}𝐺 associated with the stiffness can be 

given by: 
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{𝐅𝒌}𝐺 = ∑[𝑩𝑖]
𝑇[𝒌𝑖]𝐺[𝑩𝒊]{𝐑}𝐺

𝑁

𝑖=1

. (38) 

With the considerations above, the Eq. (34) can be extended to the reaction 

forces related to the damping of the system, where now the local matrix [𝒄𝑖]𝐿 is the 

damping matrix and presents the following form: 

[𝒄𝑖]𝐿 =  [

𝑐𝑖𝑥 0 0
0 𝑐𝑖𝑦 0

0 0 𝑐𝑖𝑧

] . (39) 

Replacing [𝒌𝑖]𝐿 by [𝒄𝑖]𝐿 in Eq. (38) yields: 

{𝐅𝒄}𝐺 = ∑[𝑩𝑖]
𝑇[𝒄𝑖]𝐺[𝑩𝑖]{𝐑}𝐺

𝑁

𝑖=1

. (40) 

The generalized mass matrix of the powertrain is given by the following equation 

(Xu; Gong; Meng; Li, 2021): 

[𝐌] =

[
 
 
 
 
 
 

𝑚 0000  0
0 𝑚 0 00 
0 0     𝑚𝑚

0 𝑚𝑧𝑑 −𝑚𝑦𝑑

−𝑚𝑧𝑑 0 𝑚𝑥𝑑

𝑚𝑦𝑑 −𝑚𝑥𝑑 0

0 −𝑚𝑧𝑑 𝑚𝑦𝑑

𝑚𝑧𝑑 0 −𝑚𝑥𝑑

𝑚𝑦𝑑 𝑚𝑥𝑑 0

𝐼𝑥𝑥𝑜 −𝐼𝑥𝑦𝑜 −𝐼𝑥𝑧𝑜

−𝐼𝑥𝑦𝑜 𝐼𝑦𝑦𝑜 −𝐼𝑦𝑧𝑜

 −𝐼𝑥𝑧𝑜 −𝐼𝑦𝑧𝑜 𝐼𝑧𝑧𝑜 ]
 
 
 
 
 
 

. (41) 

In Eq. (41), 𝑚 is the mass of the powertrain, (𝑥𝑑, 𝑦𝑑, 𝑧𝑑)  is the resulting vector 

of the distance from the powertrain's CG to the origin of the global coordinate system, 

𝐼𝑥𝑥𝑜, 𝐼𝑦𝑦𝑜, 𝐼𝑧𝑧𝑜, ..., are the inertia terms of the powertrain assembly about the origin of 

the global coordinate system. Since the center of gravity of the powertrain coincides 

with the origin of the global coordinate system, the generalized mass matrix is 

simplified to the following form: 

[𝐌] =

[
 
 
 
 
 
 
𝑚 0000  0
0 𝑚 0 00 
0 0     𝑚𝑚

0 0 0
− 0𝑧𝑑 0     0𝑥𝑑

0 𝑚 0𝑥𝑑 0

  000  000𝑧𝑑 0𝑦𝑑

  0𝑧𝑑  00000 0𝑥𝑑

  0𝑦𝑑 0𝑚𝑥𝑑 000

𝐼𝑥𝑥𝑜 −𝐼𝑥𝑦𝑜 −𝐼𝑥𝑧𝑜

−𝐼𝑥𝑦𝑜 𝐼𝑦𝑦𝑜 −𝐼𝑦𝑧𝑜

 −𝐼𝑥𝑧𝑜 −𝐼𝑦𝑧𝑜 𝐼𝑧𝑧𝑜 ]
 
 
 
 
 
 

. (42) 
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Therefore, Eq. (27) can be rewritten as: 

−𝝎𝟐[𝐌]{𝐑}𝐺 +  𝑖𝝎∑[𝑩𝑖]
𝑇[𝒄𝑖]𝐺[𝑩𝑖]{𝐑}𝐺

𝑁

𝑖=1

+ ∑[𝑩𝑖]
𝑇[𝒌𝑖]𝐺[𝑩𝒊]{𝐑}𝐺

𝑁

𝑖=1

= {𝐅}. (43) 

From Eq. (43), it is possible to describe all rigid body motions of the powertrain, 

which are evaluated in subsequent chapters. 

3.2 DESCRIPTION OF THE MODEL WITHOUT DAMPING 
 

For an undamped MGL system with N degrees of freedom, the governing 

equations of motion can be written in matrix form as follows: 

[𝐌]{�̈�} + [𝐊]{𝐑} =  {𝐅}. (44) 

We should first consider the free vibration solution (in order to determine the 

normal or natural modal properties) by setting {𝐅} = 0. 

Under this condition, it should be consider a displacement solution of the form 

{�̃�}  =  {𝐑} 𝑒𝑖𝜔𝑡.  

Substituting these conditions into Eq. (44), the final result is expressed as: 

([𝐊] − ω2[𝐌]){𝐑} =  {0}. (45) 

For which the only non-trivial solution is given by: 

𝑑𝑒𝑡[[𝐊] − 𝜔2[𝐌]] = 0. (46) 

From the solution of the equation above, we obtain the diagonal matrix of 

eigenvalues [ ω̅r
2
⋱0

⋱ ]  and eigenvectors [𝚿]  that form the modal model. Here, the 

eigenvalue ω̅r
2  is the r-th eigenvalue or squared natural frequency. 

The modal model has important properties known as orthogonality properties, 

which are as follows: 

[𝚿]𝑇[𝐌][𝚿] =  [ m𝑟⋱0
⋱ ] , (47) 

[𝚿]𝑇[𝐊][𝚿] =  [ k𝑟⋱0
⋱ ], (48)  



57 
 

 

   

where the matrices [ m𝑟⋱0
⋱ ] and [ k𝑟⋱0

⋱ ]  are called, respectively, the modal mass matrix 

and the modal stiffness matrix. From these matrices, we can also find the matrix of 

natural frequencies by the expression below: 

[ ω̅r
2
⋱0

⋱ ] =  [ m𝑟⋱0
⋱ ] −1 [ k𝑟⋱0

⋱ ] . (49) 

It is also possible to normalize the eigenvector matrix using the modal mass as: 

[𝚽] = [𝚿] [ m𝑟

−
1
2
⋱0

⋱ ] . (50) 

This normalization is crucial, because the modal mass and stiffness matrices 

can be rewritten as: 

[𝚽]𝑇[𝐌][𝚽] = [𝐈] , (51) 

[𝚽]𝑇[𝐊][𝚽] =  [ ω̅r
2
⋱𝟎

⋱ ] . (52) 

Returning now to the case where a set of external sinusoidal forces is applied 

{�̃�} =  {𝐅}𝑒𝑖𝜔𝑡, all of the same frequency, 𝜔, but with different amplitudes and phases, 

and similarly assuming a response of the form {�̃�}
𝐺

= {𝐑}𝐺𝑒𝑖𝜔𝑡. Therefore, returning 

to Eq. (45), but with the force being non-zero, the following relationship appears: 

([𝐊] − ω2[𝐌]){𝐑}𝑒𝑖𝜔𝑡 = {𝐅}𝑒𝑖𝜔𝑡 . (53) 

After some manipulations of the equation above, we find: 

{𝐑} =  ([𝐊] − ω2[𝐌])−1{𝐅} , (54) 

{𝐑} =  [𝛼(ω)]{𝐅} , (55) 

where [𝛼(ω)] is the N x N receptance matrix and forms the response model. Each 

element of the receptance matrix is the frequency response function (FRF) expressed 

generally as: 

𝛼𝑗𝑘(ω)  =  (
R𝑗

F𝑘
) , F𝑚 = 0,𝑚 = 1, N; k ≠ 0. (56) 
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In practice, computing the FRFs for each value of 𝜔 is computationally infeasible 

due to the need to invert the matrix for each value of 𝜔. Therefore, it is necessary to 

rewrite Eq. (56). For this, the following form is taken: 

([𝐊] − ω2[𝐌]) =  [𝛼(ω)]−1 . (57) 

By pre-multiplying by [𝚽]𝑇 and post-multiplying by [𝚽]: 

[𝚽]𝑇([𝐊] − ω2[𝐌])[𝚽] =  [𝚽]𝑇[𝛼(ω)]−1[𝚽] (58) 

or 

[(ω̅𝑟
2 − ω2)] =  [𝚽]𝑇[𝛼(ω)]−1[𝚽] , (59) 

resulting in: 

[𝛼(ω)] =  [𝚽][(ω̅𝑟
2 − ω2)]−1[𝚽]𝑇 . (60) 

Therefore, each term 𝛼𝑗𝑘(ω)  is given by: 

𝛼𝑗𝑘(ω) =  ∑
(𝜙𝑗𝑟)(𝜙𝑘𝑟)

ω̅𝑟
2 − ω2

𝑁

𝑟=1

 . (61) 

The Eq. (61) allows the calculation of each FRF by the usage of the elements 

of the mass normalized eigenvector matrices. This is much simpler and informative 

than calculate the direct inverse of Eq. (54). 

3.3 DESCRIPTION OF THE HYSTERETIC MODEL 
 

For a system of MDOFs with hysteretic damping, with N degrees of freedom, 

the governing equations of motion can be written in matrix form as: 

[𝐌]{�̈�} + [𝐊]{𝐑} +  i[𝐇𝒌]{𝐑} =  {𝐅}, (62) 

where [𝐇𝒌] is the matrix of hysteretic damping. Similarly to what was done in the 

undamped system, we should first consider the free vibration solution (in order to 

determine the normal or natural modal properties) by setting {𝐅} = 0. 
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Under this condition, a displacement solution for Eq. (62) is of the form {�̃�}  =

 {𝐑} 𝑒𝑖𝜆𝑡. 

Substituting these conditions into Eq. (44), the final result is expressed as: 

([𝐊𝒄] − ω2[𝐌]){𝐑} =  {0}, (63) 

where [𝐊𝒄] = [𝐊] +  i[𝐇𝒌], thus the only non-trivial solution is given by: 

𝑑𝑒𝑡[[𝐊𝒄] − 𝜔2[𝐌]] = 0. (64) 

From the solution of the Eq. (64), it is obtained the diagonal matrix of 

eigenvalues [ 𝜆r
2
⋱0

⋱ ]  and eigenvectors [𝚿] that form the modal model, but now both the 

eigenvalues and eigenvectors belong to the set of complex numbers. Here, the 

eigenvalue λr
2  is the r-th eigenvalue and has the following form: 

λr
2 = ωr

2(1 + 𝑖𝜂𝑟), (65) 

where 𝜂𝑟 is the damping loss factor. The same orthogonality properties mentioned for 

the undamped model apply here: 

[𝚿]𝑇[𝐌][𝚿] =  [ m𝑟⋱0
⋱ ], (66) 

[𝚿]𝑇[𝐊𝒄][𝚿] =  [ k𝑟⋱0
⋱ ]. (67) 

The eigenvalues can be directly found from the relationship between the modal 

mass matrix and the modal stiffness matrix, both of which are complex. 

[ λr
2
⋱0

⋱ ] =  [ m𝑟⋱0
⋱ ] −1 [ k𝑟⋱0

⋱ ] . (68) 

One can also normalize the eigenvector matrix using the modal mass as:  

[𝚽] = [𝚿] [ m𝑟

−
1
2
⋱0

⋱ ] . (69) 

This normalization is very important because the modal mass and stiffness 

matrices can be rewritten as: 

[𝚽]𝑇[𝐌][𝚽] =  [𝐈], (70) 
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[𝚽]𝑇[𝐊𝒄][𝚽] =  [ 𝜆r
2
⋱𝟎

⋱ ]. (71) 

Returning now to the case where a set of external sinusoidal forces is applied 

{�̃�} =  {𝐅}𝑒𝑖𝜔𝑡, all of the same frequency, ω, but with different amplitudes and phases, 

and similarly, we assume a response of the form {�̃�}
𝐺

= {𝐑}𝐺𝑒𝑖𝜔𝑡.  

 Using the same approach as the undamped modal model, we can write the 

inverse of the receptance matrix, but now with the matrix [𝐊𝒄]. 

([𝐊𝒄] − ω2[𝐌]) =  [𝛼(ω)]−1. (72) 

By pre-multiplying by [𝚽]𝑇 and pos-multiplying by [𝚽] leads to: 

[𝚽]𝑇([𝐊𝒄] − ω2[𝐌])[𝚽] =  [𝚽]𝑇[𝛼(ω)]−1[𝚽] (73) 

or 

[(𝜆r
2 − ω2)] =  [𝚽]𝑇[𝛼(ω)]−1[𝚽]. (74) 

This results in: 

 [𝛼(ω)] =  [𝚽][(𝜆r
2 − ω2)]−1[𝚽]𝑇. (75) 

Therefore, each term 𝛼𝑗𝑘(ω) for the hysteretic modal model is given by 

𝛼𝑗𝑘(ω) =  ∑
(𝜙𝑗𝑟)(𝜙𝑘𝑟)

ω𝑟
2 − ω2 + 𝑖𝜂𝑟ω𝑟

2

𝑁

𝑟=1

 , (76) 

From Eq. (76), the FRFs of the hysteretic model can be calculated using again 

the mass normalized eigenvectors, however, now, the hysteresis generates a phase 

and the numerator and denominator are complex numbers. 

The mount isolation model in working condition is as important as the rigid body 

modes. Furthermore, the loads generated by the motor have to be considered what 

makes the assumptions involved in the study of isolation different from the ones of the 

rigid body modes because the isolation of higher frequencies should be considered. 

As mentioned by Hazra (2020) the electric motor mounts resonate at high structural 

frequencies in the range of 600 to 1000 Hz. For this reason, a range of frequencies 

below this range is considered to evaluate the mount isolation capability. This means 
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that the motor still behaves in an unyielding manner, so for this region the motor mount 

filtration can be evaluated as a rigid body mode.  

 The model is developed considering the mount damping and using the 

mechanical impedance theory. For this reason, a quick theory review is presented and 

the transmissibility function derived from the model is set. 

3.4 MECHANICAL IMPEDANCE APPROACH 
 

According to Harris and Piersol (2002), the mechanical impedance 𝑍 of a 

system is the ratio of a sinusoidal driving force 𝐹 acting on the system to the resulting 

velocity 𝑣 of the system. Its mechanical mobility 𝑌 is the inverse of the mechanical 

impedance. 

Consider a sinusoidal driving 𝐹 that has a magnitude 𝐹0 and an angular 

frequency 𝜔:   

𝐹 =  𝐹0𝑒
𝑖𝜔𝑡 . (77) 

The application of this force to a linear mechanical system results in a velocity 

𝑣: 

𝑣 =  𝑣0𝑒
𝑖(𝜔𝑡+𝜃) , (78) 

where 𝑣0 is the magnitude of the velocity and 𝜃 is the phase angle between 𝐹 and 𝑣. 

Then, by definition, the mechanical impedance of the system 𝑍 (at the point of 

application of the force) is given by: 

𝑍 =  
𝐹

𝑣
 . (79) 

The idealized mechanical systems considered in this chapter are considered to 

be represented by combinations of basic mechanical elements assembled to form 

linear mechanical systems. These basic elements are mechanical resistances 

(dampers), springs, and masses. 

A mechanical resistance is a device in which the relative velocity between the 

end points is proportional to the force applied to the end points. Such a device can be 

represented by the dashpot of Figure 17, in which the force resisting the extension (or 
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compression) of the dashpot is the result of viscous friction. An ideal resistance is 

assumed to be made of massless, infinitely rigid elements. The velocity of point A, 𝑣1, 

with respect to the velocity at point B, 𝑣2, is: 

𝑣 = (𝑣1 − 𝑣2) =  
𝐹𝑎

𝑐
 , (80) 

Figure 17: Mechanical resistance representation. 

 

Source: adapted from Harris and Piersol (2002). 

where 𝑐 is a constant of proportionality called the mechanical resistance or damping 

constant. For there to be a relative velocity 𝑣 as a result of force at A, there must be 

an equal reaction force at B. Thus, the transmitted force 𝐹𝑏 is equal to 𝐹𝑎. The velocities 

𝑣1 and 𝑣2 are measured with respect to the stationary reference G; their difference is 

the relative velocity 𝑣 between the end points of the resistance. 

With the sinusoidal force of Eq. (77) applied to point A with point B attached to 

a fixed (immovable) point, the velocity 𝑣1 is obtained from Eq. (80) and can be written 

as 

𝑣1 = 
𝐹0𝑒

𝑖𝜔𝑡

𝑐
=  𝑣0𝑒

𝑖𝜔𝑡 . (81) 

Because 𝑐 is a real number, the force and velocity are said to be in phase. The 

mechanical impedance of the resistance is obtained by substituting from Eq. (77) and 

(79) in (81): 

𝑍𝑐 = 
𝐹

𝑣
=  𝑐. (82) 

 

The mechanical impedance of a resistance is the value of its damping constant 

𝑐. 
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The second basic element is the impedance of a linear spring. A linear spring is 

a device for which the relative displacement between its end points is proportional to 

the force applied. It is illustrated in Figure 18 and can be represented mathematically 

by:  

𝑥1 − 𝑥2 = 
𝐹𝑎

𝑘
, (83) 

where 𝑥1, 𝑥2 are displacements relative to the reference point G and 𝑘 is the spring 

stiffness. The stiffness 𝑘 can be expressed alternately in terms of a compliance C = 1/ 

𝑘. 

The spring transmits the applied force, so that 𝐹𝑎 = 𝐹𝑏. 

Figure 18: Mechanical impedance representation of a spring. 

 

Source: adapted from Cyril (2002). 

With the force of Eq. (77) applied to point A and with point B fixed, the 

displacement of point A is given by replacing this condition in Eq. (83), the result is 

𝑥1 = 
𝐹0𝑒

𝑖𝜔𝑡

𝑘
= 𝑥0𝑒

𝑖𝜔𝑡. (84) 

The displacement is thus sinusoidal and in phase with the force. The relative 

velocity of the end connection is required for impedance calculations and is given by 

the differentiation of 𝑥 with respect to the time: 

�̇� = 𝑣 =  
𝑖𝜔𝐹0𝑒

𝑖𝜔𝑡

𝑘
=  

𝜔

𝑘
𝐹0𝑒

𝑖(𝜔𝑡 +
𝜋
2
). (85) 

 

Replacing Eqs. (77) and (92) in Eq. (79) the impedance of the linear spring can 

be found, given by 

𝑍𝑘 = −
𝑗𝑘

𝜔
. (86) 
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In the ideal mass illustrated in Figure 19, the acceleration �̈� of the rigid body is 

proportional to the applied force 𝐹: 

�̈�1 = 
𝐹𝑎

𝑚
, (87) 

Figure 19: Mechanical impedance representation of a mass. 

 

Source: adapted  from Cyril (2002). 

 

where 𝑚 is the mass of the body. By Eq. (87), the force 𝐹𝑎 is required to give the mass 

the acceleration �̈�1, and the force 𝐹𝑎 is transmitted to the reference G. When a 

sinusoidal force is applied, the Eq. (87) becomes 

�̈�1 = 
𝐹0𝑒

𝑖𝜔𝑡

𝑚
 . (88) 

The acceleration is sinusoidal and in phase with the applied force. 

Integrating Eq. (88) to find velocity, 

�̇�1 = 𝑣 = 
𝐹0𝑒

𝑖𝜔𝑡

𝑖𝜔𝑚
 . (89) 

 

The mechanical impedance of the mass is the ratio of 𝐹 to 𝑣, so that 

𝑍 =  
𝐹0𝑒

𝑖𝜔𝑡

𝐹0𝑒𝑖𝜔𝑡/𝑖𝜔𝑚
=  𝑖𝜔𝑚. (90) 

Thus, the impedance of a mass is an imaginary quantity that depends on the 

magnitude of the mass and on the frequency. 

In analyzing the properties of mechanical systems, it is often advantageous to 

combine groups of basic mechanical elements into single impedances.  

The parallel elements are the combination of elements shown in Figure 20, a 

spring and a mechanical resistance. They are said to be in parallel since the same 
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force is applied to both, and both are constrained to have the same relative velocities 

between their connections. 

Figure 20: Representation of a parallel spring-resistance combination. 

 

Source: adapted from Cyril (2002). 

 

In this configuration, the force in both elements are summed, i.e., 

𝐹 = 𝐹𝑐 + 𝐹𝑘. (91) 

By extending this concept to any number of parallel elements, the driving force 

𝐹 is equal to the sum of the resisting forces: 

𝐹 =  ∑𝑣𝑍𝑖

𝑛

𝑖=1

  and  𝑍𝑝 = 𝑣 ∑𝑍𝑖

𝑛

𝑖=1

, (92) 

 

where 𝑍𝑝 is the total mechanical impedance of the parallel combination of the individual 

elements 𝑍𝑖. 

Since mobility is the reciprocal of impedance, when the properties of the parallel 

elements are expressed as mobilities, the total mobility of the combination follows from 

Eq. (92): 

1

𝑌𝑝
= ∑

1

𝑌𝑖

𝑛

𝑖=1

 . (93) 

 

Figure 21 represents a spring connected to a damper, so that the applied force 

passes through both elements to the inertial reference. Then the velocity 𝑣 is the sum 

of 𝑣𝑘 and 𝑣𝑐. This is a series combination of elements. The method for determining the 

mechanical impedance of the combination follows. 
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Figure 21: Representation of a series combination of a spring and a damper. 

 

Source: adapted from Cyril (2002).  

Consider the more general case of three arbitrary impedances shown in Figure 

22. 

Determine the impedance presented by the end of a number of series-

connected elements. Elements 𝑍1 and 𝑍2 must have no mass, since a mass always 

has one end connected to a stationary inertial reference. However, the impedance 𝑍3 

may be a mass. 

The relative velocities between the end connections of each element are 

indicated by 𝑣𝑎, 𝑣𝑏, and 𝑣𝑐, and the velocities of the connections with respect to the 

stationary reference point 𝐺 are indicated by 𝑣1, 𝑣2, and 𝑣3: 

𝑣3 = 𝑣𝑐      and      𝑣2 = 𝑣3 + (𝑣2 − 𝑣3) =  𝑣𝑐 + 𝑣𝑏, 

𝑎𝑠 (94) 
𝑣1 = 𝑣2 + (𝑣1 − 𝑣2) =  𝑣𝑎 + 𝑣𝑏 + 𝑣𝑐. 

Figure 22: Representation of a generalized series combination of three elements. 

 

Source: adapted from Cyril (2002). 

 

The impedance at point 1 is 𝐹 𝑣1⁄  and the force is transmitted to all three 

elements. 

The relative velocities are described below: 

𝑣𝑎 = 
𝐹

𝑍1
,      𝑣𝑏 = 

𝐹

𝑍2
,      𝑣𝑐 = 

𝐹

𝑍3
 . (95) 
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Thus, the total impedance is defined by 

1

𝑍
=  

𝐹 𝑍1⁄ + 𝐹 𝑍2 + 𝐹 𝑍3⁄⁄

𝐹
=  

1

𝑍1
+

1

𝑍2
+

1

𝑍3
 . (96) 

 

Extending this principle to any number of massless series elements, 

1

𝑍𝑠
= ∑

1

𝑍𝑖

𝑛

𝑖=1

 , (97) 

where 𝑍𝑠 is the total mechanical impedance of the elements 𝑍𝑖 connected in series. 

Since mobility is the reciprocal of impedance, the total mobility of elements 

connected in series is given by  

𝑌𝑠 = ∑𝑌𝑖

𝑛

𝑖=1

. (98) 

The following theorems are the mechanical analogs of theorems widely used in 

analyzing electric circuits. They are statements of basic principles (or combinations of 

them) that apply to elements of mechanical systems. In all but Kirchhoff’s laws, these 

theorems apply only to systems composed of linear, bilateral elements. A linear 

element is one in which the magnitudes of the basic elements (𝑐, 𝑘, and 𝑚) are 

constant, regardless of the amplitude of motion of the system; a bilateral element is 

one in which forces are transmitted equally well in either direction through its 

connections. 

The sum of all the forces acting at a point (common connection of several 

elements) is zero: 

∑𝐹𝑖

𝑛

𝑖=1

= 0 (at a point). (99) 

This follows directly from the considerations leading to Eq. (92). 

 The sum of the relative velocities across the mechanical elements in series and 

around a closed loop is zero: 
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∑𝑣𝑖

𝑛

𝑖=1

= 0 (around a closed loop). (100) 

Kirchhoff’s laws apply to any system, even when the elements are not linear or 

bilateral. 

Based on all these concepts, a model formed by springs and damper is created 

to describe the insulation level of the mounts. It is worth to remember that the damper 

model of the rubber mount is associated to the loss modulus as explained in section 

2.1.  

The transmissibility function derived from all these concepts is expressed as 

|𝐻𝑚
𝑗 (𝑤)| =  √[

 𝑘𝑚
𝑗 2

𝐾𝑚
𝑗 2

 + 𝑘𝑚
𝑗 2

𝜂𝑚
𝑗 2

+ 𝑘𝑚
𝑗 2

𝐾𝑚
𝑗 2

(𝑘𝑚
𝑗 2

+ 𝐾𝑚
𝑗 2

)
𝟐

+ 𝑘𝑚
𝑗 2

𝜂𝑚
𝑗 2

]

𝟐

+ [
𝑘𝑚

𝑗 2
𝐾𝑚

𝑗 2
𝜂𝑚

𝑗

(𝑘𝑚
𝑗 2

+ 𝐾𝑚
𝑗 2

)
𝟐

+ 𝑘𝑚
𝑗 2

𝜂𝑚
𝑗 2

]

𝟐

 , (101) 

where 𝑚 is the mount number, 𝑗 is the direction x, y or z, 𝑘𝑚
𝑗

 is the mount stiffness, 𝐾𝑚
𝑗

 

is the stiffness of the point where the mount is fixed and 𝜂𝑚
𝑗

 is the loss factor of the 

mount. 
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4 METHODOLOGY 

In this chapter, the optimization concepts used to solve the addressed problem 

are presented. A brief overview of constrained optimization theory is provided, as it 

forms the foundation of the algorithm used to tackle the problem. 

The optimization algorithm employed is based on interior-point using the primal-

dual logarithmic barrier method, which can accommodate both equality and inequality 

constraints. However, in the problem considered in this work, only inequality 

constraints will be applied. 

4.1 OPTIMIZATION PROBLEM DEFINITION  
 

To make the optimization process the constraint equations and objective 

function of Eq. (13) need to be defined, then this will be developed in this session. 

The optimization of the vibrational isolation performance of the motor of this 

work is formed by four mounts. The three directions of each mount stiffness will be 

explored in this work, as there are four mounts then a total of twelve stiffness variables 

will compose the problem, furthermore, two mount positions will be variable whereas 

the other two mounts will be fixed. The three directions of the two mount positions 

which are subject to optimizations will be explored, so altogether eighteen variables 

will be subjected to the optimization process.  

The Eq. (104) shows the twenty six constrained functions, where 𝑔1 up to 𝑔8 are 

related to the modal purity of the six DOF, the frequency mode distribution and the 

mount transmissibility. The constrained functions from 𝑔9 up to 𝑔14 are related to the 

position of mounts 1 and 2. The constrained functions from 𝑔15 up to 𝑔26 are related to 

the stiffness of the mounts 1 to 4.  

  The objective function is built to meet the criterion of high modal purity, which 

is based on the high contribution of the vector component of each eigenvector. 

The modal purity 𝑃𝑘𝑟, as described by Chen et al. (2012), is given by the kinetic 

energy, which is associated with each mode shape, and is given by the kinetic energy 

of each mode as 

𝑃𝑘𝑟 = 
∑ M𝑘𝑗𝜙𝑘𝑟𝜙𝑗𝑟

6
𝑗=1

∑ ∑ M𝑘𝑗𝜙𝑘𝑟𝜙𝑗𝑟
6
𝑗=1

6
𝑘=1

× 100% . (102) 
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The term M𝑘𝑗 is the mass element of the matrix [𝐌], 𝜙𝑘𝑟 and 𝜙𝑗𝑟 are the 

elements of the eigenvector matrix [𝚿] and then 𝑃𝑘𝑟 represents the kinetic energy of 

the 𝑟-th mode at the 𝑘-th DOF.  

The eigenvector comes from the matrix [𝐌] and the the global stiffness matrix 

[𝐊], this matrix [𝐊] has a mount position dependence, because [𝐊] =

∑ [𝑩𝑖]
𝑇[𝒌𝑖]𝐺[𝑩𝒊]

𝑁
𝑖=1  and as discussed previously [𝑩𝒊] is formed  by [𝐈] and [𝐇𝒊], where 

[𝐇𝒊] is defined in Eq. (30) as a skew-matrix of the mount position 𝑖. For this reason the 

elements of the eigenvector matrix [𝚿] are affected by the mount position and as 

consequence the modal purity, which is dependent of the elements of the matrix [𝚿] 

are dependent on the mount position as well. 

The objective function is given by the sum of the maximum value of each 𝑃𝑘𝑟 of 

each 𝑟-th mode: 

𝑓({𝑿}) =  − ∑ ∑max (𝑃𝑘𝑟)

6

𝑟=1

.

6

𝑘=1

(103) 

In Eq. (103), the minus sign is used because the algorithm is designed to search 

for the minimum value of 𝑓({𝑿}), thus, minimizing 𝑓({𝑿}) is equivalent to maximizing 

the −𝑓({𝑿}). The minimum value 𝑓({𝑿}) can achieve is -600% because the maximum 

value of 𝑃𝑘𝑟 for each mode is 100%. 

Furthermore, the inequality constraints of the problem shown in Eq. (104) also 

need to be fulfilled. 

𝑔𝑟({𝑿}) =  𝑝 − max(𝑃𝑘𝑟) ≤  0;  𝑘 = 𝑟 = 1, 2, … , 6 

g7({𝑿}) = 7 𝐻𝑧 ≤  𝑓𝑟  ≤ 47 𝐻𝑧  

g8 = Ω𝑟+1({𝑿}) − Ω𝑟({𝑿}) ≥ 2 

g9 = 𝑇𝑚
𝑗 (𝑤)  = 20𝑙𝑜𝑔[ |𝐻𝑚

𝑗 (𝑤)| ] < −30 𝑑𝐵 

g9 = −300 ≤  𝑋1 ≤ 50 𝑚𝑚 

g10 = −250 ≤  𝑌1  ≤ 50 𝑚𝑚 

g11 = −150 ≤  𝑍1  ≤ 50 𝑚𝑚 

g12 = −300 ≤  𝑋2  ≤ 50 𝑚𝑚 

g13 =  0050 ≤  𝑌2  ≤ 250 𝑚𝑚 

g14 = −150 ≤  𝑍2  ≤ 50 𝑚𝑚 

g15 =  100 ≤  𝑆1𝑥  ≤ 600 𝑁/𝑚𝑚 



71 
 

 

   

g16 =  100 ≤  𝑆1𝑦  ≤ 600 𝑁/𝑚𝑚 

g17 =  100 ≤  𝑆1𝑧  ≤ 600 𝑁/𝑚𝑚 

g18 =  100 ≤  𝑆2𝑥  ≤ 600 𝑁/𝑚𝑚 

g19 =  100 ≤  𝑆2𝑦  ≤ 600 𝑁/𝑚𝑚 (104) 

g20 =  100 ≤  𝑆2𝑧  ≤ 600 𝑁/𝑚𝑚 

g21 =  100 ≤  𝑆3𝑥  ≤ 600 𝑁/𝑚𝑚 

g22 =  100 ≤  𝑆3𝑦  ≤ 600 𝑁/𝑚𝑚 

g23 =  100 ≤  𝑆3𝑧  ≤ 600 𝑁/𝑚𝑚 

g24 =  100 ≤  𝑆4𝑥  ≤ 600 𝑁/𝑚𝑚 

g25 =  100 ≤  𝑆4𝑦  ≤ 600 𝑁/𝑚𝑚 

g26 =  100 ≤  𝑆4𝑧  ≤ 600 𝑁/𝑚𝑚. 

Here, 𝑝 is the lower limit for the modal purity that is required in the project. In 

this work a modal purity 𝑝 of 85% for each degree of freedom is chased as design 

criteria. 

There are another two constraints  related to the eigenvalues. These constraints 

are the functions g7({𝑿}), which limits the frequency range of the rigid body modes 

between 7 Hz and 47 Hz, and the g8({𝑿}) which requires that the separation of the 

frequencies of the modes must be greater or equal to 2 Hz. The frequency range and 

the frequency separation were extracted from benchmark studies of the vehicles on 

the market. 

The constrained function g8({𝑿}) ( 𝑇𝑚
𝑗 (𝑤) ) is the module of the transmissibility 

function |𝐻𝑚
𝑗 (𝑤)| converted to the dB scale. The isolation of 30 dB is used as the 

criteria o mount isolation, which corresponds to a reduction of about 32 times, here 𝑚 

represents the mount number and 𝑗 represents the direction x, y or z. 

Since the mathematical model of the rigid body mode is defined, it is possible 

to find the best modal purity by solving the optimization problem defined in Eq. (104). 

The changes in the mount position can be highly sensible for modal purity and 

implies in strong modifications of this criteria. To have a controlled and predictable 

change on the project, optimization approaches can be used to overcome and predict 

downsides in changes like that. 

Figure 23 shows the flowchart of the optimization process. 
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Figure 23: Flowchart of the optimization process. 

 

Source: the author. 

Once the achievement of the design criteria by Eq. (104) is completed, as a 

second step the isolation performance is also verified along the frequency range using 

the dynamic stiffness. This kind of analysis is carried out separately because the 

physics of the problem is related to the mechanical impedance between the mounts 

and their fixation points considering the frequency dependence.  

Three different initial conditions (initial Condition 1, 2 and 3) changing the initial 

position of the mounts will be done with the objective to verify whether the algorithm 

can meet a local minimum more than once with different vector {𝑿}. Whether this is 

the case the problem is pointing to different combination of the mount position meeting 

the constrained and the objective function criteria. The results of this analysis are 

carried out in chapter 5. 

4.2 FMINCON PDLB INTERIOR-POINT ALGORITHM 
 

The interior-point algorithm based on the PDLB strategy can be found on the  

Matlab software. As mentioned previously, this algorithm changes the initial problem 
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of Eq. (13) to Eq. (14) and uses the Newton’s method during the process to get the 

vector Δ{𝑿}.  

By default, the algorithm first attempts to get Δ{𝑿} through the Newton’s method, 

however when the approximate problem is not locally convex near the current iterate 

the algorithm uses the Conjugate Gradient (CG) method. 

The conjugate gradient approach to solving the approximate problem Eq. (14) is 

similar to other conjugate gradient calculations. In this case, the algorithm adjusts 

both {𝑿} and {𝒔}, keeping the slacks {𝒔} positive. The approach is to minimize a 

quadratic approximation to the approximate problem in a trust region, subject to 

linearized constraints. 

In the CG method the Lagrange multipliers are obtained by approximately 

solving the KKT equations 

∇𝑥𝐿 = ∇𝑓({𝑿𝑘}) + ∑𝑢𝑘,𝑖

𝑚

𝑖=1

∇𝑔𝑖({𝑿𝑘}) +  ∑𝑣𝑘,𝑖

𝑝

𝑖=1

∇ℎ𝑖({𝑿𝑘}) = 0, (105) 

in the least-squares sense, subject to {𝒖} being positive. Then it takes a step 

(∆{𝑿}, ∆{𝒔}) to approximately solve 

𝑚𝑖𝑛

∆{𝑿}, ∆{𝒔}
  ∇𝑓𝑇∆{𝑿} +

1

2
∆{𝑿}𝑇∇2𝐿∆{𝑿} + 𝜇{𝒆}𝑇[𝑺]−1Δ{𝒔} +

1

2
∆{𝒔}𝑇[𝑺]−1[𝚲]∆{𝒔}, (106) 

where [𝚲] is a diagonal matrix of size 𝑚x𝑚 formed by the vector of Lagrange multiplier 

{𝒖} and {𝒆} denotes the vector of ones having the same size as {𝒖} as well. 

The solution of Eq (106) is subject to the linearized constraints 

{𝒈({𝑿})} + [𝑱𝑔]Δ{𝑿} +  Δ{𝒔} = 0, {𝒉({𝑿})} + [𝑱ℎ]Δ{𝑿} = 0. (107) 

To solve Eq. (107) the algorithm tries to minimize a norm of the linearized 

constraints inside a region with radius scaled by 𝑅. Then Eq. (106) is solved with the 

constraints being to match the residual from solving Eq. (107), staying within the trust 

region of radius 𝑅, and keeping {𝒔} strictly positive. For details of the algorithm and the 

derivation, see Byrd, Gilbert and Nocedal (2000), Byrd, Hribar and Nocedal (1999), 

Waltz, Morales, Nocedal and Orban (2006). 
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4.3 OUTPUT OF THE FMINCON PDLB INTERIOR-POINT ALGORITHM 
 

The main outputs of the optimization using the fmincon function will be taken 

into account in the results presented in Chapter 5. For this reason some definitions of 

those outputs are explained in this section. 

The first output is the vector {𝑿𝑘
∗ } which represents the vector that minimizes the 

function. 

The second output is the 𝑓({𝑿𝑘
∗ }) which represents the function minimized at 

the point {𝑿𝑘
∗ } where the minimum was identified. 

The third output is the number of iterarions in the optimization process, each 

iteration is counted as a 𝑘 number that indicates where the vector {𝑿𝑘} and its 

successive vectors {𝑿𝑘+1} are calculated.  

The fourth output is the resultant vector |Δ{𝑿}| which represents the length of 

the step where the next point {𝑿𝑘+1} will be evaluated. 

 {𝑿𝑘+1} = {𝑿𝑘} + Δ{𝑿}, 𝑘 = 1,2, … 𝑛. (108) 

In the Chapter 5 the |Δ{𝑿}| of the least step of the optimization process will be 

presented. 

The fifth output is the number of calculated functions 𝐹𝑐𝑜𝑢𝑛𝑡 that are counted 

during the optimization process. This count considers the number of objective function 

and constraint function evaluated nearby each {𝑿𝑘} vector, nevertheless, this count 

may or may not include the evaluation of all constraint functions. Figure 24. 

Figure 24: Example of the count process during optimization. 

 

Source: the author. 

The sixth output will be the Exitflag function which gives the status whether any 

violation during the algorithm process happened. The result of this output will be 
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explained individualy for Condition 1, 2 and 3 in Chapter 5 because it can vary from 

condition to condition. 

From the six outputs only the vector {𝑿𝑘
∗ } will be presented in a table format to 

facilitate the visualization. 
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5 RESULTS AND DISCUSSION 

5.1 CALIBRATION OF THE SIX DOF SYSTEM 
 

It is of primary importance to calibrate the model, whether it be analytical or 

numerical, to be sure that the output of the result is reliable. For this reason, before 

performing the optimization, the analytical result of the six DOF system is compared to 

a reference result of the model used by a company specialized in the development of 

mount systems. The rigid body mode of the reference model was analyzed in the Altair 

software and a lumped mass representing the same physical properties of the actual 

motor is used, so the reference model considers the same assumptions used in this 

work. The refence model was already used for correlation with experimental data what 

makes its use even more reliable for calibration purposes of this work. 

The purity of the modes of the reference model and the analytical model are 

presented in Table 1 and Table 2, respectively.   

Table 1: Modal purity values of the six modes of the reference model. 

Modal Purity (%) 

Mode X Y Z RX RY RZ 

1 0 86 0 1 0 13 

2 99 0 0 0 1 0 

3 0 0 99 0 0 0 

4 0 2 0 97 0 1 

5 0 12 0 2 0 86 

6 1 0 0 0 99 0 

Source: the author. 

Table 2: Modal purity values of the six modes of the analytical model presented here. 

Modal Purity (%) 

Mode X Y Z RX RY RZ 

1 0 87 0 0 0 13 

2 99 0 0 0 0 0 

3 0 0 99 0 0 0 

4 0 0 0 99 0 0 

5 0 13 0 0 0 87 

6 0 0 0 0 99 0 

Source: the author. 
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Table 3 shows the difference in the modal purity between the reference model 

and the analytical model.  

Table 3: Difference of the modal purity between the reference model and analytical model. 

Modal purity difference (%) 

Mode X Y Z RX RY RZ 

1 0.00 1.00 0.00 1.00 0.00 0.00 

2 0.00 0.00 0.00 0.00 1.00 0.00 

3 0.00 0.00 0.00 0.00 0.00 0.00 

4 0.00 2.00 0.00 2.00 0.00 1.00 

5 0.00 1.00 0.00 2.00 0.00 1.00 

6 1.00 0.00 0.00 0.00 0.00 0.00 

Source: the author. 

The modal frequencies of the reference model and the analytical model are 

presented as well in Table 5. 

Table 4: Modal frequencies of the reference and the analytical model and the difference frequency for 
each mode. 

Mode Reference Model (Hz) Analytical Model (Hz) 
Frequency  

Difference  (Hz) 

1 13.4 13.4 0.0 

2 16.8 16.8 0.0 

3 21.7 21.7 0.0 

4 24.0 24.1 0.1 

5 32.2 32.0 0.2 

6 45.2 45.2 0.0 

Source: the author. 

As it can be observed by the data, the analytical model presents a very high 

accuracy when compared to the reference results. The modal purity and the modal 

frequencies of both models are, in general, very close to each other.  

5.2 RESULTS OF DIFFERENT OPTIMIZATIONS OF THE MOTOR MOUNT PROJECT 
 

The constraints of the optimization of the mount project are defined in Eq. (104). 

The upper and lower limits of the position and stiffness are shown in Table 5 to facilitate 

the visualization of constraints. 
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In this work, two mounts (mount 3 and mount 4) are kept unchanged while the 

other two (mount 1 and mount 2) will have some room to get the best position for the 

mount project. 

The variables of mount positions and stiffness are used directly on the algorithm 

for the optimization process, whereas the angle and damping are fixed parameters 

pre-defined in the project, however, they can be changed manually if there is the need 

to make any different assumptions regarding the initial specifications of the project. 

Table 5 shows the upper and lower limits of the position and stiffnesses of each 

mount. The mount position is described as shown in Figure 16.  

Table 5: Lower and upper limits of variables of position and stiffness of mounts 1 to 4. 

Limits of optimization of the variables 

Variable Coordinate 
Mount 1 Mount 2 Mount 3   

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Position  
(mm) 

X -300 50 -300 50 319 319 
Y -250 50 50 250 -220 220 
Z -150 50 -150 50 11 11 

Stiffness  
(N/mm) 

X 100 600 100 600 100 600 100 600 
Y 100 600 100 600 100 600 100 600 
Z 100 600 100 600 100 600 100 600 

Source: the author. 

Table 6 shows the values of the damping loss factor, considered fixed, and 

angle of each mount regarding a fixed coordinate system at the CG of the motor. 

Table 6: Fixed parameters of damping and angles of mounts 1 to 4. 

Fixed Parameter of Angle and Loss Factor used in each Mount 
Variable Coordinate Mount 1 Mount 2 Mount 3 Mount 4 

Loss 
Factor 

X 0.04 0.04 0.04 0.04 
Y 0.04 0.04 0.04 0.04 
Z 0.04 0.04 0.04 0.04 

Angle 
Around 

 (rad) 

X 0 0 0 0 
Y 0 0 0 0 
Z 0 0 π/2 - π/2 

Source: the author. 

The mounts 3 and 4 are rotated around the Z axis of the Vehicle Coordinate 

System (VCS) by 𝜋/2 and −𝜋/2, respectively. Figure 25 shows this rotation. 
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Figure 25: Rotation of the mounts 3 and 4 around the Z axis. 

  

Source: the author. 

The initial condition is the point where the algorithm starts to search for the minimum 

of the objective function. The initial Condition 1 with the position and stiffness are 

defined in Table 7. 

Table 7: Values of position and stiffness used for the initial Condition 1. 

Initial Condition 1 
Variable Coordinate Mount 1 Mount 2 Mount 3 Mount 4 

Position  
(mm) 

X -100 -100 NA NA 
Y -100  100 NA NA 
Z -100 -100 NA NA 

Stiffness  
(N/mm) 

X 400 400 400 400 
Y 200 200 200 200 
Z 500 500 500 500 

Source: the author. 

Tables 8, 9 and 10 show the results of the optimization for Condition 1 versus a 

reference project. The reference project is based on the results of an actual 

development of a motor mount project and is not the same one used in the calibration, 

which was called the reference model. It is important to mention that the calibration 

model in section 5.1 uses the results of a project already on the market whereas the 

project reference used here in section 5.2 uses the results of a project that was adapted 

from a former vehicle platform and is not achieving the criterion of Eq. (99). 
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Table 8: Results of natural frequencies and the modal purity of optimization for condition 1 and the 
reference project. 

Frequency 
Condition 1  (Hz)   Modal purity (%) - Condition 1 

  DOF X Y Z Rx Ry Rz 
f1 10.94   f1 0 97 2 0 0 0 

f2 13.37   f2 85 0 0 1 14 0 

f3 16.24   f3 0 2 92 0 0 6 

f4 18.39   f4 1 0 0 99 0 0 

f5 22.73   f5 0 1 5 0 0 94 

f6 31.01   f6 14 0 0 0 86 0 

Frequency 
Reference (Hz) 

 Modal purity (%) – Reference 

 DOF X Y Z Rx Ry Rz 

f1 15.10  f1 0 69 5 24 0 1 

f2 17.32  f2 97 0 2 0 0 0 

f3 19.65  f3 0 29 25 43 0 2 

f4 25.56  f4 2 1 55 16 15 11 

f5 29.04  f5 0 0 2 11 2 84 

f6 75.92  f6 0 0 11 6 82 0 

Source: the author. 

Table 9: Results of position and stiffness ({𝑿𝑘
∗ }) of mounts 1 to 4 for Condition 1 and the reference 
project. 

Optimization Results Condition 1 
Variable Coordinate Mount 1 Mount 2 Mount 3 Mount 4 

Position  
(mm) 

X -140 -181 319 319 
Y -204 188 -220 220 
Z -73 -66 11 11 

Stiffness  
(N/mm) 

X 400.21 401.75 393.97 393.98 
Y 185.04 184.69 204.00 205.44 
Z 485.97 497.67 496.90 503.22 

Optimization Results Reference 
Variable Coordinate Mount 1 Mount 2 Mount 3 Mount 4 

Position  
(mm) 

X -295 -295 319 319 
Y -141  141 -220 220 
Z -130 -130 11 11 

Stiffness  
(N/mm) 

X 510 510 510 510 
Y 460 460 460 460 
X 585 585 585 585 

Source: the author. 
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Table 10: Results of transmissibility of mounts 1 to 4 for Condition 1 and the reference project. 

Transmissibility Condition 1 

Coordinate Mount 1 
(dB) 

Mount 2 
(dB) 

Mount 3 
(dB) 

Mount 4 
(dB) 

x -31.70 -31.67 -31.83 -31.83 
y -34.81 -34.82 -33.98 -33.92 
z -30.06 -29.86 -29.87 -29.77 

Transmissibility Reference 

Coordinate Mount 1 
(dB) 

Mount 2 
(dB) 

Mount 3 
(dB) 

Mount 4 
(dB) 

x -29.65 -29.65 -29.65 -29.65 
y -27.12 -27.12 -27.12 -27.12 
z -28.50 -28.50 -28.50 -28.50 

 Source: the author. 

The magnitude and the phase of the receptance of each individual translational 

and rotational modes from Condition 1 are presented in Figures 26 and 27.  

Figure 26: Magnitude and phase from receptance of the translational modes x, y and z for Condition 1.

 
Source: the author 
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Figure 27: Magnitude and phase from receptance of the rotational modes rx, ry and rz for Condition 1. 

 

Source: the author. 

The combination of all modes found for Condition 1 are represented by the 

receptance through the sum of the driving points in Figure 28. 

The objective function value for the reference project is -431% and the 

optimization results are below except by the vector {𝑿𝑘
∗ } which was already presented 

in Table 9.  

• 𝑓({𝑿𝑘
∗ }) = −548% 

• Number of iterations 𝑘 = 4 

• Last length step |Δ{𝑿}|  = 2.6515x10−10 

• Number of evaluated function 𝐹𝑐𝑜𝑢𝑛𝑡 = 116 

• Exitflag = 2 (This means that |Δ{𝑿}|  is less than the accuracy of the algorithm 

and the maximum resolution was achieved. Similarly the minimum identified is 

within the constraint region considering the accuracy of the algorithm). 
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Figure 28: Drive point receptance of the six DOF for Condition 1. 

 

Source: the author. 

With an initial Condition 2 the model is rerun, the values of the initial Condition 

2 are presented in Table 2. 

Table 11: Values of position and stiffness used on the initial Condition 2. 

Initial Condition 2 
Variable Coordinate Mount 1 Mount 2 Mount 3 Mount 4 

Position  
(mm) 

X -250 -250 NA NA 
Y -150 150 NA NA 
Z -50 -50 NA NA 

Stiffness  
(N/mm) 

X 400 400 400 400 
Y 200 200 200 200 
Z 500 500 500 500 

Source: the author. 

Tables 12, 13 and 14 show the results of the optimization for Condition 2 versus 

the reference project.  
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Table 12: Results of natural frequencies and the modal purity of optimization for Condition 2 and the 
reference project. 

Frequency 
Condition 2 (Hz)   Modal purity (%) – Condition 2 

  DOF X Y Z Rx Ry Rz 
f1 11.75   f1 0 87 0 1 0 11 

f2 13.49   f2 99 1 0 0 0 0 

f3 15.90   f3 0 1 9 89 0 0 

f4 17.38   f4 0 0 90 10 1 0 

f5 22.26   f5 0 11 0 0 0 89 

f6 33.90   f6 0 0 1 0 99 0 

Frequency 
Reference (Hz) 

 Modal purity (%) – Reference 

 DOF X Y Z Rx Ry Rz 

f1 15.10  f1 0 69 5 24 0 1 

f2 17.32  f2 97 0 2 0 0 0 

f3 19.65  f3 0 29 25 43 0 2 

f4 25.56  f4 2 1 55 16 15 11 

f5 29.04  f5 0 0 2 11 2 84 

f6 75.92  f6 0 0 11 6 82 0 

Source: the author. 

Table 13 : Results of position and stiffness of mounts 1 to 4 for Condition 2 and the reference project. 

Optimization Results Condition 2 
Variable Coordinate Mount 1 Mount 2 Mount 3 Mount 4 

Position  
(mm) 

X -246 -246 319 319 
Y -117 153 -220 220 
Z -46 -43 11 11 

Stiffness  
(N/mm) 

X 400.60 400.74 396.18 396.18 
Y 193.26 193.26 202.21 202.46 
Z -246 -246 319 319 

Optimization Results Reference 
Variable Coordinate Mount 1 Mount 2 Mount 3 Mount 4 

Position  
(mm) 

X -295 -295 319 319 
Y -141  141 -220 220 
Z -130 -130 11 11 

Stiffness  
(N/mm) 

X 510 510 510 510 
Y 460 460 460 460 
X 585 585 585 585 

Source: the author. 
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Table 14: Results of transmissibility of mounts 1 to 4 for Condition 2 and the reference project. 

Transmissibility Condition 2 

Coordinate Mount 1 
(dB) 

Mount 2 
(dB) 

Mount 3 
(dB) 

Mount 4 
(dB) 

x -31.69 -31.69 -31.78 -31.78 
y -34.44 -34.44 -34.05 -34.04 
z -29.80 -29.80 -29.85 -29.84 

Transmissibility Reference 

Coordinate Mount 1 
(dB) 

Mount 2 
(dB) 

Mount 3 
(dB) 

Mount 4 
(dB) 

x -29.65 -29.65 -29.65 -29.65 
y -27.12 -27.12 -27.12 -27.12 
z -28.50 -28.50 -28.50 -28.50 

 Source: the author. 

The magnitude and the phase from receptance of each individual translational and 

rotational modes from Condition 1 are presented in Figures 29 and 30.  

Figure 29: Magnitude and phase from receptance of the translational modes x, y and z for Condition 2. 

 
Source: the author. 
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Figure 30: Magnitude and phase from receptance of the rotational modes rx, ry and rz for Condition 2. 

 

Source: the author. 

The combination of all modes found for Condition 2 are represented by the 

receptance through the sum of the driving points in Figure 31. 

The objective function value for the reference project is -431% and the 

optimization results of Condition 2 are below except by the vector {𝑿𝑘
∗ } which was 

already presented in Table 13.  

• 𝑓({𝑿𝑘
∗ }) = −554% 

• Number of iterations 𝑘 = 2 

• Last lenght step |Δ{𝑿}|  = 2.6121x10−10 

• Number of evaluated function 𝐹𝑐𝑜𝑢𝑛𝑡 = 75 

• Exitflag = -2 (This means that no feasible point was found) 

Although the optimization of the objective function have presented a good result, 

the algorithm was not able to meet the constraint function g8 which requires a 

separation of 2 Hz between the modes. 
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Figure 31: Drive point receptance of the six DOF for Condition 2. 

 

Source: the author. 

Once again, the initial condition is changed. This time, the optimization 

problem is solved using initial Condition 3. The values for initial Condition 3 are 

shown in Table 15. 

Table 15: Values of position and stiffness used on the initial Condition 3. 

 Initial Condition 3 
Variable Coordinate Mount 1 Mount 2 Mount 3 Mount 4 

Position  
(mm) 

X 50 50 319 319 
Y 50 50 -220 220 
Z 50 50 11 11 

Stiffness  
(N/mm) 

X 400 400 400 400 
Y 200 200 200 200 
Z 500 500 500 500 

Source: the author. 
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Tables 16, 17 and 18 show the results of the optimization for Condition 3 versus 

the reference project. 

Table 16: Results of natural frequencies and the modal purity of optimization for Condition 3 and the 
reference project. 

Frequency 
Condition 3 (Hz)   Modal purity (%) - Condition 3 

  DOF X Y Z Rx Ry Rz 
f1 11.49   f1 0 91 0 0 0 9 

f2 13.74   f2 100 0 0 0 0 0 

f3 16.51   f3 0 0 97 0 3 0 

f4 19.10   f4 0 0 0 100 0 0 

f5 23.26   f5 0 9 0 0 0 91 

f6 31.11   f6 0 0 3 0 97 0 

Frequency 
Reference    (Hz) 

 Modal purity (%) – Reference 

 DOF X Y Z Rx Ry Rz 

f1 15.10  f1 0 69 5 24 0 1 

f2 17.32  f2 97 0 2 0 0 0 

f3 19.65  f3 0 29 25 43 0 2 

f4 25.56  f4 2 1 55 16 15 11 

f5 29.04  f5 0 0 2 11 2 84 

f6 75.92  f6 0 0 11 6 82 0 

Source: the author. 

Table 17: Results of position and stiffness of mounts 1 to 4 for Condition 3 and the reference project. 

Optimization Results Condition 3 
Variable Coordinate Mount 1 Mount 2 Mount 3 Mount 4 

Position  
(mm) 

X -200 -193 319 319 
Y -223 224 -220 -220 
Z -35 -15 11 11 

Stiffness  
(N/mm) 

X 416740 416530 377570 377560 
Y 184810 184250 205990 207900 
Z 484510 486080 480860 481090 

Optimization Results Reference 
Variable Coordinate Mount 1 Mount 2 Mount 3 Mount 4 

Position  
(mm) 

X -295 -295 319 319 
Y -141  141 -220 220 
Z -130 -130 11 11 

Stiffness  
(N/mm) 

X 510 510 510 510 
Y 460 460 460 460 
X 585 585 585 585 

Source: the author. 
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Table 18: Results of transmissibility of mounts 1 to 4 for Condition 3 and the reference project. 

Transmissibility Condition 3 

Coordinate Mount 1 
(dB) 

Mount 2 
(dB) 

Mount 3 
(dB) 

Mount 4 
(dB) 

x -31.70 -31.67 -31.83 -31.83 
y -34.81 -34.82 -33.98 -33.92 
z -30.06 -29.86 -29.87 -29.77 

Transmissibility Reference 

Coordinate Mount 1 
(dB) 

Mount 2 
(dB) 

Mount 3 
(dB) 

Mount 4 
(dB) 

x -29.65 -29.65 -29.65 -29.65 
y -27.12 -27.12 -27.12 -27.12 
z -28.50 -28.50 -28.50 -28.50 

 Source: the author. 

The magnitude and the phase of the receptance of each individual translational 

and rotational modes from Condition 3 are presented in Figures 32 and 33.  

Figure 32: Magnitude and phase from receptance of the translational modes x, y and z for Condition 3.

 

Source: the author. 
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Figure 33: Magnitude and phase from receptance of the rotational modes rx, ry and rz for Condition 3. 

 

Source: the author. 

The combination of all modes found on Condition 3 are represented by the 

receptance through the sum of the driving points in Figure 34. 

The objective function value for the reference project is -431% and the 

optimization results are below except by the vector {𝑿𝑘
∗ } which was already presented 

in Table 17.  

• 𝑓({𝑿𝑘
∗ }) = −575% 

• Number of iterations 𝑘 = 20 

• Last length step |Δ{𝑿}|  = 2.9812x10−10  

• Number of evaluated function 𝐹𝑐𝑜𝑢𝑛𝑡 = 465 

• Exitflag = 2 (This means that |Δ{𝑿}|  is less than the accuracy of the algorithm 

and the maximum resolution was achieved. Similarly, the minimum identified is 

within the constraint region considering the accuracy of the algorithm). 
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Figure 34: Drive point receptance of the DOF on Condition 3. 

 

Source: the author. 

5.3 COMPARISON OF RESULTS OF DIFFERENT OPTIMIZATIONS  
 

Table 19 shows the comparison of the six natural frequencies obtained from the 

optimization results for conditions 1, 2 and 3. The frequency criterion of the constraint 

functions were defined to be greater than 7 Hz and smaller than 47 Hz. 

Table 19: Comparison of the natural frequencies of the conditions 1, 2 and 3.  

Frequency Mode Condition 1 (Hz) Condition 2 (Hz) Condition 3 (Hz) 

f1 10.94 11.75 11.49 

f2 13.37 13.49 13.74 

f3 16.24 15.90 16.51 

f4 18.39 17.38 19.10 

f5 22.73 22.26 23.26 

f6 31.01 33.90 31.11 

Source: the author. 
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Table 20 shows the comparison of the modal purity per DOF for the conditions 

1, 2 and 3. The resctriction functions of modal purity required a modal purity greater 

than 85%. 

Table 20: Comparison of the modal purity of each DOF for conditions 1, 2 and 3. 

Modal Purity X (%) Modal Purity Y (%) 
DOF Condition 1 Condition 2 Condition 3 Condition 1 Condition 2 Condition 3 

f1 0 0 0 97 87 91 
f2 85 99 100 0 1 0 
f3 0 0 0 2 1 0 
f4 1 0 0 0 0 0 
f5 0 0 0 1 11 9 
f6 14 0 0 0 0 0 

Modal Purity Z (%) Modal Purity RX (%) 
DOF Condition 1 Condition 2 Condition 3 Condition 1 Condition 2 Condition 3 

f1 2 0 0 0 1 0 
f2 0 0 0 1 0 0 
f3 92 9 97 0 89 0 
f4 0 90 0 99 10 100 
f5 5 0 0 0 0 0 
f6 0 1 3 0 0 0 

Modal Purity RY (%) Modal Purity RZ (%) 
DOF Condition 1 Condition 2 Condition 3 Condition 1 Condition 2 Condition 3 

f1 0 0 9 0 11 0 
f2 14 0 0 0 0 0 
f3 0 0 0 6 0 3 
f4 0 1 0 0 0 0 
f5 0 0 91 94 89 0 
f6 86 99 0 0 0 97 

Source: the author. 

Table 21 shows the comparison of the transmissibility of mounts 1, 2, 3 and 4 

in each direction for the conditions 1, 2 and 3. The resctrion functios of transmissibility 

required a transmissibility smaller than -30dB. 
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Table 21: Comparison of the transmissibility of mounts 1, 2 , 3 and 4 for the conditions 1, 2 and 3. 

 Transmissibility Mount 1 Transmissibility Mount 2 
Coordinate Condition 1 Condition 2 Condition 3 Condition 1 Condition 2 Condition 3 

X -31.70 -31.69 -31.36 -31.67 -31.69 -31.36 
Y -34.81 -34.44 -34.82 -34.82 -34.44 -34.84 
Z -30.06 -29.80 -30.09 -29.86 -29.80 -30.06 

 

Transmissibility Mount 3 Transmissibility Mount 4 

Coordinate Condition 1 Condition 2 Condition 3 Condition 1 Condition 2 Condition 3 
X -31.83 -31.78 -32.19 -31.83 -31.78 -32.19 
Y -33.98 -34.05 -33.89 -33.92 -34.04 -33.81 
Z -29.87 -29.85 -30.15 -29.77 -29.84 -30.14 

Source: the author. 

Table 22 shows the comparison of the position and stiffness of mounts 1, 2, 3 

and 4 for conditions 1, 2 and 3. The table  shows how the positions and stiffness 

change. 

Table 22: Comparison of the position and stiffness of mounts 1, 2 , 3 and 4 for the Conditions 1, 2 and 
3. 

Position and Mount Stiffness Optimization Mount 1 

Variable Coordinate Condition 1 Condition 2 Condition 3 

Position  
(mm) 

X -140 -246 -200 
Y -204 -117 -223 
Z -73 -46 -35 

Stiffness  
(N/mm) 

X 400.21 400.60 416.74 
Y 185.04 193.26 184.81 
Z 485.97 501.11 484.51 

Position and Mount Stiffness Optimization Mount 2 
Variable Coordinate Condition 1 Condition 2 Condition 3 

Position  
(mm) 

X -181 -246 -193 
Y 188 153 224 
Z -66 -43 -15 

Stiffness  
(N/mm) 

X 401.75 400.74 416.53 
Y 184.69 193.26 184.25 
Z 497.67 501.44 486.08 

Position and Mount Stiffness Optimization Mount 3 
Variable Coordinate Condition 1 Condition 2 Condition 3 

Position  
(mm) 

X 319 319 319 
Y -220 -220 -220 
Z 11 11 11 

Stiffness  
(N/mm) 

X 393.97 396.18 377.57 
Y 204.00 202.21 205.99 
Z 496.90 498.42 480.86 
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Position and Mount Stiffness Optimization Mount 4 
Variable Coordinate Condition 1 Condition 2 Condition 3 

Position  
(mm) 

X 319 319 319 
Y 220 220 220 
Z 11 11 11 

Stiffness  
(N/mm) 

X 393.98 396.18 377.56 
Y 205.44 202.46 207.90 
Z 503.22 498.87 481.09 

Source: the author. 

The Figure 35, 36 and 37 shows the mount position vectors of Conditions 1, 2 and 3, 

respectively, by the colors red, green and blue. The two black vectors represent the 

fixed mounts. 

Figure 35: Mount position view from XY plane for Conditions 1, 2 and 3. 

 

Source: the author. 

Figure 36: Mount position view from XZ plane for Conditions 1, 2 and 3. 

 

Source: the author. 
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Figure 37: Mount position view from YZ plane for Conditions 1, 2 and 3. 

 

Source: the author. 

Table (23)  shows the magnitude of the positions of the mounts 1 and 2, which 

were under the optimization process. 

Table 23: Comparison of the magnitude of each position of mounts 1 and 2 for Conditions 1, 2 and 3. 

Vector Sum Optimization Mount 1 
Variable Condition 1 Condition 2 Condition 3 

Lenght (mm) 258 277 302 
Vector Sum Optimization Mount 2 

Variable Condition 1 Condition 2 Condition 3 
Lenght (mm)  269 293 296 

Source: the author. 

Table 23 indicates how the magnitude of length of the bracket mount can be 

explored during the optimization process. This can be used, for example, to optimize 

local resonance frequencies of the bracket that might be causing problems on 

transmissibility. 

5.4 MOUNT TRANSMISSIBILITY BASED ON DYNAMIC STIFFNESS MEASUREMENT 
 

It is essential to assess the transmissibility performance of the mount as a 

function of the frequency as the mount stiffness also varies with the frequency. 

For this assessment, a mount with a static stiffness of 600 N/mm was used, as 

it is comparable to the static stiffness of optimized mounts. The selected mount was 

identified in a commercially available vehicle. The primary objective of using this mount 
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was to measure its dynamic stiffness and observe the trend of stiffness variation with 

frequency. This mount served as a baseline for predicting the dynamic stiffness 

behavior of an optimized mount in the X, Y, and Z directions. The behavior observed 

in the measured mount provides a reasonable foundation for this predictive analysis of 

the dynamic stiffness. The fixture used for the measurement is depicted in Figure 38. 

Figure 38: Measured mount and the fixture of the bench test. 

 

Source: the author. 

Figure 39 shows the dynamic stiffness behavior of the measured mount until 

600 Hz. The trend of the dynamic stiffness of the measured mount was used as a 

model to create the dynamic stiffness of the optimized mount. 

Figure 39: Dynamic stiffness of the measured mount. 
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Source: the author. 

Table  shows the dynamics stiffness on directions X, Y and Z of the optimized 

mount using the model identified by the measured mount. As the dynamic stiffness of 

the four optimized mounts are similar the static stiffness of mount 1 is selected to 

calculate the dynamic stiffness.  

Table 24: Comparison of the magnitude of each positions of mounts 1 and 2 for Conditions 1, 2 and 3. 

Frequency Tan Delta 
X Direction Y Direction Z Direction 

Kdyn Kdyn Kdyn 
Hz unitless N/mm N/mm N/mm 
1 0.051 400 186 486 
5 0.048 403 188 488 

10 0.049 406 191 491 
15 0.051 409 194 494 
20 0.053 412 197 497 
25 0.054 415 200 500 
30 0.054 418 203 503 
35 0.057 421 206 506 
40 0.058 424 209 509 
45 0.057 427 212 512 
50 0.058 430 215 515 
60 0.061 436 221 521 
70 0.064 442 227 527 
80 0.063 449 234 534 
90 0.066 455 240 540 

100 0.068 461 246 546 
110 0.069 467 252 552 
120 0.070 473 258 558 
130 0.071 479 264 564 
140 0.073 485 270 570 
150 0.076 491 276 576 
160 0.077 497 282 582 
170 0.077 503 288 588 
180 0.080 509 294 594 
190 0.091 515 300 600 
200 0.080 521 306 606 
210 0.069 527 312 612 
220 0.067 533 318 618 
230 0.073 540 325 625 
240 0.078 546 331 631 
250 0.085 552 337 637 
260 0.087 558 343 643 
270 0.088 564 349 649 
280 0.089 570 355 655 
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290 0.089 576 361 661 
300 0.090 582 367 667 
310 0.091 588 373 673 
320 0.091 594 379 679 
330 0.091 600 385 685 
340 0.087 606 391 691 
350 0.080 612 397 697 
360 0.076 618 403 703 
370 0.089 624 409 709 
380 0.095 631 416 716 
390 0.098 637 422 722 
400 0.099 643 428 728 
410 0.100 649 434 734 
420 0.101 655 440 740 
430 0.103 661 446 746 
440 0.103 667 452 752 
450 0.103 673 458 758 
460 0.104 679 464 764 
470 0.104 685 470 770 
480 0.104 691 476 776 
490 0.104 697 482 782 
500 0.123 703 488 788 
510 0.104 709 494 794 
520 0.101 715 500 800 
530 0.096 721 506 806 
540 0.097 728 513 813 
550 0.092 734 519 819 
560 0.083 740 525 825 
570 0.077 746 531 831 
580 0.080 752 537 837 
590 0.088 758 543 843 
600 0.096 764 549 849 

Source: the author. 

The dynamic stiffness derived from the measured model mount are shown in 

Figures 40, 41 and 42.   
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Figure 40: Calculated dynamic stiffness for the X direction of the mount 1. 

 

Source: the author. 

Figure 41: Calculated dynamic stiffness for the Y direction of the mount 1. 

 

Source: the author. 
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Figure 42: Calculated dynamic stiffness for the Z direction of the mount 1. 

 

Source: the author. 

The mount 1 transmissibility in X, Y and Z directions is shown in Table 25.  

Table 25: Mount transmissibility of the X, Y and Z direction of the optimized mount 1. 

Transmissibility Mount 1 (dB) 
Freq (Hz) X  Y Z 

1 -28.3 -34.8 -26.7 
5 -28.2 -34.7 -26.6 

10 -28.2 -34.5 -26.6 
15 -28.1 -34.4 -26.5 
20 -28.0 -34.3 -26.5 
25 -28.0 -34.1 -26.4 
30 -27.9 -34.0 -26.4 
35 -27.9 -33.9 -26.3 
40 -27.8 -33.8 -26.3 
45 -27.7 -33.6 -26.2 
50 -27.7 -33.5 -26.2 
60 -27.6 -33.3 -26.1 
70 -27.4 -33.0 -26.0 
80 -27.3 -32.8 -25.9 
90 -27.2 -32.6 -25.8 

100 -27.1 -32.4 -25.7 
110 -27.0 -32.2 -25.6 
120 -26.9 -32.0 -25.5 
130 -26.8 -31.8 -25.4 
140 -26.7 -31.6 -25.3 
150 -26.6 -31.4 -25.3 
160 -26.5 -31.2 -25.2 
170 -26.4 -31.0 -25.1 
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180 -26.3 -30.9 -25.0 
190 -26.2 -30.7 -24.9 
200 -26.1 -30.5 -24.8 
210 -26.0 -30.3 -24.8 
220 -25.9 -30.2 -24.7 
230 -25.8 -30.0 -24.6 
240 -25.7 -29.9 -24.5 
250 -25.6 -29.7 -24.4 
260 -25.5 -29.6 -24.3 
270 -25.4 -29.4 -24.3 
280 -25.3 -29.3 -24.2 
290 -25.2 -29.1 -24.1 
300 -25.2 -29.0 -24.0 
310 -25.1 -28.8 -24.0 
320 -25.0 -28.7 -23.9 
330 -24.9 -28.6 -23.8 
340 -24.8 -28.5 -23.8 
350 -24.7 -28.3 -23.7 
360 -24.7 -28.2 -23.6 
370 -24.6 -28.1 -23.5 
380 -24.5 -27.9 -23.5 
390 -24.4 -27.8 -23.4 
400 -24.3 -27.7 -23.3 
410 -24.3 -27.6 -23.3 
420 -24.2 -27.5 -23.2 
430 -24.1 -27.4 -23.1 
440 -24.0 -27.2 -23.1 
450 -24.0 -27.1 -23.0 
460 -23.9 -27.0 -22.9 
470 -23.8 -26.9 -22.9 
480 -23.7 -26.8 -22.8 
490 -23.7 -26.7 -22.7 
500 -23.6 -26.6 -22.7 
510 -23.5 -26.5 -22.6 
520 -23.5 -26.4 -22.6 
530 -23.4 -26.3 -22.5 
540 -23.3 -26.2 -22.4 
550 -23.3 -26.1 -22.4 
560 -23.2 -26.0 -22.3 
570 -23.1 -25.9 -22.3 
580 -23.1 -25.8 -22.2 
590 -23.0 -25.7 -22.2 
600 -22.9 -25.6 -22.1 

Source: the author. 
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The graph presented in Figure 43 shows the transmissibility of Table 25252525 

in X, Y and Z directions. 

Figure 43: Mount 1 transmissibility in X, Y and Z directions. 

 

Source: the author. 

It is clearly visible that the transmissibility decreases in absolute values as the 

frequency goes higher. 

This behavior is associated by the increase of the dynamic stiffness along the 

frequency content. 

5.5 MOTOR DISPLACEMENT IN FULL TORQUE LOAD 
 

As a second step to evaluate the stiffness feasibility of the optimization process, 

the displacement in maximum torque of the motor is calculated as it can be used for 

package space protection. 

For this calculation only the rotation coordinates is considered because the 

moment is generated in the interior of the motor. 

 The displacement is calculated using the Lagrange equations, which are expressed 

as follows: 

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕�̇�𝑖
) −

𝜕𝐿

𝜕𝑞𝑖
 +  (

𝜕Γ

𝜕�̇�𝑖
) =  𝑓𝑖 , 𝑖 = 1,… , 𝑛, (109) 
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𝐿 is defined as the Lagrangian which is 𝐿 = 𝑇𝑡𝑜𝑡𝑎𝑙 − 𝑉𝑡𝑜𝑡𝑎𝑙. 

𝑇𝑡𝑜𝑡𝑎𝑙 is the total kinetic energy and 𝑉𝑡𝑜𝑡𝑎𝑙 is the total potential energy. 

𝑞𝑖, 𝑞�̇� is the displacement and velocity of the i-generalized coordinate of the 

system. 

Γ is the dissipative function due to the damping.  

𝑛 is the number of degrees of freedom. 

The matrix of inertia, damping and  stiffness developed through Eq. (109) are 

given as follow. 

𝑚𝑖𝑗 =
𝜕2𝑇𝑡𝑜𝑡𝑎𝑙

𝜕�̇�𝑖𝜕�̇�𝑗
, (110) 

𝑐𝑖𝑗 =
𝜕2Γ

𝜕�̇�𝑖𝜕�̇�𝑗
, (111) 

𝑘𝑖𝑗 =
𝜕2𝑉

𝜕𝑞𝑖𝜕𝑞𝑗
 . (112) 

In the calculation of the displacement, only the rotation 𝛼, 𝜓 and 𝜑 are used to 

calculate the displacement since the motor generates moment. These angle rotation 

𝛼, 𝜓 and 𝜑 are respectively in the axes X, Y and Z of the Figure (16). 

For the motor analysed in this work, the torque is generated in the 𝑦 direction, 

but the Torque Roll Axis (TRA) creates a decomposition in the three directions 𝑥, 𝑦 

and 𝑧. The motor considered in this work generates a torque of 10260 Nm about 𝑦. 

The torque roll axis angles are shown in Table 26. 

Table 26: Torque roll axis angle of motor. 

Torque Roll Axis 
𝜃1 (°) 𝜃2 (°) 𝜃3 (°) 

 90.11 0.85 90.84 

Source: the author. 

After decomposing the torque, the final torque distribution is 

{

𝑇𝑥

𝑇𝑦

𝑇𝑧

} = {
−21 

10259 
−151 

}  𝑁𝑚. 
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As it can be observed the main contribution of the torque remains about 𝑦, as 

the value about 𝑥 is too small only the component of 𝑦 and 𝑧 will be considered in the 

displacement calculation. For this reason the Langrangian will be built taking into 

account only the 𝜓 and 𝜑 coordinates. 

𝐿 =  𝑉𝜓 + 𝑉𝜙 + 𝑇𝜓 + 𝑇𝜙. (113) 

The 𝑉𝜓 and the 𝑉𝜑 from the potential energy of each mount compression or 

extension due to the rotation of the coordinates 𝜓 and φ, so the total potential energy 

will be given by 𝑉𝑡𝑜𝑡𝑎𝑙 = 𝑉𝜓 + 𝑉𝜑. The expression of 𝑉𝜓 and 𝑉𝜑 are  

 𝑉𝜓 = 
1

2
∑𝑘𝑖,𝑧𝛿𝑖,𝜓

2  

(114) 

𝑉𝜑 = 
1

2
∑𝑘𝑖,𝑥𝛿𝑖,𝜑

2 . 

 
𝛿𝑖,𝜓 and 𝛿𝑖,𝜑 are the displacements on the mount 𝑖 due to the rotation of 

coordinates 𝜓 and 𝜑. 

The total kinetic energy is given by 𝑇𝑡𝑜𝑡𝑎𝑙 = 𝑇𝜓 + 𝑇𝜑 due to the rotation of the 

motor about the CG. 𝑇𝜓 and 𝑇𝜑 are given by 

 𝑇𝜓 = 
1

2

𝜕2𝑇𝑡𝑜𝑡𝑎𝑙

𝜕𝜓2
�̇�2  

(115) 

𝑇𝜙 = 
1

2

𝜕2𝑇𝑡𝑜𝑡𝑎𝑙

𝜕𝜑2
�̇�2. 

For the case where the maximum torque without variation has been considered, 

the total energy of the system is transformed only in potencial energy whereas the 

kinetic energy is zero. For this reason the motion equation of the system is given by 

{

𝑇𝑥

𝑇𝑦

𝑇𝑧

} = 

[
 
 
 
 
 
0         0  0

0         
𝜕2𝑉𝑡𝑜𝑡𝑎𝑙

𝜕𝜓2
 0

0         0   
𝜕2𝑉𝑡𝑜𝑡𝑎𝑙

𝜕𝜑2 ]
 
 
 
 
 

{
0
𝜓
𝜑

} . (116) 
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To calculate the values of 𝜓 and 𝜑, the inverse of the matrix should be applied 

so the motion equation is given in Eq. (117). 

{
0
𝜓
𝜙

} =  

[
 
 
 
 
 
0         0  0

0         
𝜕2𝑉𝑡𝑜𝑡𝑎𝑙

𝜕𝜓2
 0

0         0   
𝜕2𝑉𝑡𝑜𝑡𝑎𝑙

𝜕𝜑2 ]
 
 
 
 
 
−1

{

𝑇𝑥

𝑇𝑦

𝑇𝑧

} . (117) 

After replacing all variables in Eq. (117), the angular displacement are 

{

𝛼
𝜓
𝜙

} =  {
   0.000
   0.080
−0.022

}  rad. 

With this result is now possible to figure out the displacement in Z due to the 𝜓 

coordinate and in X due to 𝜑 coordinate on each mount. The displacement results are 

shown in Table 27. 

Table 27: Displacement on each mount caused by rotations of coordinates 𝜓 and 𝜙. 

 Rotation in 𝝍   Rotation in 𝝋 

 Displacement in Z (mm)   Displacement in X (mm) 
𝜹𝟏,𝝍 11.20  𝜹𝟏,𝝋 -0.45 
𝜹𝟐,𝝍 14.50  𝜹𝟐,𝝋 0.41 
𝜹𝟑,𝝍 -25.50  𝜹𝟑,𝝋 -0.48 
𝜹𝟒,𝝍 -25.50  𝜹𝟒,𝝋 0.48 

Source: the author. 

As expected the biggest displacement contribution is in the Z direction where 

nearly the full torque is applied. 
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6 CONCLUSION AND FUTURE WORK 

 

The objective of this study was to optimize the design of a vehicle motor mount 

by incorporating the rigid body mode and isolation performance as key technical 

criteria, aiming to develop a high-performance vibration isolation system. 

 For this purpose, an analytical rigid body mode model with generic inputs like 

the number of mounts, mount inclination, mount position, mount stiffness, and the loss 

factor of the mount was built. On top of that, the isolation model was created, and with 

this model was possible to evaluate the transmissibility function which describes the 

isolation performance.  

The constraint functions were formulated based on the limits of mount position, 

stiffness, natural frequencies of the rigid body modes, modal purity, and 

transmissibility. 

After setting all these constraints, the PDLB interior-point algorithm was applied 

for three different initial conditions of position keeping the same initial stiffness 

condition. For all three conditions of optimization, the objective functions were satisfied 

and high modal purity (higher than 85% for each DOF) and isolation performance were 

obtained, however for the Condition 2 the constraint of frequency separation of 2 Hz 

between the modes was not met. An interesting outcome observed from the 

optimization process was that the algorithm primarily focused on adjusting the mount 

position, with only minimal variations in the mount static stiffness. Nevertheless, an 

improvement of 7 dBs of the transmissibility performance of the static stiffness was 

achieved after the optimization.    

The transmissibility performance of the dynamic stiffness was further analyzed. 

To achieve this, a commercially available mount with static stiffness comparable to that 

of the optimized mount was tested. The dynamic stiffness of the commercial mount 

was measured and it served as a reference to develop a model that accurately 

describes the dynamic stiffness. Utilizing this model, the dynamic stiffness of the 

optimized mount was created, and its transmissibility performance was assessed 

across a frequency range of 1 Hz to 600 Hz. 

The evaluation of isolation performance based on the transmissibility function 

derived from the dynamic stiffness model showed promising results. The Y direction 

exhibited the highest isolation performance, followed by the X and Z directions. 
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Specifically, the transmissibility in the X direction ranged from -28.3 dB to -22.9 dB, in 

the Y direction from -34.8 dB to -25.6 dB, and in the Z direction from -26.7 dB to -22.1 

dB. 

To expand the analysis of the mount project in this work the package space 

considering the motor displacement was done. For this, the motor torque at full load in 

static load condition was applied and the load on each motor mount was calculated 

using the Lagrangian approach. Once the loads were calculated the displacements on 

each mount were calculated and the mount stiffness could also be evaluated in terms 

of package space. The greatest displacement was observed in the mounts 3 and 4, 

reaching -25.5 mm in the Z direction. 

 For future works, there are many things which can be explored like the 

formulation of the transmissibility function considering the crossing displacements due 

to different load directions. This kind of evaluation is important to understand how the 

interaction of the loads changes the mount isolation performance. 

Another interesting work that can be done in the future is the study of the mount 

isolation performance in a high-frequency range. To expand the frequency range would 

be necessary to take into account the consideration of both the modes of the rubber 

isolation material and the bracket, because the resonance of each of these parts will 

affect the transmissibility performance of the mount. Additionally, another algorithms 

can be tested for optimization of this problem in order to meet the project requirements 

exploring more the stiffness variation.   

Last but not least, the durability effects of the mount can also be explored to 

further enhance the validation of this study’s findings. This would not only add 

robustness to the mount's lifespan assessment but also contribute to a more 

comprehensive understanding of the overall validation process. 
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APPENDIX A – KKT CRITERIA 

 

To find a minimum point {𝑿∗} such that 𝑓 is constrained in the equality 

equation ℎ𝑗 the Lagrange multiplier is used. Suppose that {𝑿∗} is a regular point and 

a local minimum for the problem. Then there exist unique Lagrange multipliers 𝑣𝑗
∗, 𝑗 = 

1 to 𝑝 such that: 

𝜕𝑓({𝑿∗})

𝜕𝑋𝑞
+ ∑𝑣𝑗

∗

𝑝

𝑗=1

𝜕ℎ𝑗({𝑿
∗})

𝜕𝑋𝑞
= 0;  𝑞 = 1 𝑡𝑜 𝛽 (𝐴. 1) 

For convenience the equation above can be arranged using a Lagrange 

function, where the Lagrange function is described as below: 

𝐿({𝑿}, { 𝝂}) = 𝑓({𝑿})  + ∑𝑣𝑗ℎ𝑗({𝑿})

𝑝

𝑗=1

 (𝐴. 2) 

Through Eq. (A.2) the Eq. (A.1) can be rewritten according to Eq. (A.3): 

 

(𝐴. 3) 
𝜕𝐿(𝑿∗, 𝒗∗)

𝜕𝑣𝑗
= 0 𝑎𝑛𝑑 ℎ𝑗(𝑿

∗) = 0;  𝑗 =  1 to 𝑝 

The gradient conditions of Eq. (A.3) shows that the Lagrange function is 

stationary with respect to both {𝑿} and {𝒗}. Therefore, it may be treated as an 

unconstrained function in the variables {𝑿} and {𝒗} to determine the stationary points. 

Note that any point that does not satisfy these conditions cannot be a local minimum 

point. However, a point satisfying the conditions need not be a minimum point either. 

It is simply a candidate minimum point which can actually be an inflection or maximum 

point. The second-order necessary and sufficient conditions explained later in this 

chapter can distinguish between the minimum, maximum, and inflection points. 

With Eq. (A.3) is possible to get the 𝛽 equations associated to {𝑿} and 𝑝 

equations associated to {𝒗} to find the unknown variables. 

Regarding the inequality constraint we have the option to convert it into an 

equality constraint by introducing a new variable known as the slack variable. Given 

∇L({𝑿∗}, { 𝒗∗}) =  𝟎   or   
𝜕𝐿({𝑿∗}, {𝒗∗})

𝜕𝑋𝑞
 = 0;  𝑞 = 1 𝑡𝑜 𝛽 
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that the constraint takes the form " ≤ " its value is either negative or zero. 

Consequently, the slack variable must consistently remain nonnegative or zero to 

equalize the inequality. An inequality constraint of the form 𝑔𝑖(𝑿)  ≤ 0 is essentially 

equivalent to the equality constraint 𝑔𝑖(𝑿) + 𝑠𝑖 = 0,  

Where 𝑠𝑖 ≥ 0 serves as the slack variable. These variables 𝑠𝑖 are treated as 

unknowns in the design problem, alongside the original variables, and their values are 

determined as part of the solution process. An inequality constraint is considered active 

(tight) when the corresponding slack variable 𝑠𝑖 has a zero value, indicating no "slack" 

in the constraint. Conversely, for any 𝑠𝑖 > 0, the corresponding constraint is considered 

inactive, and the slack is given by 𝑠𝑖. 

It's important to note that this procedure necessitates the introduction of an 

additional variable 𝑠𝑖 and an additional constraint 𝑠𝑖 ≥ 0 for each inequality constraint. 

This results in an increase in the dimension of the design problem. To guarantee the 

constraint 𝑠𝑖 ≥ 0, an alternative approach is to use 𝑠𝑖
2 as the slack variable instead of 

𝑠𝑖. Consequently, the inequality 𝑔𝑖(𝑿)  ≤ 0  is transformed into an equality as given by 

Eq. (A.4). 

𝑔𝑖({𝑿}) + 𝑠𝑖
2 = 0 (𝐴. 4) 

Where 𝑠𝑖 can assume any real value. This form is applicable in the Lagrange 

Multiplier Theorem for handling inequality constraints and deriving the associated 

necessary conditions. The 𝑚 new equations required to determine the slack variables 

are obtained by ensuring that the Lagrangian 𝐿 is stationary with respect to the slack 

variables as well (
𝜕𝐿

𝜕𝒔
 = 0). 

It's worth mentioning that once a design point is specified, Eq. (A.3) allows for 

the calculation of the slack variable 𝑠𝑖
2. If the constraint is satisfied at the point (𝑔𝑖 ≤ 0), 

then 𝑠𝑖
2 ≥ 0. In the case of violation, 𝑠𝑖

2 is negative, which is unacceptable, indicating 

that the point is not a viable candidate for a minimum point. Additionally, there exists 

an additional necessary condition for the Lagrange multipliers of "≤ type" constraints 

given as 

𝑢𝑖
∗ ≥ 0;  𝑖 = 1 𝑡𝑜 𝑚 (𝐴. 5) 
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where 𝑢𝑖
∗ is the Lagrange multiplier for the 𝑖𝑡ℎ inequality constraint. Thus, the Lagrange 

multiplier for each “≤” inequality constraint must be nonnegative. If the constraint is 

inactive at the optimum, its associated Lagrange multiplier is zero. If it is active (𝑔𝑖({𝑿}) 

= 0), then the associated multiplier must be nonnegative. 

The necessary conditions for the equality and inequality constraints can be 

summed up in what are commonly known as the Karush-Kuhn-Tucker (KKT) first-order 

necessary conditions. 

Let {𝑿∗} be a regular point of the feasible set that is a local minimum for 𝑓({𝑿}) 

subject to ℎ𝑗({𝑿}) = 0; i = 1 to p; 𝑔𝑖({𝑿}) ≤ 0; j = 1 to m. Then there exist Lagrange 

multipliers 𝑣𝑗
∗ (a p-vector) and 𝑢𝑖

∗ (an m-vector) such that the Lagrangian function is 

stationary with respect to 𝑋𝑞, 𝑣𝑗
∗, 𝑢𝑖

∗, and 𝑠𝑖 at the point {𝑿∗}. 

𝐿({𝑿}, {𝝂}, {𝒖}, {𝒔} ) = 𝑓({𝑿})  + ∑𝑣𝑗ℎ𝑗({𝑿})

𝑝

𝑗=1

+ ∑𝑢𝑗(𝑔𝑖({𝑿})

𝑚

𝑖=1

+ 𝑠𝑖
2) (𝐴. 6) 

Once the Lagrangian is built the gradient conditions are described. 

𝜕𝐿

𝜕𝑋𝑞
=

𝜕𝐿

𝜕𝑋𝑞
 +  ∑𝑣𝑗

∗
𝜕ℎ𝑗

𝜕𝑋𝑞

𝑝

𝑗=1

+ ∑𝑢𝑖
∗
𝜕𝑔𝑖

𝜕𝑋𝑞

𝑝

𝑗=1

= 0;   𝑞 = 1 𝑡𝑜 𝛽 (𝐴. 7) 

𝜕𝐿

𝜕𝑣𝑗
= 0; ℎ𝑗({𝑿

∗}) = 0;  𝑗 = 1 𝑡𝑜 𝑝 (𝐴. 8) 

𝜕𝐿

𝜕𝑢𝑖
= 0;  (𝑔𝑖({𝑿

∗})  + 𝑠𝑖
2) = 0;  𝑖 = 1 𝑡𝑜 𝑚 (𝐴. 9) 

𝑠𝑖
2  ≥  0;  𝑜𝑟 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡  𝑔𝑖 ≤ 0;  𝑖 = 1 𝑡𝑜 𝑚 (𝐴. 10) 

𝜕𝐿

𝜕𝑠𝑖
= 0;  2𝑢𝑖

∗𝑠𝑖 = 0;  𝑖 = 1 𝑡𝑜 𝑚 (𝐴. 11) 

𝑢𝑖
∗ ≥ 0;  𝑖 = 1 𝑡𝑜 𝑚 (𝐴. 12) 

Finally the concept of Lagrange multiplier can be applied in its known form in 

Eq. (A.13). 
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−
𝜕𝑓

𝜕𝑋𝑞
= ∑𝑣𝑗

∗
𝜕ℎ𝑗

𝜕𝑋𝑞

𝑝

𝑗=1

+ ∑𝑢𝑖
∗
𝜕𝑔𝑖

𝜕𝑋𝑞

𝑝

𝑗=1

= 0;   𝑞 = 1 𝑡𝑜 𝛽 (𝐴. 13) 

KKT conditions are not applicable at the points that are not regular. In those 

cases their use may yield candidate minimum points; however, the Lagrange 

multipliers are not unique. 

Any point that does not satisfy KKT conditions cannot be a local minimum unless 

it is an irregular point (in that case KKT conditions are not applicable). Points satisfying 

the conditions are called KKT points. 

The points satisfying KKT conditions can be constrained or unconstrained. They 

are unconstrained when there are no equalities and all inequalities are inactive. 

 If the candidate point is unconstrained, it can be a local minimum, maximum, 

or inflection point depending on the form of the Hessian matrix of the cost function. 

If there are equality constraints and no inequalities are active (i.e., {𝒖} = 0), then 

the points satisfying KKT conditions are only stationary. They can be minimum, 

maximum, or inflection points. 

If some inequality constraints are active and their multipliers are positive, then 

the points satisfying KKT conditions cannot be local maxima for the cost function (they 

may be local maximum points if active inequalities have zero multipliers). They may 

not be local minima either, this will depend on the second-order necessary and 

sufficient conditions. 

Solutions of the first-order necessary conditions are candidate local minimum, 

but the second-order necessary and sufficient conditions must be applied at {𝑿∗} to 

verify if it is indeed a local minimum. In this section, we shall discuss second-order 

necessary and sufficiency conditions for constrained optimization problems. The 

second-order necessary and sufficiency condition are evaluated considering active 

constraint at {𝑿∗} to determine the feasible changes of the vector {𝒅}, where {𝒅} is the 

vector giving the direction of the local minimum point. So, in each iteration to find the 

local minimum the new candidate point is updated by {𝑿} = {𝑿∗} + {𝒅}. Only the points 

{𝑿} = {𝑿∗} + {𝒅} in the neighborhood of {𝑿∗} that satisfy the active constraint equations 

will be considered. Any {𝒅} ≠ {𝟎} satisfying active constraints to the first order must be 

in the constraint tangent hyperplane (Figure 3.3-1). Such {𝒅}’s are then orthogonal to 

the gradients of the active constraints since constraint gradients are normal to the 

constraint tangent hyperplane. Therefore, the dot product of {𝒅} with each of the 
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constraint gradients ∇ℎ𝑗 and ∇𝑔𝑖 must be zero, i.e., ∇h𝑗
𝑇{𝒅} = 0 and ∇g𝑖

𝑇{𝒅} = 0. These 

equations are used to determine directions {𝒅} that define a feasible region around the 

point {𝑿∗}. Note that only active inequalities constraints (𝑔𝑖 = 0) are used in determining 

{𝒅}. The situation is depicted in (Figure 3.3-1) for one inequality constraint. 

  

Figure 44: Directions {𝒅} used in constrained sufficiency conditions. 

 

Source: adapted from Arora (2012). 

To derive the second-order conditions, the Taylor’s expansion of the Lagrange 

function is written and only {𝒅}’s satisfying the preceding conditions are considered. 

{𝑿∗} is then a local minimum point if the second-order term of  Taylor’s expansion is 

positive for all {𝒅} in the constraint tangent hyperplane. This is then the sufficient 

condition for an isolated local minimum point. As a necessary condition the second-

order term must be nonnegative. 

In short, these necessary and sufficient conditions can be written by the 

following equations. 

For second-order necessary condition for general constrained problems 

considering that {𝑿∗} satisfy the first-order KKT necessary conditions for the general 

optimum design problem. The Hessian of the Lagrange function 𝐿 at {𝑿∗} is described 

in Eq. (A.14). 

∇2𝐿 = ∇2𝑓 + ∑𝑣𝑗
∗∇2ℎ𝑗

𝑝

𝑗=1

+ ∑𝑢𝑖
∗∇2𝑔𝑖

𝑚

𝑖=1

= 0 (𝐴. 14) 

 

Now with {𝒅} ≠ {𝟎} the linear system must satisfy the conditions below. 

∇h𝑗
𝑇{𝒅} = 0; 𝑗 = 1 to 𝑝 (𝐴. 15) 

∇g𝑖
𝑇{𝒅} = 0; for all active inequalities (𝐴. 16) 
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Then if {𝑿∗} is a local minimum point for the optimum design problem, it must 

be true that:  

𝑄 ≥ 0 𝑤ℎ𝑒𝑟𝑒 𝑄 = {𝒅}𝑇∇2𝐿({𝑿∗}){𝒅} (𝐴. 17) 

These are the necessary conditions of second-order general constrained 

problem, now there are some slightly differences for the second-order sufficient 

condition of the constrained problem that are presented on the upcoming Eqs. (A.18), 

(A.19) and (A.20). 

Considering again that at {𝑿∗} the first-order KKT necessary conditions for the 

general optimum design problem is satisfied, the nonzero field directions ({𝒅} ≠ {𝟎} 

and Eqs. (A.18), (A.19), (A.20) and (A.21) are satisfied, then {𝑿∗} is an isolated local 

minimum point (isolated means that there are no other local minimum points in the 

neighborhood of {𝑿∗}. 

∇h𝑗
𝑇{𝒅} = 0; 𝑗 = 1 to 𝑝 (𝐴. 18) 

∇g𝑖
𝑇{𝒅} = 0; for all active inequalities with 𝑢𝑖

∗ > 0 (𝐴. 19) 

∇g𝑖
𝑇{𝒅} ≤ 0; for those active inequalities with 𝑢𝑖

∗ = 0 (𝐴. 20) 

𝑄 ≥ 0 𝑤ℎ𝑒𝑟𝑒 𝑄 = {𝒅}𝑇∇2𝐿({𝑿∗}){𝒅} (𝐴. 21) 

The last but not least is the strong sufficient condition, which says that if {𝑿∗} 

satisfy the first-order KKT necessary conditions for the general optimum design 

problem and the Hessian ∇2𝐿(𝑿∗) for the Lagrange function at {𝑿∗} is positive definite 

then {𝑿∗} is an isolated minimum point. 


