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“A verdadeira delegacao nao € apenas
distribuir tarefas, mas transferir confianca.”
(Stephen Covey)



RESUMO

Neste trabalho, propomos um modelo de delegacao de tarefas capaz de suportar subdelega-
cbes por meio de decomposicao de tarefas e delegacao recursiva. Nosso modelo considera
componentes sociais e cognitivos derivados das teorias de confianca e reputacdo (e.g., taxa
de sucesso, preferéncias dos agentes, imagem social, reputacdo e know-how), além da forma
como 0s agentes se conectam e estabelecem relacionamentos sociais, com o objetivo de refinar
0 processo de selecdo de parceiros. O modelo proposto foi projetado para lidar com cenarios
de delegacao de tarefas em que os agentes podem alcangar seus objetivos por meio de acoes
de delegacao ou execucgao. Especificamente, o modelo de delegacéo é empregado no processo
de selecéo de parceiros, onde um agente delegador deve decidir qual parceiro selecionar como
delegado. Nesse processo, além das avaliagdes pessoais e compartilhadas sobre um parceiro,
o delegador pode extrair informagdes diretamente das cadeias de delegacao. Isso inclui depen-
déncias diretas e transitivas com base nas conexdes dos agentes, a probabilidade de sucesso
acumulada a medida que as tarefas sao subdelegadas e os graus de penalizacdo atribuidos
aos parceiros em casos de propagacao de falhas. Em particular, uma cadeia de delegacao é
uma estrutura comum em aplicagdes onde os agentes trabalham como uma equipe e depen-
dem uns dos outros para alcangar seus objetivos. No entanto, poucos modelos de delegacéo na
literatura consideram as subdelegagcdes como um processo abrangente e integrado. A maioria
das abordagens existentes aborda a delegacao de tarefas a partir de uma perspectiva mono-
episddica, desconsiderando a formacdo e o impacto das cadeias de delegacao e tratando as
subdelegacdes como meras repeticoes de instancias isoladas de delegacdao. Em nossos expe-
rimentos, avaliamos a eficacia do modelo de delegagédo proposto em um ambiente dindmico,
onde os agentes podem mudar seu comportamento social ao longo do tempo. Nesse contexto,
comportamento social refere-se a capacidade de um agente de cumprir com precisdo suas
estimativas de desempenho ao atuar como parceiro, bem como a probabilidade de falha as-
sociada ao agente durante a execucao da tarefa. Essas caracteristicas podem ser aprendidas
pelos delegadores a medida que interagem com os demais agentes do sistema. Como principal
contribuicdo deste trabalho, demonstramos que os agentes se beneficiam de um modelo de
delegacao que lida explicitamente com subdelegacdes e cadeias de delegacédo. Nossa aborda-
gem leva a melhorias significativas no cumprimento das tarefas quando comparada a aborda-
gens monoepisédicas. Especificamente, observamos aumentos nas taxas de sucesso € niveis
mais altos de satisfagao entre os agentes em relagdo as suas tarefas, além de uma redugao
no tempo necessario para que os delegadores aprendam 0s novos comportamentos sociais
adotados por seus parceiros em um ambiente dindmico. Argumentamos que, ao gerenciarem
explicitamente as cadeias de delegacao, os agentes obtém melhor desempenho e se adaptam
mais rapidamente aos comportamentos dos demais. Analises estatisticas confirmaram que o
modelo proposto superou significativamente as abordagens de referéncia em taxa de sucesso,
satisfagao e eficiéncia de aprendizagem, em diferentes topologias e estratégias de delegacéo.

Palavras-chave: delegacao de tarefas; modelos de delegacao; modelos de confianga e reputa-
cao; cadeia de dependéncia; relacdes de dependéncia social.



ABSTRACT

In this work, we propose a task delegation model capable of supporting sub-delegations th-
rough task decomposition and recursive delegation. Our model considers social and cognitive
components derived from trust and reputation theories (e.g., success rate, agents’ preferences,
social image, reputation, and know-how), as well as how agents connect and establish social
relationships, with the aim of refining the partner selection process. The proposed model was
designed to deal with task delegation scenarios in which agents can achieve their goals through
delegation or execution actions. Specifically, the delegation model is employed in the partner
selection process, where a delegator agent must decide which partner to select as the delega-
tee. In this process, in addition to personal and shared evaluations of a partner, the delegator
can extract information directly from delegation chains. This includes direct and transitive de-
pendencies based on agents’ connections, the accumulated success probability as tasks are
sub-delegated, and the penalty degrees assigned to parnters in cases of failure propagation.
In particular, a delegation chain is a common structure in applications where agents work as
a team and depend on one another to achieve their goals. However, few delegation models in
the literature consider sub-delegations as a comprehensive and integrated process. Most exis-
ting approaches address task delegation from a mono-episodic perspective, disregarding the
formation and impact of delegation chains, and treating sub-delegations as mere repetitions of
isolated delegation instances. In our experiments, we evaluate the effectiveness of the propo-
sed delegation model in a dynamic environment where agents can change their social behavior
over time. In this context, social behavior refers to an agent’s capability to accurately fulfill its
performance estimations when acting as a partner, as well as the likelihood of failure associated
with the agent during task execution. These characteristics can be learned by the delegators
as they interact with other agents in the system. As the main contribution of this work, we de-
monstrate that agents benefit from a delegation model that explicitly handles sub-delegations
and delegation chains. Our approach leads to significant improvements in task accomplishment
when compared to mono-episodic approaches. Specifically, we observe increased success ra-
tes and higher satisfaction levels among agents regarding their tasks, as well as a reduction in
the time required for delegators to learn the new social behaviors adopted by their partners in
a dynamic environment. Therefore, we argue that when agents can explicitly manage delega-
tion chains, they achieve better performance and adapt more quickly to the evolving behaviors
of other agents over time. Statistical analyses confirmed that the proposed model significantly
outperformed baseline approaches in terms of success rate, satisfaction, and learning efficiency
under different network topologies and delegation strategies.

Keywords: task delegation; delegation models; trust and reputation models; dependence chain;
social dependence relations.
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1 INTRODUCTION

In a Multi-agent System (MAS), task delegation is a fundamental mechanism adopted
by agents to solve problems that involve teamwork. Such a mechanism contributes to agents
accomplishing private or collective objectives beyond their capabilities. A critical stage of task
delegation is partner selection, where the agents must choose partners capable of performing
the tasks delegated to them. Generally, this process is oriented by the trust degree associated
with each partner. In particular, the trust establishment relies on observations about the partners’
social behavior and the environmental conditions.

The simplest type of delegation is called mono-episodic (Castelfranchi; Falcone, 2010).
In this type of delegation, an agent, referred to as a delegator, must delegate a task 7 to another
agent, referred to as delegatee, because it does not have the conditions to complete 7 alone.
The mono-episodic approach assumes that a delegatee can execute 7 directly. However, in the
context of sub-delegations, if a delegatee is not able to complete a task 7 by itself, it may delegate
7 onward until another agent performs it (recursive delegation) (Afanador; Baptista; Oren, 2019)
or decompose T into sub-tasks (71, 7, ..., 7,) and then delegate them (task decomposition)
(Karimadini; Lin, 2010). It is important to remark that sub-delegations imply the formation of
delegation chains as the agents sub-delegate tasks to each other.

Delegation chains admit the representation of complex social structures that express the
dependence relations among the agents, such as direct, transitive, AND and OR social depen-
dencies (Costa; Dimuro, 2006). These structures define the connections among the agents and
are essential for task delegation scenarios where the agents must work together to accomplish
goals they could not achieve alone (Dong; Ota; Dong, 2021) (Wang et al., 2022) (Pettitt; Elliott;
Swiecicki, 2017) (Yliniemi; Agogino; Tumer, 2014) (Barker; Whitcomb, 2016). A delegation chain
can be seen as a sequence of delegations performed in a given order by a set of agents that aim
to achieve their goals (An; Miao; Cheng, 2005) (An et al., 2007). Along a delegation chain, an
agent can act as a delegator by assigning tasks to others or as a delegatee by receiving a task
from others. When a sub-delegation occurs, the delegatee becomes the delegator of a new de-
legation instance, and a new agent is selected as the delegatee. Besides, the agent who makes
the first delegation request is called the chain’s root (Afanador; Baptista; Oren, 2019). Distinct
delegation chains can be integrated into a single network structure since an agent can make
part of different delegation chains at the same time. In such a network structure, each chain
represents a sequence of delegations that might lead a root to accomplish its goal according to
an accumulated success rate (ASR). This measure indicates the probability of all agents along
a delegation chain successfully completing their respective tasks.

In this work, we propose a task delegation model that explicitly supports sub-delegations
and the formation of delegation chains through recursive delegation and task decomposition. We
assume a task can be decomposed using conjunction (AND) or disjunction (OR) operations. A
conjunction operation is applied when task decomposition requires the simultaneous selection
of multiple partners (delegatees). Each partner’s joint success implies the decomposed task’s
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success in this case. On the other hand, a disjunction operation is applied when a task can be
broken down into alternative forms involving different partners. In this way, the success of any
given partner is enough to ensure the success of the decomposed task. Additionally, in our dele-
gation model, the partner selection process is modeled using a reinforcement learning approach
known as Multi-armed Bandits (MAB) (Turgay; Oner; Tekin, 2018). In such an approach, the
partners are selected based on a delegation likelihood. This likelihood is calculated through a
multi-goal analysis that takes as input several social and cognitive components, which are bet-
ter discussed later in this document, particularly in chapters 2 and 3. In a general way, these
components involve agents’ direct and transitive social dependencies, preferences, historical in-
formation about agents’ successes likelihood, behavioral impressions, social image, reputation,
and know-how (Castelfranchi; Miceli; Cesta, 1992) (Castelfranchi; Falcone, 2010) (Conte; Pao-
lucci, 2002) (Buccafurri et al., 2015).

To delimit the scope of this work, we assume a simplified and controlled multi-agent
environment focused on the task delegation process through delegation chains. Tasks are an-
nounced in parallel and do not carry priority levels or differentiated rewards. Agents are capable
of executing multiple tasks concurrently, and we assume that resources are unlimited and non-
consumable. All agents possess the same set of skills, have unlimited availability, and adopt
neutral behavior (i.e., they are neither benevolent nor selfish) and do not act maliciously. Addi-
tionally, there are no strategic attacks on the delegation process, as agents are assumed to be
honest. These assumptions allow us to isolate and analyze the impact of delegation chains and
network topology on partner selection and overall system efficiency, without interference from
external strategic factors.

1.1 Motivation

As pointed out by (Burnett; Oren, 2012) and (Afanador; Baptista; Oren, 2019), few
delegation models in the literature consider sub-delegations as an independent process. In
general, the delegation problem is addressed from a mono-episodic point of view, ignoring the
formation of delegation chains or considering sub-delegations as a mere repetition of mono-
episodic instances (Sabater; Sierra, 2001) (Huynh; Jennings; Shadbolt, 2004) (Griffiths, 2005)
(Sabater; Paolucci; Conte, 2006)  (Castelfranchi; Falcone, 2010)  (Cho; Chan; Adali, 2015)
(Castelfranchi; Falcone, 2020).

Consequently, key aspects regarding sub-delegations tend to be overlooked, such as:

» Task transitivity in scenarios where sub-delegations are required (i.e., the effects that
sub-tasks and recursive delegations, generated as ramifications of an initial delegation
action d;, have on the outcome obtained after executing the task associated with d;
(Afanador; Baptista; Oren, 2019; Afanador; Oren; Baptista, 2019);

» Penalization strategies for propagating an agent’s failure along a delegation chain
(Burnett; Oren, 2012);
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» Dependence relations and their effect on the establishment and maintenance of trust
(Costa; Dimuro, 2006; Sichman; Conte, 2002; Kox et al., 2021).

Even in works that consider sub-delegations as an independent process
(Burnett; Oren, 2012) (Afanador; Baptista; Oren, 2019) (Afanador; Oren; Baptista, 2019),
the sub-delegations are addressed only from the point of view of recursive delegations. In
this kind of approach, agents are not able to decompose their tasks based on their de-
pendence relations. On the other hand, in some approaches, like (Burnett; Oren, 2012),
(Afanador; Baptista; Oren, 2019), and (Afanador; Oren; Baptista, 2019), the agents decide
which partner to choose, taking into account just a single evaluation dimension. For example,
in (Burnett; Oren, 2012), partner selection is performed through a reputational mechanism, in
which the agents’ reputation is estimated based on their interactions with others. Conversely,
in (Afanador; Baptista; Oren, 2019) and (Afanador; Oren; Baptista, 2019), partners are chosen
based on their success history, considering the tasks they have executed in the past.

As pointed out by (Castelfranchi; Falcone, 2010) and (Castelfranchi; Falcone, 2020), the
trust needed by an agent to decide to delegate a task involves several other social and cogni-
tive components besides reputational measures or success rate. These aspects can be divided
into internal and external factors. In this work, we focus on internal factors, which are directly
included in our delegation model. For example, direct experiences are represented through the
agent’s social image (Sabater; Paolucci; Conte, 2006), and indirect experiences are related to
reputation and know-how (Conte; Paolucci, 2002), (Buccafurri et al., 2015). External factors, like
unexpected events or changes in the environment, are not directly included in the model. Ins-
tead, we represent them indirectly in our experiments by changing the behavior of the agents,
which affects how trust is updated and how delegation decisions are made.

In addition, when a delegator selects a partner to delegate a task, they also create expec-
tations about how that task will be performed (Castelfranchi; Falcone, 2020). These expectations
usually include agreements established between the delegator and the chosen partner regarding
the time, cost, or quality of task execution. If the partner fails to meet what was promised, for
example, by delivering the task late or at a higher cost, the delegator’s expectations are not fully
met, even if the task is completed. In delegation chains, this problem can be even more complex,
as each agent may sub-delegate its tasks, relying on others to fulfill their performance estima-
tions (promises). Therefore, delegation models should not only focus on the probability of task
success but also consider the partner’s ability to meet the delegator’s expectations regarding
task execution.

In order to highlight the contribution of the delegation model proposed in this work,
Table 1 provides a comparative overview of related delegation models based on the type and
nature of their evaluation mechanisms and whether they support sub-delegation structures th-
rough delegation chains. This classification considers whether the model adopts a unidimensi-
onal or multidimensional evaluation strategy, the nature of the dimensions considered (social,

cognitive, or performance-based), the specific evaluation criteria used (e.g., success rate, repu-
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tation, cost, and quality), and whether the model supports mono-episodic delegation or more
complex structures involving sub-delegations and delegation chains.

As shown in Table 1, models such as those proposed by (Sabater; Sierra, 2001),
(Huynh; Jennings; Shadbolt, 2004), and (Pinyol ef al., 2012) employ multidimensional evaluati-
ons grounded in social constructs like social image and reputation but treat delegation from
a mono-episodic perspective. In contrast, (Griffiths, 2005) extend evaluation criteria to task-
specific dimensions such as cost, timeliness, and quality, focusing on the performance cha-
racteristics of agents during task execution. On the other hand, (Castelfranchi; Falcone, 2010),
incorporate cognitive elements such as dependencies, risk, and willingness into trust evalua-
tion, yet also retain a mono-episodic perspective. More recent approaches, such as those by
(Burnett; Oren, 2012) and (Afanador, 2019), support recursive delegation via sub-delegations
and delegation chains. However, their evaluation models remain unidimensional, relying solely
on reputation or agents’ success histories.

1.2 Problem Definition

Considering sub-delegations in partner selection requires refining how trust is compu-
ted, relying solely on a partner’s individual performance (e.g., success or failure rate) may be
inadequate, as delegation chains provide additional insights into its behavior and performance.
For instance, when delegation chains are considered during partner selection, a partner’s per-
formance estimations do not need to be based solely on its individual capabilities. Instead, these
estimations may take into account the performance capabilities of other agents at lower levels
of the delegation chain. Thus, the promises made by a partner regarding task execution can be
built considering the performance estimations of the agents it relies on to execute sub-tasks.
This feature enables the partner to evaluate the entire chain’s impact on its performance esti-
mation regarding task outcomes, resulting in more accurate overall estimations, as it reflects the
influence of all agents involved in fulfilling the initial promise. In our approach, the performance
estimations made by a partner consider the capabilities of agents at lower levels in the delegation
chain. However, the accuracy in fulfilling these estimations depends on the partner’'s accuracy
level (i.e., agents with higher accuracy levels tend to better meet the expectations of their dele-
gators). In our experiments, we discuss this process in detail as part of the characterization of
the agents.

Furthermore, the explicit representation of a delegation chain allows different degrees of
penalization to be applied to agents along a chain based on their involvement in a failure event. In
particular, an agent can be directly or indirectly responsible for a failure. A direct failure happens
when the agent fails to perform a task due to individual reasons, like a lack of a resource or
competence. In contrast, an indirect failure is caused by the propagation of someone’s failure,
which affects the agent due to its social dependence relations. For instance, if an agent in the
middle of a delegation chain fails to complete a task 7, this failure must be propagated to the
other agents at the higher levels of the chain (i.e., agents that depend directly or indirectly on 7).
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Therefore, the degree of penalization for each agent may differ according to the transitive effects
of the failure.

It is important to remark that the topology of the agent network plays a crucial role in the
formation of delegation chains and how dependence relations are established. Different network
structures (e.g., hierarchical trees or probabilistic random graphs) impose distinct constraints on
agent connectivity, affecting the agents’ performance and how failures propagate. For instance,
in a tree topology, the connections between agents are built on rigid parent-child relationships,
which simplify the way agents define their dependencies, but at the same time limit the number of
tasks that a partner can receive from distinct agents, considering that tasks are delegated from
a parent to a child. In contrast, a random topology enables greater interconnectivity between
network levels, allowing agents to establish multiple dependencies and communication paths,
but this topology tends to increase the number of possible delegation chains that can be formed
when an agent decides to delegate a task. These structural characteristics directly impact how
delegation chains operate, how failures affect agents at higher levels of a failure chain, and how
agents evaluate the reliability of their sub-delegations.

Another advantage of considering the delegation chain in the partner selection process is
the possibility of delegating tasks to groups of partners through task decomposition. For example,
in a group formed through a dependence relation of AND-type, the failure of a single partner
results in the failure of the entire group. Thus, completing the task delegated to the group of
agents requires all members to complete their sub-tasks. Nevertheless, a delegator can assess
the performance of each group member separately, differentiating the individual performance
of each delegatee from the overall group performance. This feature allows a delegator to have
different views about its partners.

Therefore, in a delegation chain, the trust that a delegator has in a partner can not be
computed merely by counting the number of successes or failures of the partner since the agents
may fail due to the actions of others (i.e., failures can be caused due to transitive social depen-
dence relations or by other members of a group). Taking this type of refinement into account
allows the delegators to be more sensitive to the delegatees participation in group fails during
their deliberative process. Such a feature is crucial for optimizing agents’ performance in situati-
ons where a partner’s success depends not only on its individual capabilities but also relies on
the behavior of other agents. This is particularly pertinent in dynamic scenarios where agents
can change their behavior over time, such as those defined as follows:

« Traffic Management: Vehicles can change their behavior over time based on real-
time traffic conditions, such as congestion levels, accidents, or road closures. Be-
sides, vehicles may adjust their routes, speed, or driving behavior to optimize
the traffic flow or minimize travel time (Nellore; Hancke, 2016) (Mushtaq et al., 2023)
(Serugunda et al., 2021).

* Financial Markets: Aiming to maximize profits or minimize losses, agents in financial
markets, like traders or trading algorithms, can adapt their strategies and behaviors
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over time in response to market dynamics, news events, or the joining and leaving of
investors investor (Shavandi; Khedmati, 2022) (Tao et al., 2021) (Cohen, 2022).

» Smart Grids: Energy-producing and consuming agents (e.g., power plants, renewable
energy sources, households) can dynamically adjust their energy production or con-
sumption patterns based on factors like electricity prices, demand forecasts, or availabi-
lity of renewable energy. Such an adaptive behavior helps balance supply and demand
in the system, optimizing energy usage and improving grid reliability (Hossain et al.,
2016) (Camacho et al., 2011) (Faheem et al., 2018) (Dileep, 2020).

* Robotics and Autonomous Systems: Agents can learn and adapt their behaviors over
time through learning mechanisms, refining their navigation strategies, object manipu-
lation techniques, or task execution procedures based on feedback from sensors, past
experiences, or environmental interactions (Yliniemi; Agogino; Tumer, 2014) (Barker;
Whitcomb, 2016) (Wong et al., 2017) (Dong; Ota; Dong, 2021) (Wang et al., 2022).

» Supply Chain Management. Agents involved in supply chain management,
such as manufacturers, distributors, and vendors, can adjust their produc-
tion, stocking, or distribution strategies over time in response to changing
market demand, supply chain disruptions, or variations in production costs
(Manavalan; Jayakrishna, 2019) (Abdel-basset; Manogaran; Mohamed, 2018) (Margo-
lis et al., 2018) (Cui; Idota; Ota, 2019).

It is important to remark that task delegation is a central theme in multi-agent
systems and intersects with broader research areas such as cooperative game theory
(Branzei; Dimitrov; Tijs, 2008) and coalition function games (Aumann; Dreze, 1974), which ex-
plore how agents can collaborate, form coalitions, and share payoffs or responsibilities based on
individual contributions and capabilities. While these approaches often focus on formal models
for coalition formation and utility distribution, this work adopts similar collaborative principles
to model how agents select partners and form delegation chains in dynamic environments. In
contrast to traditional cooperative games, where coalitions are typically formed with global kno-
wledge or static assumptions, our model addresses local, dynamic, and decentralized decision-
making, where agents must evaluate others based on their social behavior, which may change
over time.

In particular, in this work, social behavior is defined as an agent’s ability to fulfill its per-
formance estimation and its capability to complete tasks, which depend on the agent’s accuracy
level and the likelihood of failure associated with task execution, respectively. These characteris-
tics may vary over time, as discussed later. Such changes affect how a delegator perceives its
partners and may force it to relearn which partners are trustworthy as behavioral patterns evolve.
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In this context, the research question adopted as a guide for this work is:

How do sub-delegations affect the task delegation process, and how can delegation
models based on delegation chains improve partner selection and overall system effici-
ency in dynamic scenarios where agents can change their social behavior over time?

To answer this question, we designed a delegation model that explicitly takes into account
sub-delegations and the formation of delegation chains during the partner selection stage under
two different types of network topologies (i.e., tree and random networks). Specifically, our model
aims to identify the most suitable partners for a given task by evaluating each agent’s capabilities
and competencies, along with the impact of social dependence relations and the partner’s ability
to meet the delegator’s expectations regarding task execution.

1.3 Motivating Example

The dependence network shown in Figure 1 demonstrates the importance of considering
the transitive dependence relationships during partner selection. Such a network represents a
complex delegation chain, which is compounded of three distinct sub-chains. In turn, each sub-
chain represents a sequence of delegations that can enable the root to complete the task 7.
In this case, the delegation of a task 7 is represented as d(7), whereas the execution of a task
7 is defined as e(7). Moreover, in this example, for simplicity, we omit the social and cognitive
elements mentioned previously and assume that a delegator’s decision about which partner to
select is based only on the success rate (SR) and accumulated success rate (ASR). The success
rate is associated with the direct social dependencies established between a delegator and its
partners, representing the probability of a partner completing a task based on its success history.
On the other hand, the accumulated success rate expresses the success probability of a sub-
chain as a whole, considering the transitive social dependencies. Such a measure is calculated
as the product of the individual success rates of each agent along a sub-chain. For instance, ag;
records that the SR(7) assigned to ags is 0.6, and the ASR for the chain from 7, followed by
73, is 0.54, which is calculated as the product of SR(7) and SR(73).

Note that, in a mono-episodic partner selection approach, the partners would be selected
based on their success rates since this measure is obtained from the direct social dependencies
between each delegator and its partners. In this case, the partners chosen as delegates would
be those with the highest success rate. In contrast, when the transitive dependencies are con-
sidered, the success rate of all agents in a chain can be taken into account during the partner
selection. In this case, the partners would be selected based on the path with the highest proba-
bility of success rather than solely on the success rate of a single partner. Despite the simplicity
of this example, it is possible to observe that the local choice by the partner with the highest
success rate (agy with SR(7;) = 0.8) does not guarantee the best arrangement of partners (i.e.,
the path with the highest success probability - ASR(7, 73) for ags and agg), which can only be
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achieved when the transitive social dependencies are considered during the partner selection

process.
ag; ag; agd,
SR(t)=07 | SR(t)=06 | SR(1,) =038
ASR(T]rTz) = 035 i ASR(TI’T3) = 054 i ASR(TLT4) = 032
ags ag,
SR(t,) = 0.5 SR(T,) = 0.4

d(t,)
O O
Oo| ag, ags ags |00
e(ty) < d(Ty) e(Ty) < d(T1s5) e(ty) < d(1y)
v v v
ags ags agy
e(ty) e(ts) e(T,)

Figure 1 — Delegators’ views on their partners, considering the individual success rates (SR) and
the accumulated success rate for distinct delegation chains (ASR). The symbol <
denotes a dependence relation established between two agents concerning the
execution of a task. Thus, the notation e(7;) < d(72) means that the execution of task
71 depends on the delegation of task >, which, in turn, must be executed by ags.

Source: Own authorship (2025).

1.4 Goals

General goal: Build a task delegation model with support for sub-delegations and the
formation of delegation chains. In this model, partners are selected through a multi-goal analysis,
which considers as dimensions social and cognitive components, like the agents’ direct and
transitive social dependencies, historical success data, behavioral impressions, social image,
reputation, and know-how. Additionally, in this thesis, we achieve the following sub-goals:

» Sub-goal 1: Proposing a network structure capable of representing complex delegation
chains. This network must express all dependence relations in the delegation chains
formed from the sub-delegations performed among the agents. The networks produced
are used to evaluate the performance of the proposed delegation model.
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» Sub-goal 2: Evaluate the accuracy of the proposed delegation model concerning
the partner selection considering dynamic scenarios, where the agents’ behavior can
change over time. These behavior changes affect the agents’ performance concerning
the execution of their tasks and, hence, the evaluations produced by their delegators
(e.g., social image, reputation, know-how, and success rate).

» Sub-goal 3: Evaluate the complexity and efficiency of the proposed delegation model
compared to a mono-episodic approach.

1.5 Research Hypotheses

The hypotheses examined in this thesis originate from the following claims:

* Hypothesis 1: A delegation model designed to cope with delegation chains can
achieve better results than mono-episodic models. Extracting additional information
from a delegation chain gives a delegator a more comprehensive view of its partners’
behavior, increasing its chances of selecting suitable partners. Moreover, since a dele-
gation chain is constructed on the basis of transitive dependencies, the success rate of
each agent along a chain can be aggregated into a single measure (i.e., accumulated
success rate (ASR)), which defines the probability of all agents in the chain successfully
completing their respective tasks. Consequently, the accumulated success rate propa-
gation along the chain prevents a delegator from selecting their partners using just local
evaluations obtained through its direct dependence relations. This level of refinement
can only be achieved when taking transitive dependencies into account, allowing for
more informed decision-making in dynamic environments.

» Hypothesis 2: The network’s topology, created based on dependence chains, in-
fluences how often success rates are updated and impressions are shared by
delegators, improving the effectiveness of social evaluation mechanisms and
partner selection strategies based on delegation chains. Delegation chains can
be integrated into a complex network as dependence relations are established. These
relations determine how agents connect with each other and with their neighborhoods,
shaping the network’s topology. This topology, in turn, influences how often success ra-
tes are updated and how many impressions are shared among delegators. As a result,
it tends to improve the effectiveness of social evaluation mechanisms used to estimate
agents’ competences and the performance of partner selection strategies that rely on
delegation chains to propagate agents’ success rates.

» Hypothesis 3: The use of transitive dependencies as a mechanism for propaga-
ting information can speed up the identification of good partners. Considering the
structure of delegation chains, formed from transitive dependencies, to propagate ac-
cumulated success rates allows agents (delegators) to choose their partners based on
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the chain’s success probability as a whole rather than solely on the individual success
probability of each partner. Such a feature accelerates the perception of which partners
are the most trustworthy, even in an environment where the agents’ behavior changes
over time.

» Hypothesis 4: A multi-goal delegation model, based on distinct social and cogni-
tive dimensions, enables delegators to select partners capable of ensuring a high
likelihood of success while meeting their expectations regarding task execution.
Considering distinct evaluation dimensions, such as social dependencies, preferences,
historical success rates, reputation, and know-how in a delegation model allows de-
legators to choose partners based not only on the likelihood of task completion but
also on their ability to meet the delegator’s expectations regarding task execution (e.g.,
considering whether the task was performed within the time and cost estimated by the
partner).

1.6 Document Outline

The remainder of the thesis is divided into six chapters. Chapter 2 reviews essential
concepts employed in our proposed delegation model, such as situational dependence graphs,
multi-armed bandits, and trust and reputation theory. Chapter 3 covers the modeling details,
presenting the internal components of our delegation model, which are derived from trust and
reputation theory. Chapter 4 outlines the methodology used to validate the hypotheses of this
thesis, including evaluation metrics and experimental constraints. Chapter 5 presents the expe-
riments designed to test the proposed hypotheses and discusses the results obtained. Finally,
Chapter 6 concludes the thesis by summarizing the contributions of this work and proposing fu-
ture research directions. An appendix is presented at the end of this document, which formalizes

a file format to represent networks used as input for our experiments.
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2 BACKGROUND

This chapter provides an overview of the fundamental definitions and concepts that form
the foundation of this work, essential for comprehending our delegation model. Herein, we dis-
cuss the various types of social dependence relations that can be established among agents
as they delegate tasks to to one another, present the social evaluation approaches integrated
into our delegation model to facilitate the trust computing process, introduce a data structure
known as Dependence Situation Network (DS-net), which can represent delegation chains, and
describe the multi-armed bandit problem, discussing how it can be used as a partner selection
mechanism.

2.1 Task Delegation

A task delegation scenario involves an agent (delegator) who aims to achieve a goal g
but cannot perform the task 7 necessary to accomplish g by itself. Thus, to achieve this goal, the
delegator needs to delegate the task 7 to a partner (delegatee) capable of completing 7 from the
delegator’s perspective (Castelfranchi; Falcone, 2010; Cantucci; Falcone; Castelfranchi, 2019).
In this scenario, the delegator will achieve its goal g only if the delegatee successfully completes
7 (Castelfranchi; Falcone, 2020).

In particular, the delegation process described in this work is inspired by the Contract-
Net Protocol (CNP) (Smith, 1980), which defines a negotiation-based mechanism for dynamic
task allocation in multi-agent systems. Similar to CNP, our approach involves three main stages:
task announcement (offer request), proposal evaluation (partner selection), and task execution.
Although we adopt this structure, our model extends it by incorporating social evaluation mecha-
nisms and support for delegation chains. These phases are described in detail as follows:

Offer request: a delegator notifies its partners of the intention to delegate a task 7. After recei-
ving the notification, partners send their offers to the delegator, providing their perfor-
mance estimations for the task criteria (e.g., the time required to perform 7).

Definition 1. An offer is a 4-tuple («, 3, T, V'), such as:

* «v is the agent who requests the offer (delegator);
- (3 is the agent who produced the offer (partner);
* T is the task that « intends to delegate to (3 if B is selected as its delegatee;

« V =[(c1,v1), ..., (ck,vx)] is @ vector that represents the performance estima-
tions made by [3, where each value v; € [0, + o] is a 3’s estimation for a 7’s

criterion c;.
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Partner selection: after receiving the offers from its partners, the delegator must select its de-
legatees. The choice of a delegatee involves evaluating the partners’ offers for a task 7,
their success history in executing 7 (success likelihood), and their capability to execute
7 according to their performance estimations (competencies).

Execution: the delegatees execute their tasks. Subsequently, the delegator evaluates its dele-
gatees based on their performance. An evaluation performed by a delegator o concer-
ning the performance of its delegatee (3 takes into account the outcome produced by /3
after executing the task 7. An outcome is a tuple similar to an offer. However, the values
assigned to task criteria represent the delegatee’s actual performance. In this sense,
when [ is capable of producing an outcome for 7, it indicates that 7 was successfully
completed. Otherwise, (3 failed to execute 7, preventing o from achieving its goal. We
consider that a failure can be caused by two distinct situations:

 Execution failure: occurs when [ is prevented from executing 7, resulting in
the failure to produce the task outcome (e.g., 3 cannot complete 7 due to a
lack of some skill or resource);

« Delivery failure: occurs when (3 successfully completes 7 but is unable to
transfer the results to a (e.g., some environmental conditions, such as bad
weather or communication problems, prevent 3 from delivering the outcomes

produced from the execution of 7 to a).

To illustrate the task delegation process phases, consider a project manager (delegator)
who needs to organize a marketing campaign (task). Unable to do it alone, he decomposes the
task into more specialized tasks and notifies potential team members (partners) about the cam-
paign tasks that need delegation (e.g., social media management, content creation, and content
marketing). Interested team members respond with offers, indicating the hours needed to com-
plete each task (offer request phase). The manager then evaluates the offers to select team
members (delegatees). This evaluation considers the time constraints for project completion,
the historical success of potential team members in completing their tasks, and their capability
of completing their tasks on time (partner selection phase). Once selected, tasks are delegated,
and the manager assesses each member’s performance regarding the produced outcomes (exe-
cution phase). These evaluations can be used by the project manager in future similar projects
for selecting team members.

2.2 Multi-Armed Bandits

Multi-armed bandit (MAB) is a machine learning paradigm that can be seen as the
single-state reinforcement learning approach (Drugan; Nowe, 2013). In the MAB problem, a
single agent repeatedly selects one among a finite set of actions aiming to maximize its ob-

tained reward. An action is termed arm, while the act of choosing an arm is termed arm-pull
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(Auer; Cesa-bianchi; Fischer, 2002). For each arm-pull, the agent must decide whether to cho-
ose a known arm from those already tried (exploitation) or select something new, expecting to
get better rewards (exploration). Pulling an arm 7 n-times will yield the rewards 1, 1, 42, - - - i,
which are independent of each other and associated with an unknown probability distribution.

In particular, task delegation can be seen as an exploitation/exploration problem and,
thus, can be modeled as a MAB instance, as depicted in Figure 2. In such a scenario, a delegator
intends to get a chair but cannot achieve it alone since it does not have the tools and materials
to build a chair by itself. Consequently, the delegator must delegate the task of building a chair
(7) to a partner capable of performing it. However, as many partners are available, the delegator
must decide which of them will be selected as its delegatee.

known options (exploitation)
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Figure 2 — Multi-armed bandit problem as a partner selection mechanism.
Source: Own authorship (2025).

In situation presented in Figure 2, the delegator must decide whether to delegate a task
to a known partner, with witch it has already interacted, expecting a likely good outcome (ex-
ploitation), or selecting a new partner as its delegatee, hoping to get better results (exploration).
This decision can be made through the success rate (SR) of each partner, taking into account
the rewards obtained over time. The success rate can be computed based on the binary rewards
(success/failure) obtained each time a partner executes the task 7. A simple way to calculate it
is to divide the number of successes obtained by a partner by the number of times 7 was perfor-
med by it (e.g., SR(partnerl) = 3 and SR(partner2) = 3). As discussed in the next chapter,
besides the number of successes, other dimensions can be considered to assess a partner’s



31

performance concerning the execution of a task, like the estimated time the partner takes to
build a chair, which can vary based on the tools used by it to execute 7.

In order to explore the arms that have not been chosen yet, a MAB policy must be
employed. Such a policy aims to determine a sequence of arm-pulls that maximizes the ac-
cumulated rewards over time, balancing the trade-off between exploitation and exploration
(Hayes et al., 2022) (Chapelle; Li, 2011) (Auer; Cesa-bianchi; Fischer, 2002). One of the most
popular MAB policies is the e-greedy (Sutton; Barto, 2018). This policy relies on a random varia-
ble v, which represents the probability of selecting a random arm, and a threshold value defined
as e. When v < ¢, the arm that yields the highest expected reward so far is selected, whereas
when v > ¢, a random arm is selected (Afanador; Baptista; Oren, 2019). In this case of task
delegation, the value assigned to e defines how much time each delegator will spend exploring

new partners.

2.3 Social Control Mechanisms

Social control mechanisms offer agents means to penalize undesirable social beha-
viors by themselves (Pinyol; Sabater-mir, 2013). Trust and reputation models are conside-
red good solutions concerning social control (Griffiths, 2005) (Castelfranchi; Falcone, 2010)
(Huynh; Jennings; Shadbolt, 2004) (Sabater; Paolucci; Conte, 2006) (Cho; Chan; Adali, 2015).
In computational studies about trust, the decision to trust in someone (partner) is a complex
action that can be decomposed into internal and external components (Castelfranchi; Falcone,
2020). Internal components include the partner’s attributes, such as its competencies and his-
torical behavior. External components refer to an agent’s beliefs about its partners, which might
change due to dynamic environmental conditions (e.g., obstacles, adversities, interference)
(Castelfranchi; Falcone, 2010).

In the violin concert scenario discussed by (Castelfranchi; Falcone, 2010), even trusting a
violinist for playing very well (i.e., his abilities to play the violin are extraordinary, making him very
competent to do great concerts), suppose he has to do a concert in an open environment with
particularly bad weather conditions, and it is very cold (adversities). Such conditions may affect
the specific hand abilities of the violinist and, hence, his performance (obstacles). Moreover, his
performance could also be affected by a particularly distracted, inattentive, or noisy audience
(interference). In such conditions, the violinist’s performance could cause some frustration for
his audience regarding their expectations for the concert, resulting in negative evaluations of the
violinist (e.g., negative assessments of the violinist’'s competencies).

2.3.1 Impressions

The delegation model proposed in this work does not directly address external factors. As
discussed hereafter, we represent such elements in our experiments indirectly through changes
in the behavior of the agents. These changes can alter the trust a delegator places in its partner,
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depending on the new behavior assumed by the partner. In particular, we adopt the definition
of trust suggested by (Castelfranchi; Guerini, 2007), where trust is defined by five components,
which are represented by a 5-tuple TRU ST {(«, 3,7, T, g). This tuple can be read as « trusts /3
based on the context v to perform the task 7 and achieve the goal g. In our case, the context
~ for a delegator « is defined based on historical information about 3’s success in performing
7 over time and evaluative beliefs (impressions) about 3’s competencies as a delegatee for 7.
Such impressions are collected through direct interactions between « and 3, during which 7 was
delegated to 3 (Conte; Paolucci, 2003).

Definition 2. An impression is a 5-tuple («, 3, T, t, S), such as:

« is the delegator who formed the impression;

- [ is the assessed delegatee;

T is the task performed by [3.
* t is the time in which the impression was created by c.

S = [(c1,81), .-, (ck, Sk)] is @ vector of ratings, where each pair (c;, s;) represents a
score s; € [0,1] given by « to 3 based on a criterion c; for task T (e.g., scores for
completing T within the agreed time and budget, considering time and cost criteria).

2.3.2 Types of Impressions

Impressions can be grouped to build more comprehensive social measures of a partner’s
competencies, including its social image, reputation, and know-how (Conte; Paolucci, 2002)
(Sabater; Paolucci; Conte, 2006):

Social image is a social measure calculated by the aggregation of the set of impressions pro-
duced by a delegator « regarding the competencies of a partner /3 as a delegatee of a
task 7. The social image can be seen as a’s personal opinion about 3’s competencies,
taking into account a task 7 (Pinyol; Sabater-mir, 2013).

Reputation is another social measure that attests to the competencies of a partner [ concer-
ning the execution of a task 7. However, unlike the social image, a delegator « calcu-
lates the [3’s reputation regarding 7 by aggregating a set of impressions obtained from
third parties (other delegators). Thus, reputation constitutes a collective evaluation cir-
culating among a group where most members agree, without necessarily verifying the
truth or sources of the impressions (Conte; Paolucci, 2002) (Pinyol; Sabater-mir, 2013).
In this work, a group consists of delegators who assess a common delegatee concer-
ning the execution of a task. Therefore, 3’s reputation is built as delegators share their
impressions of 5’s competence in executing 7.

Know-how can be seen as a specialized form of reputation where impressions produced by
delegators are shared with their delegatees (Huynh; Jennings; Shadbolt, 2004). As a
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delegatee (3 interacts with various delegators, executing a task 7, # accumulates im-
pressions regarding its competencies as delegatee of 7. These impressions can be
send to a delegator « during the partner selection to attest the 3’s competencies, simi-
lar to job references (Botelho et al., 2018) (Buccafurri et al., 2015). By aggregating the
impressions sent by 3, « is able to compute a social measure referring to 5’s know-how.

From now on, we refer to an impression contributing to the social image of a partner
[ as a personal impression, to [3’s reputation as a shared impression, and to 3’s know-how
as a reference. Moreover, aiming to distinguish the different types of impressions, consider a
commercial scenario where an agent o (delegator/buyer) wishes to buy books and magazines
from an agent § (delegatee/seller). If o has interacted with 3 before, it could use its previous
personal impressions to form distinct social images of 5. For instance, & may associate 3 with
the social image of a good bookseller, considering the excellent quality and prices of the books
sold by 3 in their past interactions. In this case, the competencies of 5 are estimated considering
the task of selling books, taking into account two criteria: the quality and prices of the books. At
the same time, a could assign the social image of a bad magazine seller to 3 due to the limited
diversity of magazines for sale (i.e., another task, for which 3’s competencies are estimated
based on the available magazines). On the other hand, if a and 5 have never interacted with
each other, a could estimate 3’s reputation through the shared impressions about 3 formed by
other buyers, to decide whether to interact with 3 or not. Additionally, o could require references
from (3 as a book or magazine seller before purchasing products from it.

2.3.3 Impression Filter

A delegator « can select specific types of impressions from its belief base about a partner
B through an impression filter fg. For instance, a filter can be configured to return only the a’s
personal impressions regarding an agent 5 who acts as a doctor ordering a treatment (task):

f5 = (a = delegator A\ B = delegatee \ T = order a treatment) (1)

Another possibility is to filter all shared impressions in the a’s belief base about /3 (i.e.,
impressions shared with o by other delegators of (3):

f5 = (a # delegator A\ B = delegatee \ T = order a treatment) (2)

Finally, the references sent from (3 to « can be filtered by specifying the source of the
impression (i.e., the agent that sent the impression to «). Personal impressions do not have a
source, as they are produced by the delegator itself. In contrast, the source of a shared impres-
sion is the delegator who produced and shared it. For references, the source is the delegatee
being assessed in the impression.
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2.4 Social Dependence Relations

A social dependence relationship occurs when a delegator relies on another agent (part-
ner) to achieve a goal. This type of relationship creates a direct dependence from the delegator
to its partner (Castelfranchi; Miceli; Cesta, 1992). Agents’ social dependence relationships can
be represented through a dependence situation, which describes the dependence relationship
held between the agents based on the goals that they wish to accomplish (Sichman et al., 1998).
For a task delegation scenario where sub-delegations are allowed, a social dependence relation
can be defined as follows (Costa; Dimuro, 2006):

Definition 3. A delegator o that aims to achieve a goal g, through a task T, socially depends on
a partner 3, denoted (a < 5.7 | g), if and only if:

1. g isagoal of a;
2. « cannot perform T by itself;
3. [ can perform T by itself or through sub-delegations;

4. T being completed by 3 implies g being achieved.

As introduced by (Costa; Dimuro, 2006), unilateral dependence represents the simplest

form of social dependence relation, where a delegator « relies on a partner 3 to achieve a

specific goal g through the execution of a task 7. Formally, a unilateral dependence relation is
expressed as:

Ir,g.(a < B1 | g) AVT, ¢ ~(B < a1’ | ¢) (3)

where, a depends on 3 concerning some task 7 and some goal g, but there is no task and no
goal for which 3 depends on «.

More complex forms of social dependence relations can be built based on unilateral
relations, considering the number of agents involved and how their tasks are combined to achieve
a goal, as seen in AND-dependence and OR-dependence relationships. In an AND-dependence
relation (multiparty), a delegator « requires multiple partners 3; to successfully complete their
respective tasks 7; for achieving its g:

(=B |gN(a=<pBam|g) Ao A=< BnTnlg) (4)

Conversely, an OR-dependence relation can be expressed through single or multiple-
task variants. In a single-task OR-dependence, a delegator o needs at least one of its partners
(; to complete a common task 7 for accomplish its goal g:

(a<B17lg)V(a=<pPoT|g)V..V(e=<B,T]|g) (5)
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On the other hand, in an OR-dependence of the type multiple-task, the delegator « is
able to achieve its goal g if any partner 3; completes its task 7;:

(<61 |g)V(e=<pPara|g)V..V(ae=<PBntnlg) (6)

2.5 Dependence Situation Graphs

Social Dependence relations can be represented by Dependence graphs (DGQG)
(Costa; Dimuro, 2006). A DG = (Ag, G, Pl, Ac, Ar, V) is a structure where agents Ag, goals
G, plans PI, and actions Ac are nodes connected by arcs Ar, as defined by W. This shows
how agents rely on each other to achieve goals through plans requiring actions from others. As
pointed out by (Costa; Dimuro, 2006), DGs can also be simplified by omitting plans and using
goals as arc labels, such as presented in Figure 3.

AND a1 AND
an 31‘21/ \31122 ax 31‘21/ \\aA122
Vo Vo R
b1 B2 B3 Ba B1 B2 B3 Ba
(a) (b)

Figure 3 — Dependence graphs (DG): (a) dependence relations between agent « and agents (31,
B2, B3, B4, taking into account the goals g1, go, plans p11, p12, p2, and actions a1, ai21,
a122, a21, and (b) the same DG represented in its reduced form.

Source: Costa e Dimuro (2006).

On the other hand, when dependence relations represented in a DG are defined ba-
sed on the agents’ goals, a more compact structure can be adopted, where plans and actions
are abstracted away. Such a structure is known as the dependence situation graph (DS-graph)
(Costa; Dimuro, 2006). A DS-graph is a particular case of DG that allows an agent « to calculate
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its dependence situation' with respect to another agent 3 for a given goal (Sichman et al., 1998).
A DS-graph is defined as (Costa; Dimuro, 2006):

Definition 4. Assuming Ag as the set of agents and G as the set of goals that those agents may
have. A DS-graph over Ag and G is a structure DS = (Ag, G, Ar, Lk, ¥V, A) such that:

- Ar is a set of arcs, connecting either an agent to a goal or a goal to an agent;

« Lk is a set of links, connecting subsets of arcs;

« U Ar — (AgXG) U (GXAg) is a function assigning either an agent and a goal
or a goal and an agent to each arc, so that if V(ar) = (ag, g) then arc ar indicates
that agent ag has the goal g, and if U(ar) = (g, ag) then arc ar indicates that goal g
requires ag to perform something action in order to be achieved;

« A : Lk — p(Ar) is a function that links arcs together representing an AND-
dependence, so that A(l) = ary, ..., ar, iff either:

— there are an agent ag and n goals g¢i,...,9, Such that
U(ary) = (ag,q1),...,V(ar,) = (ag,g,) indicating that ag aims the
achievement of all the goals g1, . .., g,; or,

— there are a goal g and n agents ag,...,ag, Such that

U(ary) = (g,a1),...,V(ar,) = (g9,ag,) indicating that g requires the
involvement of all the agents in the set {ag;, . . . ,ag, } in order to be achieved.

An example of DS-graph is presented in Figure 4, which expresses the dependence
relations established among the agents «, 31, 52, 33, and f,.

2.6 Delegation Chains

A delegation chain can be seen as a sequence of delegations performed in a given order
by a set of agents that aim to achieve their goals (An; Miao; Cheng, 2005) (An et al., 2007).
Along a delegation chain, the agents can act as delegators or as delegatees, and the agent who
makes the first delegation request is called the chain’s root (Afanador; Baptista; Oren, 2019).
In this work, we adopt the Dependence Situation Network (DS-net) to represent potential dele-
gation chains. A DS-net extends a DS-graph. Specifically, we extend the DS-graph by explicitly
representing the instantiations of delegation chains in a DS-net, which are created based on the
actions available to an agent concerning a task 7 (i.e., the delegation d(7) and execution e(7)
actions) and the order in which agents must perform their tasks.

' Dependence situation refers to the relations of dependencies held among the agents based on the

goals that they wish to accomplish.
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Figure 4 — DS-graph: dependence situation involving agents «, 31, 82, 53, and 3.
Source: Costa e Dimuro (2006).
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2.6.1 Dependence Situation Network

Given the following sets:

« Ag: set of agents; ag represents an element of the set, and there is precisely one root
agent that initiates the delegation process, as it has the general goal to be pursued.

« (5: set of goals that the agents can pursue; g represents an element of the set.

« T': set of tasks to accomplish the goals; 7 represents an element of the set.

The DS-net is formalized as a directed acyclic bipartite graph with two types of nodes

() (i.e., agents and goals):
N=AgUG withAgNG =0 (7)

We distinguish the relations (the edges) between agents and goals based on their source
and destination nodes:

« HasGoal C Ag x G (from agents to goals): each pair (ag, g) € HasGoal indicates
that agent ag has goal g. Each goal is associated with a single agent, and every agent
has at least one goal.

« Act C G x Ag (from goals to agents): each pair (g,ag) € Act indicates that the
accomplishment of g requires either a delegation action, where a task 7 is delegated to
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ag (d(7)), or an execution action, in which ag executes 7 (e(7)). Each act is associated
with one action type (ActType), and one task (ActTask):

ActType : Act — {d,e} (8)

ActTask : Act — T (9)

The delegator of an act Act(g, ag) is the agent ag, that HasGoal(agq,d). We abuse
when using the word delegator because ag,; can delegate a task 7 or execute 7:

ActDelegator : Act — Ag (10)

A path of the graph always starts with the root agent and finishes with a terminator agent
(i.e., an agent that has a goal and executes by itself a task to achieve that goal). We use the 3!
as the unique existential quantification:

» There is only one root agent:

Jlag, g(HasGoal(ag, g1) AVg2(g1 # g2 — —Act(g2,a9))) (11)

» The terminator agents must execute a task:

Vag, g(HasGoal(ag, g) N Act(g,ag) — ActType(g,ag) = e) (12)

Acts can be grouped to represent OR-dependencies and AND-dependencies among a
delegator and its partners. The delegator of a set of acts can be obtained by the function ActDe-
legator applied to any element of the set. Thus, an OR-dependence is composed of one or more
acts, meaning that accomplishing any of these acts is sufficient for the delegator to achieve the
goal. P denotes the potency set:

OR-dependencies C P(Act) (13)

An AND-dependence is composed of one or more acts, indicating that all of these acts
must be accomplished for the delegator agent to achieve the goal.

AND-dependencies C P(Act) (14)
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Some constraints apply to these dependencies. First, the dependencies sets are not
empty, and the OR-dependencies and AND-dependencies are mutually exclusive:

Dep = AND-dependencies U OR-dependencies, with Dep # () (15)

OR-dependencies N AND-dependencies = () (16)

An act belongs to only one dependence group:
VXY €Dep, X #Y = XNY =0 (17)

Additionally, we formalize a grammar that allows the representation a DS-net through a
dependence expression, as defined below:

(DSN) == (ag < (dep) | g)

(dep) ::= ag.T
| (ag.m < {dep) | g)
| (dep) V (dep) (OR-dependence)
| (dep) A (dep) (AND-dependence)

where ag is an agent, g is a goal, 7 is a task that may be performed through a delegation
or execution action, < indicates a dependence between a delegator and its partners, and |
associates a delegator with a goal. In the grammar specification language () represents a non-
terminal element of the language, ::= is the definition symbol, and || denotes alternative forms
of sentence composition.

2.6.2 Delegation Instances

The dependence relationships described in a DS-net represent all possible relationships
that can be established between agents. Specifically, these relationships express the depen-
dencies that a delegator has concerning its partners. In this state, referred to as the potential
view, a DS-net can be used during the offer request and partner selection phases, allowing
message exchanges between delegators and partners. However, during the execution phase of
the task delegation process, the state of the DS-net is referred to as the instantiated view. In
this state, the DS-net is used to represent the instantiation of delegation chains, as tasks are
delegated among agents during an interaction. An interaction (itr) comprises all delegation ins-
tances, starting with the root agent delegation until it reaches the terminator agents. In particular,
a delegation instance is formed when a delegator selects its delegatees. Instances of OR and
AND dependencies are called simple and composed delegation instances, respectively. These
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instances satisfy the following constraints:

VDor € OR-dependencies, 3!(g,ag) € Dor such that (g, ag) € Acty, (18)

where, for each OR-dependence, the delegator selects only one act, which is considered suc-
cessfully terminated if the associated task 7 successfully ends.

VDanp € AND-dependence, ¥(g,ag) € Danp, (9,2ag) € Acty, (19)

where, for each AND-dependence, the delegator selects all acts, which are considered succes-
sfully terminated if all tasks associated with each act successfully end.

Some examples of delegation instances are shown in the DS-nets presented in Figure 5.
We assume the self-delegation and delegation patterns are OR-dependencies. In particular, in
Figure 5(a), a self-execution pattern is depicted, wherein agent ag; can achieve its goal g; by
executing the task 7; by itself (represented by e(7)). A simple delegation instance, which is
equivalent to the mono-episodic task delegation pattern, is presented in Figure 5(b).

This situation represents a classic task delegation scenario, where ag; cannot perform
71 alone. Thus, to accomplish its goal g,, ag; must delegate 7 (represented by d(7)) to another
agent (ags2). When ags receives 71, it pursues its own goal (g,), associated with its goal to com-
plete ;. In this simple delegation pattern, ag» can self-assess its performance after executing 7.
However, even if agy, successfully completes 71, it might fail to deliver the task outcome to ag;.
As a result, while ags achieves g, and positively self-evaluates its performance as the executor
of 71, ag; cannot achieve g; due to ags’s failure in delivering 71’s outcome. From the point of view
of agy, ags failed to complete 7, resulting in a negative evaluation of ag,’s competencies as its
delegatee for 71. In both cases, the potential view coincides with the instantiated view.

Another single delegation scenario appears in Figure 5(c), in which an 0R-dependence
(single-task) defines the dependence relations among the agents. Here, ag; must choose
whether to perform 7 itself or delegate it to one of its partners (ags, ags, or ags). Once a partner
is selected, a simple delegation instance is formed.

Figure 5(d) shows a complex delegation chain formed through sub-delegations. Note
that ag, can achieve ¢, through two alternative sub-chains connected by OR-dependence. In
the left sub-chain, ag, decomposes 7 into 73, 74, and 75, relying on ags, ags, and agg through
AND-dependence. In the right sub-chain, ags recursively delegates 7 to ag;. Different task dele-
gation patterns can be formed by combining AND and OR dependencies, enabling the creation
of complex delegation chains.
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Figure 5 — DS-nets and their respective dependence expressions: (a) self-execution pattern, (b)
simple delegation equivalent to the mono-episodic delegation, (c) simple delegation
formed from an OR-dependence (single-task), and (d) delegation chains formed
through sub-delegations.

Source: Own authorship (2025).
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Table 2 - List of potential acts shown in Figure 5(d), taking into account the type and task
associated with each act

Act ActType ActTask
(91, ag2) d 1
(92, ag4) d T3
(g4, ag4) e T3
(92, ag5) d T4
(95, agb) e T4
(92, agb) d 5
(06, agb) e Ts
(91, ag3) d T2
(93, ag7) d To
(97, ag7) e T

To exemplify the concepts introduced in our DS-net structure, considering the DS-net
presented in Figure 5(d), we assume that Ag = {ag1, ags, ags, ...,ag7}, G ={g1,...,97},and
T ={m,..., 75} The goals pursued by the agents, AND-dependencies, and OR-dependencies
are represented by the following sets:

HasGoal = {(agla gl)a (3927 92)7 (a937 93)7 (ag4a 94)7 (ag57 g5)a (a967 96)7 (ag77 97)}

Act = {(g1,803), (92,294), (91, 294), (92, 805), (95, a95),
(92:a8s), (96, @Qs), (91,293), (93,297, (97,297) }

OR-Dependencies = {{(g1,a9,), (91.a93)} , {(94,a94)} . {(95.a95)} . {(96,a96)} . { (97,097) } }
AND-Dependencies = {{(¢2,a9,), (92, ags), (92, 29¢) } }

Additionally, Table 2 lists the actions needed to achieve the agents’ goals, including the
type of action and the associated task. Next, with the aid of our grammar, we present two instan-
tiated views representing different concrete options, which includes only the selected partners:

« Option 1: (ag1 < (age.m1 < (agsy.m3 < ags.7s | 94) A (ags. 74 < ags. 74 | g5)
A (ags-Ts < age.s | g6) | 92) | 91)

* Option 2: (ag1 < (ags. 2 < (agr.m2 < agr.m2 | g7) | 93) | g1)

2.7 Conclusion

To conclude this chapter, we presented some concepts from the literature that influenced
the design of our proposal. Based on the reputation theory introduced in (Conte; Paolucci, 2002),
we formalized the structure of impressions, which agents use to make social evaluations of their
partners, as well as impression filters, which are adopted to extract specific types of impressi-
ons from an agent’s belief base. Furthermore, we extended the Dependence Situation Graphs
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(DG) (Costa; Dimuro, 2006) into a Dependence Situation Network (DS-net). This new structure
not only represents agent dependencies (potential view) but also captures delegation instances
formed along a delegation chain (instantiated view). Finally, we proposed a formal grammar for
representing dependence expressions, enabling a DS-net to be described through a simple ex-
pression. These contributions provide the conceptual and formal basis for the delegation model
developed in the following chapters.
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3 PROPOSED DELEGATION MODEL

We model task delegation as an exploitation/exploration problem, considering sub-
delegations and the formation of delegation chains. In this approach, a delegator must decide
whether to delegate a task to a known agent (exploitation), expecting a likely good outcome, or
to select an unknown partner (delegatee), expecting for better results (exploration). In this sense,
we model the partner selection phase of the task delegation process using a MAB approach (Tur-
gay; Oner; Tekin, 2018), where a delegator interacts with its partners (arms that can be pulled) to
identify those with the highest likelihood of maximizing the expected reward (i.e., the probability
of a partner successfully completing a task while respecting the performance estimations of its
offer).

The structure of our delegation model is presented in Figure 6. This model represents the
reasoning flow adopted by a delegator to choose a delegatee during the partner selection phase.
Through this reasoning, a delegator is able to calculate the delegation likelihood associated
with a partner concerning a given task (dotted line). In particular, the structure of the model is
divided into three layers (i.e., competence measure (CM), trust measure (TM), and delegation
likelihood (DL)). These layers are connected by scalarization functions' that combine the social
and cognitive components of each layer into a single value. The scalarization process depends
on an external parametrization regarding the weights assigned to the model’s components. In
general, the weight assignment is performed by taking contextual information into account. For
instance, the relevance given to the different types of impressions (i.e., personal impressions,
shared impressions, and references) can be managed in the first layer of our delegation model
by adjusting the weights assigned to the social image (Ws;), reputation (Wgp), and know-how
(W) of a partner.

As presented in Figure 6, the first layer is combined with the second to jointly represent
the delegator’s decision to trust (blue line). This decision is made based on the trust measure,
TM(a, B,7) € [0, 1], which represents the trust that a delegator « places in a partner /3, taking
into account ’s competencies (C'M) concerning the execution of a task 7 and the likelihood
of 3 successfully completing 7 (SL) based on its success history as a delegatee of 7. In this
case, when the trust measure assigned to [ is 0, it means that o sees 3 as an untrustworthy
partner with a high likelihood of failure in executing 7 or causing some frustration due to (5 lack
of competencies in making accurate estimations about its performance as a delegatee of 7 (e.g.,
taking longer than estimated to perform 7 or executing 7 at a higher cost than initially estimated).
When the trust measure assigned to [ is 1, it implies that « considers (5 a trustworthy agent with
a significant probability of successfully completing 7 and meeting all expectations concerning its
performance as a delegatee of 7.

! Scalarization functions are widely used to convert a multi-objective optimization problem into a single-

objective one. For instance, the Weighted Sum Scalarization function (f,,s) takes as input a vector
of weights W = (wy, ..., w,,) and a vector of values V' = (v1, ..., v,), and returns a scalar value that
represents the weighted sum of the input values, where f,,s = Z?Zl wj * v; | Z;;l w; = 1 (Chugh,
2020) (Agarwal; Aggarwal; Lan, 2022).
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The third layer of the model represents the delegator’s decision to delegate (red line).
This decision is made by considering the delegation likelihood, DL(«, 5,7) € [0, 1], where a
delegator « infers the probability of delegating a task 7 to a partner 5 based on its trust measure
(I'M) in 8 and the utility of 5’s offer (UT'), taking into account its preferences for the criteria of
7. The higher the delegation likelihood assigned to a partner, the more likely it will be chosen as
a delegatee.

3.1 Competence Measure

The competence measure (CM(3,7) € [0,1]) concerns the capability of a partner 3
in performing a task 7 according with its performance estimations. This measure is calculated
through a scalarization function (Figure 6), where values for (5’s social image, reputation, and
know-how are aggregated into a single value through a weighted mean. In particular, these
dimensions are computed through the aggregation of impressions produced by delegators re-
garding the performance of their delegatees.

Delegator's reasoning

1]
' f '
Layer 3 . Delegation likelihood (DL) E pr—
: Q .
' © | Scalarization function T '
[w)) (]
e (TM * W) + (UT * Wyr) ) |:
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Figure 6 — Proposed delegation model and its components.
Source: Own authorship (2025).
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3.1.1 Evaluating Delegatee’s Performance

During the execution phase of the task delegation process, a delegator o can evaluate
the performance of a delegatee /3 by comparing [3’s performance estimations for a task 7 with the
outcome obtained after executing 7. Such a comparison is made for each criterion associated
with 7. The difference between the actual performance and the estimation for a task criterion c
determines [3’s estimation error. If this difference is 0, 5 was accurate in its performance estima-
tion for c. In contrast, if the estimation error for ¢ is greater than 0, it means /3 did not execute 7
according to its estimation for that criterion. In this case, in the impression produced by «, 3 will
penalized regarding the criterion ¢ based on its estimation error. Therefore, assuming an offer
O = (o, B, 1,V) and an outcome O" = («, 3, T, V"), the score assigned by « to 5 for a criterion
c of an impression Imp = (a, 8, 7,t,S) (Imp(S[c]) € [0,1]), considering the execution of 7, is
defined as follows:

)
OO/E“;,[% ifisMin(c) NO'(V'[c]) > O(V[])
Imp(S[e]) = { GEAL  ifisMaz(c) A O'(V'[d]) < O(V[e]) (20)
1 otherwise
\

where isMin(c) is a function that indicates if ¢ is a minimization criterion (i.e., a criterion whose
value should be as low as possible, such as the time or cost of a task), while the function
isMazx(c) indicates if ¢ is a maximization criterion (e.g., the quality of a task). Note that when
[ is able to accurately estimate your performance concerning the criterion ¢ (i.e., fulfilling or
exceeding the a’s expectation regarding the 3’s performance (Cantucci; Falcone; Castelfranchi,
2019; Cantucci; Falcone; Castelfranchi, 2021)), the score assigned to c is 1.

3.1.2 Impression Aggregation Process

The impression aggregation process takes into account a filter fg, which selects the
set of impressions from the belief base of a delegator « that will be aggregated, considering
the delegation of a task 7 to a partner 5 (Sabater; Sierra, 2001). Specifically, 5’s social image
(S1 € [0,1]) is estimated by aggregating s personal impressions about (3. 3’s reputation (RP €
[0,1]) is estimated by aggregating the shared impressions received by « from other delegators
concerning f3. Finally, 8’s know-how (K H € [0,1]) is estimated by aggregating its references
sent to a.

A set of impressions is aggregated into a summary value through Equation 21. This pro-
cess is based on the impression aggregation approach proposed by (Sabater; Sierra, 2001).
While the original model defines a structure for impressions derived from social evaluations, in
our case, the impression format has been adapted to represent task-specific criteria. Neverthe-
less, the aggregation mechanism itself, including the use of a squashing function to normalize
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and time-weigh impressions, follows the same fundamental principle. In particular, this squashing
function considers that impressions produced more recently in a given set are more relevant than
older impressions. This consideration allows for the possibility that an agent judged as not very
competent to perform a task in the past could be selected as a delegatee in more recent inte-
ractions with its delegator, depending on its current behavior (Botelho et al., 2018). Moreover,
the squashing function ensures that the resulting value is in the interval [0,1]. The impression
aggregation process is performed as follows:

5 if[ BB*(fg)| =0
t o\
Agg'(BB®) = —px Y d s M(1.S) @
1 —exp «EBB(/5) otherwise
\
k
D Si
M(S : [(Clasl)a“'v(ckask)]) = Z:‘g| (22)

where ¢ is the default startup value returned when there are no impressions about a given
partner (e.g., assigning 1 to ¢ implies that, initially, an unknown partner /3 will be considered
very competent in the execution of a task 7, while assigning 0 means expecting that 5 will not
be capable of fulfilling its estimation about 7). Agg’(BB®) is the aggregated value for a set of
impressions obtained at time ¢ from «’s belief base (BB“) by applying the impression filter fg,
|BB(f§)| is the size of the set of impressions obtained from a’s belief base, p is the factor
that controls the curve slope of the squashing function, d; , 2 a time-dependent function that
decreases the relevance of an impression ¢, produced at time ¢.t, concerning the current time ¢,
and |.S| is the number of ratings for the task’s criteria associated with an impression «.

3.2 Success Likelihood

The success likelihood (SL(«, 5, 7) € [0,1]) can be directly computed by either analyzing
the direct dependence between « and [ (i.e., 5’s success rate (SR)) or the transitive dependen-
cies that form the delegation chains rooted in [ (i.e., 8’s accumulated success rate (ASR)).
The choice of which approach to adopt in determining the success likelihood associated with a
partner is modeled as a parameter of the delegation model.

2 dfi_t = exp —% is an example of a time-dependent function in which the factor £ can be configured
to determine the speed of the decrement of the function (Botelho et al., 2018).
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3.2.1 Success Rate

The success rate (SR(a, 3, 7) € [0,1]) expresses how successful an agent /3 has been
in performing a task 7 over time from the perspective of a delegator .. Such a measure is
estimated based on the direct dependence between « and (3, and hence, 3’s success means
accomplishing the goal g associated with the task 7 delegated by «. Thus, when 3’s success
rate is 0, it implies 5 has never accomplished g while performing 7, whereas a success rate of 1
means [ has succeeded in achieving g every time it performed 7. The success rate is computed

as follows:
o if|(8,7)] =0 (Case1)
1-1Iy if|(6,7)| > I, A|(B,7)F] =0 (Case2)
SR(a, B,7) = 31— Ap(B,7) if|(8,7)] <I,A|(B,7)F| =0 (Case3)  (23)

Gl A(B,7) ifI(B.7)| < L AI(B.7)F] >0 (Cased)

\ '%TT);" otherwise (Case 5)

]n - ) ?

A](ﬁ,T):]U—F(]L—IU)* (M) (24)

where |(3, 7)| denotes the number of times 3 performed 7, and |(3, 7) " | represents the number
of times 3 successfully performed 7. Given the unknown success probability distribution of a
partner, a reliability factor (A, € [I1, Iy] | I < Iy) is introduced, representing «’s uncertainty
about ’s behavior, which decreases as they interact with each other (Ashtiani; Azgomi, 2014).
I; is the reliability lower bound, I;; is the reliability upper bound, and I,,° is the number of
interactions needed for « to accurately infer 3’s success rate. Possible cases for 3’s success
rate are:

 Case 1:if 5 has never performed 7, its success rate is assumed to take a default startup
value defined as o (e.g., assigning 1 to o results in an optimistic initialization because
unknown partners are initially considered trustworthy);

« Case 2: if a has already interacted with 3 sufficiently to evaluate its success rate ac-
curately (|(5,7)| > I,,) and 3 was unable to complete 7 at least once during its inte-
ractions with « (|(3, 7)™ | = 0), then « can infer that 5 has a low probability of success
in completing 7 in future interactions. In this case, a assigns the lowest possible value

3 As pointed out by (Sabater; Sierra, 2001), the value of the I,, parameter is application-dependent.

It depends on both the frequency of interactions among agents and the number of evaluations they
produce. In the case of the success rate, these evaluations refer to the number of times a task is
performed.
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to [’s success rate, defined as the complement of the reliability upper bound (1 — I),

which represents the worst-case scenario for a success rate assessment;

- Case 3: if « is unable to accurately infer /3's success rate (|(5,7)| < I,,) and 5 has
never successfully completed 7 over its interactions with « (|(5,7)"| = 0), then 5’s
success rate tends to approach the worst-case scenario as it fails to complete 7 (1 —

AI(B? T))1

« Case 4: if o is unable to accurately infer 5's success rate (|(5,7)| < I,) and 3 succe-

eded in completing 7 in at least one of its interactions with « (|(5, 7)*| > 0). Thus, in

1(8,7) ]

this case the success rate is defined as 775,

adjusted by the reliability factor.

« Case 5: if the number of interactions between « and (3 is sufficient for o to have a
precise understanding of 5’s success rate and (3 succeeded in completing 7 in at least

one of its interactions with «, then the success rate is ‘ffﬁ;'.

3.2.2 Accumulated Success Rate

The accumulated success rate (ASR(A = [a.7o, B1-T1, -y Brno1-Ta—1, Bn-Ta]) € [0,1]) is
calculated based on a delegation chain A of size n, where « is the root of the delegation chain,
[ is a’s delegatee and the delegator of the second delegation instance, while 3, 1 and (3,
are, respectively, the delegator and a delegatee of the last delegation instance in the chain. In
particular, the accumulated success rate represents the likelihood of success along a delegation
chain, considering the individual success rate of all intermediary agents between the chain’s root
and a terminator delegatee (i.e., the last delegatee of the chain). As the accumulated success
rate associated with a delegation chain approaches 1, there is a higher probability that all agents
along this chain will complete their tasks successfully, allowing the root to achieve its goal. In
contrast, when the accumulated success rate approaches 0, there is a higher probability of an
agent in the chain failing, preventing its predecessors from completing their tasks.

Unlike the success rate, which considers only the direct dependence between a delegator
and its partners, the accumulated success rate also takes into account the transitive dependen-
cies established along a delegation chain.

Definition 5. A transitive social dependence happens when an agent o depends on [ to achieve
some goal g, and [3 depends on y to accomplish another goal ¢', where ¢’ is instrumental to g.
In this case, « indirectly depends on vy to achieve its goal (Costa; Dimuro, 2006).

The accumulated success rate for a delegation chain A is calculated through a recursive
process, where the individual success rates of the agents along the chain are integrated into a
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single accumulated value, as follows:

(

SR(OJQ,Oéo,Tl) If|A| =1

ASR(A) = 4 SR(aw, 1, 1) if|Al =2 (29)

\ SR(ﬂn,h 5n; Tn) * ASR(Oéo.To, 51-7—17 ceey ﬁnfl.Tnfl) if ‘A| > 2

where |A| indicates the size of the delegation chain A, defined as number of Acts that composed
the chain. When the size of a delegation chain A is 1, it represents a self-execution pattern,
where the delegator oy is able to execute its task 7 on its own. In this case, the success rate of
«g as the delegatee of 7 is estimated based on its performance as the executor of 7. The second
case indicates a situation where a simple delegation instance is formed. Thus, o delegates 7 to
(1 who acts as delegatee, executing 7. The third case expresses how the accumulated success
rate is computed, considering a complex delegation chain formed through several delegation
instances.

The success rate and the accumulated success rate are performance metrics used to
assess a partner concerning its successes in executing a task over time. Both measures can
be directly applied in dependence relationships of type OR (single-task or multiple-task), where
multiple partners are available for selection, but only one will be chosen as the delegatee. Ne-
vertheless, for a multiparty relationship defined through an AND-dependence, several partners
are selected simultaneously. Even though the outcome for a delegator’s task is conditioned on
the success of all delegatees, each one is individually assessed based on its performance after
executing its sub-task. This feature does not affect how the success rate is computed for each
delegatee, since the delegator is able to directly assess a delegatee. However, for the accumula-
ted success rate, AND-dependencies require special attention. Each delegation chain rooted in
a delegatee has its own accumulated success rate, which accumulates from the end of the chain
back to the delegatee. Therefore, the accumulated success rate that a delegator with several
delegatees propagates upward (i.e., to the delegator of its delegation instance) must be calcu-
lated by taking into account the accumulated success rate of each delegation chain rooted in
each of its delegatees. The accumulated success rate upward propagated by a given delegator
regarding their delegatees is calculated as follows:

ASR([a.70, Br.71, ASR(Ay), ..., ASR(A,)]) = SR(ev, B, 70)* ASR(A1) *..x ASR(A,,) (26)

where « is the delegator of a simple delegation instance in which [ is its delegatee. (3 is the
delegator of a composed delegation instance formed by n delegatees, to whom 7; was decom-
posed into sub-tasks. ASR(A;) is the accumulated success rate for the delegation chain rooted
by the first delegatee of /3, and ASR(A,,) is the accumulated success rate for the delegation
chain rooted by the last delegatee of .
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3.3 Offer’s Utility

The Offer’s utility (UT(«, 5,7) € [0,1]) is a measure that determines the interest of a
delegator « in selecting a partner 5 as the delegatee for a task 7 based on [3’s offer. When
the utility of 3’s offer is 0, it indicates that o has no interest in 3’s offer. Conversely, a value
of 1 indicates that 3’s offer is highly relevant to o because it contains the best performance

estimations for 7 among all offers received from a’s partners, considering a’s preferences.

Definition 6. The preferences of a delegator are represented as a vector
P ={(c1,p1)s s (Cnypn)] | Doieypi =1, where p; € [0,1] indicates the relevance of c;
for a delegator.

In general, upon receiving all offers for 7 from its partners, o analyzes them to identify
those that best match its preferences. In this analysis, a evaluates each offer based on the
task’s criteria, aiming to identify the partner with the best performance estimations according to
its preferences for the task criteria. For example, for a task evaluated through two criteria, cost
and time, and considering that for « the criterion time is more relevant than the criterion cost
(e.g., P =[(cost,0.1), (time, 0.9)]), « will give preference to partners who sent offers where
the performance estimation for the criterion time is the lowest possible, assuming time as a
minimization criterion, and largely disregarding the estimation for criterion cost.

To determine the most suitable partner for task delegation based only on received offers,
each partner’s offer is evaluated across multiple criteria such as time, cost, and quality. Values
assigned to each criterion are normalized relative to the best-observed values. For criteria where
lower values are preferred (e.g., time, cost), each value is normalized relative to the smallest ob-
served value. Conversely, for criteria where higher values are desirable (e.g., quality), each value
is normalized relative to the highest observed value. After normalization, a score is calculated for
each offer using a weighted average of the normalized values, where the delegator’s preferences
are employed as the weights. Therefore, the offer with the highest score is selected as the best
because it most closely aligns with the delegator’s preferences.

3.4 Failure Propagation

Due to transitive dependencies, an agent’s failure can impact several other agents along
a delegation chain (Lau; Singh; Tan, 2015). Generally, when an agent at a lower level of a de-
legation chain fails, this failure needs to be propagated to the higher levels of the chain. Failure
propagation may prevent other agents from completing their tasks, resulting in a chain of failu-
res. Different penalization strategies may be adopted to penalize the agents in case of failure
(Burnett; Oren, 2012). For example, in a full penalization strategy, all agents along the chain are
fully penalized as the failure propagates. On the other hand, partial penalization strategies con-
sider the agents’ positions in the chain to determine the degree of penalization for each agent.
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In our model, agents penalize the failure of their delegatees through impressions. A full
penalization applied to an impression means assigning a score of 0 to each task’s criterion. In
contrast, partial penalization depends on the agents’ positions in the failure chain, denoted as
the failure position (F,,s € [1,+00]), where 1 is the failure position of the agent that caused the
failure. Specifically, as the failure propagates upwards towards the chain root, the failure position
of an agent is computed by increasing the failure position of its immediate delegatee by one
unit. Thus, considering an impression I'mp = {(«, 5, 7,t,.S), the score assigned by « to 3, in the
event of 3’s failure, for a criterion ¢ (Imp(S|c])) is defined as follows:

Imp(S[e]) = (1 = ( )) * pd (27)

Fpos(8)
where pd € [0,1] is the penalization discount factor, which defines the maximum score an agent
can receive in case of failure (i.e., the severity of the penalization). Note that 0 implies maximum
penalization, while 1 means no penalization. In particular, we adopt the ’s success rate as
penalization discount factor, which makes the degree of penalization vary according to /3’s history
of success (i.e., the severity of penalization for a failure depends on the number of past failures
committed by 3 while executing 7). By adopting the success rate as a penalization discount
factor, we assume that agents who fail frequently will suffer more severe penalties. On the other
hand, an occasional failure will not have a significant effect on the agent’s penalization, as this
type of failure has a substantial impact on the success rate of an agent.

In a delegation chain composed only of simple delegation instances, a failure propagates
upward from one delegation instance to another. However, for a composed delegation, where
failures may occur in different chains rooted in distinct delegatees of a delegator «, o is penalized
based on its distance from the farthest delegatee who failed, as follows:

Fpos(a) = argmax(Fpos(Bl>7 Fpos(ﬂZ)a ) Fpos(ﬁn)) +1 (28)

where the argmax returns the delegatee’s position with the highest index in a failure chain (i.e.,
the delegatee’s index with the greatest difference between its position and the agent’s position
that produced the failure, propagated along its respective chain). The argmax function was adop-
ted to minimize the penalization degree for agents closer to the root, as the number of chains
branching from these agents tends to be greater than for those farther from the root. This ap-
proach maximizes the exploration potential for agents with a high branching degree, from which
several delegation chains are rooted. In this way, even if a failure occurs in one of these chains,
other chains may have a lower chance of failure.

3.5 Conclusion

In summary, this chapter introduced our delegation model, which differs from other ap-
proaches in the literature by incorporating both social and cognitive mechanisms into the partner
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selection process. These include the agents’ direct and transitive dependencies, their success
history, and shared evaluations such as personal impressions, shared impressions, and referen-
ces. Furthermore, it is important to highlight, as a central contribution of this chapter, the explicit
support for sub-delegations through the modeling of delegation chains. These elements enable
a more flexible and adaptive decision-making process in dynamic environments, as explored in

the following chapters.
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4 METHODOLOGY

The purpose of this chapter is to describe how our experiments were conducted. Speci-
fically, this chapter is organized as follows:

+ Section 4.1 discusses the configurations and constraints we adopted concerning the

agents and the environment employed in our experiments;

+ Section 4.2 defines the evaluation metrics used to assess the results produced by the
agents as they delegate and execute tasks;

+ Section 4.3 describes the DS-networks that model the agents’ neighborhood (i.e., their
dependence relations), discussing the topology of each network and its effect on the
performance of our delegation model;

+ Section 4.4 describes how the individual parameters of our delegation model were ad-
justed for each evaluation scenario in the experiments.

4.1 Simulation Details

To assess our delegation model, we have designed a simulator capable of handling task
delegation scenarios in which delegation chains are explicitly represented’. The agents and their
dependence relations are represented through a DS-net, which is the input for the simulator?. It
means that the agents, goals, tasks, sub-tasks and the dependence relations are not dynami-
cally generated during a simulation. Instead, they are predefined and specified in the input files.
Therefore, in the simulation, each delegator knows their goals and the different ways to achieve
them, as described by their dependence relationships (i.e., whether through self-execution of a
task, direct task delegation to a partner from an OR-dependence relation, or task decomposition
based on an AND-dependence relation). Nevertheless, they need to find the best combination
of partners based on these relationships (i.e., the partners that allow them to achieve their goals
according to their expectations).

Representing the delegation chains through DS-nets allows us to reduce the comple-
xity of our simulation process while extracting essential information directly from a DS-net. The
DS-nets used in our experiments were manually designed to assess our delegation model’s
sensitivity to some parameters, such as network topology and agent connectivity, which will be
discussed later in this section.

For a simulation run, agents delegate and execute tasks over a maximum number of ite-
rations (M AX};,) based on an input DS-net. In each iteration itr, as described in Algorithm 1,

' The simulator employed in this work was implemented in Jason (Bordini; Hiibner, 2005), an interpreter

for an extended version of AgentSpeak (Rao, 1996). The simulator can be accessed through a GitHub
repository available in: https://github.com/jjbaqueta/scdModel/tree/main

2 The files that describe the DS-nets used as input for our experiments can be accessed in this reposi-
tory: https://github.com/jjpaqueta/scdModel/tree/main/DSNetExamples
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a root agent initiates the offer request phase in a cascading manner (line 5). In this phase, dele-
gators request offers from their partners in each delegation instance. These requests propagate
through the network until they reach terminator agents, who respond directly since they don’t
rely on other agents. Offers then move upward through the network, allowing inner-level agents
to create their own offers based on a composition process.

The composition process is discussed hereafter, but in general, it involves formulating
an offer based on the performance estimations propagated with the offers sent by agents from
lower levels (e.g., in the case of a task that involves cost, propagating the cost of a task upwards
from a delegatee to a delegator or propagating the mean cost of the tasks delegated to a set of
delegatees in the case of task decomposition).

Algorithm 1 — Task delegation simulation

1: Input: DS-net structure, M A X4,
2: Initialize root agent and other agents
3:atr 1
4: while itr < M AX;;, do
5.  Offer request phase
6:  Root agent initiates offer requests
7:  Propagate offer requests through delegation chains
8:  for each terminator agent do
9: Answer the offer request with an offer
10:  end for
11:  for each agent in the inner levels of the network do
12: Compose offers based on received offers from lower levels
13: Propagate composed offers upwards
14:  end for
15:  when offers reach the root
16: Partner selection phase
17: Root agent selects delegatees
18: Propagate selection process downwards
19: for each delegator do
20: Select delegatees using the delegation model
21: Creation of simple and composed delegation instances
22: end for
23: Execution phase
24: Trigger task execution cascade
25: for each delegatee from terminator to root do
26: Execute tasks
27: Evaluate delegatees based on their offers and task outcomes
28: Update success rates (SR/ASR) and generate impressions
29: Share impressions with other delegators and the delegatee
30: end for

31: end when
32:  atr<+itr+1
33: end while

When offers reach the root, the partner selection phase begins (line 16), in which the
root and subsequent delegators use our delegation model to choose their delegates, triggering
a cascade of task executions (line 23). This chain of execution connects the root to termina-
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tor agents, defining the task sequence for the root to achieve its goal. As tasks are completed,
delegators evaluate their delegatees by comparing their performance estimations with their out-
comes and updating the delegatees’ success rates (SR/ASR) based on their success or failure
in completing their tasks. An impression resulting from a delegator’s evaluation is stored as part
of its social image of the delegatee, shared with other delegators to contribute to the formation of
the delegatee’s reputation, and shared with the delegatee, serving as a reference and becoming
part of the delegatee’s know-how.

Besides the Algorithm 1, the task delegation stages are also illustrated in Figure 7 and
Figure 8. Specifically, in Figure 7, the delegation chains created as the agents delegate task to
each other are expressed through the delegation levels (Di; ). Note that each iteration starts
with the manager, an agent that controls when an iteration starts and finishes. A new iteration
starts when the manager signals the network’s root to initiate the task delegation process. Mo-
reover, a new iteration is initialized only if the iteration count is within the set limit (M AX;;..). In
contrast, an iteration ends when the root evaluates its delegatees and signals the manager to
conclude the current iteration.

On the other hand, Figure 8 illustrates the phases of an iteration in a three-level DS-
net, showing each phase of task delegation while considering the timing (¢;) and sequence of
message exchanges among agents. In particular, Figure 8 depicts the offer request phase from
time ¢, to ¢35, partner selection from ¢, to tg, task execution from ¢; to tg, and evaluation from
to t190.
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4.2 Evaluation Metrics

We evaluate our delegation model based on the delegators’ performance, as they are
responsible for initiating the delegation process and relying on other agents to accomplish their
goals. Note that a delegation chain may include several delegators, one for each delegation
instance that composes the chain. Thus, considering an iteration (:¢r), we define the following:

« DI ={ay, ..., a,, } is the set of all delegators of an iteration itr obtained from the Act;y,.,
while | DI| denotes the size of the set of delegators.

- Given a delegator «;, its delegatees for a task 7; are defined by Delegatees(a;, 7;)°.

The following evaluation metrics are considered during our experiments to assess the
performance of our delegation model:

Delegators’ success rate average (SR(DI);, € [0,1]): this measure is calculated by avera-
ging the success rates of all delegators in the set DI, representing the number of tasks
delegated by the delegators that were successfully completed up to iteration ¢tr:

P (SR(aq, 7))

D itr — i=1 29
SR(DI); Dl (29)
0 if|(c, 7)] =0
SR(a, 1) = (30)
L) ] otherwise

I(a7)]

where SR(«, T) represents the success rate of a delegator o concerning the task 7
(i.e., the number of times the T was completed successfully (|(c, 7)"|) concerning the
number of times « delegated 7 (|(«, 7)])). In particular, the success of « regarding the
execution of 7 relies on the success of its delegatees, as follows:

true  ifVp; € Delegatees(a, T), fsuce(Bj, T;) = true
fsucc(aa T) = (31)
false otherwise

where, The function f,..(ag, 7) is a function that returns true if an agent ag succeeds
in completing its task 7, producing an outcome for 7.

Delegators’ satisfaction average (SAT(Dl);, € [0,1]): this measure is calculated by avera-
ging the satisfaction of all delegators in the set DI concerning their choice of delegatees

3 We assume that a delegator v must have at least one delegatee, as each delegation instance requires

both a delegator and at least one delegatee.
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up to iteration ¢tr. For a delegator «, satisfaction is a performance measure that indica-
tes a’s degree of satisfaction with the performance of its delegatees, considering both
their performance estimations and the outcomes obtained after the execution of their

tasks: |D”
SAT G, T
SAT(DI)y, = 252 (|D”( ) (32)
O If|(CY, 7_)’ = 0
SAT(a,7) = >
SATacel)  otherwise

|(a,7)]

where SAT,..(«, T) represents the accumulated satisfaction that « obtained by dele-
gating 7 to other agents over time (i.e.,

(o, 7)| times). Additionally, the satisfaction of
« regarding a task 7 executed by a delegatee 3, denoted by SAT («, 3, T), is compu-
ted similarly to the score computation shown in Equation 20. However, in this case, the
individual scores estimated for 7’s criteria (C) are combined into a single measure of
satisfaction through a simple mean, such as follows:

SAT (o, B, T) = Zm Slei (34)
e
where each criterion ¢; belongs to the set C' = {¢y, ..., ¢, }, which is associated with 7,
and |C'| denotes the size of the set C. In the case of task decomposition, o’s satisfaction
concerning a task 7 is computed as the average of the satisfactions obtained from the
execution of each sub-task 7; performed by a delegatee 3; € Delegatees(c, T).

Delegators’ regret average (REG(DI);, € [0,1]): this measure represents the average regret
of all delegators in the set DI regarding their choice of delegatees up to iteration itr:

SIPHREG(as,73))

REG(DI)y, = Dl

(39)

REG(a,7) = MSAT (v, 7) — SAT (v, 7) (36)

where, the regret of o concerning the execution of 7, REG(«, 7), is defined as the dif-
ference between the satisfaction that could be obtained if the best possible combination
of delegatees were selected by o to execute 7, which is denoted as maximum satisfac-
tion (M S AT), and the satisfaction obtained by « with its current choice of delegatees.
To compute M S AT, each partner sends an offer that includes estimated performance
values as well as the actual outcome of the task after execution. Although the delegator
selects its delegatees based only on the offers, the availability of actual outcomes from
all potential partners (including those not selected) allows « to retrospectively identify
which combination of delegatees would have yielded the highest satisfaction. The dif-
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ference between this optimal satisfaction and the satisfaction resulting from the actual
selection corresponds to the regret. A positive regret value indicates that the chosen
set of delegatees was suboptimal.

We remark that delegators’ success rate average allows us to evaluate our experiments
based on the number of tasks successfully completed by the agents, regardless of the quality
of the tasks performed by them (i.e., the capability of a delegatee to execute a task according
to its performance estimations). Conversely, the delegators’ satisfaction and regret averages
reflect the delegatees’ ability to fulfill their performance estimations. Thus, by analyzing these
metrics together, we can identify partners capable of successfully completing their tasks without
disregarding the expectations of the delegators concerning the execution of the tasks.

4.3 General Assumptions

The following assumptions are taken during a simulation:

+ All tasks have two evaluation criteria: the cost required for an agent to perform the task
and the time to complete it. Each partner uses these criteria to estimate their perfor-
mance regarding a task before sending an offer to their delegator. The partners’ perfor-
mance estimations for the cost and time criteria are generated randomly within prede-
fined numerical intervals. For example, if a delegator intends to have a task completed
within a period of 1 to 10 days, its partners will make their performance estimations
to fit within this range. However, task execution does not necessarily occur within the
estimated time. For instance, a delegatee might take 20 days to complete a task that
was estimated to take 10 days. For convenience, we assume that all n task criteria as-
sociated with a task are equally relevant for a delegator « (i.e., p; = %V(ci, pi) € P(a)
and 1 <1 <n).

* When an agent receives a task from a delegator, it can delegate the task onward th-
rough recursive delegation, decompose it into sub-tasks and then delegate them, or
execute the task by itself. The first two cases are delegation actions, and the last cor-
responds to an execution action. The recursive delegations and task decomposition are
configured beforehand in the input DS-net.

» An agent executes all its tasks in parallel. This occurs when the agent is simultaneously
involved in multiple delegation chains, enabling it to respond to requests from distinct
delegators at the same time.

* When a partner receives a task from a delegator, its objective is to complete it through
either delegation or execution actions. Therefore, the partner’s goal will only be achie-
ved if the task is successfully completed.

» Two agents can only exchange social evaluations about their common partners (i.e.,
social evaluations can only be shared among delegators who assess the same partner).
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For simulation efficiency, when a partner sends an offer to a delegator (during the of-
fer request phase), the partner includes the task’s simulated outcome for the task. It
is more efficient for all candidate partners to simulate the task execution than to intro-
duce new simulation cycles to announce the winning partners who should simulate and
backpropagate the task results upwards. We remark that outcomes are not considered
during partner selection. As discussed previously, a delegator selects its delegatees
based on their performance estimations, success history, and competencies. For expe-
rimental purposes, by knowing the outcome of each partner, a delegator can calculate
the difference between its satisfaction with a delegatee and the satisfaction that could
have been obtained if the best partner had been selected (i.e., the partner that achieved
the best outcome).

Generating offers for agents that act as intermediaries, connecting their delegatees to
their delegators, requires particular attention, as the offers produced by such agents
depend on those received from their delegatees. Specifically, the offers generated by
an intermediate agent are built based on a composition process, which is illustrated
in Figure 9. Note that, in a simple delegation instance, such as shown in Figure 9
(a), an intermediate agent (3;) propagates the cost and time from its delegatee’s offer
(Bix1), with the time being increased by one unit to simulate the communication time.
Conversely, in a composed delegation instance (Figure 9 (b)), the cost is calculated as
the sum of the estimated costs from [3;’s delegatees, while the time is defined based on
the estimated time provided by the delegatee, who will take the longest to complete its

task.
: | ™~
. ", Cost(ts A T4 A T5): 30 (10 + 8 + 12)
l L Time(ts A Ty A Ts): 8«
Cost(t): 10 | ﬁ_ Ao ‘\l ~ Timetr) - 1
Time(ty): 4 * d(t,) d(ts) id(T" d(t) *, Cost(ts): 12
. | 3
4 %c:\ite((TTS)) 10 -B“fl Cost(ty): 8¢ -B‘+2 -[3‘+3 iTime(ts): 7 —
5 Time(ty): 5 - / max time
M@ @ M En @
Cost(T,): 10 { d(t,)
Time(T,): 3 * M
(a) (b)

Figure 9 — Offer composition process considering the time and cost of tasks: (a) simple

delegation instance and (b) composed delegation instance.
Source: Own authorship (2025).
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4.4 Network Topologies

In our experiments, each scenario is represented through a DS-net comprising
85 agents. Each DS-net has a distinct topology that influences how agents delegate tasks, es-
tablish connections, communicate with others, and determine how evaluations are shared and
propagated.

4.4.1 Network Characteristics

In our experiments, we consider two network topologies:

Tree network topology: the nodes (agents) are organized in a parent-child relationship of pre-
cedence (Afanador; Baptista; Oren, 2019). As shown in Figure 10, such a network was
designed with four levels, each of size 4. Each agent at level [ has only one delegator at
level [ — 1, except for the root agent, which does not have a delegator, and four partners
at level [ 4 1, excluding the terminator agents. Note that such a configuration produces
a rigid network structure with a well-defined delegation hierarchy, where the hierarchy
levels limit agent communication.

Random network topology: traditionally, a random network is composed of N nodes (agents),
where each pair of nodes is connected with probability p (Barabasi; Albert, 1999). In or-
der to adapt the classical Barabasi e Albert (1999) network model to the requirements of
our delegation scenario, some structural modifications were applied. First, a root agent
was added to the generated network to serve as the entry point for delegation chains.
This root agent is connected to all agents at level 0 of the original network. Then, to en-
sure acyclicity and directionality, the network is traversed from the root using a breadth-
first search (BFS), and only the reachable edges that preserve a top-down delegation
flow are maintained. The resulting structure is a directed acyclic graph (DAG), which is
used as the base for building the DS-net, which is shown in Figure 11.

In our case, the level of the agents within the network determines the connection pro-
bability. As depicted in Figure 11, the random topology has six levels. The first level
contains the root agent, the second level has ten agents, the third, fourth, and fifth le-
vels have 20 agents each, and the last level has 14 agents. Except for the first and last
levels, an agent at level [ may connect with up to 5 delegators from level [ — 1 and with
up to 5 partners at level [ 4+ 1. This network structure allows greater interconnectivity
between levels, as the connections among the agents are determined by a probability.
The high connectivity among the agents and multiple communication paths facilitate the
propagation of information.

Note that in Figure 10 and Figure 11, the agents may perform behavioral changes, adop-
ting different behaviors throughout the iterations. These changes occur progressively over a
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simulation. The agents’ behavioral changes are introduced to add a dynamic component to our
experiments, allowing us to understand how different partner selection strategies are affected by
such changes.

The behavioral changes are discussed in more detail in the next chapter. However, they
are associated with the agents’ ability to accurately estimate their performance concerning a task
and their capability to successfully complete a task. Specifically, an agent with good behavior is
guaranteed to estimate its performance accurately and successfully complete tasks (nodes in
Figure 10 and Figure 11 with green and black borders). On the other hand, agents with bad
behavior are unable to make precise performance estimates and tend to fail in their tasks (nodes
in Figure 10 and Figure 11 with red borders).

It is important to note that, throughout the iterations, agents with good behavior may
adopt bad behavior and vice versa, a feature we refer to as behavioral inversion. Despite this
inversion, note that in the networks presented in Figure 10 and Figure 11, there is always a path
connecting the root agent (agent with ID 0) to the terminator agents (leaf nodes of the network).
These paths need to be discovered by the delegators as tasks are delegated and agents interact
with each other, incorporating behavioral changes into this learning process.
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Figure 10 — Agents’ behavior changes over simulation stages considering the tree-topology

network: (a) agents’ behavior configuration for stage 1 of the simulation, (b) Agents’

behavior configuration for stage 2 of the simulation, and (c) Agents’ behavior

configuration for stage 3 of the simulation.

Source: Own authorship (2025).
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Figure 11 — Agents’ behavior changes over simulation stages considering the random-topology

network: (a) agents’ behavior configuration for stage 1 of the simulation, (b) Agents’

behavior configuration for stage 2 of the simulation, and (c) Agents’ behavior

configuration for stage 3 of the simulation.

Source: Own authorship (2025).
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4.4.2 Connectivity Factor

We chose the tree and random topologies to illustrate how our delegation model bene-
fits from the propagation of social evaluations among agents. In particular, the computation of
the accumulated success rate and the spreading of social evaluations take advantage of the
connectivity among agents (i.e., the number of partners and delegators each agent has). In this
sense, we chose the tree topology to represent a task delegation situation characterized by low
connectivity among agents, describing the worst-case scenario for information propagation. On
the other hand, the random network topology represents a situation in which agents’ connecti-
ons facilitate the exchange and propagation of information among the agents, considering the
increase in the number of delegators per agent when compared to the tree network topology.

In Figure 12, the propagation of information is illustrated, showing how it can be influen-
ced by the way agents are connected. The delegation chain formation and evaluation propaga-
tion processes are depicted through the DS-nets in Figure 12. Delegation instances are formed
sequentially as a delegator selects its delegatees, indicated by the time markers in green. In
contrast, the time markers in orange represent when updates of the success rate, accumulated
success rate, or impressions are propagated (dotted links).

Specifically, Figure 12 (a) and Figure 12 (b) show the propagation of the success rate
(SR) and the accumulated success rate (ASR) through a DS-net, which are triggered by the
execution of the task 74 in the time instant ¢3. Note that the delegation instances selected in
both cases are composed of the same agents, ags and ags (t1), and then ags and agg (t2). The
update of the success rate of the agents in Figure 12 (a) starting from instant ¢4, affecting only
the agents in the delegation chain (i.e., agents that are part of the delegation instances). The
agents in the greyed-out part of Figure 12 (a) are not part of the delegation chain and, hence,
do not receive updates. In contrast, when we consider the accumulated success rate, several
other updates are performed, as presented in Figure 12 (b). This behavior is a consequence of
the recursive property of our approach that accumulates the success rate of the agents along
the delegation chains, associating a success probability to each chain as a whole. In this case,
as agent agg belongs to three different chains, an update of its success rate affects the success
probability of all delegation chains in which it takes part.

On the other hand, Figure 12 (c) and Figure 12 (d) present the mechanisms of propaga-
tion of impressions. Figure 12 (c) presents a DS-net designed from a tree network topology. In
this case, as each agent has only one delegator, the sharing of impressions among agents is res-
tricted to the agents of a delegation instance (delegator and delegatees). Therefore, the impres-
sions cannot be shared with agents outside the delegation chain (i.e., agents in the greyed-out
part of Figure 12 (c)). Conversely, when the number of delegators per agent increases, as pre-
sented in the DS-net in Figure 12 (d), the delegators’ capabilities for propagating their personal
impressions become wider because delegators that assess the same delegatee can exchange
their impressions about it (shared impressions), regardless of whether these delegators are part
of the delegation chain.
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4.5 Experimental Scenarios

For each network topology, we simulated the task delegation process through three dis-
tinct experimental scenarios. In Table 3, the weights associated with each evaluation dimension
considered in our delegation model are discriminated, taking into account the experimental sce-
narios. Furthermore, we remark that some dimensions are not considered in certain scenarios
according to the purpose of the experiment, as discussed in the specification of scenarios pre-
sented hereafter.

A particularity of the experimental scenarios is that the delegators can use their prefe-
rences to select partners, taking into account the utility of their partners’ offers for a task. The
selection of partners based on their offers is useful when there are no other sources of informa-
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tion available for a delegator to determine its delegatees, such as social evaluations or historical
information about the partners. In particular, the lack of social evaluation and historical informa-
tion often occurs during the system’s initialization, when the delegators have not yet interacted
with their partners. Nevertheless, as the number of interactions between the delegators and their
partners increases, this approach becomes less reliable since the performance estimations of a
partner concerning a task offer no guarantees about its actual performance while executing the
task, considering that the partner may commit estimation errors.

In this context, in order to reduce the chance of a partner being selected as a de-
legatee based on erroneous performance estimates, we assigned a lower weight to the of-
fer's utility dimension UT' than to the trust measure dimension (T'M) in our experiments
(i.e., assigning 0.1 to WpE and 0.9 to Wry,). In this way, the delegator’s preferences do not sig-
nificantly affect its decision to trust when other sources of information are available, such as
social image, reputation, references, or success history.

A brief description about the experimental scenarios is presented as follows:

Scenario 1 - Mono-episodic selection: in our baseline scenario, we configure our delegation
model so that delegators only take into account the success rate of their partners du-
ring the decision to trust, disregarding the partners’ competencies (i.e., by assigning 1
to Wgy, and 0 to We). Furthermore, all agents along a failure chain are equally pena-
lized in case of failure propagation because, in a mono-episodic delegation instance, a
delegator sees its delegatees as terminator agents (agents capable of executing tasks
directly). This configuration allows us to evaluate the partner selection process in a sce-
nario where partners are chosen solely based on delegators’ direct experiences, dis-
regarding any information about the delegation chains formed through sub-delegations
(Griffiths, 2005) (Castelfranchi; Falcone, 2010) (Cho; Chan; Adali, 2015).

Scenario 2 - Delegation chain selection: In this scenario, we replace the success rate me-
chanism from our baseline scenario with the accumulated success rate. However, we
continue to adopt the full-penalization strategy in case of failure propagation. This con-
figuration allows delegators to select their partners based solely on the transitive de-

Table 3 — Configuration of the delegation model parameters, considering the weights (V) of
evaluation dimensions and the experimental scenarios, where S| is the partner’s social
image, RP is the partner’s reputation, K H is the partner’s know-how, C'M is the
competence measure, SL is the success likelihood, T is the trust measure, and UT
is the offer’s utility.

Weights | Mono-episodic selection | Delegation chain selection | Competence-oriented selection

Wsr - - 0.33

Wgrp - - 0.33

Wk - - 0.33

Weom 0.0 0.0 0.5

Wsr, 1.0 (using SR) 1.0 (using ASR) 0.5 (using ASR)

Wrm 0.9 0.9 0.9

Wur 0.1 0.1 0.1
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pendencies established by agents along a delegation chain. This modification takes
advantage of the network topology and the agents’ connections. By employing the ac-
cumulated success rate approach, the agents’ success rates are cumulatively aggre-
gated to generate a success probability for a path (delegation chain) connecting a root
with a terminal node in the network. Thus, in this approach, instead of using the indivi-
dual success rate of the partners as a selection metric, delegatees are chosen based
on the success probability associated with the delegation chain rooted in them.

Scenario 3 - Competence-oriented selection: in this scenario, agents are evaluated based
on their accumulated success rates and competencies. This configuration allows dele-
gators to assess their delegatees from a more qualitative perspective, considering both
their partners’ accumulated success rate along a chain and their satisfaction with past
choices. This is achieved by an equally weighted distribution of the model dimensions
associated with the competencies and success rate of the agents (i.e., assigning 0.33
to Wsy, 0.33to Wgkp, 0.33 t0 Wiy, 0.5 to Weay, and 0.5 to Wp). Additionally, in this
scenario, agents are partially penalized in case of failure propagation. This penalization
is applied based on the agents’ positions in the failure chain.

It is important to remark that we do not consider the agents’ competencies during the
partner selection for the mono-episodic and delegation chain scenarios (evaluation scenarios 1
and 2, respectively). In these scenarios, we aim to evaluate the agents’ performance by using
the success rate as a partner selection mechanism compared to its cumulative version. In both
scenarios, agents tend to make decisions that maximize their success rate as delegators.

4.6 Conclusion

In this chapter, we presented the simulator developed specifically to evaluate the pro-
posed delegation model, which is built upon the DS-net structure. The simulator supports the
execution of complex scenarios involving multiple agents, social evaluation mechanisms, dele-
gation chains, and configurable network topologies. This tool serves as the foundation for our
experimental studies.
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5 RESULTS

This chapter presents the experimental results and is organized as follows:

+ Section 5.1 discusses the characterization of the agents and the factors that affect their

performance while executing a task.

+ Section 5.2 discusses the dynamic elements considered in our experiments, specifically
the behavioral changes of the agents.

+ Section 5.3 introduces the MAB policy that was adopted in our experiments.

» Section 5.4 presents the experimental results based on the scenarios described in the
previous chapter.

+ Section 5.5 discusses how the results validate the hypothesis of this thesis.

5.1 Agents’ Characterization

In our experiments, tasks are considered abstract because the specific task type details
are irrelevant to a delegator’s partner selection. Our delegation model only requires the delega-
tor to know which tasks each partner can perform. For example, a task can be decomposed into
sub-tasks and delegated to different partners, with each sub-task treated as distinct. If a dele-
gator sub-delegates a task onward, the task itself remains unchanged. Therefore, we assume
all agents have the same capabilities to perform any task. However, an agent’s performance
depends on its failure likelihood and accuracy estimation level.

Failure likelihood: Defined as a random value representing the probability of a delegatee fai-
ling to perform a task. This value ranges from [0,1], where 0 means no chance of failure
and 1 means inevitable failure. Failures can occur in two ways. First, the delegatee
fails to complete an execution action, preventing it from producing an outcome for its
task. Second, the delegatee cannot communicate the task outcome to its delegator.
For instance, in task decomposition, a failure may prevent a delegatee from aggrega-
ting sub-task outcomes into a single result. Thus, even if all sub-tasks are successfully
completed, the delegatee may still fail to deliver the composed task’s outcome to its
delegator.

Estimation accuracy: Represents a partner’s ability to accurately estimate its performance ba-
sed on task criteria. We consider six accuracy levels, each corresponding to a distinct
error range, as shown in Table 4. The error is a random value that depends on the ac-
curacy level. Higher estimation errors result in lower satisfaction degree that the partner
can provide to its delegator.
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Accuracy level | Error interval
VERY LOW [0.8, 1.0[
LOW [0.6, 0.8]
MIDDLE [0.4, 0.6]
HIGH [0.2, 0.4]
VERY HIGH 10, 0.2
PERFECT [0, 0]

Table 4 — Correspondence between accuracy levels and their respective error intervals.

An example of how estimation accuracy and failure likelihood are used in agent characte-
rization is shown in Figure 13. Agents’ relationships are represented through a DS-net structure.
Except for the root, all agents are characterized by these factors. Each agent has a profile for
task delivery and execution. The execution profile includes an estimation accuracy level and a
failure likelihood for task execution, while the delivery profile only specifies the failure likelihood
for delivering a task outcome. Thus, agent ag, has a low execution failure likelihood (5%) and
no failure in delivering task outcomes. However, since its estimation accuracy level is MIDDLE,
it may commit estimation errors ranging from 40% to 60% for each task criterion based on its
actual outcome. On the other hand, agent ags; has a LOW estimation accuracy level, making er-
rors between 60% and 80%. Additionally, it has an intermediate failure likelihood (50%) for both
execution and delivery, making it a less reliable partner.

Estimation accuracy and failure likelihood influence the trust a delegator places in their
partners over time. Partners with high precision provide more reliable performance estimates,
leading to higher satisfaction from delegators regarding task execution. In contrast, low precision
and high failure probabilities introduce uncertainty and increase the risk associated with dele-
gation. The characterization of agents is integrated into the DS-net structure using an XML file
format, which is discussed in detail in Appendix 6. This XML format enables the definition of a
DS-net using a hierarchical structure and allows for customization of the network to incorporate
agents’ delivery and execution profiles. Moreover, the DS-nets used as input for our experiments
follow this XML format.

5.2 Behavioral Changes

Aiming to ensure a dynamic behavior for partners, their failure likelihood and estimation
accuracy levels may change during the simulation through upgrades and downgrades. An up-
grade improves a partner’s characteristics by decreasing its failure likelihood or increasing its
estimation accuracy, whereas a downgrade deteriorates these characteristics (i.e., increasing
the probability of failure and decreasing the estimation accuracy level).
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Failure likelihood changes: When a partner receives an upgrade or downgrade, the simulator
randomly assigns a new failure likelihood based on predefined intervals:

« Interval 1: [0, 0.2] (low failure likelihood);
« Interval 2: (0.2, 0.4] (moderate failure likelihood);
* Interval 3: (0.4, 0.6] (high failure likelihood);

An upgrade moves the partner to a lower interval, reducing its failure probability. For
example, if a partner is in Interval 2 ([0.2,0.4[), an upgrade shifts it to Interval 1 (]0,0.2]).
In turn, a downgrade moves the partner to a higher interval, increasing its failure proba-
bility. Within each interval, the simulator randomly selects a new failure likelihood using

a uniform distribution.

Estimation accuracy changes: An upgrade may improve a partner’s estimation accuracy level.
The new level is determined by a uniform distribution, considering the partner’s current
level and up to two higher levels. Similarly, a downgrade may decrease accuracy by up
to two levels.

Behavioral changes occur gradually between simulation stages. As illustrated in
Figure 14 and Figure 15, a simulation run consists of 1200 iterations, divided into three stages:
Stage 1 (1-300), Stage 2 (301-600), and Stage 3 (601—1200). These changes occur twice, at
iterations 300 and 600, before a new offer request phase begins. In particular, this subdivision
aims to introduce behavioral changes over the simulation and to assess the performance of the
delegation model in response to both the initial adaptations and the subsequent stabilization of

Execution profile
Estimation accuracy:

[JRrooT [JINNER TERMINATOR ag; Failure likelihood:
Delivery profile
* Failure likelihood:

Execution profile Execution profile
T T T
Estimation accuracy: VERY HIGH Estimation accuracy: PERFECT
4

Failure likelihood: 0%

Failure likelihood: 20% ag ag ag
- - 2 3 - "
Delivery profile Delivery profile
Failure likelihood: 0% i Failure likelihood 30%

@

e(n) d(t
Execution profile d(T ) AND d(T ) ( 1) Execution profile
Estimation accuracy: MASTER 2 3 Estimation accuracy: MIDDLE
Failure likelihood: 40% Failure likelihood: 5%
- ags a9 agy - -
Delivery profile Delivery profile
Failure likelihood: 0% Failure likelihood: 0%
e(Tz)! L(Ta) e(ty)

Execution profile Execution profile

Estimation accuracy: VERY HIGH Estimation accuracy: LOW

Failure likelihood: 20% Failure likelihood: 50%

Delivery profile Delivery profile

Failure likelihood: 10% Failure likelihood: 50%

Figure 13 — Assignment of failure likelihoods and estimation accuracy levels for a set of agents
through a DS-Net.

Source: Own authorship (2025).
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agent behaviors. In each iteration, agents follow the routine described in Algorithm 1 (Section 4),
continuously executing and delegating tasks. Although these actions are performed repeatedly,
updates on efficiency metrics (i.e., partners’ success rates and delegators’s satisfaction and re-
gret) are maintained across iterations, allowing delegators to learn about their partners’ behavior
over time. Furthemore, the partners’ behavioral changes affect their delegators. A partner may
start with good behavior, successfully completing tasks and meeting performance expectations.
However, due to these changes, it may end the simulation performing poorly, failing tasks, and
disappointing its delegator concering the task execution. In contrast, an initially unreliable partner
may improve over time, becoming more consistent and trustworthy by the end of the simulation.

5.3 MAB Policy

Despite the existence of several other MAB policies in the literature, such as UCB1 (Ga-
rivier; Moulines, 2011) and Thompson sampling (Chapelle; Li, 2011), we adopt the e-greedy
policy due to its simplicity. It provides an effective exploitation/exploration mechanism without
the complexity of more advanced policies. Specifically, we use a variation of the e-greedy policy,
where the parameter ¢ depends on the number of times a delegator « acts on a task 7 (|(«a,7)|)
(Artemis, 2021), as defined below:

€= ; (37)
(a,7)] +1
where the probability of exploration increases as € approaches 1, meaning the delegator is more
likely to select a partner at random. Otherwise, o exploits its known options by selecting partners
based on their delegation likelihood. The higher a partner’s delegation likelihood, the more likely
it is to be chosen by «.

5.4 Results

For each experimental scenario, we conducted two experiments, A and B. Experiment A
uses the DS-net with a tree network topology, while Experiment B employs the DS-net with a
random network topology. The results of each experiment are obtained by averaging the per-
formance indicator values from 5 simulation runs. These performance indicators are based on
the evaluation metrics defined in Chapter 4 (i.e., delegators’ success rate average (S R(Dl)itr),
delegators’ satisfaction average (S AT'(Dl)itr), delegators’ regret average (REG(DI)itr), and
delegators’ maximum satisfaction (SATmax))'. Such an evaluation approach was chosen to
account for the random nature of delegators’ partner selections over time, balancing the exploi-
tation of known partners and the exploration of new ones. Averaging multiple runs mitigates the

randomness associated with partner selection and the performance estimation process.

' The results from each of the five simulation runs can be accessed at the following link:

https://github.com/jjbaqueta/scdModel/wiki/Experimental-Results.
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5.4.1 Behavioral Changes Evaluation

We emphasize that during the simulation, from stage 2 onwards, agents may adopt a
different behavior compared to the previous stage, as shown in Figure 14 and Figure 15, which
illustrate the evolution of agents’ behavior over iterations for Experiment A and Experiment B,
respectively. For each new stage, delegators must relearn which agents are the most promising
partners due to the upgrades and downgrades. The time a delegator takes to learn about their
partners’ behavior is called learning time.

The behavioral differences observed in Figure 14 and Figure 15 arise from the presence
of optimal paths formed by high-performing agents. Since network topologies differ, delegators
may follow different paths when selecting partners. Throughout a stage, they must identify the
best partners, finding the most efficient path. However, when a stage transition occurs, this path
might change as upgrades or downgrades are performed. Factors like network depth and breadth
also influence agent relationships and path formation. Despite these differences, both figures
(Figure 14 and Figure 15) show a consistent pattern. Agents that performed well in the first stage
tend to degrade over time, while initially poor-performing agents tend to improve. This behavioral
inversion leads to a higher concentration of agents with estimation accuracy levels between LOW
and HIGH in stage 2.

Regarding failure likelihood, the figures show that, in stage 1, agents exhibit a wide range
of failure likelihood values, with some reaching high probabilities. As the simulation progresses,
failure likelihood stabilizes (stage 2). In turn, in the last stage, due to behavioral inversion, the
number of agents with lower failure likelihood increases again, which, in general, is concentrated
among agents with accuracy levels VERY HIGH and PERFECT. However, despite this impro-
vement, some agents still exhibit high failure rates, suggesting that behavioral transitions do not
always guarantee optimal performance across all agents.
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Figure 14 — Estimation accuracy levels and failure likelihood of agents over time in Experiment A
(Tree network topology).

Source: Own authorship (2025).
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5.4.2 Organization of the Experiments

To provide a comprehensive understanding of the results obtained from our simulations,
we conducted our analysis from two distinct perspectives, the experimental scenario perspec-
tive and the performance indicator perspective, as illustrated in Figure 16 (a) and Figure 16 (b),
respectively. The experimental scenario perspective (Figure 16 (a)) evaluates all performance
indicators within an experimental scenario, allowing us to observe how these indicators interact
and influence each other over the iterations. In contrast, the performance indicator perspective
(Figure 16 (b)) isolates each performance indicator, analyzing its variation across all experimen-
tal scenarios. This analysis enables a direct comparison of the delegators’ performance consi-
dering a given indicator under the different peculiarities and constraints of each scenario.

2 In order to compare the regret of a delegator across the experimental scenarios, we normalized its

regret concering to the maximum satisfaction it could achieve in an iteration 2¢r. Thus, the greater the
difference between the delegator’s regret and its maximum satisfaction, the lower its normalized regret
regarding its choices.

Simulation runs (S;) Experimental scenarios perspective
. . . Experiment A Experiment B
Experimental scenarios | Iterations | S1 | Sz | S3 | Sa | Ss Tree network topology Random network topology
Chart A.1 Chart B.1
Mono-episodic 1..1200 )|- SR(Dl)iy SAT(DI)ir REG(DI)ir MSAT(DI);e |- SR(DD)y, SAT(DI)yr REG(DI)iy MSAT(DI);yy
Chart A.2 ChartB.2
Delegation-chain 1..1200 3 |- SR(DI)y, SAT(DI)y, REG(DI)y MSAT(DI);, |- SR(Dl)y, SAT(DI)y, REG(DI)y, MSAT(DI)y,
Chart A.3 Chart B.3
Competence-oriented | 1..1200 » [ SR(DI)y, SAT(DI);, REG(DI);, MSAT(DI);, [ SR(DI);; SAT(DI), REG(DI), MSAT(DI);,
Simulation runs (S;) Performance indicators perspective
X X . Experiment A Experiment B
Experimental scenarios | Iterations | S1 | S2 | S3 | Sa | Ss Tree network topology Random network topology
—Chart A.4— —Chart A.5— (—Chart A.6 — | (—Chart B.4— (—Chart B.5— —Chart B.6 —
Mono-episodic 1..1200 P | SR SAT(DI)y || NREG(DI) SR(DI)i SAT(DD;r | | NREG(DI)y,
Delegation-chain 1..1200 || SR(DI) SAT(DI), || NREG(DI)y, SR(DI);y SAT(DI);, || NREG(DI)y,
Competence-oriented | 1..1200 » SR(DI)ier SAT(D);y NREG(DI) SR(D)ir SAT(DI) e NREG(DI)y,

Figure 16 — Organization of experiments, considering the analysis perspectives: (a) experimental
scenario perspective and (b) performance indicator perspective. We consider the
following performance indicators during the analysis of results, which takes into

account each iteration itr: SR(DI);;,: delegators’ average success rate, SAT(DI);;,:
delegators’ average satisfaction, REG(DI);,.: delegators’ average regret,
M SAT(DI);,: average of delegators’ maximum satisfaction, and N REG(DI);;,2:
average of delegators’ normalized regret relative to M SAT(DI);;-

Source: Own authorship (2025).
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5.4.3 Experiment A: Tree Network Topology

This section presents the results of the experiments conducted taking as input the DS-
net designed based on the tree network topology. The purpose of this experiment is to evaluate
our delegation model in a scenario where social evaluations and success rates (accumulated or
not) are propagated through delegation chains with a low connectivity factor between delegators
and delegatees. This occurs because, in a tree network topology, each delegatee is connected
to only one delegator.

5.4.3.1 Experimental Scenario Perspective

The results in Figure 17 illustrate the delegators’ performance over iterations in each
experimental scenario, considering the tree network topology. Across all scenarios, the initial
learning phase, marked as Region A, represents the period when delegators explore different
partners to obtain information about their performance and behavior. At this stage, choices are
often random due to the lack of prior interactions.

In Figure 17 (a) (Chart A.1 - mono-episodic selection), the success rate initially increases
as delegators start identifying suitable partners. However, since each delegation instance is trea-
ted independently, delegators take longer to learn about their partners’ behavior, as they cannot
share any information among themselves. In contrast, in Figure 17 (b) (Chart A.2 - delegation
chain selection), particularly in Region B, a slight recovery can be observed around iteration
1000. Even though the limited connectivity of the tree topology reduces information propagation
across the network, the results indicate that success rate propagation through delegation chains
enables delegators to progressively adapt to their partners’ behavioral changes, gradually rele-
arning their new behaviors.

Finally, in Figure 17 (c) (Chart A.3 - competence-oriented selection), delegators incorpo-
rate partners’ competencies as an additional evaluation dimension. Note that during the initial
stage (stage 1), this approach provides a more stable learning curve, as delegators can better
identify partners capable of completing tasks successfully and meeting their expectations regar-
ding task execution. Such a feature results in a more efficient convergence in partner selection
compared to the other scenarios, at least for stage 1. Nevertheless, the efficiency of this appro-
ach is limited by the network topology, as the parent-child relationships among agents prevent
a partner from having multiple delegators. Consequently, delegators cannot share impressions
since they lack common partners, and their impressions are based only on direct experiences.
Besides, a delegatee’s know-how is built exclusively on interactions with a single delegator. The
impact of the lack of impression propagation becomes evident after iteration 300, when delega-
tors have difficulties identifying suitable partners due to their behavioral changes at each new
stage.
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Figure 17 — Delegators’ average performance across each experimental scenario, taking the
DS-net designed based on the tree network topology as input: (a) Chart A.1 -
mono-episodic selection; delegations do not consider delegation chains or
sub-delegations, (b) Chart A.2 - delegation chain selection; delegations are
performed considering the accumulated success rate propagated by agents through
delegation chains, and (c) Chart A.3 - competence-oriented selection; in addition to
the accumulated success rate, delegators also consider their own and third-party
impressions. Region A: initial learning period; Region B: recovery period based on
relearning of the partners’ behaviors.

Source: Own authorship (2025).
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5.4.3.2 Performance Indicators Perspective

The results in Figure 18 provide a complementary perspective on delegators’ per-
formance by analyzing each performance indicator separately. In particular, Figure 18 (a)
(Chart A.4) compares the average success rate of delegators across experimental scenarios,
Figure 18 (b) (Chart A.5) compares the average satisfaction of delegators, and Figure 18 (c)
(Chart A.6) analyzes the average normalized regret of delegators, considering their maximum
satisfaction. These analyses help clarify how different delegation strategies (i.e., mono-episodic,
delegation chain, and competence-oriented selection) influence delegators’ decision-making
over time.

As shown in Figure 18 (a), regardless of the scenario, delegators’ performance tends to
follow a pattern, which starts with a learning period (Region A), where the learning time varies
depending on the selection strategy. After the first stage, the delegators’ performance is followed
by a long period of decay caused by the behavioral changes of their partners in each new stage.
Note that only the delegation chain selection approach allows delegators to gradually relearn
partners’ new behaviors, whereas the other strategies do not support adaptation beyond the first
stage.

One point that should be highlighted is that in the competence-oriented selection appro-
ach, as shown in Figure 18 (b) and Figure 18 (c), delegators show the best measures of satisfac-
tion and regret regarding their partner choices, at least in the first stage. From the second stage
onwards, as discussed earlier, the tree network constraints regarding the connectivity among
agents limit the efficiency of both the delegation chain selection and competence-oriented selec-
tion, as these approaches rely on the propagation of information between agents, which, in turn,
depends on the network’s topology.
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Figure 18 — Delegators’ average performance considering each performance indicator for each
experimental scenario, taking the DS-net designed based on the tree network
topology as input: (a) Chart A.4 - delegators’ average success rate, (b) Chart A.5 -
delegators’ average satisfaction, and (c) Chart A.6 - average of delegators’ hormalized
regret relative to delegators’ maximum satisfaction. Region A: initial learning period;
Region B: recovery period based on relearning of the partners’ behaviors.

Source: Own authorship (2025).

5.4.4 Experiment B: Random Network Topology

This section presents the average results for the experiments using the DS-net with a
random topology as input. Unlike Experiment A, the connectivity between agents in this case is
not restricted to the parent-child relationship, as in the tree network topology. This experiment
aims to evaluate our delegation model based on the performance indicators defined for each
experimental scenario, considering an arbitrary connectivity factor.
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5.4.41 Experimental Scenarios Perspective

As shown in Figure 19, the random network topology used in Experiment B yields more
significant results. This topology allows multiple delegators to assess the same delegatee, facili-
tating the sharing of information about common partners. Compared to the tree topology, a ran-
dom network provides a higher degree of connectivity among agents (Shirley; Rushton, 2005).
This characteristic increases the number of paths in the network (i.e., instances of delegation
chains), the number of partners available to a delegator at each network level, and the number
of delegators connected to a given partner.

In particular, increasing connectivity among agents also implies to a higher number of
explorations performed by delegators. This effect is most evident in mono-episodic selection
(Figure 19 (a) (Chart B.1)), where partner selection relies on local information from each dele-
gation instance. In this case, delegators require multiple iterations to identify the best partners,
resulting in prolonged learning periods, such as highlighted in Region A and Region B of Figure
19 (a). In contrast, learning periods are shorter in the other experimental scenarios (i.e., dele-
gation chain selection and competence-oriented selection, Figure 19 (b) (Chart B.2) and Figure
19 (c) (Chart B.3), respectively). This is because, in such scenarios, delegators choose partners
based on a set of impressions and the probability of success associated with delegation chains
rather than solely on the success rate of an individual delegation instance.

The main advantage of the non-mono-episodic approaches is the faster learning of new
behaviors adopted by the agents after behavioral upgrades and downgrades. Even after iteration
600 (the second period of behavioral updates), the delegators are able to learn about the most
recent social behaviors of their partners, leading to a faster recovery in delegators’ performance
than in the mono-episodic approach. An important detail to note is that significant performance
recovery over the iterations can only be achieved in scenarios that incorporate some mechanism
of information propagation along the delegation chains (e.g., accumulated success rate or social
evaluation sharing). Such a performance recovery (Region B in Figure 19) may take a long time
to become apparent in mono-episodic selection, as delegators rely solely on the information from
their own delegation instance to select their partners.
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Figure 19 — Delegators’ average performance across each experimental scenario, taking the

DS-net designed based on the random network topology as input: (a) Chart B.1 -
mono-episodic selection; delegations do not consider delegation chains or
sub-delegations, (b) Chart B.2 - delegation chain selection; delegations are

performed considering the accumulated success rate propagated by agents through
delegation chains, and (c) Chart B.3 - competence-oriented selection; in addition to
the accumulated success rate, delegators also consider their own and third-party
impressions. Region A: initial learning period; Region B: recovery period based on
relearning of the partners’ behaviors.

Source: Own authorship (2025).
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5.4.4.2 Performance Indicators Perspective

The performance of delegators from the point of view of each performance indicator,
taking into account the DS-net with the random topology, are summarized in in Figure 20. Spe-
cifcally, Figure 20 (a) (Chart B.4) compares the average success rate of delegators across ex-
perimental scenarios, Figure 20 (b) (Chart B.5) compares the average satisfaction of delegators,
and Figure 20 (c¢) (Chart B.6) analyzes the average normalized regret of delegators, considering
their maximum satisfaction.

Note that, regarding the success rate (Figure 20 (a)), the highest values are achieved
with the delegation chain selection strategy. This is because partners are chosen in order to ma-
ximize the accumulated success rate along the delegation chains they belong to. Consequently,
selected partners are those that make part of chains with the highest probability of task com-
pletion, considering the transitive relationships among agents. However, as shown in Figure 20
(b) and Figure 20 (c), this approach fails in terms of delegators’ satisfaction and regret regarding
their partner choices compared to the competence-oriented selection strategy. Although it iden-
tifies partners capable of completing delegated tasks with a high success probability, it cannot
distinguish between those who provide accurate performance estimations and those who do not.

Therefore, we remark that the best results, considering a good trade-off among all perfor-
mance indicators, are achieved with the competence-oriented selection. Although this approach
does not guarantee the highest success rate for the delegators, it can achieve satisfactory results
for this metric while also providing a selection mechanism that finds partners capable of meeting
the delegators’ expectations concerning the performance estimations for a task. This tends to
increase the delegators’ satisfaction average and decrease the regret average regarding their
choices of partners. Consequently, this approach can identify partners with a high probability of
successfully completing a task and provide accurate estimates of their performance over time.
Furthemore, as shown in the charts in Figure 20, successive choices of partners with such a
profile tend to lead to a more stable system behavior concerning performance indicators, as the
performance curves for competence-oriented selection exhibit fewer peaks and valleys along the
iterations compared to other approaches.
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Figure 20 — Delegators’ average performance considering each performance indicator for each
experimental scenario, taking the DS-net designed based on the random network
topology as input: (a) Chart B.4 - delegators’ average success rate, (b) Chart B.5 -

delegators’ average satisfaction, and (c) Chart B.6 - average of delegators’ normalized
regret relative to delegators’ maximum satisfaction. Region A: initial learning period;
Region B: recovery period based on relearning of the partners’ behaviors.

Source: Own authorship (2025).

5.5 Validation of Hypothesis

Herein, we analyze the hypotheses that underpin the investigation conducted throughout
this thesis. This analysis aims to validate or refute each hypothesis based on the results obtai-
ned through our experiments. Such an evaluation is essential to confirm the capability of our
delegation model, mainly for task delegation scenarios where the delegators need to cope with
delegation chains and their decisions are affected by environmental changes, like the agents’
behavioral change discussed in this work. Additionally, this assessment provides an important
reflection about some relevant aspects that must be considered in a delegation model.

In particular, to evaluate the impact of the different experimental scenarios (mono-
episodic selection, delegation chain selection, competence-oriented selection) on the perfor-
mance metrics (success rate, satisfaction, and regret), appropriate statistical analyses for multi-
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ple group comparisons were conducted. Initially, we used the ANOVA test (Analysis of Variance)
(St; Wold et al., 1989), which allows us to verify whether there are statistically significant diffe-
rences among the means of the three scenarios. This approach is suitable because each metric
was measured across three independent groups, and the objective was to determine whether
at least one of these groups exhibited behavior that differed from the others. In cases where
the ANOVA test indicated statistical significance (p < 0.05), we applied Tukey’s HSD (Honestly
Significant Difference) multiple comparison test (Abdi; Williams, 2010). This test identifies which
pairs of groups differ significantly from each other while controlling the risk of incorrectly rejecting
a true null hypothesis (i.e., false positive), which can occur due to multiple comparisons.

The results obtained from the tests ANOVA and Tukey’s HSD are sumarized in Table 5.
Note that the F-statistic represents the ratio of between-group variance to within-group variance
in the ANOVA test. A small F-value (e.g., close to 1) indicates that the variability between group
means is similar to the variability within groups, suggesting little to no evidence of significant
differences among the means. In contrast, a larger F-value (typically greater than 1) suggests
that the group means differ more than would be expected by random variation alone, indica-
ting a potential statistically significant difference. The p-value quantifies the probability that the
observed differences occurred by chance. Results with p < 0.05 are considered statistically sig-
nificant, providing evidence that at least one group differs from the others. When p < 0.05, the
Tukey HSD post-hoc test is applied to identify which specific pairs of scenarios exhibit significant
differences. The Tukey HSD column lists those pairs where the differences were confirmed.

The analyses were conducted separately for each network topology (tree network topo-
logy and random network topology), in order to capture the specific effects of each structure on
the performance of the selection scenarios. The results of these statistical analyses were obtai-
ned based on the data presented in Table 6, Table 7, and Table 8, which reports the mean values
of the performance metrics, success rate, satisfaction, and regret, respectively. The data presen-
ted in these Tables represent the mean and standard deviation (sd) values calculated from five
simulation runs for each evaluation metric, which serve as the basis for the results discussed

throughout this section.

Table 5 — Summary of the statistical results obtained for each evaluation metric under the
different delegation scenarios (MES: Mono-episodic selection, DCS: Delegation chain
selection, COS: Competence-oriented selection), network topologies (tree and random)
and evaluation metrics (success rate, satisfaction, and regret).

Network Topology | Metric F-statistic | p-value | Significant | Tukey HSD
Success rate | 3.4790 0.0643 | No -
Tree Satisfaction 695.2175 | 0.0000 | Yes MES-COS, DCS-COS
Regret 572.3873 | 0.0000 | Yes MES-COS, DCS-COS
Success rate | 113.1988 | 0.0000 | Yes MES-DCS, MES-COS, DCS-COS
Random Satisfaction 90.8899 0.0000 | Yes MES-DCS, MES-COS, DCS-COS
Regret 13.7824 0.0008 | Yes MES-COS, DCS-COS




topologies (tree and random) and three experimental scenarios.

Table 6 — Descriptive statistics (mean and standard deviation (sd)) for the success rate metric across five runs. Results are presented for two network

Run 1 Run 2 Run 3 Run 4 Run 5 Avg (5 runs)
Network Topology | Scenario mean sd mean sd mean sd mean sd mean sd mean sd
Tree Mono-episodic selection 0.518 0.126 | 0.498 0.125 | 0.474 0.120 | 0.467 0.102 | 0.533 0.142 | 0.498 0.118
Delegation chain selection 0.539 0.128 | 0.557 0.117 | 0.483 0.104 | 0.541 0.013 | 0.576 0.130 | 0.539 0.019
Competence-oriented selection | 0.538 0.108 | 0.524 0.100 | 0.530 0.113 | 0.522 0.104 | 0.543 0.108 | 0.531 0.100
Random Mono-episodic selection 0.455 0.009 | 0.421 0.072 | 0.443 0.077 | 0.433 0.091 | 0.431 0.085 | 0.437 0.049
Delegation chain selection 0.610 0.080 | 0.655 0.093 | 0.644 0.086 | 0.637 0.084 | 0.669 0.088 | 0.643 0.072
Competence-oriented selection | 0.604 0.072 | 0.535 0.069 | 0.608 0.068 | 0.591 0.066 | 0.586 0.071 | 0.585 0.058

topologies (tree and random) and three experimental scenarios.

Table 7 — Descriptive statistics (mean and standard deviation (sd)) for the satisfaction metric across five runs. Results are presented for two network

Run 1 Run 2 Run 3 Run 4 Run 5 Avg (5 runs)
Network Topology | Scenario mean sd mean sd mean sd mean sd mean sd mean sd
Tree Mono-episodic selection 0.127 0.035 | 0.124 0.036 | 0.127 0.035 | 0.125 0.026 | 0.134 0.034 | 0.127 0.024
Delegation chain selection 0.126 0.035 | 0.121 0.033 | 0.134 0.040 | 0.129 0.052 | 0.185 0.148 | 0.139 0.042
Competence-oriented selection | 0.481 0.195 | 0.458 0.188 | 0.469 0.201 | 0.461 0.191 | 0.482 0.196 | 0.470 0.190
Random Mono-episodic selection 0.288 0.112 | 0.231 0.097 | 0.282 0.111 | 0.251 0.108 | 0.238 0.090 | 0.258 0.056
Delegation chain selection 0.329 0.066 | 0.331 0.085 | 0.349 0.049 | 0.321 0.067 | 0.384 0.070 | 0.343 0.046
Competence-oriented selection | 0.511 0.080 | 0.476 0.089 | 0.453 0.082 | 0.521 0.076 | 0.538 0.104 | 0.500 0.068
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Table 8 — Descriptive statistics (mean and standard deviation (sd)) for the regret metric across five runs. Results are presented for two network topologies

(tree and random) and three experimental scenarios.

Run 1 Run 2 Run 3 Run 4 Run 5 Avg (5 runs)
Network Topology | Scenario mean sd mean sd mean sd mean sd mean sd mean sd
Tree Mono-episodic selection 0.553 0.059 | 0.540 0.057 | 0.532 0.062 | 0.530 0.089 | 0.526 0.058 | 0.534 0.038
Delegation chain selection 0.532 0.052 | 0.550 0.068 | 0.527 0.084 | 0.532 0.070 | 0.480 0.131 | 0.513 0.059
Competence-oriented selection | 0.213 0.135 | 0.224 0.133 | 0.222 0.137 | 0.227 0.131 | 0.210 0.132 | 0.217 0.127
Random Mono-episodic selection 0.171 0.075 | 0.121 0.051 | 0.142 0.068 | 0.146 0.065 | 0.132 0.048 | 0.136 0.038
Delegation chain selection 0.150 0.036 | 0.177 0.062 | 0.146 0.033 | 0.193 0.036 | 0.139 0.061 | 0.159 0.018
Competence-oriented selection | 0.109 0.019 | 0.118 0.027 | 0.090 0.023 | 0.080 0.028 | 0.100 0.029 | 0.099 0.012

68
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The evaluation of each hypothesis is provided below, considering the statistical results
presented in Table 5, Table 6, Table 7, and Table 8. Moreover, to simplify the discussion, we
employ the abbreviations adopted in Table 5 to refer to the experimental scenarios. Thus, mono-
episodic selection is referred to as MES, delegation chain selection as DCS, and competence-
oriented selection as COS.

* Hypothesis 1: A delegation model designed to cope with delegation chains can achieve
better results than mono-episodic models. Confirmed.

Our delegation model yielded superior results in task delegation simulations when ope-
rating in @ non-mono-episodic manner. For this hypothesis, we compare MES with DCS
and COS, focusing on the success rate metric.

In MES and DCS, partner selection was configured to maximize the delegators’ suc-
cess rate. Specifically, in DCS, partners are chosen based on the accumulated success
rate propagated through transitive dependencies. In contrast, in MES, partners are se-
lected considering only their individual success rates, which are obtained through direct
dependencies. Finally, COS extends DCS by also considering partner competencies
during selection.

In our analysis, although differences in success rates under the tree network topology
were not statistically significant (p = 0.0643), significant differences were observed in
the random network topology, where connectivity among agents is higher. As shown in
Table 5, success rate differences between MES and DCS, as well as between MES and
COS, were statistically significant. Moreover, these differences have been consistently
observed across all five runs presented in Table 6.

Thus, when the connectivity among agents is not severely constrained, as in random
topologies, the use of transitive dependencies enables delegators to more effectively le-
arn about partner behaviors based on their shared experiences (i.e., social evaluations
and accumulated success rates). This accelerates adaptation to partners’ behavioral
changes and leads to better performance compared to mono-episodic approaches.

» Hypothesis 2: The network’s topology, created based on dependence chains, influen-
ces how often success rates are updated and impressions are shared by delegators,
improving the effectiveness of social evaluation mechanisms and partner selection stra-
tegies based on delegation chains. Confirmed.

Our experiments confirm that network topology significantly influences how frequently
success rates are updated and how effectively impressions are shared among delega-
tors. In the tree topology, the limited connectivity constrains information flow, resulting
in slower propagation of success rates and reduced sharing of social evaluations (im-
pressions). This limitation reduces the effectiveness of accumulated success rates and
prevents delegators from sharing their impressions efficiently, leading to lower overall
performance of the delegation model in both DCS and COS.
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The ANOVA results (Table 5) further support this effect. In the tree topology, no sig-
nificant difference was observed between the scenarios for the success rate metric
(p = 0.0643), suggesting stagnation in success rate updates due to limited information
exchange. In contrast, the random topology showed statistically significant differences
(p < 0.05), indicating that richer connectivity facilitates more dynamic success rate
updates and impression propagation. These results show that the structural properties
of the network directly impact the effectiveness of social evaluation mechanisms and
partner selection strategies based on delegation chains.

» Hypothesis 3: The use of transitive dependencies as a mechanism for propagating
information can speed up the identification of good partners. Confirmed.

The transitive dependencies established among the agents allow them to propagate
their social evaluations and accumulated success rates along the delegation chains.
Such dependency structures contribute to agents creating a view of their partners’
behavior, which reduces the time they take to discover good partners since they can
use this information to judge other agents’ behavior.

This acceleration pattern is evident in our results, for example, in the regions labeled as
Region A and Region B in Figure 18 and Figure 20. Region A indicates the number of
iterations needed for delegators to initially learn about partner behaviors, while Region
B reflects the time required to re-learn partner behaviors following behavioral changes.
The number of iterations required to learn partner behavior is significantly smaller for
DCS and COS than for MES.

» Hypothesis 4: Using our multi-goal delegation model, a delegator can choose partners
based on various dimensions, not just their success history. Confirmed.

This includes evaluating their competencies concerning the task execution and specific
criteria. Our experiments show that delegators can assess delegatees by comparing
the actual outcomes of tasks to the performance estimations made by them during the
offer phase of the task delegation process, rather than simply checking whether the task
was completed.

This approach leads to better choices, resulting, in general, in good rates of success
and satisfaction and low regret. Note that this claim is confirmed by the results presen-
ted in Table 5, Table 6, Table 7, and Table 8, where COS consistently outperforms both
MES and DCS in satisfaction and regret metrics. In both network topologies, COS exhi-
bits significantly higher satisfaction and significantly lower regret compared to the other
approaches. This indicates that competence-oriented selection enables more effective
decision-making, leading to greater satisfaction and reduced regret.

In summary, the hypotheses were validated based on the experiments performed, sug-
gesting that a delegation model explicitly designed to handle delegation chains, taking into ac-
count the network topology and the types of dependence relations established among agents,
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may offer significant performance gains for delegators compared to a mono episodic approach
in task delegation scenarios where agents can change their behavior over time.
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6 CONCLUSIONS

In this work, we present a delegation model capable of handling sub-delegations and
delegation chains, where the task delegation process is modeled as an exploitation/exploration
problem from a multi-goal perspective. Our model enables agents to decide which tasks to dele-
gate and to whom, based on direct and transitive dependencies, while also considering various
social and cognitive factors, such as social image, reputation, know-how, success history, and the
delegators’ expectations regarding task execution. Our experiments demonstrated that explicitly
addressing delegation chains can be advantageous compared to mono-episodic task delegation,
as evidenced by the performance differences in our results concerning the delegators’ success
rate, satisfaction, and regret. These differences were statistically validated through ANOVA and
Tukey’s HSD tests, confirming the significance of the observed improvements.

Based on our evaluation, we conclude that several features associated with delegation
chains can be explored to refine an agent’s partner selection, such as the accumulated success
rate of agents along a chain, the mechanisms of penalization and failure propagation, and the
impact of connections among agents on information sharing. These features primarily contribute
to reducing the learning time required by delegators to find new partners in scenarios where
agents’ social behaviors change over time. This is particularly evident in competence-oriented
selection, where fluctuations in success rate, satisfaction, and regret are minimized, allowing
agents to exhibit more stable behavior compared to other approaches. Consequently, this achi-
eves a well-balanced trade-off between exploration and exploitation, enabling delegation chains
composed of dynamically behaving agents to function effectively.

As an additional contribution, we introduced the DS-net structure, which allows us to
describe and represent delegation chains formed through recursive delegations and task decom-
position. This structure, supported by a formal grammar and impression filtering mechanisms,
admits the representation of the situational dependencies among the agents, allowing the mode-
ling of different types of dependence relationships, like single-action, multi-action, and multiparty
relations. Such dependence relations are especially helpful for activities requiring teamwork,
where coordination and collaboration between the agents are essential for accomplishing their
goals (Cui; Idota; Ota, 2019) (Dong; Ota; Dong, 2021) (Barker; Whitcomb, 2016).

In addition to the conceptual contributions, we also developed a dedicated simulation tool
to support the implementation and evaluation of our model. This simulator incorporates the DS-
net structure and enables the execution of complex multi-agent scenarios, including delegation
chains, social evaluation mechanisms, and configurable network topologies. It was essential not
only for validating our model but also as a contribution in itself, offering a flexible platform for
future studies.

In future work, we intend 1o explore the relation described in
(Castelfranchi; Falcone, 2010) concerning the representation of internal and external fac-
tors and their effect on the trust decision. In our delegation model, the decision to trust is
made considering basically internal factors (i.e., elements associated with agents’ capabilities
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and relationships). Thus, we intend to incorporate into our delegation model an analysis
of the external factors that may affect the agents’ behaviors over time, taking into account
dynamic environments (e.g., obstacles, adversities, and interferences that might offer some
risk or even new opportunities to the agents). A typical application that involves this kind of
problem is task delegation in an open multi-agent system (Huynh; Jennings; Shadbolt, 2004)
(Pinyol; Sabater-mir, 2013) (Bijani; Robertson, 2014), where agents can join and leave the
system over time according to environmental conditions, which might affect the abilities,
behaviors, and beliefs of the agents.

Additionally, we also intend to extend the DS-net structure’s capabilities, aiming to re-
present task delegation scenarios where the agents can simultaneously pursue several goals.
This extension allows us to incorporate a stage of goal deliberation in our delegation model,
in which partners are selected according to the states of the goals pursued by a delegator
(Castelfranchi; Paglieri, 2007) (Castelfranchi et al., 2000). In this case, a delegator’s choice re-
garding their partners can be modeled based on its beliefs that represent the internal and exter-
nal factors capable of causing or inhibiting state changes in its goals (i.e., positive and negative
beliefs (Dhurandhar et al., 2018)), allowing the delegator to explain its choice of partners. We re-
mark that such a feature could be employed to build an explainable delegation model capable of
generating explanations from causal chains obtained by analyzing the agents’ partner selection
and goal deliberation processes (Jacovi et al., 2021) (Jasinski; Morveli-espinoza; Tacla, 2020).

Another promising direction is to consider more complex social dynamics, including the
formation of alliances, occurrences of betrayal, or abrupt behavioral changes triggered by exter-
nal events. Addressing such dynamics would increase the realism and adaptability of the model
in highly dynamic and uncertain environments. Finally, integrating our model with frameworks for
algorithmic transparency and explainability would be essential for systems where human agents
also participate in the delegation chain, ensuring trust, accountability, and comprehensibility in
human-agent interactions.
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GLOSSARY

accuracy estimation level The agent’s ability to accurately estimate the values for the criteria
associated with a task, considering its execution.. 71

behavioral inversion The time required for a delegator to learn about a partner’s behavior. This
period occurs at the beginning of a simulation run and also when a new stage starts, as
partners may suffer behavioral changes. The learning period depends on the strategy
adopted by the delegators to select their partners.. 64

delegatee It is an agent that receives a task from a delegator through delegation and has the
capability to execute or further delegate this task through decomposition or recursive
delegation.. 16

delegation chains A sequence of sub-delegations created through transitive social dependen-
cies, forming a path that connects the delegation chain’s root to one or more terminator
nodes (delegatees).. 16

delegator It is an agent that needs to perform a particular task, which may be completed through
a delegation action.. 16

failure likelihood The probability of an agent failing to execute or deliver the outcomes of a
task.. 71

learning time The time required for a delegator to learn about a partner’s behavior. This pe-
riod occurs at the beginning of a simulation run and also when a new stage starts, as
partners may suffer behavioral changes. The learning period depends on the strategy
adopted by the delegators to select their partners.. 75

mono-episodic It is a delegation instance where the delegatee can execute its task by itself. It
does not require sub-delegations.. 16

recursive delegation A type of delegation action where the task is passed onward until it arrives
to a delegatee that can execute it.. 16

root An agent that is at the beginning of the delegation chain. It is the agent that performs the
first delegation action, resulting in the formation of the delegation chain.. 16

task decomposition A type of delegation action, where a task is decomposed into subtasks,
which can be sub-delegated to different partners.. 16
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This appendix presents the file format used in this work to represent DS-nets, referred
to as the Formal DS-net XML Format. This format is a direct product of this thesis and was em-
ployed in our experiments to represent the DS-net networks used as input for our simulations.
In particular, in a DS-net represented using the Formal DS-net XML Format, each agent is as-
signed a single goal that depends on the execution of one task. A goal is considered achieved
only when its associated task is completed. This format simplifies the management of an agent’s
dependence relations, as tasks and dependencies are directly associated with a goal.

We highlight that, since this format provides a more compact and less expandable DS-net
structure, it is better suited for models where fine-grained control over tasks and dependencies
is not required. The main elements of the reduced DS-net XML format are defined as follows:

Agents: Agents are listed individually, and each <agent> has:

* <id>: Unique identifier of the agent.
» <name>: Name assigned to the agent.

+ <type>: Role assigned to the agent (ROOT, INNER, and TERMINATOR).

Goals: Each agent has a single goal (<goal>), represented by:

* <id>: Unique identifier of the goal.
» <task>: The task associated with the goal, which includes:

— <id>: Unique identifier of the task.

— <criteria>: Execution constraints of the task (i.e., the task criteria, indica-
ting, for instance, the time and cost associated with the task).

— <dependence>: Defines the dependence relations between agents and
goals (e.g., (ag2g2 A ag3g3), indicating that the current task is only com-
pleted if agent ag, achieves its goal g or if agent ags achieves its goal
gs)-



103

Profiles <execution> and <delivery>: A task may include execution and delivery configurati-
ons, which define the estimation accuracy and failure likelihood of the agent as the
executor of the task:

» <accuracy>: The agent’s performance estimation accuracy for a task (VERY
LOW, LOW, MIDDLE, HIGH, VERY HIGH, and PERFECT).

- <failure>: A value within the interval [0..1] that represents the agent’s probabi-
lity of failure in executing or delivering the task’s outcomes.

To illustrate this format, we present below (Figure 21, Figure 22, Figure 23, and
Figure 24) a DS-net composed of four agents and their relationships'. Note that ag; is the root
agent of the DS-net. This agent has ¢, as its goal, which can be accomplished through the exe-
cution of a task. This task can either be directly delegated to its partner ag, or decomposed into
two sub-tasks, which are then delegated to its partners ags and ags. Therefore, ag; will achieve
its goal only if both ag, and ags complete their tasks or if ag, completes its task. Morevoer, we
remark that ag; will evaluate its delegatees regarding their competencies, considering their ac-
curacy in estimating the time required to execute their tasks, since the tasks are evaluated based
on the criterion TIME.

On the other hand, agents ag-, ags, and ag, are terminators, which indicates that they
are capable of executing their tasks by themselves. In the case of ags, it can estimate the task
duration with PERFECT accuracy, and its failure likelihood during execution is 10%. Additionally,
taking into account a scenario where the task will be completed, the probability of ags failing
to deliver the task outcome to its delegator (agy) is also 10%. Regarding agents ags and agy,
both have the same level of estimation accuracy (HIGH). However, ags has a lower probability
of failure during the task execution (10%) but a significantly higher failure probability in task
outcome delivery (50%) compared to ag.

' A complete example of a DS-net described in the XML format can be found at:

https://github.com/jjbaqueta/scdModel/tree/main/DSNetExamples/randomDSNet
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ag, (ROOT)
<agent>
<id>1</id>
<name>agi</name>
<type>ROOT</type>
<goal>
<id>1</id>
<task>
<criteria>TIME</criteria>
<dependence>((agags A agsgs) V agsgs)</dependence>
</task>
</goal>
</agent>

Figure 21 — Representation of agent ag; (root) using the DS-Net XML format.
Source: Own authorship (2025).

ago (TERMINATOR)
<agent>
<id>2</id>
<name>ag2</name>
<type>TERMINATOR</type>
<goal>
<id>2</id>
<task>
<criteria>TIME</criteria>
<execution>
<accuracy>PERFECT</accuracy>
<failure>0.2</failure>
</execution>
<delivery>
<failure>0.1</failure>
</delivery>
<dependence>ags go</dependence>
</task>
</goal>
</agent>

Figure 22 — Representation of agent ags (terminator) using the DS-Net XML format.
Source: Own authorship (2025).
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ags (TERMINATOR)
<agent>
<id>3</id>
<name>ag3</name>
<type>ROOT</type>
<goal>
<id>3</id>
<task>
<criteria>TIME</criteria>
<execution>
<accuracy>HIGH</accuracy>
<failure>0.1</failure>
</execution>
<delivery>
<failure>0.5</failure>
</delivery>
<dependence>ag3g3</dependence>
</task>
</goal>
</agent>

Figure 23 — Representation of agent ag;3 (terminator) using the DS-Net XML format.
Source: Own authorship (2025).

ags, (TERMINATOR)
<agent>
<id>4</id>
<name>ag4</name>
<type>ROOT</type>
<goal>
<id>4</id>
<task>
<criteria>TIME</criteria>
<execution>
<accuracy>HIGH</accuracy>
<failure>0.3</failure>
</execution>
<delivery>
<failure>0.2</failure>
</delivery>
<dependence>ag,g4</dependence>
</task>
</goal>
</agent>

Figure 24 — Representation of agent ag4 (terminator) using the DS-Net XML format.
Source: Own authorship (2025).
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