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ABSTRACT

Three-dimensional (3D) reconstruction plays a crucial role in the development of realistic
driving scenarios for autonomous vehicle simulations. This work investigates and evaluates
various methodologies for 3D reconstruction, aiming to enhance the fidelity and applicability of
virtual environments in driving simulators. A comprehensive analysis of different reconstruction
techniques was conducted, considering point cloud generation, mesh reconstruction, and post-
processing methods. The integration of reconstructed environments into simulation platforms,
particularly CARLA, was explored. The study also presents an in-depth investigation into the
challenges of integrating Unreal Engine maps with CARLA, identifying the need for multiple files
for successful manual integration. Practical tests and evaluations were carried out to assess the
accuracy and computational performance of selected methods through evaluations within Cloud
Compare. Furthermore, different driving simulators were analyzed to determine their suitability
for integrating reconstructed environments. CARLA was selected as the primary simulation
tool due to its open-source nature and strong support for autonomous vehicle research. Other
simulators, such as SUMO and LGSVL, were also considered but presented limitations regard-
ing 3D scene reconstruction capabilities. The selection process involved evaluating factors like
realism, ease of integration, and extensibility, ensuring an optimal environment for autonomous
vehicle testing. To support the selection of methodologies, two systematic reviews were
conducted following the PRISMA guidelines, utilizing NVivo for qualitative data analysis. This
process allowed for the identification and categorization of relevant reconstruction techniques,
simulation tools, and integration strategies. The review ensured a structured and comprehensive
understanding of the current state of the art, facilitating an informed decision-making process
throughout the research. This research contributes by advancing the understanding of 3D
reconstruction techniques for driving simulations and providing a structured methodology for
integrating virtual environments into autonomous vehicle testing frameworks. Future work
includes further optimization of the integration process and the development of automated tools
to streamline environment reconstruction for simulation purposes.

Keywords: computer graphics; visualization; 3d reconstruction; mesh texturing; virtual scenar-
ios.



RESUMO

A reconstrugéo tridimensional (3D) desempenha um papel crucial no desenvolvimento de
cenarios realistas para simulagdes de veiculos autbnomos. Este trabalho investiga e avalia
diversas metodologias de reconstrucdo 3D, visando aprimorar a fidelidade e aplicabilidade
dos ambientes virtuais em simuladores de direcdo. Foi realizada uma analise abrangente de
diferentes técnicas de reconstrucao, considerando geragcao de nuvens de pontos, reconstrucao
de malhas e métodos de pds-processamento. Além disso, explorou-se a integracdo dos
ambientes reconstruidos em plataformas de simulagdo, com foco no CARLA. O estudo também
apresenta uma investigacao detalhada sobre os desafios da integracao de mapas do Unreal
Engine com o CARLA, identificando a necessidade de multiplos arquivos para uma integracao
manual bem-sucedida. Testes praticos e avaliagdes foram conduzidos para analisar a precisao
e o desempenho computacional dos métodos selecionados por meio de avaliagbes no Cloud
Compare. Além disso, diferentes simuladores de diregdo foram analisados para determinar
sua adequacao a integracdo de ambientes reconstruidos. O CARLA foi selecionado como a
principal ferramenta de simulacdo devido a sua natureza de cédigo aberto e forte suporte a
pesquisa em veiculos autbnomos. Outros simuladores, como SUMO e LGSVL, também foram
considerados, mas apresentaram limitagdes na reconstrucao de cenas 3D. O processo de se-
lecéo envolveu a avaliagao de fatores como realismo, facilidade de integracao e extensibilidade,
garantindo um ambiente ideal para testes de veiculos autdnomos. Para apoiar a selecao das
metodologias, foram conduzidas duas revisdes sistematicas seguindo as diretrizes do PRISMA,
utilizando o NVivo para analise qualitativa dos dados. Esse processo permitiu a identificagao e
categorizacao das técnicas de reconstrugao relevantes, ferramentas de simulacao e estratégias
de integragdo. A revisdo garantiu uma compreensdo estruturada e abrangente do estado da
arte, facilitando um processo de tomada de decisdo fundamentado ao longo da pesquisa. Este
estudo contribui para o avango do entendimento das técnicas de reconstrucdo 3D aplicadas a
simulacdes de direcdo e propde uma metodologia estruturada para a integracdo de ambientes
virtuais em frameworks de teste de veiculos autbnomos. Trabalhos futuros incluem a otimizacao
do processo de integracdo e o desenvolvimento de ferramentas automatizadas para agilizar a
reconstrucdo de ambientes para fins de simulagao.

Palavras-chave: computacado grafica; visualizacdo; reconstrucdo 3d; texturizacdo de malhas;
cenarios virtuais.
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1 INTRODUCTION

Three-dimensional (3D) reconstruction is the process of capturing the shape and appear-
ance of real objects or environments and converting them into a digital 3D model. This technique
involves using data from various sensors, such as cameras, Light Detection and Ranging (Li-
DAR), or structured light, to generate a detailed representation of physical spaces in the digital
realm. 3D reconstruction is widely used in fields like virtual reality, autonomous driving, architec-
ture, cultural heritage preservation, and entertainment, as it allows for realistic and immersive
interactions with virtual replicas of real-world entities. The benefits of 3D reconstruction include
enhanced spatial analysis, as it provides accurate spatial data that aids in decision-making and
planning. For autonomous vehicles, for example, it enables the creation of highly realistic simu-
lations of driving environments, where algorithms and ADAS functions can be tested safely. 3D
reconstruction can improve visualization and accessibility, allowing users to explore and inter-
act with complex environments remotely, which is invaluable for research, training, and design
across numerous fields. The integration of 3D point cloud generation and mesh texturing into
vehicle simulation environments has opened new pathways in autonomous vehicle testing and
algorithm validation (Tancik et al., 2023).

Vehicle simulators are advanced virtual platforms that replicate real-world driving environ-
ments and vehicle behavior, providing a safe and controlled space for testing and development.
Used extensively in the automotive industry, these simulators recreate various driving scenar-
ios, weather conditions, and traffic situations, allowing engineers to assess vehicle performance,
safety, and reliability without the risks and costs associated with physical testing. In the develop-
ment of Advanced Driver Assistance Systems (ADAS), vehicle simulators play a crucial role by
offering a highly flexible environment where systems like adaptive cruise control, lane-keeping
assistance, and collision avoidance can be rigorously tested and fine-tuned. By using simulators,
ADAS developers can expose algorithms to challenging and rare events that might be difficult
to replicate in real-world tests, thereby improving their robustness and safety. Additionally, sim-
ulators provide detailed data and analytics, enabling engineers to monitor and optimize ADAS
behavior across a wide range of scenarios before deployment, accelerating development cycles
and contributing to safer, more reliable autonomous and semi-autonomous vehicles (CARLA
Simulator Team, n.d.).

Static and dynamic simulators are two primary types of vehicle simulators used to test
and validate driving systems under different conditions. Static simulators focus on replicating
driving scenarios and vehicle behavior without physical movement; they offer a controlled envi-
ronment where visual and auditory feedback allows engineers to assess driver reactions, ADAS
performance, and system reliability in a virtual setup. Dynamic simulators, on the other hand,
include motion platforms that physically move to mimic the forces experienced during real driv-
ing, such as acceleration, braking, and cornering. This added realism helps simulate real-world
driving dynamics more accurately, making dynamic simulators valuable for studying the effects
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of vehicle handling and driver responses under complex scenarios. An example of an advanced
dynamic simulator is the DiM150, located at PUC Minas, Brazil. Figure 1 shows the simulator.
The DiM150 is a state-of-the-art motion-based simulator with six degrees of freedom, enabling
highly realistic movement to replicate real driving sensations. Equipped with cutting-edge visual
and auditory systems, the DiM150 can simulate various driving conditions, providing a compre-
hensive platform for ADAS and autonomous vehicle development. This simulator’s capabilities
are crucial for conducting safe, repeatable, and controlled testing, facilitating research and inno-
vation in vehicle dynamics, safety systems, and driver assistance technologies (Rodrigues et al.,
2021a).

Figure 1 — Dim150 Simulator located at PUC Minas SIMCenter.

Source: Alexandre (2017).

Currently, the dynamic simulator DiM150 at PUC Minas uses SCANeR, an advanced sim-
ulation platform developed by AVSimulation (AVSimulation, 2024). SCANeR is shown in figure 2.
It provides a comprehensive and highly detailed testing environment, covering a wide range of
driving scenarios and simulation parameters, making it ideal for the development and validation
of ADAS and autonomous vehicle technologies. However, the software presents some limita-
tions in meeting the specific needs of the Brazilian context. The primary restriction is the lack
of detailed modeling of Brazilian roads, which reduces the fidelity of testing for local conditions
and limits the applicability of results to the national landscape. Additionally, SCANeR is a paid
software, which imposes significant costs for access and maintenance, potentially restricting ac-
cessibility and flexibility for researchers. These factors highlight the importance of developing or
integrating alternative platforms that allow for greater customization and the inclusion of Brazil-
specific data, enabling simulations that are more representative of the national context.



Figure 2 - SCANNeR.

Source: AVSimulation (2024).

ADAS are sophisticated technologies designed to improve vehicle safety and enhance
the driving experience by assisting drivers with key tasks and reducing human error. These sys-
tems encompass a range of functionalities, including lane departure warnings, adaptive cruise
control, blind-spot detection, and emergency braking, all of which aim to prevent accidents and
provide safer, more convenient driving. ADAS employs a combination of sensors, such as cam-
eras, radar, LiDAR, and ultrasonic devices, to monitor the vehicle’s surroundings and interpret
real-time data, enabling quick and accurate responses to changing road conditions and poten-
tial hazards. In recent years, ADAS has become a foundational component in the development
of autonomous vehicles, as these systems form the building blocks for higher levels of vehicle
autonomy. By reducing the cognitive and physical demands on drivers, ADAS contributes signif-
icantly to reducing the number and severity of accidents, thereby improving overall road safety
and paving the way for a future of fully autonomous transportation.

These techniques serve as a foundational element in various applications, including vir-
tual reality, scene reconstruction, and high-precision mapping (Mufoz-silva et al., 2021; Fruh;
Zakhor, 2001; Tancik et al., 2023; Miiller et al., 2022). In the realm of autonomous driving, they
enable the creation of detailed, realistic virtual models that mirror complex roadway environ-
ments. This dissertation focuses on developing a real-time simulation platform to design and
validate algorithms for autonomous and automated vehicles. The project also emphasizes gen-
erating and integrating 3D models from Brazilian scenarios to increase the simulation’s fidelity
and real-world applicability.
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1.1 Relevance of the Research Topic

The rapid advancements in autonomous vehicle technology necessitate reliable and ac-
curate testing environments to evaluate and validate driving algorithms before deployment in
real-world scenarios. Autonomous systems require constant refinement through testing in di-
verse, often unpredictable, environments, which can be costly, time-consuming, and limited by
safety constraints. Simulation platforms present a safer, scalable, and cost-effective alternative,
allowing developers to test and enhance the performance of vehicle control systems, sensor in-
tegration, and decision-making algorithms in a controlled yet realistic setting (Slavcheva; Baust;
llic, 2018; Ibrahim; Nagy; Benedek, 2022; Buyukdemircioglu; Kocaman, 2020).

The development of a simulation framework with high-fidelity 3D reconstructions of lo-
cal scenarios infrastructure is particularly relevant within the Brazilian context, where unique
characteristics and infrastructure differences can influence autonomous vehicle performance.
By incorporating 3D reconstructions of Brazilian scenarios into the simulation environment, this
project aims to enhance simulation realism, thereby providing more accurate representations for
validation and testing of ADAS and autonomous vehicle controls.

1.2 Challenges

Developing a integration that incorporates 3D reconstructed environments into a simula-
tion platform presents several technical and operational challenges:

» Data Acquisition and Quality: Capturing high-resolution and accurate data from real-
world roadways requires advanced sensor setups, such as LiDAR, high-definition cam-
eras, and sensor fusion techniques. Data quality is critical to ensure that 3D reconstruc-
tions faithfully represent real-world environments and can be seamlessly integrated into
simulation platforms.

+ Selection of an Optimal Vehicle Simulator: Identifying a simulator that aligns with the
specific requirements of this project involves analyzing various platforms to assess
their compatibility, performance, and adaptability for high-fidelity 3D environments. This
challenge requires evaluating simulators based on criteria such as real-time render-
ing capability, adaptability to custom environments, and support for complex ADAS and
autonomous driving algorithms.

+ High-Quality 3D Reconstruction of Highway Environments: Generating realistic, high-
resolution 3D models of BrazilianScenarios demands advanced techniques for point
cloud generation and textured meshing. This process must not only capture the geo-
metric and textural intricacies of actual roadways but also achieve a balance between
detail and computational efficiency to enable real-time simulation. The challenge lies in
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producing reconstructions that are both visually accurate and optimized for seamless

integration into a simulation environment.

* Integration of 3D Reconstructions with the Selected Simulator: Successfully incorpo-
rating the generated 3D environments into the chosen simulator requires overcoming
compatibility and configuration challenges. Ensuring that the reconstructed highway en-
vironments load efficiently and operate smoothly within the simulator is crucial. This in-
volves addressing potential issues related to file formats, scene rendering, model scal-
ing, and maintaining simulation fidelity and stability under varying test conditions.

Each of these challenges underscores the complexity of creating a robust, realistic inte-
gration capable of supporting autonomous vehicle testing and development within a high-fidelity
virtual environment. In the context of this research, high fidelity refers to the creation of 3D re-
constructed environments and simulation assets that closely replicate real-world physical and
visual characteristics. This includes the accurate representation of geometric details, material
properties, textures, lighting conditions, and environmental elements such as road surfaces, sig-
nage, and urban structures. High-fidelity models ensure that the virtual environment used for
autonomous vehicle simulations provides realistic scenarios that are crucial for validating per-
ception systems and ADAS functionalities. If high level of visual and physical accuracy is main-
tained, the simulations can better reflect real-world conditions, thus improving the reliability of
sensor responses, object detection, and decision-making processes in autonomous driving ap-
plications.

1.3 Proposition

This dissertation proposes the development of a high-fidelity, real-time simulation pipeline
that incorporates detailed 3D reconstructions of Brazilian scenarios to support the testing and
validation of autonomous vehicle algorithms. Using an simulation environment, the project will
generate realistic 3D models through advanced point cloud generation and mesh texturing tech-
niques. These models will be integrated to allow for comprehensive testing of ADAS and other
control algorithms under simulated conditions that closely mimic real-world Brazilian highway
environments.

The proposed platform will serve as a versatile testbed for multiple functions, such as
developing and validating ADAS functionalities, ensuring safety and operational standards com-
pliance, creating a framework for real-time simulation of automated driving strategies that can
account for local infrastructure and traffic dynamics. This integration of 3D reconstruction with
real-time simulation not only advances testing capabilities but also contributes to the develop-
ment of next-generation vehicle control systems designed for safety and resilience.
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1.4 Objectives

The primary objective of this research is to develop a structured workflow for integrat-
ing high-quality 3D reconstructed highway environments into a vehicle simulation platform. This
includes selecting suitable reconstruction techniques, generating detailed 3D models, and suc-
cessfully implementing these environments. The project aims to enhance the realism and ap-
plicability of simulation platforms, facilitating the design and validation of autonomous vehicle
algorithms in realistic driving scenarios. Specific objectives include:

+ Identify and analyze the primary vehicle simulators currently in use to select the most
suitable tool for this project.

+ |dentify and analyze the primary reconstruction techniques currently in use to select the
most suitable tool for this project.

+ Develop High-Quality 3D Reconstructions: Generate detailed point clouds and textured
meshes of Brazilian Scenarios.

» Understand and implement the integration of 3D reconstructions: Study the integration
process and successfully implement the reconstructed highway environment within Un-
real Engine.

1.5 Contributions

This work presents several contributions to the field of three-dimensional reconstruction
for autonomous vehicle simulation. The main achievements of this research can be summarized

as:

+ Investigation of 3D Reconstruction Techniques: A detailed study of various 3D re-
construction methodologies was conducted, covering techniques for point cloud gener-
ation, mesh reconstruction, and post-processing. This analysis provided a comprehen-
sive understanding of the advantages and limitations of different approaches, helping
to establish a solid foundation for integrating reconstructed environments into driving

simulations.

+ Systematic Review of Reconstruction and Simulation Methods: A systematic re-
view was carried out following the PRISMA methodology, using NVivo for qualitative
data analysis. This review enabled the identification and classification of relevant re-
construction techniques, simulation tools, and integration strategies, contributing to a
structured and comprehensive understanding of the state of the art.
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» Creation of a Custom Dataset from UTFPR: A dataset comprising 50 images of the
UTFPR campus was captured and structured to serve as a basis for 3D reconstruction
experiments. This dataset enables controlled evaluations of reconstruction techniques
within an academic environment.

» 3D Reconstruction of UTFPR: The captured dataset was used to perform a 3D recon-
struction of the UTFPR campus, demonstrating the applicability of the selected method-
ologies. The reconstructed model serves as a test case for validating integration with
simulation platforms and provides a practical example of environment digitization for

autonomous vehicle research.

* Integration of Unreal Engine Maps with CARLA: A practical investigation was con-
ducted to integrate maps from Unreal Engine into the CARLA simulator. Through this
process, it was discovered that a successful manual integration requires two specific
files, which are essential for correctly importing and rendering the reconstructed envi-
ronments. This finding provides valuable insights for future work aiming to streamline
the integration process.

+ Selection of CARLA as the Primary Simulation Platform: After evaluating multiple
driving simulation platforms, CARLA was selected as the primary tool due to its open-
source nature, flexibility, and strong support for autonomous vehicle research. Other
simulators, such as SUMO and LGSVL, were analyzed but presented limitations re-
garding 3D scene reconstruction capabilities.

* Quantitative and Qualitative Evaluation of Reconstruction Methods: The perfor-
mance of selected 3D reconstruction techniques, including COLMAP, NeRF, 3D Gaus-
sian Splatting, and MicMac, was assessed using Cloud Compare. The analysis included
a comparison of accuracy, computational efficiency, and overall feasibility for integration
into simulation platforms.

» Proposal for Future Automation of the Integration Process: Based on the findings
of this research, a future direction has been outlined for automating the integration of re-
constructed environments into driving simulators. The development of tools to generate
the necessary files for CARLA automatically could significantly improve the efficiency
and accessibility of the simulation setup.

These contributions provide valuable insights for applications, supporting the advance-
ment of realistic virtual environments and facilitating the testing and validation of self-driving
technologies.
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1.6 Dissertation Structure

This dissertation is structured as follows:

» Chapter 2: Reviews existing research on 3D reconstruction methodologies and simu-
lation platforms for autonomous vehicle testing, with a focus on the integration of real-

world data in virtual environments.

» Chapter 3: Presents the methodological framework, including data acquisition tech-
niques, 3D model generation, and the technical process for integrating these models

within the chosen simulator.
» Chapter 4: Details how the 3D recontruction methodology was carried out.

» Chapter 5: Details the performance analysis of the proposed system, comparing differ-
ent 3D reconstruction techniques and evaluating their impact on simulation accuracy

and performance.

» Chapter 6: Summarizes the key findings of the study, discusses limitations, and sug-
gests directions for future research on simulation platforms for autonomous vehicles.
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2 LITERATURE REVIEW

This chapter provides a comprehensive overview of the key topics relevant to the study,
focusing on the evolution, types, functionalities, and future trends of automotive simulation and
scene reconstruction. The literature review is structured to cover historical development, sci-
entific comparisons, significant innovations, and the implications of these technologies in the
automotive industry.

2.1 Background

3D Reconstruction refers to the process of creating a digital three-dimensional represen-
tation of an object, scene, or environment using computational techniques. It involves capturing
data about the geometry, texture, and spatial relationships of objects, typically through inputs
such as photographs, videos, laser scans, or depth sensors. The captured data is then pro-
cessed using algorithms to reconstruct a 3D model that can be visualized, manipulated, and
analyzed on a computer. Applications of 3D reconstruction span various fields, including med-
ical imaging (e.g., for organ modeling), archaeology (e.g., for site preservation), virtual reality,
gaming, and autonomous vehicles, where accurate spatial understanding is essential. The re-
sulting models can range from simple shapes to highly detailed and textured replicas, depending
on the fidelity and amount of input data available (Prabhasavat; Homgade, 2008; Cheriet et al.,
2007).

The concept of 3D reconstruction has its roots in the early developments of computer
vision and photogrammetry in the mid-20th century. Photogrammetry, a technique used to mea-
sure distances and create maps from photographs, laid the foundation for extracting 3D informa-
tion from 2D images (Slama, 1968). In the 1970s and 1980s, advancements in computational
geometry and computer graphics allowed for the development of algorithms to reconstruct 3D
structures from multiple photographic perspectives (Marr, 1982). Early breakthroughs included
techniques like stereo vision, where two or more images are used to calculate depth information,
and structure-from-motion (SfM), which estimates 3D shapes from a series of 2D images cap-
tured from different viewpoints (Longuet-higgins, 1981b). The increasing availability of computa-
tional power and improved imaging devices in the 1990s and 2000s further accelerated the adop-
tion of 3D reconstruction in fields such as archaeology, robotics, and entertainment (Szeliski,
2010). Today, 3D reconstruction is a multidisciplinary endeavor, combining advancements in ar-
tificial intelligence, sensor technology, and photogrammetric methods to produce highly accurate
models of real-world objects and environments.

A 3D reconstruction has evolved significantly over the decades, becoming a vast and mul-
tifaceted field. Numerous new methodologies have emerged, driven by advancements in com-
puter vision, artificial intelligence, and sensor technology (Szeliski, 2010; Hirschmller, 2008).
Techniques such as photogrammetry, structure-from-motion (SfM), stereo vision, and the use
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of LiDAR sensors have revolutionized the accuracy and scalability of 3D modeling processes
(David; Ma, 2020; Furukawa; Ponce, 2010). Today, 3D reconstruction is extensively explored
across industries, with applications ranging from entertainment to autonomous vehicles (Seitz
et al., 2006; Besl; Mckay, 1992). Companies like Google, Meta, and Autodesk, as well as star-
tups focused on augmented reality (AR) and virtual reality (VR), heavily invest in research to
refine and innovate 3D reconstruction technologies. The integration of real-time processing and
machine learning has further expanded its potential, making it a cornerstone for emerging fields
such as digital twins and smart cities (Wu; Zhang, 2020a). The widespread adoption underscores
how 3D reconstruction has transformed from a niche research area into a critical commercial and
scientific domain.

Figure 3 — Forum of Augustus in VR
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Source: Ferdani et al. (2020).

(Ferdani et al., 2020) explores the integration of 3D reconstruction techniques with im-
mersive virtual reality (VR) for cultural heritage applications, focusing on the Forum of Augustus
in Rome. As can be seen in figure 3 It examines how VR technologies, particularly those used in
"serious games" and virtual museums, can enhance the dissemination of historical knowledge
through interactive and engaging "edutainment" experiences. The authors emphasize the impor-
tance of historical accuracy and validation in creating 3D reconstructions for VR applications.
They propose a detailed workflow that combines virtual archaeology and advanced 3D model-
ing techniques to produce historically faithful assets for immersive experiences. This process
involves collaboration across disciplines, requiring significant time and expertise to ensure the
models align with historical evidence. The study builds on the authors’ prior work and leverages
modern VR tools, such as PlayStation VR, to assess the effectiveness and challenges of deploy-
ing these applications. This case study demonstrates the practical application of this workflow.
The authors analyze how immersive VR technologies can bridge the gap between historical
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research and public engagement, offering a new medium for exploring and understanding the
past. The paper highlights the technical and interdisciplinary complexities involved in creating
accurate, interactive VR experiences, positioning 3D reconstruction and virtual archaeology as
pivotal tools for the future of cultural heritage preservation and education.

(Bécue et al., 2020) explores an innovative approach to using digital twin technology in
the context of modern manufacturing. The authors propose a conceptual framework that extends
traditional digital twin functionalities to enhance both optimization and resilience within factories.
By integrating real-time data with advanced simulation models, this approach enables continu-
ous monitoring, predictive analysis, and decision-making support. The work highlights how these
capabilities can improve operational efficiency, reduce downtime, and adapt to unexpected dis-
ruptions, making factories more robust and responsive. This study is particularly relevant as
industries transition toward smart manufacturing paradigms, emphasizing digital transformation
and Industry 4.0 technologies. The paper provides valuable insights into how digital twins can
contribute to the sustainable and adaptive growth of future manufacturing ecosystems.

Studying 3D reconstruction is of paramount importance due to its transformative impact
on various scientific, industrial, and creative fields. This technology enables the accurate digital
replication of physical objects and environments, fostering advancements in fields like medical
imaging, where precise anatomical models aid in diagnostics and surgical planning, and ar-
chaeology, where it helps preserve and analyze historical artifacts. Moreover, 3D reconstruction
drives innovation in industries such as autonomous vehicles, robotics, and virtual reality, where
spatial understanding is critical. By developing robust algorithms and techniques for 3D mod-
eling, researchers can address challenges like scalability, real-time processing, and accuracy,
unlocking new possibilities for smart manufacturing, digital twins, and immersive entertainment.
As we move toward increasingly digital and interconnected systems, understanding and advanc-
ing 3D reconstruction methodologies remain vital for progress across disciplines (Poullis; You,
2011).

This chapter provides a comprehensive examination of 3D reconstruction, tracing their
historical development, categorizing the various types, exploring their evolution over the past
decade, and detailing their primary functions and features. It also discusses emerging trends
and future directions in technologies, highlighting their critical role in the automotive industry and
their potential for future innovation.

2.1.1 History

The first 3D reconstruction efforts can be traced back to the 19th century with the ad-
vent of photogrammetry, a technique for creating 3D-like models and maps using overlapping
photographs. Aimé Laussedat, often referred to as the "father of photogrammetry,” began using
this method in the 1850s, marking the earliest attempts to extract three-dimensional informa-
tion from two-dimensional images (Laussedat, 1850). However, these analog methods relied on
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manual geometric calculations. The first computational 3D reconstruction emerged in the 20th
century. Larry Roberts’ 1963 Ph.D. thesis at MIT is a landmark work, introducing a computational

framework to reconstruct 3D objects from 2D line drawings (Roberts, 1963).

Figure 4 — Larry Roberts’ 3D reconstruction
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Source: Roberts (1963).

The reconstruction of a planar-surfaced object from robert’s work can be found on fig-
ure 4. This marked the transition from manual to algorithmic approaches in 3D modeling. Later,
in 1981, Hugh C. Longuet-Higgins proposed a mathematical model for recovering 3D structure
from moving objects using stereo vision (Longuet-higgins, 1981a). This work laid the foundation
for structure-from-motion (SfM), a method that became central to modern 3D reconstruction.
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Thus, while Laussedat’s photogrammetric methods represented the first manual 3D reconstruc-
tions, computational approaches were pioneered by Roberts and further advanced by Longuet-
Higgins.

During the 1980s and 1990s, significant advancements were made in 3D reconstruc-
tion with the development of techniques such as stereo vision and structure-from-motion (SfM).
Stereo vision uses pairs of images taken from slightly different viewpoints to calculate depth infor-
mation, enabling the creation of a 3D representation of a scene (Longuet-higgins, 1981a). Simi-
larly, SfM leverages sequential images captured from different angles to estimate the structure of
objects or environments by tracking and matching feature points across frames (Szeliski, 2010).
These methods marked a shift toward more automated and precise 3D modeling processes. In
the 2000s, the field advanced further with the emergence of powerful graphics processing hard-
ware and the early adoption of machine learning algorithms. These technologies significantly
increased the speed and accuracy of 3D reconstructions, allowing for real-time applications.
This period saw 3D reconstruction become a cornerstone in fields like augmented reality (e.g.,
virtual overlays on real-world environments), robotics (e.g., environment mapping for navigation),
and medical imaging (e.g., detailed models of organs for surgery planning) (Furukawa; Ponce,
2010; Hirschmdiller, 2008).

Stereo vision has its roots in the early exploration of depth perception, inspired by the
human visual system. It works by capturing two or more images from slightly different viewpoints
and analyzing the disparities between corresponding points to calculate depth. This technique
gained prominence in the 1970s and 1980s with the development of computer algorithms ca-
pable of automating point matching between images. Early breakthroughs included the use of
epipolar geometry to simplify the search for corresponding points, making the process compu-
tationally feasible (Longuet-higgins, 1981a). Stereo vision became a cornerstone for 3D recon-
struction, enabling applications such as robotic navigation and topographic mapping. Over the
decades, improvements in image processing and optimization algorithms, like the introduction of
Semi-Global Matching (SGM) (Hirschmdller, 2008), further enhanced its precision and efficiency,
paving the way for real-time applications in fields like autonomous vehicles and augmented real-
ity.

Structure-from-Motion (SfM) evolved as an extension of stereo vision, leveraging se-
quences of images captured from different perspectives to reconstruct 3D geometry. The tech-
nique was first formalized in the 1980s and gained traction in the 1990s as computational re-
sources became more accessible. SfM uses feature tracking across multiple frames to estimate
both the camera’s motion and the 3D structure of the scene simultaneously (Szeliski, 2010).
Unlike stereo vision, which requires multiple synchronized cameras, SfM works with unordered
image sets, making it versatile and widely applicable. Its ability to reconstruct large-scale and
complex environments with minimal equipment has made it a critical tool in fields such as ar-

chaeology, urban planning, and filmmaking (Furukawa; Ponce, 2010). Recent advancements in
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machine learning and computational geometry have further refined SfM, enabling high-quality
reconstructions even from sparse or noisy data.

Today, 3D reconstruction continues to evolve, driven by innovations in deep learning and
LiDAR (Light Detection and Ranging) technology. Deep learning algorithms allow for robust and
efficient reconstruction from complex or incomplete datasets (Wu; Zhang, 2020b), while LiDAR
provides precise depth measurements, even in challenging conditions like low light or large-scale
environments (Besl; Mckay, 1992). These advancements have expanded the scope of 3D recon-
struction to a variety of industries, including entertainment (creating virtual worlds for gaming and
movies), autonomous systems (self-driving cars requiring accurate maps), and smart cities (ur-
ban planning with 3D modeling of infrastructure). These developments underline the importance

of 3D reconstruction as a transformative technology across numerous domains.

2.1.2 Areas of research

3D reconstruction is a dynamic field with applications spanning a wide range of disci-
plines, each leveraging its capabilities to address unique challenges. In medical imaging, en-
ables the creation of detailed anatomical models, revolutionizing diagnosis, treatment planning,
and surgical procedures. In archaeology, it plays a crucial role in preserving and analyzing cul-
tural heritage, from artifacts to entire historical sites. The field also finds extensive application
in city planning, where it aids in visualizing infrastructure projects, optimizing urban design, and
managing disaster response scenarios. Furthermore, emerging areas such as the digital twin
concept extend the scope, creating real-time synchronized virtual models of physical systems for
continuous monitoring and optimization. The versatility of techniques underscores their impor-
tance in addressing complex problems across scientific, industrial, and societal domains (Poullis;
You, 2011).

2.1.2.1 Medical imaging

In medical applications, it is utilized to build detailed 3D body images out of CT scans,
MRIs, and ultrasounds. These models enable medical professionals to visualize anatomical
structures in 3D, aiding in diagnosis, treatment planning, and surgical simulation. For exam-
ple, they may also be used in neurosurgery to create models of the brain, helping surgeons
plan intricate procedures and visualize the spatial relationship between tumors and surrounding
structures. Similarly, in orthopedics, reconstructions of bones and joints assist in preoperative
planning and guide surgeons during complex procedures, such as joint replacement surgery
(Prabhasavat; Homgade, 2008; Cheriet et al., 2007).

One notable application in medical imaging is the creation of patient-specific anatomical
models for preoperative planning and surgical simulation. For instance, in neurosurgery, 3D re-
constructions are generated from MRI and CT scan data to produce detailed models of the brain,
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capturing critical structures such as blood vessels, tumors, and functional areas. These models
allow surgeons to visualize complex spatial relationships, plan precise surgical approaches, and
predict potential complications. A significant example is (Cheriet et al., 2007), which introduced a
method for reconstructing 3D models of spinal deformities, particularly in patients with scoliosis.
This approach enabled precise assessment and improved surgical outcomes.

Another significant study in medical imaging focuses on cardiovascular applications.
(lonasec et al., 2010) introduced a method for reconstructing 4D patient-specific heart models
from CT imaging data. This approach enables dynamic visualization of the heart’s anatomy and
function throughout the cardiac cycle. By integrating advanced segmentation and motion tracking
algorithms, the study allowed for the accurate reconstruction of cardiac chambers, valves, and
vessels. These models are valuable for diagnosing heart conditions, planning minimally invasive
procedures, and simulating interventions such as valve repair or replacement. The study high-
lights the transformative potential in understanding complex cardiovascular structures, improving
the precision of treatments, and enhancing patient outcomes in cardiology. Figure 5 provides an
overview of the patient-specific cardiac model developed by lonasec et al. (lonasec et al., 2010).
Subfigure (a) depicts the physiological model of the aortic-mitral coupling, highlighting the struc-
tural and functional interdependence of these components. Subfigure (b) demonstrates how the
model is fitted to patient-specific data derived from CT (top) and TEE (bottom) imaging, ensuring
both anatomical accuracy and clinical relevance. Finally, subfigure (c) showcases an example of
model-driven quantification, illustrating the dynamic changes in the volumes of the aortic valve
sinuses over the cardiac cycle.

Figure 5 — (a) Physiological model of the aortic-mitral coupling. (b) Patient-specific model fitted to
CT (top) and TEE (bottom) data. (c) Example of model-driven quantification volumes of
the aortic valve sinuses over the cardiac cycle.

Source: lonasec et al. (2010).

By providing detailed, patient-specific anatomical models that enhance diagnosis, treat-
ment planning, and surgical precision, 3D reconstruction has revolutionized medical imaging.
Applications range from neurosurgery and orthopedics to cardiovascular imaging, where 3D
models improve understanding of complex structures and facilitate minimally invasive proce-
dures. As computational power and imaging technologies continue to evolve, the integration of
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3D reconstruction with advanced techniques such as machine learning and real-time imaging
promises to further expand its impact, driving innovation and improving patient outcomes across
a wide array of medical disciplines.

2.1.2.2 Archeology

Archaeology uses these techniques to create digital models of artifacts, archaeological
sites, and even entire landscapes. These models aid in the preservation, analysis, and dissem-
ination of cultural heritage. For instance, 3D models have been employed to create detailed
models of ancient artifacts, enabling researchers to study them remotely and preserve them
digitally for future generations. Furthermore, 3D reconstructions of archaeological sites provide
valuable insights into past civilizations, allowing researchers to analyze the spatial organization
of ancient cities, study architectural features, and simulate historical scenarios (Patay-horvath,
2014; Lercari, 2017).

A pioneering study in the field of virtual archaeology was presented by (Patay-horvath,
2014), focusing on the 3D reconstruction of the east pediment of the Temple of Zeus at Olympia.
This research addresses one of the long-standing challenges in classical archaeology: interpret-
ing and reconstructing the fragmented sculptures of this iconic monument. The reconstructed
plaster mode can be seen in figure 6.

Figure 6 — Reconstructed plaster mode of the east front of the temple of Zeus at Olympia.

Source: Patay-Horvath (2014).
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Leveraging advanced 3D modeling technologies, the study integrates archaeological
data, historical records, and modern visualization tools to create a comprehensive virtual re-
construction of the pediment. This approach not only provides a new perspective on the original
design and layout of the sculptures but also facilitates further analysis and public dissemination.
By solving a historical puzzle using state-of-the-art technology, this work demonstrates the po-
tential of 3D reconstruction to enhance our understanding of ancient cultural heritage, bridging
the gap between traditional archaeology and digital innovation.

In his study, Lercari (Lercari, 2017) explores the use of 3D visualization techniques in
reflexive archaeology through the virtual reconstruction of the history houses at Gatalhdyiik, a
Neolithic settlement in present-day Turkey. The research focuses on reconstructing the archi-
tectural and cultural context of these ancient dwellings, which are renowned for their complex
stratigraphy and symbolic wall paintings. Figure 7 shows the virtual representation of the shrine.
Using advanced 3D modeling and immersive visualization technologies, the study provides a
detailed and interactive representation of the site, allowing archaeologists and the public to vir-
tually explore the spatial organization and material culture of Catalhéyik. Lercari emphasizes
the reflexive aspect of this approach, where the reconstruction process itself becomes a tool for
interpreting archaeological data and testing hypotheses. This work highlights the transformative
potential of 3D reconstruction in enhancing archaeological research and education, bridging the
gap between excavation findings and their broader cultural significance.

2.1.2.3 City Planning

Similarly, these techniques are employed in city planning, to create detailed urban models
for applications, such as traffic planning, navigation, and disaster management. These models
enable city planners to visualize and simulate various urban scenarios, aiding decision-making
processes. For example, 3D city models have been used to simulate the impact of new infras-
tructure projects, such as roads or buildings, on the surrounding environment and infrastructure.
Furthermore, 3D reconstructions of cities are valuable tools for navigation and tourism, allowing
users to explore them virtually and plan routes efficiently. Additionally, 3D city models are es-
sential for disaster management, enabling emergency responders to plan and coordinate rescue
operations effectively (Huang et al., 2022; Kumar et al., 2021).

Presenting a fully automatic approach for reconstructing compact 3D building models
from large-scale airborne LiDAR point clouds, Huang et al (Huang et al., 2022) addresses the
frequent absence of vertical wall data in such datasets. The proposed method infers vertical walls
by leveraging the structural observation that urban buildings typically consist of planar roofs con-
nected to vertical walls extending to the ground. This process involves hypothesizing building
surface faces using planar segments of both roofs and walls, followed by a hypothesis-and-
selection-based polygonal surface reconstruction framework enhanced with novel energy terms
and hard constraints to ensure accurate topology and detail recovery. The method’s robust-
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Figure 7 — Overlaying view of 3D reconstructions of (a) 'Shrine’ VIA.10, (a) Shrine’ VIB.10, and (c)
"Shrine’ VII.10 in Lifelige.

VIA.10

m T PO &

CIE peiel g

/1.B - Shrine 10 Interior

Source: Lercari (2017).

ness and precision were validated through experiments on various large-scale airborne LiDAR
datasets, outperforming state-of-the-art approaches. Additionally, the authors generated a new
dataset containing point clouds and 3D models of 20,000 real-world buildings, aiming to foster
further research in urban reconstruction and the application of 3D city models in urban develop-
ment and planning. This work significantly advances the field of urban modeling by providing a
reliable and automated solution for large-scale building reconstruction.
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Figure 8 — Input airbone Lidar Point cloud and reconstruction.

(b) Our reconstruction result

Source: Huang et al. (2022).

The study by Kumar et al. (Kumar et al., 2021) introduces a novel approach for citywide
reconstruction of cross-sectional traffic flow using videos captured by moving cameras. The pro-
posed method leverages computer vision techniques to extract and analyze vehicle trajectories
from video feeds, enabling the reconstruction of detailed traffic flow patterns across urban areas.
Unlike traditional stationary camera setups, this approach utilizes data from moving platforms,
such as vehicles or drones, to provide a more flexible and scalable solution for traffic analysis.
By integrating trajectory data with spatial and temporal context, the method generates dynamic
3D reconstructions of traffic flow, offering valuable insights into congestion hotspots and urban
mobility patterns. This study demonstrates the potential of leveraging moving camera systems
for large-scale, cost-effective traffic monitoring, with applications in urban planning, traffic man-
agement, and smart city development.
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2.1.2.4 Digital Twin

The concept of the digital twin represents a cutting-edge application of 3D reconstruc-
tion, enabling the creation of virtual replicas of physical systems. These digital counterparts are
synchronized in real-time with their physical counterparts, allowing continuous monitoring, anal-
ysis, and optimization. In industrial settings, digital twins are extensively utilized to simulate and
optimize factory workflows, enhance predictive maintenance, and ensure operational efficiency.
For instance, a digital twin of a manufacturing line can help identify bottlenecks, test new con-
figurations, and predict equipment failures before they occur. Beyond industry, digital twins are
increasingly applied in urban environments to create virtual cities, which aid in managing infras-
tructure, optimizing resource usage, and simulating disaster scenarios. As the integration of loT
and Al technologies advances, digital twins are becoming indispensable tools across domains,
bridging the gap between physical and digital worlds while fostering innovation and efficiency
(Bécue et al., 2020; Grieves; Vickers, 2014).

Bécue et al. (Bécue et al., 2020) propose an innovative framework for implementing digi-
tal twins in the context of next-generation factories, emphasizing their role in enhancing optimiza-
tion and resilience. The study introduces a conceptual model that integrates real-time data from
physical systems with advanced simulations to create dynamic, virtual counterparts of factory
environments. These digital twins are designed to support decision-making processes by en-
abling predictive analysis, anomaly detection, and adaptive response to disruptions. The authors
highlight the potential of this approach to optimize workflows, reduce downtime, and enhance op-
erational flexibility. Additionally, the framework incorporates resilience-focused features, allowing
factories to adapt to unexpected changes or disruptions in production. This work demonstrates
the transformative potential of digital twins as a cornerstone technology for Industry 4.0, bridging
the gap between physical and virtual domains to create more efficient and adaptable manufac-
turing systems.

Grieves and Vickers (Grieves; Vickers, 2014) trace the origins and foundational principles
of the digital twin concept, establishing it as a transformative framework in modern engineering
and manufacturing. The study defines a digital twin as a virtual representation of a physical
system, synchronized through real-time data exchange, enabling simulation, monitoring, and
optimization across a system’s lifecycle. The authors discuss the conceptual evolution of digital
twins from early computer-aided design (CAD) systems to their integration with emerging tech-
nologies such as the Internet of Things (loT) and predictive analytics. They highlight how digital
twins can provide unprecedented insights into product performance, maintenance needs, and
design optimization, facilitating more efficient and adaptive manufacturing processes. This foun-
dational work underscores the digital twin’s role as a core component of Industry 4.0, bridging
physical and digital domains to improve decision-making, reduce costs, and enhance system
resilience.
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The Siemens Amberg Electronics Plant serves as a benchmark example of digital twin
implementation in manufacturing, showcasing the transformative potential of Industry 4.0 tech-
nologies. At this facility, a digital twin replicates the entire production environment in real-time,
integrating data from loT sensors embedded in machinery. This continuously updated virtual
model allows for workflow simulation, enabling the identification of bottlenecks and testing of
new configurations without disrupting physical operations. Predictive maintenance is another key
application, where the digital twin analyzes equipment performance data to forecast failures, re-
ducing unplanned downtime and extending machine lifecycles. Additionally, adaptive scheduling,
driven by real-time insights, optimizes production efficiency and reduces resource waste. This
case study underscores how digital twins bridge the gap between physical and digital domains,
enhancing manufacturing resilience and adaptability (Ag, 2019).

2.2 3D Models in Realistic Traffic Simulation Environments

Three-dimensional reconstruction plays a fundamental role in various domains, including
computer vision, geospatial analysis, and urban modeling. However, its application in realistic ve-
hicle traffic simulations, including interactions with cyclists, pedestrians, and other road agents,
has been less explicitly emphasized in general discussions on 3D modeling research. One of the
key challenges in autonomous driving research is the ability to simulate complex traffic scenarios
that accurately reflect real-world conditions. Realistic virtual environments, built from detailed 3D
models, provide an essential foundation for testing perception, planning, and control algorithms
in autonomous vehicles. The integration of 3D models into simulation frameworks enables dy-
namic and interactive environments where vehicles, pedestrians, and cyclists can be modeled
with high precision, improving the reliability and robustness of testing methodologies.

The study by (Azfar; Smith; Khan, 2024) explores a traffic co-simulation framework that
integrates infrastructure camera sensing with reinforcement learning-based vehicle control. The
research utilizes CARLA and SUMO to simulate real-world driving scenarios while incorporat-
ing high-fidelity 3D models for accurate scene representation. Their approach enables dynamic
traffic adaptation, where vehicles respond realistically to changes in road conditions and traffic
signals. This work relates to ours by demonstrating the importance of combining 3D modeling
with driving simulation to enhance the realism and accuracy of traffic environments. Our research
extends this concept by focusing on the direct integration of 3D reconstructed scenes into driving
simulation platforms.

(Chen; Zhang; Liu, 2025) present a virtual-real-fusion framework for intelligent 3D traf-
fic accident reconstruction. The authors propose using LiDAR-based point cloud reconstruction
and deep learning techniques to create highly accurate 3D traffic environments for post-accident
analysis. By integrating these models into traffic simulators, they aim to enhance forensic inves-
tigations and traffic safety studies. This study aligns with our research by emphasizing the use of
detailed 3D reconstruction techniques to improve simulation accuracy. However, our work differs
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in its focus on integrating these models into real-time traffic scenarios for autonomous vehicle
training, rather than forensic reconstruction.

The study on Rapidex by (Nayab; Rafig; Malik, 2024) introduces a novel approach to in-
tegrating 3D models into transportation digital twins. Their research focuses on creating realistic
urban traffic simulations by combining Al-generated 3D road scenes with dynamic simulation
data. The authors discuss the challenges of aligning real-world geospatial data with digital simu-
lations and propose an automated mapping technique to improve scene accuracy. This research
closely parallels our work in its goal of developing a seamless integration pipeline between 3D
models and driving simulators. While their approach focuses on large-scale urban environments,
our work is more centered on the manual and semi-automated integration of high-quality 3D re-
constructions into simulation platforms like CARLA.

(Crampen; Zhao; Lin, 2024) explore the development of 3D urban digital twins (UDTs)
within Unreal Engine 5 for real-time traffic monitoring. Their approach integrates live data from
real-world traffic systems into an immersive 3D environment, allowing for dynamic traffic visual-
ization. Unlike conventional static 3D models, their framework supports interactive real-time up-
dates, enabling better adaptability for smart city planning. This study highlights the importance
of 3D scene reconstruction in transportation applications, complementing our work by showcas-
ing the use of Unreal Engine for advanced visualization. Our research further builds upon this
idea by examining the manual integration challenges of 3D maps into CARLA, expanding the
possibilities for real-time simulation-based traffic studies.

(Salehi; Jafari; Kamal, 2025) present an application of systems engineering principles
in constructing 3D environments for autonomous vehicle simulations. Their study focuses on
the structured methodology required to integrate 3D environments with traffic systems, ensuring
compatibility between real-world datasets and driving simulation software. They emphasize the
need for precise model validation to maintain accuracy in Al-based vehicle training. This research
aligns with our work by addressing the complexities of environment integration, a key challenge
that was encountered while working. Our contribution extends this knowledge by identifying the
specific requirements for manual file integration and proposing improvements to streamline the
process.

Together, these studies reinforce the significance of integrating 3D models into au-
tonomous driving simulations, each tackling different aspects of the challenge. Our work adds
a unique perspective by investigating the detailed process of transferring high-fidelity 3D en-
vironments into a simulation plataform and evaluating the practical challenges associated with
manual file preparation. This contribution is essential for advancing the realism of autonomous
vehicle simulations, paving the way for more immersive and accurate driving scenarios. Further-
more, the use of 3D models in traffic simulation extends beyond autonomous driving, supporting
research in traffic safety, pedestrian behavior analysis, and urban mobility planning. Accurately
reconstructing road environments, crosswalks, urban landscapes, and traffic infrastructures, sim-
ulations can contribute to the development of intelligent transportation systems and smart city
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applications. Although the relevance of 3D reconstruction in realistic simulations is explored later
in this dissertation, it is important to highlight early on that this research aligns with key areas
of investigation in autonomous systems, computer vision, and transportation engineering. This
contextualization ensures that the study’s contributions are well integrated into the broader aca-
demic and technological landscape, reinforcing its importance in advancing simulation-driven
research for vehicle automation and urban mobility.

2.2.1 Sensors and data acquisition process

Data acquisition is crucial for 3D reconstruction as the quality of point clouds and meshes
relates to the ability to process optimal inputs. These inputs may be exclusive to a given source
and sensor, such as color information from cameras, or available from different sensors, such
as depth from direct conversions of radar and LiDAR measurements or indirectly estimated from
cameras. Here, capturing rich color and texture information can support the learning process
for spatial mapping with a heavy reliance on ambient light, which may decrease its reliability. In
such a scenario, accurate depth measurements through active illumination, from LiDAR sensors,
can offer a more reliable solution and contribute to improve camera-based models. These contri-
butions guide the selection and development of reconstruction methods, ensuring optimal data
processing. Considering the importance of sensors for data acquisition and effective reconstruc-
tion, some of the most commonly used sensors are presented on this subsection.

2.2.1.1 LiDAR (Light Detection and Ranging)

LiDAR (Light Detection and Ranging) is a technology that uses laser pulses to measure
distances by calculating the time it takes for the emitted light to reflect back from a surface. This
method enables the creation of precise, high-resolution 3D models of environments. LiDAR is
widely employed in various applications, including autonomous vehicles, where it helps in obsta-
cle detection and navigation, and topographical mapping, where it generates detailed represen-
tations of terrain and infrastructure. Its ability to capture intricate spatial details, even in low-light
conditions, makes LiDAR an indispensable tool in fields such as urban planning, archaeology,
and forestry (Fruh; Zakhor, 2001; Milella; Reina, 2014).

An example of LiDAR application in 3D reconstruction is the work by Hyyppa et al. (??),
which utilized a RIEGL LMS-Q560 LiDAR sensor to reconstruct urban environments. The study
focused on generating high-resolution 3D models of building facades and surrounding infrastruc-
ture. The RIEGL LMS-Q560, known for its high accuracy ranging capabilities and wide field of
view, was mounted on a terrestrial platform to collect dense point cloud data. The researchers
processed the data to create precise geometrical representations of urban features, demonstrat-
ing the LiDAR'’s ability to capture intricate details such as window frames, balconies, and surface
textures. This work highlighted the potential of LiDAR in urban planning, architectural modeling,
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and heritage preservation, showcasing the versatility and precision of the RIEGL LMS-Q560 for
detailed 3D reconstructions.

Abebe (Abebe, 2024) provides a comprehensive review of LiDAR technology and its
applications in 3D city modeling. The study highlights LiDAR’s versatility in urban planning, envi-
ronmental monitoring, and decision-making processes. Key applications discussed include build-
ing reconstruction, solar potential assessment, urban vegetation analysis, and flood modeling.
By leveraging LiDAR-generated 3D point clouds, the paper emphasizes the technology’s ability
to deliver high-resolution, accurate representations of urban environments. Furthermore, it ex-
plores advanced feature extraction, segmentation techniques, and deep learning algorithms for
processing LiDAR data. The review underscores the transformative impact of LiDAR in address-
ing complex urban challenges, particularly in developing detailed 3D city models that support

smarter, more sustainable urban development practices.

Figure 9 — Velodyne HDL-64E

HDL-B4E S2
Source: Huang et al. (2022).

Lidar HDL-64E 9 is one of the first models developed by Velodyne and was widely used
in early autonomous vehicle projects, such as the DARPA Challenge (2005) (Thrun et al., 2006).
Its introduction represented a major advancement in 3D environmental perception, providing
higher precision and accuracy in mapping surrounding objects. Given its historical relevance, it is
important to highlight its pioneering role in the evolution of LiDAR technology. Although the HDL-
64E was a milestone in the introduction of three-dimensional sensors for autonomous vehicles,
LiDAR technology has evolved significantly since its inception. More recent LiDAR sensors, such
as the Velodyne Alpha Prime, Ouster OS2, and Luminar Hydra, offer higher angular resolution,
longer detection range, and improved capability to operate under various weather conditions.
These advancements enable the acquisition of more precise and detailed three-dimensional
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representations of the environment, which is essential for advanced perception and navigation
applications (Hall, 2011).

An example of LiDAR application in 3D reconstruction is the work by Kihner and Kim-
merle (Kihner; Kimmerle, 2024). In their study, they present a framework for large-scale vol-
umetric 3D scene reconstruction using LIDAR sensors, specifically addressing applications in
autonomous driving and robotics. The method utilizes volumetric depth fusion combined with a
cylindrical projection model to create detailed meshed representations of urban environments.
The authors utilized Velodyne HDL-64E LiDAR sensors for their experiments and evaluations.
This model can be seen in figure 9 The system is designed to handle loop closures and incorpo-
rates advanced algorithms to manage sensor-specific challenges, such as rolling shutter effects
and non-single-viewpoint issues. Evaluations on real-world datasets, including the KITTI odom-
etry benchmark, demonstrate the framework’s capability to produce high-quality reconstructions
with minimal user intervention. The approach achieves a high level of detail over extensive ar-
eas, such as a 3.7 km route, processed efficiently using consumer-grade graphics hardware.
This work highlights the potential of LiDAR-based volumetric reconstruction for enhancing local-
ization, mapping, and simulation in autonomous systems.

2.2.1.2 Laser Scanners

Laser scanners are devices that use laser beams to capture high-precision spatial data,
typically of specific objects or environments. They are particularly effective for close-range and
indoor applications, where capturing fine details is essential. Common use cases include cultural
heritage preservation, where detailed 3D models of artifacts or structures are created, as well as
industrial applications like equipment inspection and architectural modeling (Esrafilian; Gesbert,
2017; Fruh; Zakhor, 2001). Laser scanners are often stationary or handheld, offering millimeter-
level accuracy for confined or small-scale areas.

Although LiDAR (Light Detection and Ranging) and laser scanning share the fundamen-
tal principle of using laser technology to measure distances, they differ in scale, application,
and deployment. LiDAR is primarily designed for large-scale, long-range data collection, often
used in outdoor environments such as topographical mapping, forest analysis, or autonomous
vehicle navigation. LiDAR systems are typically mounted on platforms like drones, airplanes, or
vehicles and integrate with GPS and inertial measurement units (IMUs) to generate large-scale,
georeferenced 3D point clouds.

In contrast, laser scanners are more versatile for detailed, small-scale data acquisition,
often used for close-range applications. They are stationary or handheld devices suited for cap-
turing intricate details of objects, surfaces, or indoor environments. While LiDAR excels in cov-
ering expansive areas with moderate precision, laser scanning is ideal for projects requiring ex-
tremely high precision and resolution at shorter distances. The choice between the two depends
on the scale, resolution, and specific needs of the application.
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Figure 10 — Terrestrial laser scanner in operation at the field survey at Dunakapu Square, Gyor.

&
| Source: Fehér (201 3)‘..§ -
In his study, Fehér (Fehér, 2013) explores the application of 3D laser scanners in ar-
chaeology, focusing on their effectiveness in documenting cultural heritage sites and artifacts.
The research highlights the use of terrestrial laser scanners, capable of capturing up to one mil-
lion points per second, to generate high-resolution 3D models of archaeological features, ruins,
and artifacts. One significant implementation involved scanning the ruins of a medieval church
in Hungary, using a scanner with a range of 0.3 m to 187 m to produce a point cloud of 225
million points. These scans enable non-contact, highly detailed documentation, preserving ir-
regular surfaces and intricate structures with millimeter-level precision. The study demonstrates
how 3D scanning technology can revolutionize the preservation and analysis of cultural heritage
by creating scalable, accurate virtual representations that support further research, education,
and public engagement. Figure 10 represents the terrestial laser in operation.

2.2.1.3 Cameras (RGB, Infrared, and Video)

Cameras are important tools in 3D reconstruction, each offering unique capabilities that
enhance model generation. Standard RGB cameras capture detailed color images, providing the
photometric information necessary for texture mapping and ensuring visually accurate 3D mod-
els. Infrared cameras, on the other hand, detect thermal variations, making them ideal for appli-
cations requiring temperature-sensitive data, such as in structural analysis or medical imaging.
Video cameras capture continuous sequences of images, enabling the reconstruction of dynamic
scenes and objects in motion. By combining data from these different types of cameras, 3D re-
construction workflows achieve higher accuracy and richer visual fidelity, playing a critical role in



41

applications ranging from cultural heritage preservation to robotics and autonomous navigation
(Poullis; You, 2011; Mufioz-silva et al., 2021).

Poullis and You (Poullis; You, 2011) present a novel framework for the 3D reconstruction
of urban areas, focusing on creating large-scale, photorealistic models from a combination of
aerial and ground-level data. The method integrates data from various sources, including stan-
dard RGB cameras and LiDAR, to generate high-resolution 3D models of urban environments.
The proposed pipeline emphasizes efficiency, using advanced feature extraction and surface re-
construction techniques to handle the vast and heterogeneous data typical of urban settings. The
reconstructed models are optimized for visualization and analysis, providing detailed representa-
tions of buildings, roads, and other urban features. This work highlights significant advancements
in urban modeling, offering potential applications in city planning, navigation systems, and virtual
reality environments.

In their study, they utilized a combination of standard RGB cameras and LiDAR sensors
to achieve high-resolution 3D reconstructions of urban areas. The RGB cameras were employed
to capture detailed photometric data, providing rich color information for texture mapping, which
is essential for creating photorealistic urban models. These cameras were mounted on both
aerial platforms and ground-level vehicles to capture a diverse range of perspectives, ensuring
comprehensive coverage of urban environments. The integration of RGB camera data with Li-
DAR point clouds allowed for precise alignment of geometric and visual information, resulting in
accurate and visually detailed 3D models. The use of RGB cameras, combined with their seam-
less integration into the reconstruction pipeline, underscores their importance in enhancing the
fidelity and usability of urban 3D models.

Another interesting study is provided by Munoz-Silva et al. (Mufoz-silva et al., 2021).
The authors provide a comprehensive survey on point cloud generation techniques for 3D scene
reconstruction, exploring various methodologies and their applications. The study categorizes
existing methods based on the type of input data, such as RGB images, depth maps, and LiDAR
scans, and examines their strengths and limitations in different scenarios. Special emphasis is
placed on the integration of multiple data sources to enhance the accuracy and detail of 3D
reconstructions. The authors discuss key challenges in point cloud processing, including noise
reduction, alignment, and computational efficiency, and highlight the emerging role of machine
learning in addressing these issues. By synthesizing advances in point cloud generation, the pa-
per serves as a valuable resource for researchers and practitioners working on 3D reconstruction
for applications in robotics, virtual reality, and autonomous systems.

2.2.1.4 Radar Sensors

Radar sensors are effective in environments with low visibility or challenging weather
conditions, as they can penetrate rain, fog, and dust. This makes them invaluable for applica-
tions such as autonomous vehicles and robotics, where reliable depth estimation and navigation
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are critical. Unlike optical sensors, radar is less affected by lighting conditions, providing robust
performance in a wide range of scenarios. Often used in combination with other sensors, such
as LIiDAR and cameras, radar enhances the accuracy and reliability of sensor fusion systems
by contributing complementary data. This integration is particularly beneficial in detecting ob-
stacles, estimating velocities, and ensuring safe navigation in complex environments (Esrafilian;
Gesbert, 2017; Untzelmann et al., 2013; Zhang; Jiang; Ai, 2015).

The study by Sun et al. (Sun et al., 2021) introduces the 3DRIMR system, a deep
learning-based architecture designed for 3D reconstruction and imaging using mmWave radar.
This system addresses the challenges of radar data sparsity, noise, and low resolution by em-
ploying a two-stage conditional GAN framework. In the first stage, the model generates 2D depth
images from raw radar intensity data using a 3D convolutional neural network. In the second
stage, it constructs dense and smooth 3D point clouds from the 2D depth images. The study
utilizes the Texas Instruments IWR6843ISK radar sensor, known for its high resolution along the
range direction, even without the need for time-consuming synthetic aperture radar (SAR) pro-
cesses. Experiments demonstrated the system’s effectiveness in reconstructing 3D objects with
high geometric detail, showcasing its potential for applications in autonomous vehicles, robotics,
and low-visibility environments. The 3DRIMR architecture combines the efficiency of point cloud
representations with the robustness of radar sensing, setting a benchmark for radar-based 3D
reconstruction technologies.

Figure 11 — Radar and camera system
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(Natour et al., 2015) introduces an innovative approach for outdoor 3D reconstruction us-
ing a combination of a panoramic millimeter-wave (MMW) radar and a standard camera. Radar is
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used for its robust depth measurement capabilities, especially under challenging environmental
conditions such as rain, fog, and dust. It provides precise distance and azimuth information, form-
ing the foundation for sparse 3D mapping. However, radar alone cannot capture elevation details
or textures. To overcome this limitation, the authors integrate data from the radar with images
captured by the camera, which offers high spatial resolution and texture information. The study
also introduces a novel geometric calibration method to align the radar and camera data accu-
rately, enabling the generation of textured elevation maps. This combination of radar and vision
data allows for efficient and accurate 3D reconstruction of large-scale outdoor environments,
demonstrating the complementary strengths of these two sensor types. The combinantion is
shown in figure 11.

2.2.1.5 Sensor fusion

As described, each sensor offers unique perspectives and qualities on a given subject
and, when leveraged effectively, can enhance the reconstruction process. Integrating data from
multiple sensors using sensor fusion techniques can further improve the overall quality of the
inputs. Data acquisition methods are selected based on specific project requirements, with some
relying on repeated measurements from a single sensor type and others leveraging multi-sensor
combinations. For example, instrumented vehicles equipped with LiDAR and multiple cameras
can capture high-resolution images and precise depth information of their surroundings, enabling
detailed urban modeling (Fruh; Zakhor, 2001; Milella; Reina, 2014). Drones, or Unmanned Aerial
Vehicles (UAVs), equipped with cameras are widely used for capturing large-scale topographic
data from various angles, creating accurate 3D models of extended areas (Esrafilian; Gesbert,
2017; Fruh; Zakhor, 2001).

In close-range applications, handheld cameras allow researchers to gather overlapping
images from different perspectives, ideal for detailed reconstructions in confined spaces (Poullis;
You, 2011; Mufoz-silva et al., 2021). Satellite imagery, such as that from Google Earth, provides
extensive overhead views, enabling the 3D reconstruction of vast areas (Esrafilian; Gesbert,
2017; Untzelmann et al., 2013; Zhang; Jiang; Ai, 2015). Additionally, pre-existing datasets like
the KITTI dataset (Lee; Song; Jo, 2016), Geoportal (Kulawiak, 2022), City Intrinsic Images (Xie;
Li; Qi, 2019), and OpenStreetMap (Untzelmann et al., 2013) are invaluable for supplementing 3D
reconstruction projects with high-quality data collected from various sensors.Combining these
acquisition methods enhances data completeness and accuracy, making them applicable to a
broad range of 3D reconstruction tasks, from cultural heritage preservation and urban planning
to autonomous vehicle navigation.

These sensors and acquisition methods are essential for capturing data needed for 3D
reconstruction. They can be used individually or in combination, depending on the project’s spe-
cific requirements. Acquisition methods include using ground-based LiDAR scanners to record
complex structures, rapid data acquisition with 2D laser scanners and cameras mounted on



44

vehicles for city-scale modeling, and hierarchical contour methods for automatic 3D city recon-
struction from LiDAR data (Li et al.,, 2012). Techniques such as using panorama images and
LiDAR scans at street level and employing LiDAR technology for quick, accurate 3D surface in-
formation acquisition contribute to the diversity of approaches in 3D reconstruction (Pylvdnainen
et al., 2012). These methods serve applications like augmented reality, cultural heritage preser-
vation, urban planning, and autonomous navigation, underscoring the versatility and importance
of sensor technology in 3D reconstruction (Poullis; You, 2011; Fruh; Zakhor, 2001; Lee; Song;
Jo, 2016).

Fusing data from Inertial Measurement Units (IMUs) and other sensors plays a crucial
role in enhancing accuracy and robustness. IMUs are composed of gyroscopes, accelerometers,
and sometimes magnetometers, which provide orientation, velocity, and acceleration measure-
ments. When integrated with data from other sensors, such as cameras, LiDAR, or GPS, IMUs
contribute valuable information for motion estimation, pose estimation, and registration of sensor
data. The resulting reconstruction can achieve higher precision and reliability by combining the
complementary strengths of different sensors through fusion techniques, such as Kalman filter-
ing or sensor fusion algorithms (Nakao et al., 2004). IMU data helps compensate for motion-
related artifacts, such as camera shake or vehicle movement, enabling more accurate alignment
of 3D data points. Additionally, sensor fusion facilitates the creation of comprehensive 3D models
by incorporating data from multiple sources, leading to a more complete and detailed reconstruc-
tion of the environment. Overall, IMU and sensor fusion techniques are critical in improving the
quality and reliability of 3D reconstruction systems, making them indispensable components in
several applications such as robotics, augmented reality, and autonomous navigation (Pylvanai-
nen et al., 2012; Lee; Song; Jo, 2016).

2.3 Driver Scenarios for Vehicle Simulator

ADAS rely on digital cameras, radar, and other sensors to enhance driving safety and
automation. Simulators—both static and dynamic—play a crucial role in testing and validating
these systems by replicating real-world driving conditions in a controlled environment. These
simulations integrate sensor fusion techniques, combining data from multiple sources to improve
system accuracy and robustness.

Static simulators provide a controlled driving environment where the vehicle remains sta-
tionary while the driver interacts with a simulated scene displayed on screens or through virtual
reality headsets. These simulators are particularly useful for evaluating ADAS in perception-
based scenarios. They allow researchers to test system responses to various conditions without
real-world risks. One of their key applications includes assessing ADAS perception systems un-
der different environmental conditions, ensuring their robustness in detecting obstacles, road
signs, and lane markings. Additionally, they play a crucial role in studying human-machine inter-
action (HMI), analyzing how drivers respond to visual and auditory warnings provided by ADAS.
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Behavioral studies further benefit from static simulators, as they help evaluate driver reactions to
automated interventions in a safe and repeatable manner.

In contrast, dynamic simulators incorporate motion feedback mechanisms that provide
real-world forces to the driver using actuators. These simulators enhance realism by simulating
acceleration, braking, and cornering forces, making them particularly valuable for evaluating ve-
hicle dynamics and driver behavior under emergency conditions. Dynamic simulators facilitate
real-time testing of ADAS functionalities, such as lane-keeping assistance, emergency braking,
and adaptive cruise control (ACC). By replicating real-world driving scenarios, they offer an im-
mersive experience that aids in understanding driver fatigue and distraction under prolonged
driving conditions. Moreover, they are essential in testing ADAS interventions in complex traffic
situations, helping validate the effectiveness of autonomous driving systems.

Static simulators are well-suited for ADAS perception tests that rely on cameras and
radar for scene understanding. They are widely used in traffic sign recognition (TSR) evaluations,
where digital road signs are displayed under different lighting and weather conditions to analyze
system accuracy. Lane departure warning (LDW) systems are also tested using static simulators,
ensuring that vehicles can reliably detect lane markings and provide timely alerts for unintended
lane drifts. Forward collision warning (FCW) simulations introduce scenarios where a leading
vehicle suddenly decelerates, assessing how well the system detects the hazard and issues
alerts. Similarly, pedestrian detection tests simulate unexpected pedestrian crossings, helping to
refine ADAS algorithms for improved safety in urban environments.

Dynamic simulators, on the other hand, excel in testing real-time motion-based ADAS
interventions. Adaptive cruise control (ACC) simulations allow researchers to assess how well
a vehicle adjusts its speed in response to surrounding traffic, including stop-and-go conditions.
Emergency braking systems (EBS) are rigorously evaluated using sudden stop events, determin-
ing the effectiveness of braking responses in collision avoidance. Blind spot detection (BSD) tests
involve dynamic vehicle interactions, simulating situations where cars approach from blind spots
to validate alert mechanisms. Additionally, dynamic simulators enable the testing of autonomous
overtaking maneuvers, analyzing how ADAS responds to slower-moving traffic by executing safe
lane changes.

Sensor fusion plays a critical role in enhancing ADAS capabilities by combining data
from multiple sources, including cameras, radar, LiDAR, and ultrasonic sensors. This integration
improves object detection, classification, and tracking accuracy, making it an essential compo-
nent in simulation environments. By validating multi-sensor perception reliability under diverse
weather and lighting conditions, simulations help refine ADAS decision-making processes. Re-
dundancy and fail-safe mechanisms are also tested, ensuring system functionality even when
one sensor type fails—for example, a camera struggling in foggy conditions while radar main-
tains operational accuracy.

Sensor fusion techniques in ADAS simulations include data-level fusion, which merges
raw sensor inputs for a more comprehensive environmental model. Feature-level fusion inte-
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grates extracted features from various sensors to enhance situational awareness and improve
ADAS performance. Decision-level fusion combines independent sensor decisions to determine
the final ADAS action, ensuring that the system responds accurately to real-world driving condi-
tions. These approaches collectively contribute to the advancement of intelligent vehicle safety
systems, making them more reliable and adaptive to varying traffic scenarios.

Vehicle simulators play a important role in the development and validation of ADAS and
autonomous driving technologies. They provide controlled environments where vehicle behav-
ior, sensor interactions, and system performance can be evaluated under a variety of conditions.
Simulators can be broadly classified into two main categories: static and dynamic simulators,
each serving distinct purposes in the validation pipeline. This section explores their function-
alities, applications, and the importance of their integration into the ADAS development cycle
(Dosovitskiy et al., 2017a).

2.3.1 System Architecture

The architecture of a vehicle simulator is designed to replicate real-world driving con-
ditions as closely as possible, enabling engineers and researchers to conduct tests in a safe
and repeatable manner. A typical simulation environment consists of three main components: a
simulation engine, responsible for physics calculations and virtual environment rendering; sen-
sor models, which replicate real-world perception systems such as LiDAR, radar, and cameras;
and control algorithms, which process sensor data and govern vehicle behavior (Behrisch et al.,
2011). These components work together to form a comprehensive testbed for evaluating dif-
ferent driving scenarios, ranging from basic lane-following tasks to complex urban interactions

involving pedestrians and other vehicles.

Figure 12 — Radar and camera system
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VI-Grade is a leading provider of static and dynamic vehicle simulators, designed for
automotive system development, ADAS validation, and autonomous vehicle testing. Their sim-
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ulators provide real-time driver-in-the-loop (DIL) experiences by integrating multi-sensor data,
vehicle dynamics models, and environmental simulations to test ADAS and autonomous driving
algorithms. VI-Grade offers two primary types of simulators:

2.3.1.1 Static and Dynamic Vehicle Simulators

Static vehicle simulators provide a controlled driving experience where drivers interact
with a virtual environment while remaining stationary. These simulators are widely used in re-
search and development for testing and validating Advanced Driver Assistance Systems (ADAS),
studying Human-Machine Interface (HMI) interactions, analyzing driver behavior, and conducting
Software-in-the-Loop (SIL) testing (Bengler et al., 2014). Their fixed-platform nature makes them
ideal for experiments that do not require physical motion feedback, allowing for a repeatable and
controlled testing environment. Researchers use static simulators to evaluate how ADAS fea-
tures, such as lane departure warning and collision avoidance systems, respond under different
conditions without introducing the complexities of motion dynamics (Law, 2014).

In contrast, dynamic vehicle simulators incorporate motion platforms to simulate real-
world vehicle forces, providing a more immersive and realistic driving experience. These sim-
ulators are essential for vehicle dynamics testing, Hardware-in-the-Loop (HIL) simulations, au-
tonomous vehicle development, and real-time ADAS testing with sensor fusion. By replicating
real-world driving conditions, dynamic simulators enable engineers to assess vehicle handling,
stability, and performance under various road and environmental scenarios. This makes them
particularly valuable for refining driver assistance technologies, such as adaptive cruise control
and emergency braking, in a safe and controlled setting before real-world deployment (Peters et
al., 2018).

The architecture of VI-Grade simulators consists of several key subsystems that con-
tribute to their realistic simulation capabilities. At the core of these simulators is the computing
and simulation system, which serves as the computational backbone, running real-time vehi-
cle models, physics simulations, and ADAS algorithms. The real-time vehicle dynamics model
simulates vehicle responses based on driver inputs and external conditions, ensuring accurate
behavioral replication. The ADAS and sensor fusion module integrates data from cameras, radar,
LiDAR, and ultrasonic sensors, allowing for advanced perception and decision-making. A physics
engine models acceleration, braking, tire-road interactions, and environmental effects, while the
control system interface connects with embedded control units (ECUs) to enable real-time HIL
testing.

To support these simulations, various software solutions are employed, including VI-
CarRealTime for vehicle dynamics simulation, MATLAB/Simulink for control system model-
ing, Carla and CarSim or IPG CarMaker for environmental simulation. These tools enable re-
searchers to develop and validate vehicle control strategies before real-world implementation,
reducing the need for costly physical testing. The integration of these software solutions ensures
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that the simulated environment closely mirrors real-world driving conditions, enhancing the ef-
fectiveness of ADAS validation and autonomous vehicle research (Dosovitskiy et al., 2017a;
Rajamani, 2011).

Human-Machine Interface (HMI) and driver feedback systems play a crucial role in im-
proving simulation realism. Steering wheel force feedback is implemented to replicate road feel,
oversteer, and understeer, providing a tactile connection between the driver and the virtual vehi-
cle. Pedal force replication adjusts braking and acceleration resistance based on vehicle dynam-
ics, ensuring an accurate representation of driver input. Visual display systems include immer-
sive 360-degree projections or virtual reality integration, creating a realistic driving experience.
Additionally, driver monitoring systems track eye movement, fatigue levels, and reaction times to
assess driver behavior and engagement with ADAS features.

Dynamic simulators incorporate advanced motion and actuator systems to provide a full
range of motion feedback. These systems use some degrees of freedom kind of motion plat-
forms that replicate real-world vehicle movements, enhancing the simulation experience. Linear
actuators simulate pitch, roll, and yaw, replicating the effects of cornering, braking, and accelera-
tion. Hydraulic or electric motion systems provide high-frequency feedback for analyzing vehicle
handling characteristics. Seat and belt tensioner systems enhance the sensation of acceleration,
braking, and lateral forces, improving the overall realism of the simulation.

One of the advanced dynamic vehicle simulators available today is the DiM150 (Driver-
in-Motion 150) by VI-grade. The DiM150 employs a nine-degrees-of-freedom (9-DoF) motion
platform, enabling researchers to replicate real-world vehicle behavior accurately. This simu-
lator is used extensively for ADAS validation, driver training, and virtual prototyping, providing
realistic motion feedback that enhances the fidelity of the simulation. By integrating hardware-in-
the-loop (HIL) and software-in-the-loop (SIL) capabilities, the DiM150 bridges the gap between
simulation-based testing and real-world validation, significantly improving the safety and effi-
ciency of autonomous driving systems (Rodrigues et al., 2021b).

Various motion system configurations exist, ranging from compact simulators with low
degrees of freedom (DOF) and a small footprint to full-motion simulators with high DOF for large-
scale, highly immersive setups. Compact simulators are suitable for early-stage development
and limited-space environments, whereas full-motion simulators provide an unparalleled level of
realism for comprehensive vehicle testing.

Sensor integration and environmental simulation modules further enhance the realism
of driving scenarios, allowing for extensive ADAS and autonomous vehicle testing. These mod-
ules generate synthetic camera and LiDAR data for perception system validation, simulate radar
signals for adaptive cruise control and collision avoidance testing, and create dynamic traffic
and pedestrian interactions to assess real-world driving scenarios. Weather simulation capabili-
ties adjust lighting, rain, fog, and road conditions dynamically, ensuring that ADAS functions are

tested across diverse environmental conditions.
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Key technologies used in these simulations include sensor fusion modules, which com-
bine multiple sensor inputs to enhance ADAS validation, driving scenario libraries containing
pre-built city, highway, and off-road environments, and traffic flow simulation models that gener-
ate realistic vehicle interactions in complex environments. These components collectively create
a robust testing platform, enabling researchers and engineers to refine ADAS and autonomous
vehicle technologies in a safe, controlled, and highly detailed simulation environment.

2.3.2 Test and Validation of Driving Assistance Features

Simulators play a crucial role in the development, testing, and validation of ADAS and
autonomous vehicle technologies. They enable safe and controlled experimentation, reducing
the risks associated with real-world testing while accelerating the development process. Some
physical simulators can be categorized into static and dynamic simulators, each serving differ-
ent purposes and requirements (Rajamani, 2011). Given the need for real-world validation of
autonomous driving technologies, simulators contribute significantly to the iterative development
cycle.

Static models provide an initial framework for evaluating individual system components,
such as camera-based lane detection algorithms. Meanwhile, dynamic simulators facilitate com-
prehensive scenario testing, including the integration of 3D reconstructed environments for more
immersive and realistic experiences (Dosovitskiy et al., 2017a). These advanced simulations al-
low for extensive validation of ADAS functionalities like lane departure warning, adaptive cruise
control, and pedestrian detection before real-world deployment.

2.3.3 Component and System Testing

Beyond ADAS validation, vehicle simulators are instrumental in testing individual com-
ponents and entire vehicular systems. Sensor models, such as LiDAR, radar, and stereo cam-
eras, can be accurately replicated in simulation environments, allowing engineers to fine-tune
their performance under various conditions (Geiger; Lenz; Stiller, 2013). Real-time simulation
of dynamic vehicle behavior is essential for validating autonomous decision-making algorithms.
For instance, an autonomous emergency braking (AEB) system can be tested under simulated
high-speed conditions to ensure fast and reliable braking responses without risking actual vehi-
cle damage. Simulators also provide valuable insights into human-in-the-loop (HIL) interactions,
helping researchers analyze driver reactions when using semi-autonomous systems (Dosovit-
skiy et al., 2017a).
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2.4 Conclusion

Static and dynamic simulation models play a important role in modern ADAS and au-
tonomous vehicle research. While static simulators offer valuable insights into specific decision-
making processes and system functionalities in a controlled, non-moving 3D environment, dy-
namic simulators enable real-time testing by simulating vehicle behavior under various road
and traffic conditions with motion feedback, making them essential for realistic validation sce-
narios (Law, 2014; Peters et al., 2018). The development of high-fidelity simulation platforms,
such as DiM150 (Vi-grade, 2020), has empowered researchers to create realistic and scalable
testing environments for autonomous vehicle validation. By integrating sensor models, recon-
structed 3D environments, and advanced physics engines, these simulators provide a safe and
efficient alternative to real-world testing, allowing for detailed evaluation and optimization of ve-
hicle control algorithms, ADAS features, and human-machine interactions (Goodall, 2014; Raja-
mani, 2011). This research underscores the importance of simulation in advancing ADAS tech-
nologies, demonstrating how virtual environments contribute to the iterative development and
refinement of autonomous driving systems. By leveraging both static and dynamic simulation
models, researchers and automotive manufacturers can enhance safety, reliability, and perfor-
mance, paving the way for more robust and adaptable autonomous vehicle technologies in the
future.
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3 METHODOLOGY

This chapter outlines the research methods and procedures employed to develop guide-
lines for the framework specifically tailored for 3D reconstruction and environment simulation
using cameras. The chapter describes the qualitative approach adopted, detailing the research
strategy concerning the literature review and case studies that supported this work. It covers the
framework’s development process, including data preprocessing, point cloud generation, mesh
texturing, and post-processing evaluation for both reconstruction and simulation purposes. Fi-
nally, it concludes with the data collection process and the limitations encountered during the
research. This comprehensive methodology ensures that the proposed framework is both the-
oretically grounded and practically applicable for real-world scenarios in 3D reconstruction and

environment simulation.

3.1 Research Approach

To fulfill the objectives of this study, the workflow presented in table 1 was designed
to provide a structured and systematic approach. The process begins with understanding the
principles of data acquisition, followed by the selection of suitable sensors and the collection
of required data. Subsequently, the focus shifts to exploring vehicle-specific simulators, leading
to the selection of an appropriate simulation platform. Parallelly, the workflow includes studying
methodologies for 3D reconstruction and selecting the most suitable approach. This enables
the creation of a reconstructed dataset, which is then integrated with the chosen simulation
software. This designed table in 1 ensures a comprehensive and methodical progression toward
the research objectives.

The process begins with Understanding Data Acquisition (Step 01), which involves re-
searching various data collection techniques and defining the necessary requirements for the
project. This is followed by the Selection of Sensors (Step 02), where appropriate sensors are
evaluated and chosen based on their suitability for capturing data relevant to the simulation ob-
jectives. Once the sensors are selected, the Data Acquisition phase (Step 03) is carried out,
where the necessary data is collected to support the 3D reconstruction and simulation tasks.
Next, the focus shifts to the simulation environment. In Understanding Simulators in the Vehicle
Domain (Step 04), different simulators designed for vehicular applications are explored and an-
alyzed to determine their capabilities. Following this analysis, Selection of Simulator (Step 05)
is performed, where the most suitable simulation platform is chosen based on factors such as
realism, integration capabilities, and support for autonomous driving research.

The next phase involves the study and implementation of 3D reconstruction methodolo-
gies. In Understanding 3D Reconstruction (Step 06), various methodologies, tools, and work-
flows are examined to assess their effectiveness in generating realistic 3D representations.
Based on this analysis, the Selection of Reconstruction Methodology (Step 07) is made, en-
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Frame 1 — Steps for Data Acquisition, Simulation, and 3D Reconstruction

Step | Title Description

01 Understanding Data Acquisition | Research and analyze data acquisition
techniques and requirements.

02 | Selection of Sensors Evaluate and choose appropriate sen-
sors for the project.

03 | Data Acquisition Collect the required data using the se-
lected sensors.

04 | Understanding Simulators in the | Explore and study simulators specif-

Vehicle Domain ically designed for vehicular applica-
tions.
05 Selection of Simulator Choose the most suitable simulator for

the study’s objectives.

06 | Understanding 3D Reconstruc- | Investigate 3D reconstruction method-
tion ologies, tools, and workflows.

07 | Selection of Reconstruction | Decide on the methodology to be used
Methodology for 3D reconstruction.

08 Dataset Reconstruction Apply the chosen methodology to re-
construct the dataset.

09 | Integration of the Reconstruc- | Combine the reconstructed dataset
tion with the Selected Simulation | with the selected simulation software.
Software

Source: Own Work (2025).

suring that the most appropriate technique is chosen to create accurate and high-quality re-
constructions. With the selected methodology, the Dataset Reconstruction phase (Step 08) is
executed, applying the chosen reconstruction approach to generate the 3D models. In Integra-
tion of the Reconstruction with the Selected Simulation Software (Step 09), the incorporation of
the reconstructed dataset into the selected simulator is studied, aiming to enable its use in virtual

driving scenarios.

3.2 Systematic Literature Review

Systematic literature review (SLR) is a critical research methodology that ensures a com-
prehensive, unbiased, and transparent synthesis of existing knowledge on a specific topic. Unlike
traditional literature reviews, an SLR follows a structured process, including clearly defined re-
search questions, rigorous inclusion and exclusion criteria, and detailed documentation of the
search and selection processes. This systematic approach minimizes the risk of bias and en-
sures that all relevant studies are considered, leading to reliable and replicable results. By iden-
tifying gaps in the existing literature, it provides a solid foundation for future research, fosters
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evidence-based decision-making, and supports the development of new theories and method-
ologies. It is an invaluable tool for consolidating knowledge in rapidly evolving fields, enabling
researchers and practitioners to understand current trends, challenges, and best practices ef-
fectively. The meticulous nature of an SLR makes it a cornerstone for advancing academic rigor
and practical applications in any discipline.

In this study, the PRISMA (Preferred Reporting ltems for Systematic Reviews and Meta-
Analyses) (Page et al., 2021) methodology was used. PRISMA is an evidence-based approach
that provides a structured framework for identifying, selecting, evaluating, and synthesizing rel-
evant research studies in a transparent and reproducible manner. It ensures that systematic
reviews are comprehensive and unbiased by following a clear process that includes defining in-
clusion and exclusion criteria, systematically searching databases, screening articles, assessing
their quality, and analyzing the extracted data. By adopting PRISMA, this research guarantees a
rigorous and well-documented review of existing methodologies, tools, and techniques related to
3D reconstruction for autonomous driving simulations, ensuring the validity and reliability of the
findings. PRISMA methodology and subdivided into four key phases:

1. ldentification: This phase involved conducting a comprehensive search in selected
databases, guided by research axes and predefined search terms outlined in the re-
search protocol. This step ensured the retrieval of a broad range of potentially relevant
studies.

2. Selection: Articles were filtered based on the PRISMA criteria, which included a review
of titles and abstracts. This step assessed the alignment of each study with the research
topic, ensuring only relevant studies proceeded to the next phase.

3. Eligibility: In this phase, a full-text review of the articles shortlisted during the selection
stage was performed. Studies incompatible with the research focus were excluded,
resulting in the design of a refined research portfolio containing only relevant and high-
quality articles.

4. Inclusion: This final phase involved incorporating additional studies through qualita-
tive analysis, further enriching the final research portfolio. These studies were critically
analyzed to ensure they contributed meaningfully to the research objectives.

In this research, two systematic reviews were conducted to address the double require-
ment of the study: understanding the 3D reconstruction process and exploring the simulation
process. The first review aimed to comprehensively analyze the methodologies, tools, and tech-
nologies employed in 3D reconstruction, including data acquisition, processing techniques, and
rendering workflows. This review provided insights into the state-of-the-art practices and chal-
lenges in reconstructing accurate and detailed 3D environments. The second review focused on
the simulation process, examining frameworks, algorithms, and applications used for simulat-
ing realistic environments and interactions. By exploring the key developments and limitations in
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simulation technologies, this review facilitated a deeper understanding of how simulated environ-
ments can complement 3D reconstructions. Together, these reviews established a foundational
understanding of the two interconnected domains, enabling the integration of 3D reconstruction
and simulation for more comprehensive and effective applications.

3.2.1 3D Reconstruction Approach

To conduct a comprehensive survey of techniques for 3D point cloud generation and
mesh texturing, a SLR was carried out following the PRISMA methodology (Preferred Reporting
Items for Systematic Reviews and Meta-Analyses) (Page et al., 2021). This methodology allowed
to identify studies congruent with the topic analyzed through a systematic search in pre-selected
databases following some relevance criteria. First, it was necessary to determine the keywords
related to the topic and define the search criteria in the selected databases. Table | exemplifies
the information regarding the research protocol used, such as the indication of its central axis
of interest, the systematic literature review method used, the nature of the researched studies,
possible language restriction, and the operated database.

Table 1 — Search Axes for 3D Reconstruction.

Search Axes Temporal IEEE | ACM MDPI | ArXiv | Total
Cut Xplore
(“3D City”) AND (“Reconstruction from | 2010 - 2024 | 528 01 67 23 619

images” OR “Reconstruction from
video” OR “Video-Based Reconstruc-
tion” OR “Image reconstruction”) NOT
(“Microscopy” OR “Biology” OR “X-ray
imaging” OR “medical image process-
ing” OR “Indoor” OR “single area” OR
“bridge”)

(“3D City” OR “Urban 3D Modeling” | - 536 10 0 0 546
OR “Cityscape 3D Generation”) AND
(“Ground Video”) OR (“Reconstruction
from images” OR “Reconstruction from
video” OR “Video-Based Reconstruc-
tion” OR “2D images” OR “Image re-
construction”) AND (“Autonomous Ve-
hicle*”) NOT (“aerial images” OR
“Drone”) NOT (“Lidar”) NOT (“Sonar”
OR “Underwater”)

Source: Own work (2025).

The frame 1 presents the search axes used for identifying relevant studies in the con-
text of 3D city reconstruction, detailing the query structure, temporal constraints, and results
obtained from various databases. Two distinct search axes were employed. The first axis fo-
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cuses on reconstructing 3D cities from images or videos, excluding topics unrelated to the study,
such as microscopy, medical imaging, and specific domains like indoor or bridge reconstruc-
tion. This search was limited to the period from 2010 to 2023 and yielded a total of 619 results,
with contributions from IEEE Xplore (528), ACM (1), MDPI (67), and ArXiv (23). The second
axis broadens the scope to include urban 3D modeling and cityscape generation, emphasizing
ground-based video and images in the context of autonomous vehicles, while excluding aerial
images, drone-based reconstruction, and sensor technologies like LiDAR and sonar. This query
was not temporally restricted and resulted in 546 studies, primarily from IEEE Xplore (536) and
ACM (10). Together, these search axes comprehensively capture literature on 3D reconstruction
methods relevant to urban modeling and autonomous systems.

Frame 2 — Search Protocol for 3D Reconstruction.

Direction Protocol

Search Aim (“3D City”) AND (“Reconstruction from images” OR “Re-
construction from video” OR “Video-Based Reconstruction”
OR “Image reconstruction”) NOT (“Microscopy” OR “Biol-
ogy” OR “X-ray imaging” OR “Medical image processing”
OR “Indoor” OR “Single area” OR “Bridge”)

Search Strategy Utilization of logical operators (AND, OR) to connect search
terms

Databases IEEE Xplore, ACM Digital Library, MDPI, and ArXiv

Publication Types Articles, Review Articles, and Conference Papers

Language English

Search Period 2010 - 2024

Source: Own Work (2025).

Several databases were tested to find relevant studies for this research. The selection
process prioritized databases that returned the highest number of results related to the study’s
objectives. Initially, Web of Science was considered; however, when applying the search crite-
ria related to the research focus, only a single document was found. As a result, alternative
databases were explored to ensure a broader and more comprehensive collection of sources.
One of the main challenges encountered during the literature review was the difficulty in finding
studies that fully integrated all aspects of the research. Most of the retrieved papers focused on
specific subtopics within the broader domain rather than addressing the complete scope of 3D
reconstruction, simulation, and integration in a unified framework. This required a careful selec-
tion and combination of different sources to build a more comprehensive understanding of the
field.

The search terms were defined according to the different synonyms of the concept of 3D
point cloud generation and mesh texturing observed in the literature, and their variations were
included in the searches using the Boolean operator “OR”. The search terms were used in En-
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glish to involve a broader range of studies. This systematic literature review applied a temporal
cut from 2010 to 2024. The reason behind this cut-off was the unavailability or obsolescence of
many of the methods found before 2010, rendering them unsuitable for the present study. There-
fore, the selected timeframe ensured that the most relevant and up-to-date methodologies were
included in the analysis, optimizing the effectiveness and applicability of the study. In addition
to the selected search axes, attempts were made to include additional keywords and search
criteria to ensure comprehensive coverage of relevant literature. Despite multiple attempts with
alternative axes, the results did not significantly contribute to the systematic literature review.
When subjected to PRISMA’s second phase, only a few articles remained. Therefore, the axe
mentioned in Table 2 was considered the most suitable for this study, providing a focused and
relevant dataset for the analysis. Subsequently, the present research conducted a systematic re-
view of studies identified through the PRISMA methodology, following its structured information
flow.

Figure 13 — Development of PRISMA methodology steps

[ Identification of studies via databases and registers [ Identification of studies via other methods
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Source: Own Work (2025).

All stages of the systematic literature review were supported by the Mendeley software,
characterized as a computational tool for managing references. Therefore, 39 duplicates were
identified and discarded from the analysis. Figure 13 represents all the steps needed to develop
the methodology applied to the articles obtained, from its initial search in the databases to the
selection of the final portfolio. Once all the steps described in the method were carried out, a
final portfolio was obtained consisting of 11 articles, which were submitted for further analysis,
thus being able to contribute to the objective of the research on the study of the topic. Figure 13
illustrates the PRISMA flow diagram used in this research, detailing the different phases involved
in the identification, screening, eligibility assessment, and final inclusion of studies.
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The identification phase involved searching for records in multiple databases, including
IEEE Xplore, ACM Digital Library, MDPI, and ArXiv, which initially yielded 619 results. After re-
moving duplicate entries (n=7), 612 records were screened based on their title, abstract, and
keywords to assess their relevance to the study. At this stage, 402 studies were excluded for
not aligning with the research objectives. The screening phase consisted of retrieving the full
text of the remaining 210 articles. However, after a complete reading, 155 studies were deemed
irrelevant and excluded. Additional sources were identified through website searches and cita-
tion tracking, contributing 5 extra articles, all of which passed the eligibility criteria. 62 studies
were included in the final literature review. These articles formed the basis for analyzing 3D
reconstruction methodologies, simulation techniques, and integration approaches used in au-

tonomous vehicle research.

3.2.2 Simulation Approach

Aiming to explore the methodologies and tools related to the simulation of autonomous
and connected vehicles, this section was developed following a methodology similar to that
used in the Reconstruction Approach section, employing systematic searches across multiple
databases to ensure comprehensive coverage of relevant studies. The approach focuses on
identifying simulation frameworks, driving simulators, and testing environments that support the
integration of 3D reconstructed datasets into virtual scenarios. By leveraging a structured and
methodical process, this section aims to establish a robust foundation for the selection and im-
plementation of simulation tools, aligning with the overall objectives of the study.

Table 2 presents the search axes used to identify relevant studies related to vehicle sim-
ulation, following a methodology similar to that described in the Reconstruction section. The
table outlines the queries, temporal constraints, and results obtained from multiple databases,
emphasizing their alignment with the study’s focus on autonomous and connected vehicles. The
first axis focuses on simulation approaches for connected and autonomous vehicles, particularly
those involving ADAS, yielding a total of 205 results from IEEE Xplore, ACM, and MDPI. The
second axis refines the scope by targeting ADAS-specific simulation studies for autonomous ve-
hicles, resulting in 68 relevant studies. The third axis broadens the query to include simulator
testing and comparisons for automated driving, generating the most extensive results with 549
studies. The fourth axis emphasizes virtual environments and testing platforms for autonomous
vehicles, contributing 116 studies. This systematic search strategy ensures comprehensive cov-
erage of simulation methodologies, aligning with the research objectives and providing a solid
foundation for the simulation framework.

Frame 3 outlines the search protocol established for identifying studies related to sim-
ulation in the context of autonomous and self-driving vehicles. The table provides a detailed
overview of the systematic approach employed to ensure comprehensive and relevant results.
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Table 2 — Search Axes for Simulation.

Search Axes Temporal IEEE | ACM MDPI | Total
Cut Xplore
("Connected  Vehicles" OR "Au- | 2020-2024 81 124 0 205

tonomous Vehicles" OR "Connected
Autonomous Vehicles" OR "Self-Driving
cars") AND ("Simulation" OR "Driving
simulator" OR "Vehicle simulation”
OR "Driving simulation environment”
OR "Simulated driving") AND ("ADAS"
OR "Advanced Driver Assistance Sys-
tems")

("Autonomous Vehicles" OR "Self- | 2020-2024 68 0 0 68
Driving cars") AND ("Simulation"
OR "Driving simulator" OR "Vehicle
simulation” OR "Driving simulation
environment" OR "Simulated driving")
AND ("ADAS" OR "Advanced Driver
Assistance Systems")

("Autonomous Vehicles" OR "Self- | 2020-2024 239 307 4 549
Driving Cars" OR "Automated Driving")
AND ("Driving Simulator" OR "Vehicle
Simulation” OR "Driving Simulation
Environment" OR "Simulated Driving"
OR "Simulator Comparison" OR "Open
Source Simulator" OR "Simulation
testing")

("Autonomous Vehicles" OR "Self- | 2020-2024 12 104 0 116
Driving Cars" OR "Automated Driving")
AND ("Driving simulator" OR "Vehicle
simulation" OR "Driving simulation
environment" OR "Simulated Driving"
OR "Simulator Comparison" OR "Open
Source Simulator" OR "Simulation test-
ing") AND ("Virtual environment" OR
"Simulated Environments" OR "Testing
Environments")

Source: Own work (2025).

The PRISMA methodology, as previously explained, was applied to the simulation ap-
proach to systematically identify and select relevant studies. Using this structured process, stud-
ies were screened, evaluated, and included based on predefined criteria, focusing on simulation
methodologies and tools related to autonomous vehicles. As a result of this application, the work-
flow illustrated in Figure 14 was generated, detailing the steps and outcomes of the systematic
review in the context of the simulation approach.
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Frame 3 — Search Protocol for Simulation.

Direction Protocol

("Autonomous Vehicles" OR "Self-Driving Cars" OR "Au-
tomated Driving") AND ("Driving Simulator" OR "Vehicle
Simulation" OR "Driving Simulation Environment" OR "Sim-
ulated Driving" OR "Simulator Comparison” OR "Open
Source Simulator" OR "Simulation testing")

Search Aim

Search Strategy Utilization of logical operators (AND, OR) to connect search

terms
Databases IEEE Xplore, ACM Digital Library and MDPI
Publication Types Articles, Review Articles, and Conference Papers
Language English
Search Period 2020 - 2024

Source: Own work (2025).

Figure 14 — Development of PRISMA methodology steps
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Source: Own work (2025).

3.3 Content Analysis

In addition to the systematic literature review, content analysis was conducted using
NVIVO software. This allowed identify several themes related to the 3D point cloud genera-
tion techniques and mesh texturing. Manual nodes were generated with NVIVO version 10.
This method facilitated a comprehensive exploration of the subject. This allowed identify sev-
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eral themes related to the techniques, enabling a deeper understanding of the topic. By utilizing
NVivo, a comprehensive exploration of the subject was facilitated. The images presented in
Frames 4, 5, 6 and 7 were obtained from the nodes in NVivo, visually representing the relation-
ship between the techniques mentioned.

Frames 4, 5, 6 provides an organized summary of datasets, equations, and introductory
nodes used in the study, categorized into three main sections: Datasets, Equations, and Intro-
duction. Each category highlights key resources, methods, and technologies essential to the
research, along with their sources and references. In the Datasets category, datasets like KITTI,
HoliCity, and NYUv2 are listed for their contribution to 3D reconstruction and simulation, focus-
ing on urban modeling and object detection. The "Sources" column indicates how many studies
utilized each dataset, while the "Refs" column shows the number of references. For example, the
KITTI dataset has three sources and four references, emphasizing its significance.

Frame 4 — Datasets

Category Node * Subnode Sources | Refs
City Intrinsic Images dataset 1 2
DDAD 1 1
DTU 1 1
Geoportal data 1 1
HoliCity 1 4
KITTI 3 4
MegaDepth 1 1

Datasets seenes 1 1
NYUv2 1 1
Open streets map 1 1
RobotCar 1 1
ScanNet 2 2
Shapenet 1 2
Stanford-2D-3D 1 1
SUNCG 1 1
SYNTHIA 1 2
WikiScenes 1 1

Source: Own Work (2025).

The Equations category includes mathematical models and algorithms critical for pro-
cessing spatial and structural data. Techniques such as Chamfer Distance, Earth Mover’s Dis-
tance, and Epipolar Constraint are essential for aligning datasets and optimizing the reconstruc-
tion process. Each equation is accompanied by its corresponding sources and references, in-



61

Frame 5 — Equations

Category Node * Subnode Sources | Refs
Bruijn sequence 1 1
Chamfer Distance (CD) 1 1
Cluster 1 4
Earth Mover’s Distance (EMD) 1 1
Epipolar constraint 1 2
Gabor filter 1 2

Equations Gaussian filter 1 1
Integer least square 1 1
Integer Linear Programming (ILP) 1 1
MRF (Markov Random Field) 1 1
Projector 1 2
Triangulation 1 1
TSDF 2 2

Source: Own Work (2025).

Frame 6 — Sensors

Category Node * Subnode Sources | Refs
2D laser sensor 1 2
Aerial Laser Scanning (ALS) 1 2
Digital camera 8 11
Google Earth 2 4
Hand Held camera 2 2

Sensors Laser 1 2
Laser scanners 1 3
Lidar 7 13
Mobile Laser Scanning (MLS) 1 1
Satellite 4 5
Sensor fusion 2 2
Truck 1 2

Source: Own Work (2025).

dicating its application within the study. The Sensors Nodes section details key technologies
and tools like Lidar, digital cameras, and laser scanners, which are vital for data acquisition.
Other nodes, such as Google Earth and Mobile Laser Scanning, illustrate the variety of meth-
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ods employed for gathering and integrating data in the study. The "Lidar" node, for instance, is

referenced seven times, highlighting its central role.

Frame 7 — Methods subnodes.

Category Node * Subnode Sources | Refs
Geometry extraction 3 4
Agisoft Photoscan 1 1
ArcGIS Pro 1 2
Coordinate transformation 1 1
Geometry extraction HAStools 1 1
MicMac 1 1
Multi-view stereo 1 1
PolyFit 1 1
VB3D aerial multiview stereo 1 1
Mesh Reconstruction 0 0
Ball-pivoting 2 10
Bundle adjustment 6 14
Deep learning 8 12
Digital Surface Map (DSM) 2 11
Mesh reconstruction Gaussian ° 23
Greedy triangulation 1 6
Multi-View Stereo 12 15
NeRF (Neural Radiance Fields) 2 5
Other algorithms 12 27
Poisson Reconstruction 8 14
Surface reconstruction 2 8
Other Other 27 66
Point cloud 3 4
Multi-view Geometry 2 2
Point cloud Neural Network 2 2
Point Cloud Library (PCL) 1 1
Render-and-compare 1 8
Structure from motion 18 33
Post processing Post-processing 13 19

Source: Own Work (2025).
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Frame 7 provides an overview of methods and subnodes categorized into key areas rele-
vant to the study: Geometry Extraction, Mesh Reconstruction, Point Cloud, and Post-Processing.
Each category highlights specific techniques, tools, and algorithms employed in 3D reconstruc-
tion processes, along with their associated sources and references. The Geometry Extraction
category focuses on methods for extracting spatial and structural information from data. Notable
techniques include Agisoft Photoscan, ArcGIS Pro, and Multi-View Stereo, each contributing to
the generation of accurate geometric representations. For instance, Geometry Extraction has
three sources and four references, reflecting its foundational role in the process.

The Mesh Reconstruction category outlines methods for generating 3D surface models.
Techniques such as Ball-pivoting, Bundle Adjustment, and Poisson Reconstruction are central
to this category, with high citation frequencies (e.g., Bundle Adjustment has six sources and 14
references). Additionally, innovative approaches like Deep Learning and Neural Radiance Fields
(NeRF) highlight advancements in reconstruction algorithms, showcasing their growing signif-
icance in the field. In the Point Cloud category, methods like Structure from Motion (with 18
sources and 33 references) and the Point Cloud Library (PCL) are integral to generating and
processing 3D point data. These approaches are pivotal for accurately capturing and represent-
ing complex spatial environments, bridging the gap between raw data and final models. The
Post-Processing category focuses on refining and optimizing 3D models. Post-processing, with
13 sources and 19 references, ensures that reconstructed models meet accuracy and quality
standards required for further applications.

Table 3 — Simulators and their corresponding sources and references.

Simulator Sources Refs
CARLA 4 6
SUMO 3 5
Custom-built 4 4
TORCS 1 1
Matlab 1 1
Carsim 1 1
SCANNER 1 1
LGSVL 2 2
Autoware 1 1
CarMaker 1 1
GTAS5 2 2
APOLLO 2 2

Source: Own Work (2025).

Table 3 presents an overview of the simulators used in the study, along with the number
of sources and references associated with each. The table highlights the diversity of simulation
tools utilized in research related to autonomous and connected vehicles. CARLA emerges as the
most frequently mentioned simulator, with 4 sources and 6 references, showcasing its popularity
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and robustness in the field. SUMO and a custom-built simulator also appear frequently, each with
multiple sources and references, emphasizing their significance in specific simulation contexts.

Other simulators, such as TORCS, MATLAB, Carsim, and SCANNER, have limited men-
tions, indicating niche applications or specialized use cases. Meanwhile, LGSVL, Autoware, Car-
Maker, GTA5, and APOLLO also contribute to the study, each having 1-2 sources and references,
demonstrating the variety of tools available for different simulation needs. This table underscores
the breadth of simulation technologies employed, reflecting their adaptability to various research
objectives and scenarios. The inclusion of both well-established and less common simulators
highlights the comprehensive approach taken to ensure a diverse and well-rounded analysis in
the study.

3.4 Data Collection

This section outlines the processes and considerations involved in acquiring the data
necessary for this study. It begins with the Sensor Evaluation and Selection subsection, which
details the criteria and methodology used to assess and choose the most suitable sensors for
capturing the required data, ensuring compatibility with the objectives and the simulation work-
flow. The subsequent subsection, Dataset "Road", describes the collection and characteristics of
a dataset focused on road environments, emphasizing the data’s structure, resolution, and rel-
evance to 3D reconstruction and simulation. Finally, the Dataset "UTFPR" subsection highlights
a second dataset acquired from the UTFPR campus, providing complementary data to enhance
the study’s scope and robustness.

3.4.1 Sensor Evaluation and Selection

Based on the results presented in Frame 6, the methodology selected for this study
was "Hand-held camera" due to the ease of obtaining the dataset. This approach allowed for a
more accessible and straightforward data acquisition process, ensuring the project’s feasibility
within the given constraints. However, for future work, the use of sensor fusion is proposed to
enhance the quality and accuracy of the datasets. Sensor fusion, combining data from multiple
sensors, would provide more comprehensive and robust results, enabling more advanced 3D
reconstruction and simulation capabilities.

The use of a hand-held camera in this reconstruction work offers several benefits, making
it a practical and efficient choice for data acquisition. Cameras are highly accessible and cost-
effective, eliminating the need for specialized or expensive equipment. They provide flexibility
during data collection, allowing operators to capture images from diverse angles and perspec-
tives, ensuring comprehensive coverage of the environment. The portability of hand-held cam-
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eras makes them ideal for use in various settings, including indoor and outdoor environments,
where other equipment might face logistical challenges.

The straightforward operation of these cameras reduces the complexity of the data ac-
quisition process, enabling rapid deployment and adaptation to different scenarios. Furthermore,
modern cameras often include high-resolution imaging capabilities, ensuring sufficient detail
for accurate 3D reconstruction. These advantages make this strategy a versatile and practical
choice for projects focused on efficient and scalable 3D reconstruction.

3.4.2 Dataset "UTFPR"

The dataset for this study, referred to as the UTFPR dataset, was generated using the
selected methodology of a hand-held camera. This approach allowed for the capture of 177
high-resolution images of the UTFPR campus, ensuring comprehensive coverage of the target
environment. The hand-held camera’s flexibility enabled the collection of data from various an-
gles and perspectives, which is critical for accurate 3D reconstruction. The dataset focuses on
key architectural and spatial features of the campus, providing a robust foundation for testing and
validating the reconstruction and simulation workflows. This collection represents an accessible
and practical starting point, paving the way for further enhancements in future studies, such as
the integration of additional data sources through sensor fusion. Figure 15 presents a selection
of images captured for the dataset, showcasing the diversity and quality of the visual data used
in the study.

Figure 15 — Dataset UTFPR.

Source: Own Work (2025).

Subsequently, a second partial dataset was generated from the original UTFPR dataset
to facilitate quick testing and iterative evaluations. This partial dataset consists of 45 images care-
fully selected from the initial collection, ensuring sufficient coverage of key areas while reducing
processing time. The smaller dataset was specifically designed for rapid testing of the recon-
struction and simulation processes, enabling efficient validation of methodologies and workflows
without the need to process the entire dataset. This approach ensures a balance between accu-
racy and computational efficiency during preliminary tests.
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3.5 Integration of Proposed Methods

The methodological structure described in this chapter is built upon a solid foundation
of systematic research, ensuring that each phase aligns with state-of-the-art techniques in 3D
reconstruction and simulation. As introduced earlier, the PRISMA methodology was used to
conduct a rigorous systematic literature review, guiding the selection of studies that contributed to
defining the best practices and methodologies adopted in this work. Figure 13 and 14 illustrates
the PRISMA flowchart, outlining the steps taken to refine the literature search and select relevant
studies.

This process was essential for ensuring that the workflow proposed in Table 1 is based
on validated methodologies and proven techniques. The identification, screening, and eligibility
phases allowed for a careful selection of high-impact research papers, ensuring that the inte-
gration of methods presented in the research is supported by well-established knowledge. By
following this systematic approach, the methodology ensures that the integration between data
acquisition, 3D reconstruction, and simulation is well-grounded in previous research. The insights
gained from the literature review were crucial in determining the most suitable sensors, recon-
struction techniques, and simulation platforms, reinforcing the structured and coherent workflow
proposed in this study.

3.5.1 3D Reconstruction process

The 3D reconstruction process is a multi-stage workflow that ensures the creation of
accurate and detailed models. It begins with image pre-processing to prepare the input data,
followed by point cloud generation to extract spatial geometry. Next, mesh texturing adds realistic
surface details, enhancing the model’s visual fidelity. The final stage involves adjustments and
post-processing to refine the reconstruction for practical applications. Figure 16 illustrates this
process in a clear and systematic flowchart.

The first step involves image segmentation, dataset quality evaluation, and pre-
reconstruction adjustments. This step ensures that the input data is clean, accurate, and suit-
able for further processing. Image segmentation separates the relevant features from the back-
ground, making it easier to extract meaningful geometry. Quality checks ensure that datasets
have minimal noise and artifacts, reducing potential errors during reconstruction. Additionally,
pre-reconstruction adjustments such as alignment and normalization of images prepare the data
for optimal performance in subsequent stages. This may include noise reduction, image align-
ment, and feature extraction to ensure accurate reconstruction (Ballabeni et al., 2015; Calantro-
pio et al., 2020).

In the second step, techniques for generating or acquiring point clouds are applied. For
projects utilizing LiIDAR sensors, the data acquisition process involves scanning the environment
to produce dense 3D point clouds. These point clouds represent the spatial geometry of objects
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Figure 16 — Flowchart of the 3D Reconstruction Process.
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Source: Own Work (2025).

and environments with high precision. Alternatively, geometry extraction can be performed us-
ing image-based techniques, where photogrammetry or stereo vision methods are employed to
create 3D structures from 2D images. This stage lays the groundwork for building a detailed and
accurate 3D model. Techniques, such as stereo-matching (Hu et al., 2022), structure from mo-
tion (Pylvanainen et al., 2012), and LiDAR scanning (Ledoux et al., 2021), are commonly used
to derive these point clouds from the input data.

Once the point cloud is generated, the mesh texturing phase adds surface texture in-
formation to the point cloud, creating a visually realistic representation of the scene (Hu et al.,
2022; Han; Shen, 2019; Mlller et al., 2022; Tancik et al., 2023). Texturing involves overlaying
photometric data, such as color or surface details, onto the geometric structure to produce a
visually realistic model. This step enhances the model’s fidelity by adding surface properties that
accurately reflect the real-world appearance. The generation of the 3D environment involves as-
sembling layers and integrating the textured model into a virtual or augmented reality context,
creating a complete scene for visualization or analysis.

The final step includes verification of results, reprocessing, and manual adjustments to
refine the 3D model. Quality checks ensure that the reconstructed model is free of errors, with
all features accurately represented. If discrepancies are identified, reprocessing techniques are
applied to address them. Manual adjustments, such as mesh smoothing, hole filling, or edge
refinements, ensure that the model meets the desired standards of accuracy and visual qual-
ity. This stage is critical for preparing the model for practical applications, such as simulations,
analyses, or presentations. Adjustments are made to refine the reconstructed model, ensuring
accuracy and consistency (Xu; Wang; An, 2014; Buyukdemircioglu; Kocaman, 2020). This may
involve geometric corrections, texture blending, or fine-tuning of parameters to improve the over-
all quality of the reconstruction. (Maller et al., 2022; Buyukdemircioglu; Kocaman, 2020).
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4 FRAMEWORK DEVELOPMENT

This chapter outlines the process of framework development by detailing the study of
reconstruction and simulation methodologies. Starting with the selected methodology, a system-
atic approach was employed to analyze various techniques individually. Each methodology was
evaluated based on key criteria, including publication dates, recent updates, alignment with state-
of-the-art practices, and overall suitability for the study’s objectives. This thorough examination
ensured that the selected methods were not only current but also aligned with best practices
in the field. The chapter concludes with the definition of the final methodologies for both re-
construction and simulation, providing a solid foundation for the integration of these processes
into the overall framework. This structured and detailed approach guarantees the reliability and
relevance of the developed framework.

After conducting a content analysis of the NVIVO nodes, all identified 3D reconstruc-
tion technologies and applications were categorized and organized into three distinct tables.
These tables provide a comprehensive overview of the methodologies and tools used in different
stages of the reconstruction process. The first table focuses on methodologies and applications
specifically related to point cloud generation, detailing tools and techniques employed for ex-
tracting spatial data. The second table addresses mesh generation, listing tools used to create
3D surface models from point cloud data. Finally, the third table, categorized as Other, includes
applications for post-processing reconstructions, as well as tools for evaluating and analyzing
the results of 3D reconstruction processes. This organization ensures a clear and systematic
presentation of the technologies, facilitating their understanding and comparison.

4.1 Point Cloud Generation

Frames 8 and 9 provides an extensive overview of various tools and techniques used for
3D reconstruction, detailing their characteristics, methodologies, and updates. Each row repre-
sents a specific tool or framework, highlighting its contributions to the field and the approaches
it employs for generating 3D models. It includes key information for each tool, such as its name,
the number of references citing it, the year of creation, the last update, the techniques used, and
a brief description of its methodology. For instance, Meshroom, created in 2018 and updated in
2024, leverages Structure-from-Motion (SfM), SIFT, Multi-View Stereo (MVS), and PMVS/CMVS
techniques for reconstruction, providing both a user-friendly interface and advanced customiza-
tion options through its integration with AliceVision. Similarly, ColMap, a widely cited tool, com-
bines SfM and MVS to deliver precise and detailed reconstructions.

The table also includes advanced methodologies such as NeRF (Neural Radiance Fields)
used in Nerfstudio, which employs neural networks to synthesize novel views, showcasing the
integration of artificial intelligence in modern reconstruction processes. Tools like MVS-Net and
3D-ReConstNet further emphasize the role of deep learning, employing neural architectures
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Frame 8 — Tools and Techniques for 3D Reconstruction

Name

Refs

Year

Last Up-
date

Techniques
Used

Technique Description

Meshroom

2018

2024

SFM, SIFT,
MVS,
PMVS/CMVS

Based on the AliceVision
pipeline, Meshroom offers
an easy-to-use graphical
interface for 3D reconstruc-
tion. For more advanced
customization,  AliceVision
can be used directly. Both
tools can be combined for
specific tasks or advanced
features.

ColMap

2016

2024

SFM, MVS

Combines  Structure-from-
Motion (SfM) and Multi-View
Stereo (MVS) for accurate
3D reconstruction.

MicMac  Pho-
togrammetry
Software

2003

2024

SFM, MVSM

Implements  Structure-from-
Motion (SfM) and Multi-View
Stereo  Image  Matching
(MVSM) for photogrammetry.

VisualSFM

2010

SFM, SIFT,
PMVS/CMVS

A GUIl-based application
for 3D reconstruction us-
ing Structure-from-Motion
(SftM). It integrates SIFT
on GPU, Multicore Bundle
Adjustment, and incremental
SfM techniques. It supports
dense reconstruction us-
ing PMVS/CMVS. Outputs
are compatible with tools
like CMP-MVS, MVE, and
MeshRecon.

Nerfstudio

2023

2024

NeRF

Neural Radiance Fields
(NeRF) focuses on 3D re-
construction using neural
networks to synthesize novel
views.

Point Cloud Li-
brary (PCL)

27

2011

2024

Various
methods

Offers an extensive set of al-
gorithms and tools for point
cloud processing, covering
segmentation, filtering, and
visualization tasks.

for depth inference and single-view reconstruction. Other entries,

Source: Own Work (2025).

such as Pix4Dmapper and
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Frame 9 — Tools and Techniques for 3D Reconstruction 2

Name

Refs

Year

Last Up-
date

Techniques
Used

Technique Description

OpenMVG/
OpenMVS

2012

2023

StM, MVG

OpenMVG (Open Multiple
View Geometry) specializes
in Multi-View Geometry and
Structure-from-Motion (SfM).
OpenMVS is tailored for
dense 3D reconstruction.

AliceVision

2018

2024

Various tech-
niques

Features cutting-edge algo-
rithms for photogrammetry,
feature  matching, dense
3D reconstruction, camera
tracking, and Structure-from-
Motion (SfM).

PMVS/CMVS

2011

2019

PMVS,
CMVS, MVS

PMVS (Patch-based Multi-
View Stereo) and CMVS
(Clustering for Multi-View
Stereo) are used for dense
3D reconstruction in pho-
togrammetry and computer

vision pipelines.

Gipuma

2015

2022

MVS, MVG,
Photogram-
metry

Implements Multi-View
Stereo  (MVS), Multi-View
Geometry (MVG), and Pho-
togrammetry for accurate 3D
reconstruction.

MVS-Net

2019

2020

Deep Learn-
ing, MVS

Uses neural networks for
depth map inference from
unstructured multi-view im-
ages. Includes the extended
R-MVSNet method.

Pix4Dmapper

2011

2023

Various tech-
niques

Provides professional pho-
togrammetry software for
generating 3D models and
maps from images.

Agisoft
Photoscan
(Metashape)

2010

2024

Various tech-
niques

A professional tool for pho-
togrammetry and 3D recon-
struction from images.

Source: Own Work (2025).

RealityCapture, highlight professional photogrammetry software tailored for industry use, offering
high-quality results for mapping and modeling applications. Additionally, versatile libraries like
the Point Cloud Library (PCL) stand out for their wide range of algorithms supporting point cloud
processing tasks, including segmentation and visualization.
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4.1.1 Structure from motion

Structure-from-motion (SfM) is a pivotal technique in computer vision for reconstructing
3D scenes from 2D images. As proposed by (Untzelmann et al., 2013) and (Cheng et al., 2016),
SfM algorithms leverage multiple photos of a scene taken from different viewpoints to estimate
the 3D structure and camera poses. It involves critical steps, such as feature extraction, match-
ing, and triangulation, as outlined in (Mufioz-silva et al., 2021). Notably, recent advancements in
SfM have enabled its application to large datasets containing millions of images (Untzelmann et
al., 2013). They have paved the way for efficient reconstruction of entire cities, overcoming chal-
lenges related to data acquisition and processing (Zhang; Jiang; Ai, 2015). SfM techniques have
been integrated with deep learning methods, as demonstrated in (Ma et al., 2022), to enhance
feature detection and reconstruction accuracy, particularly in hyperspectral imaging scenarios.

Figure 17 — Main steps in Sfm digitalization process.
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Source: Own Work (2025).

The pipeline comprises several vital steps that collectively contribute to accurately recon-
structing 3D scenes from 2D images. Initially, feature extraction is performed to identify distinctive
points within each image, utilizing some algorithms, such as SIFT or SURF (Cheng et al., 2016;
Munoz-silva et al., 2021; Zhang; Jiang; Ai, 2015). Then, feature matching is conducted to es-
tablish correspondences between features across multiple images. These correspondences are
crucial for the subsequent step of 3D reconstruction, where the initial 3D structure and camera
positions are estimated using techniques like triangulation. To refine these estimations, bundle
adjustment is employed, optimizing both the 3D points and camera parameters to minimize the
reprojection errors. Optionally, the process may include meshing and texturing from the point
cloud, which involves generating a surface mesh and applying textures to create a realistic and
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visually compelling 3D model. An explanatory flowchart of the SfM process is provided in Figure
17, illustrating the main steps involved in this robust 3D reconstruction technique. This figure is
based on the work of (Bouain et al., 2018; Riel, 2016; Yu et al., 2022; Al-zoube, 2022; Youssef;
Shehaby; Fayed, 2020; Cgal.. ., ).

Structure-from-motion (SfM) algorithms enable the simultaneous computation of camera
projection matrices and 3D points by utilizing corresponding points in multiple views. Formally,

given n projected points wu;; in m images, where i € {1,...,m} and j € {1,...,n}, the
objective is to determine both the projection matrices P, ..., P, and a consistent 3D structure
X1,...,X,. The typical steps involved in reconstructing a 3D scene using SfM are as follows:

1. Feature Extraction: Detecting distinctive points or features in the images.
2. Feature Matching: Identifying corresponding features across different images.
3. 3D Reconstruction: Estimating the initial 3D structure and camera positions.

4. Bundle Adjustment: Refining the 3D structure and camera parameters to minimize

reprojection errors.

5. Meshing and Texturing from the Point Cloud (optional): Generating a surface mesh
and applying textures for a realistic 3D model.

4.1.2 Multi-view Geometry

Multi-view geometry is a fundamental concept in computer vision that deals with the geo-
metric relationships between multiple views of a scene or object. It encompasses techniques and
algorithms for understanding and exploiting the information captured from different viewpoints to
reconstruct the three-dimensional structure of the scene. MVG is a mature and complete open-
source project targeting a Structure-from-Motion pipeline, which recovers camera poses, and a
sparse 3D point cloud from an input set of images, playing a crucial role in several applications,
including 3D reconstruction, stereo vision, object tracking, and camera calibration (Moulon et
al., 2016). By analyzing the correspondences between points in different views and leveraging
geometric constraints, such as epipolar geometry and triangulation, it enables the estimation of
camera poses, depth information, and scene geometry. Techniques, such as multi-view stereo
(MVS), leverage multi-view geometry principles to reconstruct detailed 3D models from images
or video sequences. It provides a pipeline using MVG and MVS (Xie; Li; Qi, 2019). Addition-
ally, multi-view geometry forms the basis for advanced applications, such as augmented reality,
where accurate alignment of virtual content with the real-world scene requires precise estimation
of camera poses and scene geometry from multiple viewpoints. Multi-view geometry provides the
theoretical foundation and practical tools for extracting rich three-dimensional information from
various views, enabling a wide range of computer vision tasks and applications.
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4.1.3 Neural Network

Neural networks have emerged as powerful tools in 3D reconstruction, offering innova-
tive solutions to complex problems. Leveraging deep learning capabilities, neural networks can
effectively process large volumes of data and extract meaningful features for reconstructing 3D
scenes. These networks can be trained to directly associate sensor inputs and patterns with
desired spatial maps or learn from geometric and density estimations to enhance 3D represen-
tations. This spatial understanding can then be improved by leveraging diverse data sources.
Several architectures, such as convolutional neural networks (CNNs) (Li et al., 2020) and re-
current neural networks (RNNs) (Kundu; Li; Rehg, 2018), have been adapted and tailored to
address specific challenges in 3D reconstruction, including point cloud generation and mesh
reconstruction. Through the iterative refinement of network architectures and optimization tech-
niques, neural networks have been extensively applied to 3D reconstruction.

4.2 Mesh Generation

Frames 10 and 11provides a detailed comparison of various tools and techniques used
for mesh reconstruction in 3D modeling. The table includes information about each tool's name,
year of creation, most recent updates, pricing models, applicability to 3D reconstruction tasks,
and their primary purposes. It highlights the diversity of approaches available for mesh genera-
tion, ranging from open-source solutions to high-cost commercial software. Open-source tools,
such as Point2Mesh, Ball-Pivoting Algorithm, CesiumJS, MeshLab, and Altizure Online Plat-
form, are prominently featured for their accessibility and effectiveness in tasks like converting
point clouds into meshes and creating geospatial maps. Deep learning-based tools, such as
Point2Mesh and CasMVSNet, leverage neural networks to enhance the accuracy of mesh re-
construction, showcasing the growing role of Al in improving 3D modeling processes.

Commercial software like ConTextCapture, 3DS MAX, and Geomagic provide advanced
capabilities for realistic mesh generation and detailed 3D modeling, often requiring licenses or
subscriptions due to their specialized functionalities. Tools such as OGC CityGML focus on stan-
dardizing 3D city and landscape models, supporting applications like urban planning and simula-
tion, while platforms like Nostalgin Engine are tailored for niche use cases, such as reconstruct-
ing ancient cities from low-quality images. Versatile platforms like MeshLab and CloudCompare
support a wide range of tasks, including editing, processing, and analyzing point clouds and
meshes. Table ?? demonstrates the breadth of tools available for mesh reconstruction, offering
researchers and practitioners a wide selection to address diverse project requirements.
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Frame 10 — Mesh Reconstruction Tools and Techniques 1

Name Year Last Up- | Price Applicable? Purpose
date
Point2Mesh 2020 2020 Open Yes, it is designed | A deep learning-based
source to reconstruct a | algorithm for gen-
3D surface mesh | erating 3D meshes,
from an input point | converting point clouds
cloud. from sensor or image
data into textured 3D
meshes.
Ball-Pivoting Al- | 2021 2021 Open Maybe, it is specif- | Generates 3D meshes
gorithm source ically designed for | from point cloud data
reconstructing 3D | acquired through sen-
surfaces from point | sors or scanning tech-
clouds, such as | niques.
those obtained by
3D scanners.
CesiumJS 2015 2024 Open Yes, it can create | Provides a platform
source 3D maps from | for developing applica-
images, especially | tions with geospatial
when elevation | data, such as 3D
data is included. maps, terrains, satel-
lite imagery, and
geospatial analysis.
MeshLab 2020 2023 Open Yes, it is a 3D | Offers advanced tools
source mesh  processing | for visualization, edit-
software designed | ing, and analyzing 3D
for managing and | meshes.
editing large, un-
structured meshes.
Altizure Online | 2017 2021 Open Yes, it gener- | An online platform
Platform source ates textured 3D | for reconstructing 3D
meshes from input | textured meshes from
images. The soft- | image datasets using
ware runs the full | computer vision tech-
3D reconstruction | niques.
pipeline, outputting
textured  meshes
and camera posi-
tions.
CloudCompare | 2020 2020 Open Yes, it is a software | Processes and ana-
source for point cloud pro- | lyzes point cloud data.

cessing.

Source: Own Work (2025).
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Frame 11 — Mesh Reconstruction Tools and Techniques 2

Name Year Last Up- | Price Applicable? Purpose
date
CasMVSNet 2021 2022 Open Maybe, used for re- | A convolutional neural
source constructing build- | network for 3D recon-
ings. struction from multi-
view stereo (MVS).
Monomer Model No, it represents
the independent 3D
entity of a single
object, such as a
building or vehicle.
Nostalgin  En- | 2019 2019 Open Maybe, used to
gine source reconstruct ancient
cities from low-
quality images.
OGC CityGML 2008 2021 Open No, it is a standard- | Stores and describes
source ized data model | 3D city objects like
and exchange for- | buildings, roads,
mat for storing and | rivers, bridges, and
sharing 3D city and | vegetation, along with
landscape models. | their relationships. It
includes standardized
levels of detail (LoDs)
for various applications
like simulations and
urban management.
Digital Surface | 2003 2003 Maybe, uses aerial
Map and terrestrial im-
ages.
ConTextCapture | 2015 2022 R$10,731 | Yes, allows the | Produces realistic 3D
per year creation of realistic | meshes from image or
3D meshes of any | LiDAR data.
scale using pho-
tographs or LiDAR
point clouds.
3DS MAX 1996 2024 R$853 No, it is a modeling
per year, | software.
with a
free trial
Source: Own Work (2025).
4.2.1 Ball-Pivoting Algorithm

The Ball-Pivoting Algorithm (BPA) is a surface reconstruction method that effectively cre-

ates a mesh from a set of unorganized 3D points, typically obtained from a scanning process.




76

The BPA leverages a ball of a fixed radius to "pivot" around the edges of an existing triangle,
forming new triangles and progressively building the mesh. It is available in several software
packages, such as MeshLab (Cignoni et al., 2008), and has been utilized by many researchers
(Hall et al., 2022). The primary steps are described as follows (Bernardini et al., 1999):

1. Seed Triangle Formation: Identify an initial triangle A = (p;, p;, px) with a ball of
radius r.

2. Pivoting: For each edge (p,, py) of the current mesh, find a point p.. such that the ball
touches p,, py, and p..

3. New Triangle Formation: Form a new triangle A = (pa, Py, Dc)-
4. Iterate: Repeat the pivoting process for new edges until all points are processed.

5. Multi-Scale Approach: Optionally repeat with different ball radii to refine the mesh.

The BPA thus provides a robust method for surface reconstruction from point clouds,
handling both sparse and dense datasets effectively. Its operation is described in the following
sections.

4.2.1.1 Initialization

The algorithm begins by selecting an initial seed triangle. Let P = {p1,p2,...,p,} be
the set of 3D points. The first triangle A = (p;, pj, p) is formed such that the ball of radius r
can touch p;, p;, and p, simultaneously without including any other points inside it. This can be
formulated by solving for the center c of the ball:

lle = pill = lle = psll = lle = pall = 7

where || - || denotes the Euclidean distance. The center ¢ must also satisfy:
lle = pwll > 7 Vpm € P\ {pi,pj. pr}

4.2.1.2 Pivoting

Once the initial triangle is established, the algorithm pivots the ball around the edges
of the triangle to form new triangles. Given an edge (p.,p») and the current ball center ¢, the
algorithm finds a new point p. such that the ball, pivoted around (p,, ps), touches p. and forms
a new triangle A = (pa, Py, D). The center of the new ball position ¢’ can be found by:

I = pall = 1" = poll = lI" = pel| = 7
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The pivoting operation involves solving for ¢’ while maintaining contact with p, and p:

cf:c+r.(H@c—pa)x(pb—pa) )

(pc _pa) X (pb _pa>H

4.2.1.3 Expansion

The algorithm pivots and forms new triangles around the mesh boundary until all reach-
able points are considered. The process iterates over the boundary edges of the growing mesh.
For each boundary edge (p;,p;), a search for a new point p, that satisfies the ball-pivoting
criteria is performed.

4.2.1.4 Handling Variations

The BPA can be repeated with different ball radii to manage areas with varying sampling
densities and handle noise in the point cloud. This multi-scale approach helps to ensure that the
algorithm robustly reconstructs the surface.

4.2.2 Bundle Adjustment

Bundle Adjustment (BA) is a crucial optimization technique in SfM that simultaneously
refines the 3D structure and camera parameters. The primary objective of BA is to minimize the
reprojection error, which is the difference between the observed image points and the projected
3D points (Schénberger; Frahm, 2016). The reprojection error is defined as in equation 1.

eij = |[xi; — (P, X;)|I%, (1)

x;; represents the observed image point of the j-th 3D point X; in the i-th image, P; is the
camera projection matrix, and 7(P;, X;) is the projection function.
The optimization problem is formulated as in equation 2.

Jnin > ples), (2)
14x] ’L,j

p is a robust loss function for outliers. The main steps in bundle adjustment are described in the
subsequent sections.

4.2.2.1 Parameterization

For robust parameter estimation, the Cauchy robust loss function is often employed, as
shown in equation 3
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o) = *log (1 + (2)2) , (3)

c is a tuning parameter.

4.2.2.2 Optimization

The optimization is typically performed using the Levenberg-Marquardt algorithm, which
iteratively updates the parameters to minimize the reprojection error. The Jacobian matrix J of
the reprojection error concerning the camera parameters P; and 3D points X;; is crucial for the
optimization process.

4.2.2.3 Local and Global Bundle Adjustment

In practice, local BA is performed frequently on the most connected images after each
image registration to mitigate local errors, while global BA is conducted less regularly to refine
the entire model. The local BA focuses on a subset of the images and points to ensure efficiency,
whereas the global BA encompasses all registered images and points for comprehensive opti-
mization.

4.2.2.4 Filtering and Re-Triangulation

After each BA step, points with significant reprojection errors are filtered out, and re-
triangulation is performed to improve the completeness of the reconstruction. This iterative pro-
cess of BA, filtering, and re-triangulation continues until convergence, significantly enhancing
the accuracy and completeness of the 3D reconstruction. The entire BA process is illustrated
in the schematic diagram of the SfM pipeline in figure 17. The iterative nature of BA, combined
with robust parameter estimation and efficient optimization techniques, makes it a cornerstone
of modern 3D reconstruction methods (Schénberger; Frahm, 2016).

4.2.3 Greedy Triangulation

Greedy triangulation (GT) is a surface reconstruction algorithm to generate a triangular
mesh from a set of 3D points. This method is beneficial in real-time applications due to its speed
and robustness to noise. Its core idea is to iteratively add the shortest possible edge to form
triangles without any intersections (Davis et al., 2021). The main steps and the main models
used are provided next. They were based on Dickson’s work and Point Cloud Library’s Greedy
Projection Triangulation class Template Reference (Dickerson et al., 1994; Rusu; Cousins, 2011).
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. Neighbor Selection: For each point p in the point cloud, the algorithm identifies &
neighboring points within a predefined radius. The choice of k£ and the radius is influ-
enced by the local density of points.

. Surface Normal Estimation: A plane is estimated at each point p using a weighted
least squares method. This plane approximates the local surface normal at p. Let p;
be the i-th neighbor of p, then the plane’s normal n can be computed by minimizing
equation 4.

k
> " wil|(pi —p) - (4)
i=1

where w; are the weights based on the distance of p; from p.

. Visibility and Connectivity Pruning: Points that are not visible from p are pruned.
This is determined based on the angle between the surface normal at p and the vector
p: — p. If the angle exceeds a threshold, the point is not considered visible.

. Triangle Formation: The algorithm then iteratively forms triangles by connecting p with
its visible neighbors. The goal is to form triangles that satisfy certain geometric con-
straints:

+ Maximum Edge Length: Any triangle edge length must not exceed a specified
maximum.
» Angle Criteria: The internal angles of the formed triangles must lie within a

specified range to avoid skinny triangles.

. Triangle Addition: Triangles are added to the mesh if they do not intersect with any
existing triangles. This ensures that the mesh remains manifold.

Surface Smoothing: Although the basic GT algorithm does not include smoothing,
post-processing steps may be applied to improve the mesh quality by reducing noise

and eliminating small artifacts.
The primary models and methodologies underlying this technique are detailed below.

 Distance-Based Weighting: The weight w; used in the least squares estimation of the
surface normal can be defined as in equation 5.

1
Ip: —

wy;

This ensures that closer points have a higher influence on the average estimation.
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« Angle Threshold for Visibility: The angle 6 between the normal n and the vector
p; — pis given by 6.

(pi—p)-n

cosf =
|pi — ||[In]|

A point p; is considered visible if § is below a certain threshold 6,,,.

» Triangle Quality Constraints: The quality of the triangles is maintained by enforcing
constraints on the edge lengths and internal angles. If t1,ts, t3 are the vertices of a
triangle, the edge lengths ||t; — t;|| must be less than a maximum length [,,.,. The
internal angles «, 3, v must satisfy equation 7.

Omin < 0, 3,7 < Qunan (7)

GT is widely used in 3D reconstruction due to its simplicity and efficiency, being recom-
mended when dealing with large point clouds requiring real-time processing. By incrementally
adding edges and forming triangles, the algorithm can quickly generate a surface mesh that
approximates the underlying geometry of the object or scene. It is suitable for robotics, virtual
reality, and geographic information systems (GIS) applications. Implementing GT in libraries like
the Point Cloud Library (PCL) allows for extensive customization and optimization, making it a
powerful tool for researchers in the field of 3D reconstruction (Rusu; Cousins, 2011; Davis et al.,
2021).

4.2.4 Gaussian Splatting

Gaussian Splatting is a technique used in 3D reconstruction and rendering that repre-
sents surfaces or point clouds using Gaussian functions rather than discrete points, unlike tra-
ditional point clouds, where each point represents a fixed position in space, Gaussian splatting
models each point as a Gaussian distribution, which provides a smoother and more continuous
representation of the underlying surface. This approach helps address issues of sparsity and
noise in point clouds, producing softer, higher-quality reconstructions (Bagdasarian et al., 2024).

The core idea of Gaussian splatting is to project Gaussian kernels into 3D space to
represent the scene more densely. Instead of rendering a surface by connecting points with
triangles, Gaussian splatting uses overlapping Gaussian functions that "splatter" across space
to represent both surfaces and volumes. This method is recommended when dealing with noisy
data or sparse point clouds, as the Gaussian distributions smooth out irregularities in the data.

Each point in the 3D space is modeled as a multivariate Gaussian function G(x, y, z),
typically defined as:
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where: - (z,y, z) are the coordinates of a point in 3D space, - (i, f4y, i) are the mean val-
ues representing the center of the Gaussian in each dimension, - 0., 0,,0, are the standard
deviations, controlling the spread of the Gaussian in each direction.

By summing or blending these Gaussian functions for a set of points, the resulting sur-
face appears smooth, continuous, and less noisy than traditional point cloud representations
(Bagdasarian et al., 2024).

This method is used in several applications, including 3D rendering, point cloud process-
ing, and neural rendering. In 3D rendering, the technique generates smoother and more visu-
ally appealing 3D models from sparse or noisy point clouds. Point cloud processing enhances
point clouds by smoothing surfaces and reducing artifacts caused by sparsity or noise in the
data. When used in neural rendering, Gaussian splatting can provide efficient scene rendering
in real-time applications, effectively handling noisy and incomplete data. Among its advantages,
it reduces noise inherently by smoothing the data, allowing for more accurate and continuous
surfaces. Additionally, it provides control over the density of the reconstruction by adjusting the
Gaussian spread, making it flexible for representing fine details or broader structures. More-
over, it handles sparse data effectively by spreading the influence of each point, filling gaps that
traditional surface reconstruction methods might struggle with (Bagdasarian et al., 2024).

Despite its advantages, there exist some challenges. Handling large numbers of over-
lapping Gaussians can be computationally expensive, especially for dense point clouds. Fur-
thermore, choosing the proper spread parameters (o, 0., 0,) is critical to success, as improper
values can lead to overly sharp or oversmoothed reconstructions. Gaussian splatting is an ad-
vanced technique that addresses some limitations of traditional point cloud rendering by offering
smoother, noise-resistant surfaces. Its flexibility in dealing with sparse or noisy data, combined
with its applications in neural rendering and real-time 3D reconstruction, makes it a valuable
method in modern computer vision and graphics.

4.2.5 Delaunay Triangulation

Delaunay triangulation is a fundamental algorithm in computational geometry used to
create a mesh of triangles from a given set of points in 2D or tetrahedra in 3D. It is widely used
in 3D reconstruction, surface reconstruction, and mesh generation due to its properties that
maximize the minimum angle in each triangle, which helps avoid narrow, elongated triangles
that can lead to unstable geometry (Lee; Schachter, 1980).

The primary property is the empty circumcircle property. For any triangle in the Delau-
nay triangulation, the circumcircle that passes through its three vertices contains no other points
from the dataset inside it. This property ensures that the triangulation is optimal in terms of
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geometric quality, as it avoids sliver triangles, which are undesirable in mesh generation. For-
mally, for a set of points P = {p1, p2, ..., pn} in the plane, a Delaunay triangulation DT'(P) is
a triangulation such that no point p € P is inside the circumcircle of any triangle in DT'(P).
This can be extended to higher dimensions, where the equivalent structure is called a Delaunay
tetrahedralization in 3D (Lee; Schachter, 1980).

It can be constructed using several algorithms, including:

* Incremental Insertion: Points are added incrementally to the triangulation, and local
adjustments are made to ensure that the Delaunay condition is maintained.

+ Divide and Conquer: The point set is recursively divided into smaller sets, each of which
is triangulated separately, and the triangulations are merged.

» Bowyer-Watson Algorithm: A popular algorithm for Delaunay triangulation that starts
with a super-triangle containing all the points, then iteratively inserts points and retrian-
gulates the affected region to preserve the Delaunay property.

+ Flip Algorithm (Edge Flipping): In this algorithm, the triangulation is initially generated
without considering the Delaunay condition, and non-Delaunay triangles are iteratively
"flipped"” (i.e., edges are swapped) to satisfy the empty circumcircle property.

There are several important properties:

» Maximizing the Minimum Angle: maximizes the minimum angle of all the angles of the
triangles in the triangulation, which improves the geometric quality of the mesh.

* Uniqueness: If no four points are co-circular (in the case of 2D), the Delaunay triangu-
lation is unique.

+ Duality with Voronoi Diagrams: dual graph of the Voronoi diagram. This relationship is
often leveraged in computational geometry to construct both structures efficiently.

In 3D reconstruction, it plays a critical role in surface meshing from point clouds, where it
is used to connect points and generate a surface mesh that represents the underlying geometry
of the object. By constructing triangles (or tetrahedra in 3D), the algorithm helps convert a set
of discrete points into a continuous surface. This methodology is beneficial in applications like
terrain modeling, medical imaging, and finite element analysis, where maintaining high-quality,
well-shaped triangles or tetrahedra is crucial for the stability and accuracy of simulations or
visualizations.

Despite its advantages, it has some limitations. For example, it does not handle non-
convex point sets well, and the algorithm can be computationally expensive for large datasets.
However, its robustness and ability to produce high-quality meshes make it an essential tech-
nigue in 3D reconstruction and surface generation workflows. Delaunay triangulation is a pow-
erful and widely used method in 3D reconstruction for converting point clouds into meshes.
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Its geometric properties ensure the creation of well-shaped triangles, and its applications span
across several fields, making it an essential tool for mesh generation.

4.2.6 Multi-View Stereo

Multi-view Stereo (MVS) is a critical technique in computer vision for reconstructing de-
tailed 3D models from multiple images taken from different viewpoints. It aims to generate dense
3D reconstructions by leveraging the parallax observed in images captured from various angles.
(Cernea, 2020) provides the main steps involved in MVS.

» Image Acquisition and Preprocessing: Multiple images of the scene are captured
from different viewpoints. Preprocessing steps such as calibration, undistortion, and
normalization are applied to ensure consistency in the dataset.

» Feature Detection and Matching: Keypoints or features are detected in each image
using techniques like Scale-Invariant Feature Transform (SIFT) or Oriented FAST and
Rotated BRIEF (ORB). Corresponding features across images are then matched to
establish point correspondences.

« Initial 3D Reconstruction: Using the matched features, an initial sparse 3D recon-
struction is created through triangulation. This step estimates the 3D coordinates of the
matched features and the camera parameters (intrinsic and extrinsic).

» Depth Map Estimation: For each image, a depth map is computed to represent the
distance of each pixel from the camera. This involves solving a depth optimization prob-
lem using stereo-matching techniques, such as plane-sweeping or graph cuts, which
minimize a cost function defined over pixel disparities.

Mathematically, the depth d of a pixel p in image I can be estimated by minimizing the
cost function in equation 8.

Yo ol =@+ Y w(d—d), (8)

q€N (p) q€N (p)
where N (p) is the neighborhood of pixel p, ¢ and 1 are cost functions for data and
smoothness terms, and [’ is the corresponding image in the stereo pair.
* Depth Map Fusion:

The depth maps from multiple images are fused to generate a consistent and dense 3D
point cloud. Techniques, such as volumetric integration or depth map merging, combine
the information from different viewpoints, reducing noise and filling gaps.
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« Surface Reconstruction:

The dense point cloud is processed to create a continuous surface mesh. Algorithms
like Poisson Surface Reconstruction or Delaunay triangulation are employed to gener-
ate a mesh that accurately represents the underlying geometry of the scene.

The Poisson Surface Reconstruction formulates the problem as a Poisson equation 9

V-v=f, (9)

where v is the vector field representing the oriented point cloud, and f is the scalar field
representing the indicator function of the surface.

+ Texture Mapping:

Textures from the original images are mapped onto the reconstructed surface to create
a realistic appearance. This step involves projecting the images onto the 3D mesh and
blending them to ensure seamless transitions between different textures.

MVS can produce high-quality 3D reconstructions from widely available photographic
data, allowing a versatile and powerful tool in computer vision. Some articles provide compre-
hensive insights into advanced MVS techniques and their mathematical foundations, offering
valuable contributions to the ongoing development of this field, such as (Hu et al., 2022; Han;
Shen, 2019; Zolanvari et al., 2019; Orsingher et al., 2022; Cernea, 2020).

4.2.7 Neural Radiance Fields

Neural Radiance Fields (NeRFs) are a cutting-edge approach for 3D reconstruction that
models a scene’s geometry and appearance using a neural network. Its core idea is to represent
the volume density and color of a scene as a continuous function using a neural network, which
takes in a 3D coordinate and a viewing direction as inputs and outputs the corresponding color
and volume density at that point (Muller et al., 2022; Tancik et al., 2023). The primary steps in
NeRF 3D reconstruction include:

1. Positional Encoding: The input 3D coordinates x = (z,y, z) and viewing direction
d = (0, ¢) are first encoded using high-frequency functions, often trigonometric func-
tions, to enable the network to capture high-frequency details. The encoded inputs are
fed into the neural network.

2. Neural Network: The core of the NeRF model is a multi-layer perceptron (MLP) that
estimates the RGB color and volume density o at each spatial location. The MLP is
designed to output a four-dimensional vector, where the first component represents the
density o, and the remaining three components represent the RGB color c.
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3. Volume Rendering: Given a camera ray r(t¢) = o + td where o is the camera origin
and d is the direction, the color of the pixel is computed by integrating the colors along
the ray, weighted by the volume density. This process can be mathematically expressed
as in equation 10.

Cr) = /t T o)), d) dt, (10)

where T'(t) = exp (— ftt o(r(s)) ds) accounts for the accumulated transmittance.

4. Optimization: The neural network parameters are optimized by minimizing the differ-
ence between the rendered images and the ground truth images. This is typically done
using mean squared error (MSE) between the predicted and actual pixel colors.

In recent years, NeRFs have seen the development of numerous models and variations,
each targeting specific challenges and enhancements in 3D scene representation and render-
ing. The original NeRF model, proposed by Mildenhall et al., set the foundation by introducing
a fully connected neural network to encode volumetric scene functions. It was followed by ad-
vancements such as Mip-NeRF and Mip-NeRF 360, which addressed issues like anti-aliasing
and extended the model’s capabilities to handle unbounded scenes more efficiently (Tancik et
al., 2023). Other important contributions include FastNeRF, which focuses on high-fidelity ren-
dering at real-time speeds, and Plenoxels, which deviates from neural networks, opting instead
for a sparse voxel representation that offers faster rendering times (Tancik et al., 2023).

Models like NeRF-W and RawNeRF were developed to handle real-world complexities,
such as varying lighting conditions and noisy data. Ref-NeRF, conversely, aims to refine the
quality of rendered images by incorporating reflection effects (Tancik et al., 2023). Each of these
models contributes uniquely to the evolution of NeRFs, pushing the boundaries of what is pos-
sible in neural rendering and real-time 3D reconstruction. NeRF has shown remarkable success
in rendering high-quality novel views from a set of 2D images, enabling the synthesis of photo-
realistic views from arbitrary viewpoints. It effectively combines machine learning and traditional
computer graphics techniques to achieve state-of-the-art results in 3D reconstruction.

4.2.8 Poisson Reconstruction

Poisson Reconstruction is a widely used method for surface reconstruction from point
clouds, particularly when a smooth and watertight surface is desired. This technique relies on
the mathematical foundation of solving the Poisson equation, which reconstructs a function (the
surface) from its gradient field (the normals of the points). The main steps in the Poisson Recon-
struction process are outlined as follows (Kazhdan; Bolitho; Hoppe, 2006).
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1. Point Cloud Normal Estimation: The first step involves estimating normals for the
points in the point cloud. Normals are crucial as they define the orientation of the surface
at each point. These are typically computed using nearest neighbors.

2. Divergence of Normal Field: The next step is to compute the divergence of the stan-
dard field. The divergence operator applied to the normals gives a scalar field repre-
senting the difference between the actual and estimated normals, which is expressed
as in equation 11

87%'
V-nzzaxi, (11)

where n represents the normal vector, and z; are the coordinates.

3. Solving the Poisson Equation: The core of the Poisson Reconstruction is solving the
Poisson equation 12.

A¢p =V -n, (12)

where A is the Laplace operator, ¢ is the implicit function that defines the surface,
and V - n is the divergence computed in the previous step. The solution ¢ defines the
reconstructed surface, where the zero-level set represents the final surface.

4. Surface Extraction: The final surface is extracted from the implicit function ¢ using
methods like the Marching Cubes algorithm. This step involves creating a mesh ap-
proximating the zero-level set of ¢.

5. Post-Processing: The resulting mesh may undergo additional processing to refine the
surface, remove noise, and close any holes that may have formed during reconstruction.

Poisson Reconstruction is particularly effective in generating smooth surfaces even from
noisy data. It performs well in city-scale reconstructions, producing watertight meshes crucial
for applications like mixed reality visualizations (Han; Shen, 2019; Davis et al., 2021; Hall et al.,
2022). However, the method requires careful tuning of parameters such as octree depth and
point weight to achieve the desired balance between fitting the input data and maintaining a
smooth surface (Han; Shen, 2019; Davis et al., 2021; Hall et al., 2022).

4.2.9 Other Reconstruction Algorithms

In addition to usual methodologies for 3D reconstruction, other algorithms provide unique
approaches to generating and refining 3D models. These methods often complement the primary
techniques and can be particularly useful in specific contexts or for handling unique data types.



87

These methodologies, among others, provide essential tools and techniques for advancing the
field of 3D reconstruction. They offer flexibility and precision, allowing practitioners to tailor their
approaches to specific datasets and application requirements.

4.2.9.1 3D Reconstruction via Height Field Estimation

One effective method for reconstructing 3D models from 2D data is through height field
estimation. This technique involves using elevation or height data to extrapolate a 3D surface
from a 2D base, such as a GIS map. The process typically involves interpolating between known
height points and generating a continuous surface, often represented as a triangulated mesh.
This method is especially useful in urban modeling and topographic mapping, where elevation
data can be easily obtained from digital elevation models (DEMs) or LiDAR data. The resulting
3D models are precious for urban planning and environmental studies applications.

4.2.9.2 Point Cloud Filtering and Classification

Point cloud filtering and classification are critical steps in processing raw point cloud
data, mainly when dealing with large datasets, such as those obtained from LiDAR scans. Fil-
tering involves removing noise and irrelevant points, often achieved through statistical analysis
and clustering techniques. Classification then segments the point cloud into different categories,
such as ground, vegetation, and man-made structures. Machine learning algorithms, including
supervised classifiers like random forests or neural networks, are increasingly employed to en-
hance the accuracy and automation of this process. The result is a cleaner, segmented point
cloud that can be further processed into a 3D model (Vosselman; Maas, 2010).

4.2.9.3 Surface Reconstruction via Energy Minimization

Surface reconstruction from point clouds often involves minimizing an energy function
that represents the difference between the point cloud and the reconstructed surface. One com-
mon approach is to use variational methods, where the energy function is defined to penalize
deviations from the input data and enforce smoothness constraints on the surface. The solution
to this optimization problem yields a smooth, continuous surface that best fits the input points.
Techniques like Poisson surface reconstruction extend this concept by solving a spatial Poisson
equation, which provides a global approach to surface fitting that is robust to noise and outliers
(Kazhdan; Bolitho; Hoppe, 2006).

4.2.9.4 Implicit Surface Modeling

Implicit surface modeling is an advanced technique that defines surfaces implicitly as
the zero-level set of a scalar field. Unlike explicit methods that directly represent the surface
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geometry, implicit methods allow for smooth and continuous surface representations, which are
particularly useful for capturing complex shapes and details. The scalar field can be represented
by mathematical functions or neural networks trained to approximate the surface. This approach
is powerful for applications requiring smooth surfaces, such as medical imaging and computer
graphics. The marching cubes algorithm is often used to extract the final mesh from the implicit
representation, providing a versatile framework for surface reconstruction (Carr; Fright; Beatson,
1997).

4.2.9.5 Mesh Refinement and Smoothing

Mesh refinement and smoothing are critical post-processing steps in 3D reconstruction.
Refinement involves increasing the resolution of a mesh by adding more vertices and faces, often
guided by the curvature of the surface. This can be achieved through techniques like subdivision
surfaces or adaptive mesh refinement. Smoothing, on the other hand, aims to reduce noise and
irregularities in the mesh, typically using algorithms like Laplacian smoothing or Taubin smooth-
ing. These techniques are essential for preparing 3D models for visualization, simulation, and
analysis, ensuring that the surfaces are both aesthetically pleasing and accurate (Taubin, 1995).

4.3 Other

Frames 12, 13 and 14 provides a comprehensive overview of related software, focus-
ing on their year of creation, last update, pricing models, applicability to the study, and specific
purposes. The tools are categorized based on their functionalities, ranging from volumetric ap-
proaches and depth simulation to geospatial analysis and procedural modeling. Several tools,
such as Depth Buffer, NASA World Wind, and Unity Game Engine, are noted for their poten-
tial application in enhancing 3D reconstruction and simulations, particularly for interactive and
geospatial data visualization. For example, Depth Buffer aids in simulating depth perception
during rendering, while NASA World Wind provides open-source terrestrial data visualization
capabilities.

It also includes specialized tools like LAStools and OGC CityGML, which are focused
on LiDAR data processing and standardized city model storage, respectively. These tools are
invaluable for urban simulations, though not directly applicable to core 3D reconstruction tasks.
Software like Esri CityEngine, Rhino, and SketchUp are tailored for procedural modeling, indus-
trial design, and architecture, with limited applicability to 3D reconstruction in the current study.
Similarly, tools like Structure from Motion and ScanComplete cater to specific tasks, such as
reconstructing sparse or incomplete 3D data.

Upon further review, some tools such as Surface Net and Structure from Motion, were
found to serve specialized roles in enhancing existing 3D models or handling sparse data. These
tools were subsequently categorized under post-processing methodologies or excluded from this
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tial analysis, map
creation, and work-
ing with vector and
raster data in 2D.

Name Year Last Up- | Price Applicable? Purpose
date
Depth Buffer Open Potentially useful, it | Determines object dis-
source is designed to sim- | tance relative to the
ulate depth percep- | camera in a scene.
tion in 3D environ-
ments during ren-
dering.
Autodesk  3ds No, it is modeling
Max software.
Blender 1994 2024 Open No, it is modeling
source software.
Bundler No, it is a container
technology soft-
ware.
City GML No, it is a 3D City
Database.
OGC CityGML 2008 2021 Open No, it is a standard- | Used for urban simula-
source ized data format for | tions, urban data min-
storing and sharing | ing, and management.
3D city models.
Pix3D 2018 2021 Open No, it reconstructs
source objects from a sin-
gle image.
QGIS 2002 2023 Open No, primarily de-
source signed for geospa-

Source: Own Work (2025).

study due to their limited relevance to the primary objectives. Overall, it highlights the wide range

of tools available for 3D reconstruction, visualization, and processing, allowing researchers to

evaluate and select the most appropriate solutions for specific use cases.

4.4 Notable Applications

Numerous software tools have been developed to facilitate the generation of point clouds

and meshes from several data sources (Ledoux et al., 2021; Schénberger; Frahm, 2016). These

tools leverage advanced algorithms and computational techniques to transform raw data into

detailed 3D models, making them invaluable in fields such as computer vision, archaeology, and
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Name Year Last Up- | Price Applicable? Purpose
date
ScanComplete 2017 2020 Open No, it reconstructs | Completes  partially
source incomplete 3D files. | scanned 3D scenes
and predicts full 3D
models with semantic
voxel labels.
SRLP Unlikely, its main
purpose is to
enhance compu-
tational efficiency
for reconstructing
sparse images in
LASAR  environ-
ments.
SSCNet 2016 2017 Open No, it reconstructs
source a single 3D image.
Surface Net 2017 2020 Open Maybe, a volu- | Enhances 3D meshes
source metric  approach | with superior accuracy
to deal with "in- | and recall, even in
completeness" and | sparse setups.
"imprecision” in
sparse MVS con-
figurations.
Coordinate
Transformation
LAStools 2007 2023 Open No, designed for | Performs operations
source efficient processing | such as filtering, clas-
and analysis of Li- | sification, statistics,
DAR data. and visualization on
large LiDAR datasets.
Structure from | 2010 2024 Open No, it is a com- | Reconstructs 3D struc-
Motion source puter vision and | ture from 2D images
photogrammetry taken from multiple
technique. viewpoints.

Source: Own Work (2025).

virtual reality. This section provides an overview of some of the most prominent and widely used

software tools created by researchers and developers worldwide. By examining their capabilities,

strengths, and unique features, a comprehensive understanding of the current landscape of 3D

reconstruction technologies and their practical applications can be achieved.
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Name Year Last Up- | Price Applicable? Purpose

date

NASA World | 2004 2024 Open Potentially, it can | Open-source software

Wind source serve as a source | for interactive 3D visu-

of terrestrial data. alization of geospatial
data and Earth mod-
els.

Unity Game En- | 2004 2024 Free to | Maybe, it can im- | A game development

gine 28,611 port 3D models to | platform also used for
per year create interactive | 3D simulations and vir-

experiences, simu- | tual training.
lations, or games.
Rhino 1998 2022 $ 995 No, it is not special- | 3D modeling software.
ized for creating 3D
maps from images
but is used for in-
dustrial design, ar-
chitecture, and en-
gineering.

SketchUp Free Depends, it is man- | Allows for manual 3D
and paid | ual modeling soft- | modeling.
versions ware with the ability
available | toimportimages for

reference.

Esri CityEngine | 2008 2023 R$1,412 | No, focused on pro- | Advanced 3D model-
per cedural 3D model- | ing software for urban
year to | ing and urban envi- | planning, architecture,
R$52,406 | ronment visualiza- | and geosciences.
per year tion.

ArcGIS Pro 2015 2023 R$9,000 Maybe for final | Spatial data analysis
to visualization. It | software.

R$50,000 | focuses on geospa-
per year, | tial analysis and
depend- data visualization,
ingon the | with limited 3D
package | modeling capabili-
ties.
Source: Own Work (2025).
441 OpenMVG

OpenMVG, or Open Multiple View Geometry, is a robust and versatile open-source li-
brary designed for 3D reconstruction from multiple images. Developed by (Moulon et al., 2016)
to support academic research and industrial applications, OpenMVG focuses on providing a
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complete pipeline for structure-from-motion (SfM) tasks. The library includes a range of tools
for feature detection, matching, camera pose estimation, and triangulation, contributing to the
creation of sparse and dense point cloud generation. One of its key strengths lies in its modular
design, allowing users to customize and extend the pipeline according to their specific needs. By
leveraging state-of-the-art algorithms, OpenMVG ensures high accuracy and reliability in recon-
structing 3D models from photographic datasets. Additionally, its comprehensive documentation
and active community support make it accessible to both beginners and experienced practition-
ers in the field of computer vision and 3D reconstruction, being employed by other researchers
(Xie; Li; Qi, 2019) in the development of reconstruction pipelines.

4.4.2 3D-ReConstnet

In single-view 3D object reconstruction, the challenge lies in inferring the self occluded
portions of objects, rendering the task inherently ambiguous. Addressing this issue, a novel neu-
ral network called 3D-ReConstnet has been proposed by (Li et al., 2020). This network, designed
as an end-to-end reconstruction framework, leverages a residual network to extract features from
a 2D input image, culminating in a feature vector. To contend with the uncertainty surrounding the
self-occluded segments of objects, 3D-ReConstnet employs a Gaussian probability distribution
learned from the feature vector to predict the point cloud. Remarkably, this approach enables
the generation of determinate 3D outputs for images with adequate information, while also facil-
itating the generation of semantically distinct 3D reconstructions for self-occluded or ambiguous
object segments. Evaluation on ShapeNet and Pix3D datasets has demonstrated promising en-

hancements in the reconstruction results.

4.4.3 3D-RCNN

3D RCNN, or 3D Region-based Convolu-tional Neural Network, is a novel approach for
instance-levelc3D object reconstruction from 2D images proposed by (Kundu; Li; Rehg, 2018).
Unlike traditional methods, which rely on manual segmenta-tion or bounding box annotations, 3D
RCNN leverages deep learning techniques to directly infer the 3D shapes and poses of object
instances within an image. The network architecture is designed to disentangle the complex
attributes of a scene, such as lighting, shape, and surface properties, by factoring the scene
into object instances with associated shape and pose. This disentangled representation allows
for more accu-rate scene understanding and enables downstream tasks like path planning and
future object location prediction. The key innovation of 3D RCNN lies in its differentiable Render-
and-Compare loss, which enables the network to obtain supervision from 2D annotations and
bootstrap with direct 3D supervi-sion when available. By exploiting rich shape priors learned from
CAD model collections, 3D RCNN achieves state-of-the-art performance in complex real-world
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datasets, making it a promising solution for various applications, including autonomous driving
and robotics.

4.4.4 Point Cloud Library

The Point Cloud Library (PCL) is an open-source, BSD-licensed software library designed
for n-D point cloud and 3D geometry processing. Developed with efficiency and performance in
mind, it is a fully templated C++ library that integrates seamlessly with the Robot Operating
System (ROS). It provides a comprehensive range of algorithms and data structures for 3D per-
ception, making it an invaluable tool in fields such as robotics, computer vision, and more (Rusu;
Cousins, 2011). PCL supports a wide variety of algorithms for processing point clouds, including
filtering, feature estimation, surface reconstruction, registration, model fitting, and segmentation.
The library’s modular design allows for easy integration of its components into several applica-
tions, which is facilitated by its extensive use of template programming, SSE optimizations, and
multi-core parallelization support through OpenMP and Intel’s Threading Building Blocks (TBB)
library (Rusu; Cousins, 2011). The architecture is built around several key components, each
providing a specific set of functionalities. For example, libpcl_filters is responsible for data filter-
ing tasks, such as downsampling and outlier removal, while libpcl_segmentation handles cluster
extraction and model fitting. PCL also includes specialized modules like libpcl_io for input/output
operations and libpcl_visualization for rendering point cloud data (Rusu; Cousins, 2011). In the
literature, it has been widely adopted for several applications, including autonomous navigation,
object recognition, and manipulation tasks in robotics. Due to its ability to handle large datasets
efficiently and its comprehensive set of tools, it is convenient for applications with 3D point cloud
data (Davis et al., 2021).

4.45 Colmap

Colmap is a state-of-the-art Structure-from-Motion (SfM) and Multi-View Stereo (MVS)
pipeline that provides a comprehensive solution for 3D reconstruction from unordered image
collections. Developed by (Schénberger; Frahm, 2016; Schdnberger et al., 2016), it features an
incremental SfM approach, enabling it to iteratively refine a 3D model by adding new images and
points. The pipeline begins with feature extraction and matching, followed by geometric verifi-
cation to establish reliable correspondences between images. It then proceeds with incremental
reconstruction, where the model is incrementally built and refined using techniques such as bun-
dle adjustment and outlier filtering. This approach is particularly effective for handling large and
complex datasets (Schdnberger; Frahm, 2016). Colmap’s utility extends across several research
areas, including cultural heritage preservation, urban mapping, and autonomous driving. It has

been employed in numerous studies for tasks such as the detailed reconstruction of historical
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sites, the creation of 3D maps for urban planning, and the generation of training data for ma-
chine learning models in autonomous systems. The flexibility and robustness make it a preferred
choice for researchers and practitioners in computer vision and related fields (Schénberger et
al., 2016).

4.4.6 Metashape

Metashape is a commercial photogrammetric software tool developed by Agisoft that
processes digital images, including aerial and close-range photography, to generate 3D spatial
data. It supports a wide range of input data, such as images from RGB, thermal, and multispec-
tral cameras, as well as laser scans, allowing for the creation of point clouds, textured polygonal
models, georeferenced orthomosaics, and digital surface models (DSM) or digital terrain mod-
els (DTM) (Agisoft, 2023). It is capable of processing large datasets, with the ability to handle
over 50,000 photos through local cluster or cloud-based distributed processing, which is partic-
ularly suitable for applications in GIS, cultural heritage documentation, visual effects production,
and several engineering fields. Metashape’s robust toolset includes capabilities for eliminating
shadows and texture artifacts, calculating vegetation indices, and extracting data for agricultural
equipment maps. It also features advanced options like stereoscopic mode and precise con-
trol over accuracy, catering to both beginners and experts in photogrammetry (Agisoft, 2023).
Researchers and professionals use it to create highly detailed 3D reconstructions of urban envi-
ronments, archaeological sites, and natural landscapes.

4.4.7 MicMac

MicMac is a comprehensive, free, and open-source photogrammetry software suite de-
signed to handle several aspects of 3D reconstruction from images. Developed by (Rupnik;
Daakir; Deseilligny, 2017), MicMac offers robust tools for processing large datasets, making
it suitable for applications ranging from small-scale projects to extensive urban modeling. As
with other leading photogrammetry solutions, such as Pix4D and ContextCapture, MicMac ex-
cels in feature extraction, image matching, and dense 3D reconstruction. The versatility of this
software tool is further enhanced by its ability to generate high-quality, large-scale meshes and
realistic textures, similar to commercial counterparts like COLMAP and OpenMVS. Moreover,
MicMac’s open-source nature promotes continuous improvement and customization by the user
community, ensuring it remains a cutting-edge tool in the rapidly evolving field of photogram-
metry (Rupnik; Daakir; Deseilligny, 2017). The workflow in MicMac typically involves key steps
such as data acquisition, feature extraction, bundle adjustment, and optional mesh generation
and texturing, aligning with the standard practices observed in UAV-based photogrammetry for
3D reconstruction (Han et al., 2021).
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4.48 Pix4d

Pix4D is a commercial photogrammetry software suite designed for creating 3D maps
and models from images captured by drones, smartphones, or other devices. It is widely used in
construction, agriculture, surveying, and real estate sectors, for generating high-quality geospa-
tial data. It employs advanced algorithms for image processing, point cloud generation, and
3D reconstruction, offering a range of products like Pix4Dmapper, Pix4Dfields, and Pix4Dcloud,
each tailored to specific cases. One of the key features is its ability to perform detailed and accu-
rate mapping through photogrammetry, making it a valuable tool in applications requiring preci-
sion and reliability. It allows for the processing of images into dense point clouds, mesh models,
and textured surfaces, enabling users to extract valuable spatial information from imagery. In the
literature, Pix4D has been utilized in several applications (Han et al., 2021; Li et al., 2023). These
examples illustrate the versatility and effectiveness of this software tool in generating accurate
and detailed spatial data across several fields.

subsectionVisual SFM

VisualSFM (Wu, 2011) is a powerful and user-friendly software tool designed for 3D
reconstruction using structure-from-motion (SfM) techniques. As described by the author, Vi-
sualSFM enables the automatic computation of camera positions and 3D points from a series
of images, making it a versatile tool for several photogrammetry applications. The system inte-
grates with multi-view stereo (MVS) algorithms to enhance the reconstruction process, offering
high-quality dense point clouds and 3D models. VisualSFM’s efficiency and ease of use make it
a popular choice among researchers and professionals in the field. The typical workflow in Visu-
alSFM involves feature extraction, feature matching, 3D reconstruction, and bundle adjustment,
similar to other photogrammetry tools like COLMAP and MicMac. Additionally, VisualSFM’s abil-
ity to handle large datasets and produce detailed 3D models with realistic textures, making it
suitable for applications ranging from small-scale projects to extensive urban reconstructions.

4.4.9 Gipuma

Gipuma is a method for dense 3D model reconstruction in digital cities that utilizes com-
putationally efficient multi-view stereo networks. The method aims to reconstruct accurate 3D
points while minimizing the generation of non-existent false points (Galliani; Lasinger; Schindler,
2015). In a quantitative evaluation on the DTU dataset proposed by (Hu et al., 2022), Gipuma
achieved competitive results in terms of accuracy and computational complexity compared to
other methods such as SurfaceNet, MVSNet, and CasMVSNet. However, it was observed that
Gipuma’s higher accuracy comes at the cost of increased computational complexity, making it
less practical for reconstructing large-scale scenes or handling higher resolution images. Despite
this limitation, Gipuma represents a promising approach for dense 3D model reconstruction, par-
ticularly in scenarios where accuracy is paramount and computational resources allow for its use.
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4410 MeshLab

MeshLab is a comprehensive open-source tool designed for processing and editing 3D
triangular meshes. Developed by (Cignoni et al., 2008), it provides a variety of functions for
the inspection, cleaning, repairing, rendering, and conversion of large unstructured 3D models
obtained from several sources, including 3D scanning, photogrammetry, and other modeling
techniques, having a large set of features that support a wide range of mesh processing tasks.
These include surface reconstruction, which helps in creating a complete surface from a point
cloud, mesh simplification, which reduces the number of polygons while preserving the overall
shape and appearance, and mesh optimization, which improves the quality and usability of the
3D models by addressing issues such as noise, holes, and non-manifold elements (Cignoni et al.,
2008). It supports several file formats, enabling users to import and export models in formats like
PLY, STL, OBJ, 3DS, and COLLADA. It has been widely adopted for numerous applications. For
instance, it is frequently used in the digitization of cultural heritage artifacts, allowing researchers
to create detailed 3D models of historical objects for preservation, study, and virtual display.
The software’s capabilities in mesh cleaning and optimization are particularly beneficial in this
context, as they ensure the accuracy and quality of the digital representations (Davis et al., 2021).
It is also used in the field of biomedical imaging to create and refine 3D models of anatomical
structures. Its powerful mesh processing tools enable medical researchers to analyze complex
geometries and prepare models for simulation and visualization purposes. In computer graphics,
is employed to prepare models for animation, gaming, and other visual effects, taking advantage
of its robust feature set to optimize and refine 3D assets. MeshLab stands out as a versatile
and powerful tool for 3D mesh processing, offering a rich array of functionalities that cater to the
needs of both novice and advanced users. Its widespread use in several research and practical
applications underscores its importance and utility in the field of 3D modeling and reconstruction.

4.411 OpenMVS

OpenMVS, or Open Multi-View Stereo, is a specialized library designed for computer-
vision scientists and the Multi-View Stereo reconstruction community. It addresses a critical gap
in the photogrammetry workflow by providing a complete set of algorithms to recover the full sur-
face of a scene from input data, which typically includes camera poses and a sparse point-cloud
generated by other Structure-from-Motion (SfM) tools such as OpenMVG (Cernea, 2020). The
output from OpenMVS is a detailed textured mesh, including several key capabilities that make it
effective in the 3D reconstruction pipeline. The dense point-cloud reconstruction process gener-
ates a comprehensive and highly accurate point cloud from the initial sparse input, serving as the
foundation for subsequent steps. The mesh reconstruction step estimates a mesh surface that
best fits the dense point cloud, creating a coherent and continuous 3D model. Mesh refinement
then focuses on recovering fine details in the mesh, enhancing the overall quality and precision
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of the 3D model (Cernea, 2020). Finally, mesh texturing computes a sharp and accurate texture
to color the mesh, resulting in a realistic and visually appealing 3D representation. It has been
utilized in a variety of research and practical applications due to its robust functionality. It inte-
grates well with other SfM tools by taking their output and advancing the reconstruction process
to produce fully textured 3D models. In the literature, OpenMVS is often cited for its ability to
produce high-quality 3D models with minimal user intervention. Researchers have employed it
to enhance the accuracy of reconstructions and to streamline the workflow from image capture
to final 3D model generation (Xie; Li; Qi, 2019; Han et al., 2021). The comprehensive documen-
tation and support for multiple input formats, including OpenMVG, COLMAP, Metashape, iTwin
Capture Modeler, and Polycam, further contribute to its widespread adoption in the academic and
industrial sectors. OpenMVS continues to be an essential tool in the field of 3D reconstruction,
offering advanced capabilities that significantly enhance the quality and usability of reconstructed
models from multi-view stereo data (Cernea, 2020).

4.4.12 Nerfstudio

Nerfstudio is a modular framework designed for the development of NeRF. Developed
by (Tancik et al., 2023), it aims to streamline the development and deployment of NeRF-based
methods by offering a flexible, modular, and comprehensive framework. The primary goal is to
simplify the integration of NeRF into several projects, providing a range of plug-and-play com-
ponents that can be easily customized and extended. Nerfstudio supports multiple input data
pipelines and is built around core modular components, including encoders, samplers, fields,
and renderers. Its modular design facilitates the implementation of custom NeRF methods and
allows for extensive real-time visualization tools, streamlined data processing, and various ex-
port modalities such as video, point cloud, and mesh representations. The framework’s real-time
web viewer enables interactive visualization of NeRF scenes during both training and testing,
making it accessible without requiring a local GPU machine. In the literature, Nerfstudio has
been utilized to consolidate several NeRF techniques, enabling researchers and practitioners to
experiment with combining components from multiple methods. For instance, the development
of Nerfacto, a method that balances speed and quality by integrating features from recent NeRF
papers, demonstrates its flexibility (Tancik et al., 2023). The framework’s modular nature sup-
ports real-world data processing, making it suitable for applications in computer vision, graphics,
robotics, and more. Nerfstudio has been cited for its contributions to simplifying NeRF devel-
opment and enabling more efficient and effective experimentation. Its ability to integrate with
various data input formats, including mobile capture applications and popular photogrammetry
tool, further enhances its versatility. Researchers have leveraged Nerfstudio to develop methods
that achieve high-quality 3D reconstructions, benefiting from its comprehensive suite of tools
and real-time visualization capabilities (Tancik et al., 2023). The framework’s open-source na-
ture and community-driven development model have led to significant contributions from several
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academic, corporate, and independent collaborators. This has resulted in continuous improve-
ments and the addition of new features, making Nerfstudio a valuable resource for the NeRF
research community (Tancik et al., 2023). It represents a significant advancement in the de-
velopment of Neural Radiance Fields, providing a robust and flexible platform that accelerates
research and application in the field of neural rendering.

Instant Neural Graphics Primitives (Instant-NGP) is a framework developed by NVIDIA
researchers (Miiller et al., 2022). It leverages a novel multiresolution hash encoding to enable
rapid training and rendering of neural graphics primitives across several tasks, including image
synthesis, signed distance functions (SDF), neural radiance caching (NRC), and Neural Radi-
ance Fields (NeRF). This approach allows for the use of smaller neural networks without com-
promising quality, significantly reducing the computational cost associated with floating point and
memory access operations. The core innovation of Instant-NGP lies in its multiresolution hash
encoding, which organizes trainable feature vectors into a hash table optimized through stochas-
tic gradient descent. This structure disambiguates hash collisions and facilitates parallelization
on modern GPUs using fully fused CUDA kernels, resulting in a speedup of several orders of
magnitude. Training high-quality neural graphics primitives can be achieved in seconds, and ren-
dering occurs in milliseconds at resolutions up to 1920x1080 (Muller et al., 2022). Instant-NGP
has been utilized for several applications due to its efficiency and high-quality results. For exam-
ple, it has been incorporated into methods like Nerfacto, which combines ideas from multiple re-
search papers to enhance performance and reconstruction quality. Nerfacto uses Instant-NGP’s
hash encoding to generate efficient and accurate scene density functions, contributing to im-
proved sampling processes and overall NeRF performance (Tancik et al., 2023; Mller et al.,
2022). lts effectiveness has also been demonstrated in tasks such as gigapixel image repre-
sentation, where a neural network maps 2D coordinates to RGB colors, and in SDF learning,
where a network maps 3D coordinates to distances from a surface. These applications highlight
the versatility and adaptability of encoding across different types of neural graphics primitives.
Instant-NGP represents a significant advancement in neural graphics primitives, offering a scal-
able and efficient solution that enhances the speed and quality of 3D reconstructions and other
related tasks.

4.5 Framework Implementation

The proposed framework serves as an integrated pipeline designed to enable the fu-
ture development of realistic ADAS simulations by bridging the gap between 3D reconstruc-
tion, Unreal Engine, and a selected simulation tool. By structuring a workflow that incorporates
real-world 3D environments into driving simulators, this framework enhances the realism, accu-
racy, and scalability of autonomous vehicle simulations. The framework is structured into three
main phases. The first phase involves the 3D reconstruction of real-world environments using
a methodology, such as COLMAP, MicMac, NeRF-based approaches, or 3D Gaussian Splatting
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(3DGS). These methods allow for the creation of detailed and high-fidelity digital representations
of roads, intersections, and urban environments. The reconstructed data is then processed and
converted into a format compatible with game engines and simulation platforms. The second
phase consists of integrating the reconstructed 3D model into Unreal Engine. Unreal Engine is
used as an intermediary platform where mesh optimization, material adjustments, and lighting
corrections are performed to enhance the quality and usability of the reconstructed environment.
The meshes are imported into Unreal Engine using tools such as Volinga Creator and Volinga
Import, particularly for 3DGS-based reconstructions. Unreal Engine provides real-time rendering
capabilities, allowing visualization and necessary modifications before the final deployment into
CARLA. The third phase involves exporting the refined environment for simulation purposes.

One of the primary contributions of this framework is its ability to integrate photoreal-
istic 3D reconstructions into a simulation environment, providing high-detail and realistic test-
ing environments for autonomous vehicle research. The use of cutting-edge 3D reconstruction
methodologies and high-fidelity game engine rendering significantly enhances the adaptability of
ADAS simulations. By combining these elements, the framework supports the development of a
structured methodology for integrating real-world 3D environments into autonomous vehicle sim-
ulators. Future work in this framework may involve the automation of the integration pipeline to
facilitate the importation of reconstructed scenes. Further enhancements may include real-time
dynamic scene generation, allowing for more adaptive and interactive simulation environments.
Improvements in Al-driven perception models and multi-sensor fusion, including LiDAR, stereo
vision, and radar, could contribute to more comprehensive ADAS testing.
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5 RESULTS AND DISCUSSION

This chapter presents and analyzes the findings of the study, offering a detailed dis-
cussion on the outcomes of the methodologies applied for 3D reconstruction and simulation.
The results are structured to address the main research objectives, including the effectiveness
of the selected reconstruction tools, the integration of datasets into simulation platforms, and
the evaluation of the overall framework. Each section focuses on interpreting the results in the
context of the existing literature, highlighting contributions to the field, and identifying areas for
improvement. Furthermore, the discussion explores the implications of the findings for practical
applications, focusing on how the proposed framework can enhance workflows in urban plan-
ning, autonomous vehicle simulation, and related fields. This chapter concludes with a critical
reflection on the limitations of the study and potential directions for future research.

5.1 Performance Evaluation

This subsection delves into the evaluation of the performance of the proposed method-
ologies and tools employed throughout this work. By assessing key metrics such as accuracy,
computational efficiency, and robustness, the analysis aims to determine the effectiveness of
the approaches in meeting the objectives outlined in previous chapters. The evaluation process
includes comparisons with state-of-the-art methods, where applicable, to highlight strengths and
identify areas for potential improvement. The results of these assessments provide a comprehen-
sive understanding of the practical viability and scalability of the developed techniques, offering
insights that are crucial for guiding future applications and research in the domain.

5.1.1 Mesh methodologies

Table 8 presents a detailed comparison of various tools and techniques for point clouds in
3D modeling. However, after further analysis, it was discovered that some methodologies listed
in the table, such as NeRF, are primarily suited for mesh reconstruction rather than their original
intended category. Subsequently, these methodologies were transferred to be studied in more
appropriate sections of the investigation, ensuring a clear and accurate categorization of tools.
Furthermore, certain methodologies listed in the table were determined to be incompatible with
the present case, either due to technical limitations or lack of relevance to the study’s specific
objectives. This refinement process highlights the dynamic nature of tool selection in research
and ensures that only the most suitable methodologies are explored in detail.

The same is applicable for frames 10 and 11. It provides an overview of various tools
and techniques associated with mesh reconstruction, detailing their features such as the year
of creation, last updates, pricing models, applicability, and purpose. Upon further analysis, it
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was discovered that some of the listed methodologies, such as MeshLab and Geomagic, pri-
marily serve as post-processing tools rather than direct mesh reconstruction techniques. These
tools were subsequently transferred to be studied within a separate section dedicated to post-
processing methodologies. Additionally, certain tools, such as Monomer Model, were determined
to be incompatible with the present study’s objectives due to their specific or unrelated applica-
tions. This reclassification ensures a clearer distinction between methodologies and aligns the
tools with their appropriate roles in the overall research framework.

3D reconstruction and point cloud processing are critical components in several fields
such as computer vision, robotics, and virtual reality. The following analysis compares some
of the leading tools and frameworks in this domain. These tools vary in their approach, perfor-
mance, and application areas, making them suitable for different use cases.

Table 4 — Cloud to Mesh Comparison.

Name Mean Std.

Colmap 0.007060 0.1823
MicMac 10.4512 1.2348
Nerfstudio: Nerfacto 3.9745 1.3280
Nerfstudio: Instant-NGP -5.1412 4.4478
Nerfstudio: 3D Gaussian Splatting 3.3637 1.1816

Source: Own Work (2025).

Table 4 presents a comparative analysis of different 3D reconstruction methods based
on their Cloud-to-Mesh accuracy. The evaluation was conducted using Cloud Compare, a widely
used software for point cloud processing and comparison. The table reports the Mean and Stan-
dard Deviation (Std.) values for each method, which were obtained by measuring the distances
between the reconstructed point cloud and the generated mesh.

The Mean value represents the average deviation of the reconstructed model from the
reference, indicating how closely the reconstruction aligns with the ground truth. A lower mean
value suggests a more accurate reconstruction. The Standard Deviation (Std.) quantifies the
dispersion of errors, reflecting the consistency of the reconstruction method—a lower standard
deviation indicates fewer variations in accuracy.

Colmap achieved a very low mean error (0.007060), indicating high accuracy in aligning
the reconstructed mesh to the original cloud. Its standard deviation (0.1823) suggests minimal
variability across different reconstructions. MicMac showed a significantly higher mean error
(10.4512), implying a larger discrepancy between the mesh and the cloud. The lower standard
deviation (1.2348) indicates consistent but less accurate results. Nerfstudio: Nerfacto yielded
a moderate mean error (3.9745) and a standard deviation of 1.3280, reflecting reasonable ac-
curacy and moderate variability in performance. Nerfstudio: Instant-NGP produced a negative
mean error (-5.1412), which could indicate a systematic bias or deviation in the reconstruction
process. The high standard deviation (4.4478) suggests substantial variability and less reliable
results.
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Nerfstudio: 3D Gaussian Splatting achieved a mean error of 3.3637 with a relatively
low standard deviation (1.1816), demonstrating a balance between accuracy and consistency.
It highlights the trade-offs between accuracy and consistency for each method. While Colmap
stands out for its exceptional accuracy and low variability, other methods such as MicMac and
Nerfstudio: Nerfacto offer alternative approaches with varying degrees of precision and consis-
tency. These results provide a basis for selecting the most suitable reconstruction method based
on specific project requirements and constraints.

5.1.2 Point cloud methodologies

Figure 18 and 19 presents the point clouds generated by different software tools and
methodologies. Each software tool processes the input data differently, leading to variations in
the quality, density, and completeness of the point clouds. As shown in the figure, Instant-NGP
and Nerfacto offer high-speed reconstruction but may result in noisier outputs in comparison
to tools like Colmap and Micmac, which provide denser and more detailed reconstructions at
the cost of higher computational resources. OpenMVG and VisualSFM, while producing sparser
point clouds, are still effective for specific applications, particularly those focused on camera
pose estimation rather than dense surface generation. The comparison highlights the strengths
and trade-offs of each tool in terms of processing time, reconstruction quality, and hardware

requirements.

Figure 18 — Point clouds generated by different tools.

Instant-NGP . Fal Nerfacto

Colmap - : / Micmac VisualSFM

Source: Own Work (2025).

Table 5 presents the cloud-to-cloud distance computations, focusing on the mean
distances and standard deviations between several 3D reconstruction methods: OpenMVG,
Colmap, MicMac, Instant-NGP, Nerfacto, and VisualSFM. These values are essential for eval-
uating the accuracy of point cloud alignments generated by different tools.

OpenMVG demonstrates a notably high mean distance when compared with Colmap and
shows higher variability in terms of standard deviation. This suggests that OpenMVG'’s recon-
structions, when compared to Colmap, tend to deviate significantly in terms of point alignment,
possibly due to differing underlying algorithms in feature detection and matching. However, in
comparisons with MicMac, Instant-NGP, Nerfacto, and VisualSFM, OpenMVG shows relatively
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Source: Own Work (2025).

smaller mean distances, with values ranging from 0.66 to 1.71, indicating better alignment in
these cases. Colmap, on the other hand, exhibits very high accuracy when compared with other
methods such as Instant-NGP and Nerfacto. For instance, the mean distance between Colmap
and Instant-NGP is 1.74 with a small standard deviation of 0.66, indicating consistent results
across the point cloud. However, the comparisons with MicMac show relatively higher mean
distances and deviations, indicating that the algorithms might handle specific features or areas
differently, affecting the overall alignment. MicMac maintains good alignment with OpenMVG
(0.61 mean distance) and Instant-NGP, indicating close consistency in the point cloud genera-
tion. However, a higher mean distance and standard deviation in comparison with Nerfacto show
that these methods produce more divergent point clouds, likely due to differences in point cloud
density or scene complexity.

Instant-NGP exhibits relatively consistent alignment with OpenMVG and Colmap, while
showing greater divergence when compared with MicMac. The standard deviation in its compar-
ison with Nerfacto suggests variability in the point clouds produced by these methods, potentially
due to differences in how these tools handle scene reconstruction and surface texturing. Nerfacto
shows the smallest mean distance when compared with Instant-NGP, indicating excellent align-
ment between these two methods, likely because of shared underlying techniques. However, the
comparison with other methods, particularly MicMac and VisualSFM, reveals larger mean dis-
tances and higher standard deviations, suggesting discrepancies in how Nerfacto reconstructs
scenes compared to these other tools. Finally, Visual SFM exhibits relatively stable performance
with other methods, as shown by low standard deviations and mean distances compared with
Colmap, Instant-NGP, and OpenMVG. However, like other methods, it shows greater divergence
when compared with MicMac.

Nerfacto and Instant-NGP utilize an existing Neural Radiance Fields (NeRF) model to
generate point clouds by leveraging neural representations to encode 3D scenes. NeRF models
are designed to map 2D images to a volumetric representation by optimizing the rendering of
each pixel based on camera poses. Instant-NGP speeds up this process through a multireso-
lution hash grid, allowing for faster training and rendering, while Nerfacto combines elements
from various NeRF techniques to strike a balance between speed and reconstruction quality. By
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optimizing the NeRF model, they can effectively generate dense and accurate point clouds di-
rectly from neural scene representations, offering a more efficient approach to 3D reconstruction
compared to traditional photogrammetry methods. This neural-based approach allows for faster
processing times while maintaining a high level of detail in the reconstructed scene.

No single tool consistently outperforms the others across all metrics. Colmap and Instant-
NGP exhibit strong accuracy and low variability when compared to many of the other tools,
making them reliable for generating high-quality point clouds. OpenMVG performs well in cer-
tain scenarios but struggles with consistency when compared to Colmap. Nerfacto, while having
close alignment with Instant-NGP, shows higher variability with other tools, possibly indicating its
specialized applicability. These results suggest that the choice of software should depend on the
specific requirements of the project, such as point cloud accuracy, consistency, and computa-
tional complexity. For tasks requiring high precision and consistent results, Colmap and Instant-
NGP are likely the best choices. On the other hand, OpenMVG and VisualSFM are better suited
for scenarios where speed or lower computational overhead is required, despite some variability
in results.

Figure 19 demonstrates the textured meshes produced by different software tools,
namely Splatfacto, Instant-NGP, Nerfacto, Colmap, and Micmac. Each tool employs unique
methodologies for generating and applying textures to the 3D mesh. For example, neural ren-
dering approaches like Splatfacto and Instant-NGP focus on generating photorealistic textures
directly from 2D images by leveraging neural networks, resulting in highly realistic textures with
smooth transitions. However, as seen with Nerfacto, while the textures are visually appealing,
there are some artifacts that may appear in certain regions of the mesh.

Traditional methods, such as Colmap and Micmac, on the other hand, generate more
geometrically accurate meshes but may have challenges with texture mapping, leading to less
photorealistic outputs compared to neural methods. The differences between these approaches
highlight the trade-offs between photorealism and geometric accuracy in mesh texturing. Table 5
presents the mean and standard deviation (Std) values for cloud-to-cloud distance computations,
comparing the Colmap point cloud with other 3D reconstruction methods, including MicMac and
several Nerfstudio-based approaches: Nerfacto, Instant-NGP, and 3D Gaussian Splatting.

Colmap, when compared to itself, naturally results in near-zero mean distances (0.007)
and a very small standard deviation (0.182), indicating internal consistency within its own point
cloud. This serves as a baseline for understanding deviations with other methods. The compar-
ison between Colmap and MicMac reveals a significantly larger mean distance (10.45) with a
moderate standard deviation (1.23). This indicates that MicMac’s reconstruction deviates more
substantially from Colmap’s, likely due to differences in their underlying algorithms and how they
handle feature detection and matching during the reconstruction process. Despite the higher
mean, the moderate standard deviation suggests that while the two point clouds differ, the vari-
ation is relatively consistent across the cloud.



105

Table 5 — Distance Computation (Cloud-to-Cloud Distance)

Metric Name OpenMVG Colmap MicMac Instant-NGP Nerfacto Visual SFM
OpenMVG - 128.8810  0.6091 1.6108 4.4834 1.7084
Colmap 6.5834 - 6.3426 7.1493 1.8212 1.1484

Mean Dist. MicMac 0.6091 9.2355 - 9.2674 8.5326 1.8027
Instant-NGP 1.6108 1.7416 1.6873 - 2.6043 2.4443
Nerfacto 4.4834 1.8212 8.5326 2.6043 - 2.3806
Visual SFM 1.7084 4.3091 9.3365 1.4993 4.1649
OpenMVG - 481.8060 0.1102 0.6300 10.1742 0.7694
Colmap 1.1834 - 1.4531 1.0414 0.8379 0.4012

Std Dev. MicMac 0.1102 2.3317 - 1.9322 33.6128 0.5149
Instant-NGP 0.6253 0.6608 0.3901 - 9.6101 0.6403
Nerfacto 10.1742 0.8379  33.6128 2.6043 - 0.7091
Visual SFM 0.7694 0.7640 1.9163 0.6872 9.8412

Source: Own Work (2025).

Nerfstudio’s Nerfacto model shows a mean distance of 3.97 and a standard deviation of
1.32. This result suggests a closer alignment between Nerfacto and Colmap compared to Mic-
Mac, although the deviation is still notable. Nerfacto’s combination of neural techniques appears
to produce reasonably accurate reconstructions but with slightly more noise, as indicated by the
higher standard deviation compared to Colmap’s own values. On the other hand, Instant-NGP,
another Nerfstudio approach, demonstrates a negative mean distance (—5.14) with a high stan-
dard deviation (4.45). The negative mean suggests a systematic offset between the two point
clouds, and the large standard deviation reflects considerable variability in alignment. This result
suggests that while Instant-NGP can generate fast reconstructions, its output may suffer from
inconsistencies when compared to Colmap, which could impact its use in tasks requiring high
accuracy.

The 3D Gaussian Splatting technique from Nerfstudio exhibits a relatively low mean dis-
tance (3.36) and a standard deviation of 1.18, indicating better overall alignment with Colmap
compared to Instant-NGP and Nerfacto. This suggests that 3D Gaussian Splatting produces
more accurate reconstructions with respect to Colmap, and it may provide a more consistent
output in terms of surface alignment, offering a good balance between speed and accuracy.
Colmap remains the most consistent and geometrically accurate method, serving as a strong
baseline for comparison. MicMac, while differing significantly, remains a viable alternative with
consistent variation in alignment. Nerfstudio’s approaches, particularly 3D Gaussian Splatting,
demonstrate promise in terms of accuracy but show more variability compared to traditional pho-
togrammetry tools. Instant-NGP, though efficient, shows greater inconsistency, which may limit
its applicability in precise tasks. These findings suggest that the choice of reconstruction tool
should depend on the specific requirements of the task, with Colmap being favored for accuracy
and consistency, and Nerfstudio’s models offering faster but slightly less precise alternatives.
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5.2 Simulation Tool Selection and Implementations

The selection of an appropriate simulation tool is a critical step in ensuring the success
and reliability of this study. This subsection outlines the criteria and process for identifying a
simulation platform that aligns with the requirements of 3D reconstruction and urban model-
ing. Factors such as ease of integration, computational efficiency, extensibility, and support for
realistic physics and rendering were considered. By analyzing a variety of tools against these
benchmarks, the aim was to select a platform that not only meets the immediate project needs
but also provides flexibility for future expansions and experiments.

Based on the data presented in Table 3, the simulators were further investigated in depth,
and some practical tests were conducted to evaluate their capabilities. Following this detailed
analysis and hands-on experimentation, the CARLA simulator was selected as the most suitable
option for this study, owing to its robust features and compatibility with the project’s requirements.

CARLA is an open-source simulator designed for autonomous driving research, provid-
ing a versatile platform for testing and development (Dosovitskiy et al., 2017b). Built on Unreal
Engine, it offers a high-fidelity virtual environment that supports various urban settings, weather
conditions, and dynamic scenarios. CARLA provides detailed 3D maps, sensor simulation (such
as LiDAR, radar, and cameras), and an array of pre-designed vehicle models to mimic real-world
behavior. The simulator enables integration with machine learning frameworks, making it a pow-
erful tool for training and validating autonomous systems. lts modular design allows researchers
to customize scenarios and parameters, ensuring comprehensive evaluation of algorithms under
controlled and diverse conditions. By fostering a collaborative ecosystem, CARLA has become
a cornerstone for academia and industry in advancing autonomous vehicle technologies.

Unreal Engine provides advanced rendering capabilities, scene adjustments, and debug-
ging tools that allow for fine-tuning the 3D model before it is imported into CARLA. Integrating the
3D reconstruction into Unreal Engine is a crucial step to ensure that the reconstructed environ-
ment is properly formatted, optimized, and visually accurate before being used in autonomous
driving simulations. By first integrating the reconstruction in Unreal Engine, it is possible to check
for geometry inconsistencies, material and texture issues, and proper scaling of the environment,
ensuring that the model accurately represents real-world conditions. Unreal Engine’s real-time
visualization and interactive scene-editing tools facilitate collision detection, lighting adjustments,
and environmental optimizations, which are essential for creating a realistic driving simulation.
Once the environment is successfully set up in Unreal, it can then be exported in a format com-
patible with CARLA, including the necessary .xodr (OpenDRIVE) files for road definition and
navigation data. This workflow streamlines the integration process, reducing errors and ensuring
that the final CARLA simulation runs smoothly, with a well-structured and high-fidelity driving
environment.
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5.2.1 Importing Reconstructed Mesh into Unreal Engine using 3D Gaussian Splatting

This subsection describes the process of importing a reconstructed 3D mesh into the
Unreal Engine environment using 3D Gaussian Splatting (3DGS) and Volinga’s plugin. This ap-
proach facilitates high-quality scene reconstruction by leveraging recent advancements in Neural
Radiance Fields (NeRF) and Gaussian Splatting techniques.

5.2.1.1 Overview of Volinga Plugin

The integration of 3DGS models into Unreal Engine is facilitated by Volinga’s tools, which
consist of two main components. Each tool plays a critical role in the workflow, ensuring a smooth
transition from raw reconstruction data to a Unreal Engine environment. Volinga Creator is a tool
designed to generate 3DGS models from images or video input. The process consists of the
following steps:

1. Input Data Collection: The tool processes multi-view images or videos of a real-world

scene.

2. 3D Gaussian Reconstruction: A neural network-based approach is used to generate
a 3D scene composed of thousands of Gaussian splats.

3. Optimization and Compression: The model undergoes refinements to enhance visual
fidelity while maintaining efficient rendering performance.

4. Export as a 3DGS Model: The resulting scene is stored in a format that retains the vol-
umetric nature of Gaussian splats, ensuring high-quality rendering with minimal com-
putational cost.

Unlike traditional 3D reconstruction methods that generate polygonal meshes (e.g., .FBX,
.OBJ), Volinga Creator focuses on a volumetric representation that excels in real-time rendering.
Once the reconstruction is complete, it might be imported into Unreal Engine. However, Unreal
Engine does not natively support Gaussian Splatting models. This is where Volinga Import plays
a crucial role. Volinga Import is a tool that converts the 3DGS or NeRF reconstructions into an
.nvol file, which is compatible with Unreal Engine’s rendering pipeline. The conversion process
follows these steps:

1. Load the 3DGS Model into Volinga Import: The Gaussian Splatting reconstruction
generated by Volinga Creator is imported.

2. Generate an .nvol File: The tool converts the 3DGS data into the **.nvol format™*,
which is optimized for Unreal Engine’s visualization engine.
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3. Import the .nvol File into Unreal Engine: Using the Volinga Plugin for Unreal, the
converted scene is loaded into the engine.

4. Adjust Scene Properties: Scaling, lighting, and rendering settings are adjusted within
Unreal Engine to ensure proper integration.

A test was conducted using a NeRF-based mesh generated with Nerfstudio to evaluate
its feasibility for integration within Unreal Engine. However, it was found that Volinga no longer
provides support for NeRF models, limiting the direct use of these reconstructions in the work-
flow. While NeRF remains a powerful approach for scene reconstruction, its lack of compatibility
with Volinga’s import pipeline presented a challenge for integration. As a result, alternative meth-
ods, such as 3D Gaussian Splatting (3DGS), were explored, offering a more suitable approach
for importing and rendering reconstructed environments within the simulation framework.

Figure 20 illustrates the successful integration of the UTFPR 3DGS mesh into Unreal
Engine, showcasing the reconstructed environment within the simulation platform. The 3D mesh
was generated using Volinga Creator, which processes image-based 3D reconstructions into 3D
Gaussian Splatting (3DGS) meshes. The generated mesh was then imported into Unreal Engine
through Volinga Import, which converts the reconstruction into an .nvol file, allowing for seamless
visualization and interaction within the engine. This step was crucial for evaluating the geometry,
texture accuracy, and overall fidelity of the reconstruction before integrating it into CARLA for
autonomous driving simulations. Unreal Engine’s real-time rendering capabilities enabled further
optimizations, such as collision adjustments, material refinements, and lighting enhancements,
ensuring that the environment is suitable for realistic driving simulations. The integration of the
UTFPR 3DGS mesh in Unreal serves as an essential intermediary step, allowing for detailed
scene validation and refinement before exporting it for use in CARLA.

For the initial proof of concept, a low-quality 3DGS mesh was used to validate the in-
tegration process within Unreal Engine before proceeding with higher-fidelity reconstructions.
This preliminary mesh served as a functional test to ensure compatibility between the Volinga-
generated 3D Gaussian Splatting (3DGS) model and the simulation pipeline. Despite its reduced
level of detail and potential artifacts, it provided valuable insights into the workflow, importation
process, and rendering capabilities within Unreal. The use of a simplified mesh allowed for faster
processing and testing, confirming that the methodology was feasible before committing to more
computationally expensive high-resolution models for full-scale simulation.

With the reconstructed environment successfully imported into Unreal Engine, the next
step is to integrate it with CARLA. This process involves. Converting the 3DGS model into
CARLA-compatible assets while preserving key features, generating OpenDRIVE (.xodr) files
to define road structures and navigation paths and setting up collision detection and physics in-
teractions for autonomous vehicle simulations. By leveraging Volinga’s tools and Unreal Engine,
this workflow enables realistic scenarios that can be used for autonomous vehicle research,
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Source: Own Work (2025).

sensor simulation, and Al training. The steps followed for importing the reconstructed mesh into
Unreal Engine are as follows:

1. Generating the 3D Reconstruction: The environment was reconstructed using a
3DGS-based approach, ensuring high visual fidelity and efficient rendering perfor-
mance.

2. Exporting the 3DGS Model via Volinga: The reconstructed Gaussian Splatting model
was exported using Volinga’s plugin, which converts the model into an Unreal Engine-
compatible format.

3. Importing into Unreal Engine: Using the Volinga plugin, the exported model was
loaded into Unreal Engine. This process ensures that the spatial consistency and vi-
sual details of the original 3D reconstruction are maintained.

4. Aligning the Imported Mesh: After import, the reconstructed scene was centered at
coordinates (0,0,0) to align correctly within the Unreal Engine world space.

5.3 Pipelines for 3D Map Generation

The generation of 3D maps for virtual environments and driving simulators relies on struc-
tured pipelines that integrate several stages, ranging from data acquisition to final simulation
deployment. These pipelines aim to create high-fidelity digital replicas of real-world environ-
ments, ensuring accurate representation of roads, buildings, vegetation, and other key features
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required for realistic autonomous vehicle (AV) testing. Each step is critical to ensuring geomet-
ric accuracy, texture realism, and compatibility with simulation platforms, such as Unreal Engine
and CARLA. Table 15 summarizes the proposed pipeline used in this work, demonstrating how
datasets acquired through image capture are processed into point clouds, reconstructed into
textured meshes, and finally integrated into simulation environments for ADAS validation and
testing.

Frame 15 — Steps for 3D Environment and Scenario Creation in SCANeR Studio

Step Title Description

1 Requirements Gathering Collection of customer requirements regarding the virtual
environment, including road types, urban/rural settings, ob-
jects, vehicles, pedestrians, and signage.

2 Project Proposal & Planning Definition of project stages, timeline, partial and final de-
liverables, and formal approval of the project scope by the
customer.

3 3D Environment Modeling Creation of 3D elements such as: road infrastructure, build-
ings, urban elements, environmental conditions (weather,
lighting), and landscape elements.

4 Scenario Configuration Setup of specific scenarios, including traffic flow, dynamic
vehicles, pedestrian paths, event triggers (accidents, de-
tours, adverse weather conditions).

5 Integration into SCANeR Studio | Importation of the 3D environment and configured scenar-
ios into SCANeR Studio. Association with vehicle models,
ADAS features, and simulation parameters.

6 Testing & Validation Execution of validation tests within SCANeR Studio to
check consistency, positioning accuracy, interaction be-
tween vehicles, pedestrians, and infrastructure.

7 Customer Review & Delivery Presentation to the customer, incorporation of feedback,
and final delivery of the fully integrated and functional envi-
ronment and scenarios.

Source: Adapted from AVSimulation Documentation (2025).

Table 16 presents the complete pipeline designed for generating and integrating 3D en-
vironments into the CARLA simulator, ensuring compatibility with autonomous vehicle testing
scenarios. The process begins with the acquisition of image datasets from real-world locations,
captured using a handheld camera to facilitate flexible and cost-effective data collection. These
images are processed using COLMAP, which generates dense point clouds, replacing the need
for more expensive LIDAR systems while preserving geometric accuracy. The point clouds are
subsequently transformed into textured meshes, capturing both geometry and surface appear-
ance. These meshes are imported into Unreal Engine for initial spatial adjustments and visual
inspections. A critical step in the process is the creation of a material and texture classification
system, which automatically identifies key surface types — such as roads, buildings, sidewalks,
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and vegetation — ensuring proper semantic segmentation required for CARLA’s sensors. Addi-

tionally, two essential files are generated: a .fbx file containing the environment’s 3D geometry,

and a .xodr file containing the road network definition in the OpenDRIVE format, allowing CARLA

to simulate traffic behavior and vehicle dynamics accurately. Finally, the reconstructed and clas-

sified environment is integrated into CARLA, where ADAS validation logic is implemented, en-

abling comprehensive testing of autonomous driving functionalities in a virtual replica of real-

world locations.

Frame 16 — 3D Environment Creation and Integration Process with CARLA

Step Title Description

1 Dataset Acquisition Capture images of the target environment using a handheld
camera, ensuring coverage from multiple angles for later
reconstruction.

2 Point Cloud Generation with | Process images in COLMAP to generate a 3D point cloud,

COLMAP serving as an alternative to traditional LiDAR scanning.

3 Textured Mesh Creation Convert the point cloud into a fully textured 3D mesh, refin-
ing geometry and applying realistic textures based on the
captured images.

4 Import into Unreal Engine Import the textured 3D mesh into Unreal Engine for visu-
alization, spatial adjustments, and preliminary compatibility
checks.

5 Material and Texture Classifica- | Develop a classification system to automatically identify

tion System and label materials and textures, distinguishing roads,
buildings, vegetation, sidewalks, and other elements criti-
cal for simulation realism.

6 Generation of CARLA Files (.fox | Create the two required files for CARLA integration: a .fbx

and .xodr) file containing the 3D geometry and a .xodr file with Open-
DRIVE road network data, ensuring CARLA’s traffic logic
compatibility.

7 Unreal to CARLA Integration Integrate the Unreal environment into CARLA, ensuring
correct alignment, scale, collision settings, and semantic
segmentation compatibility within the simulator.

8 ADAS Validation Logic Develop- | Create and implement logic for ADAS validation within

ment CARLA, allowing the evaluation of autonomous systems’
responses to the reconstructed environment’s features, traf-
fic, and events.

Source: Own Work (2025).

The pipeline developed for the creation and integration of 3D environments into CARLA

represents a significant contribution to research and testing in the field of autonomous vehicles.

By replacing traditional data capture methods based on LiDAR sensors with image-based re-

construction techniques, the proposed methodology reduces costs and increases accessibility

for creating realistic urban environments for simulation purposes. The integration with Unreal
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Engine allows for visual adjustments and mesh validation before exporting to CARLA, ensuring
that the virtual environment preserves not only the geometry but also essential texture features
for perception simulations. Furthermore, the automatic classification of materials and the gen-
eration of the required CARLA-compatible files (.fox and .xodr) offer a structured workflow that
facilitates the creation of dynamic, semantically enriched scenarios, crucial for the development
and validation of ADAS systems and autonomous driving algorithms. By consolidating all these
steps into a cohesive process, the created pipeline optimizes development time, improves con-
sistency across different test scenarios, and enables the reproduction of real-world environments
in controlled simulations, bringing virtual assessments closer to real-world conditions.

5.4 Conclusion of Results

The results obtained in this study provide a comprehensive evaluation of the method-
ologies and technologies employed for 3D reconstruction and integration into simulation environ-
ments. By systematically analyzing different reconstruction techniques, evaluating their accuracy,
efficiency, and suitability for simulation, and testing their integration within Unreal Engine and
CARLA, this research has yielded valuable insights into the feasibility and practical challenges
of incorporating reconstructed environments into autonomous vehicle simulations.

The comparative analysis of 3D reconstruction methods, including COLMAP, MicMac,
NeRF-based techniques, and 3D Gaussian Splatting (3DGS), demonstrated significant varia-
tions in reconstruction accuracy and computational requirements. The Cloud Compare evalua-
tion highlighted how point cloud generation and mesh reconstruction approaches differ in terms
of precision and standard deviation, providing quantitative data that supports the selection of ap-
propriate techniques based on specific application needs. While some methods delivered highly
detailed reconstructions, their computational cost and integration complexity posed challenges
for real-time simulation applications.

The integration of reconstructed environments into simulation platforms proved to be a
key aspect of this research. The workflow of importing reconstructed 3DGS meshes into Un-
real Engine and subsequently preparing them for CARLA was extensively tested. A significant
finding was that CARLA requires additional file formats for seamless integration, reinforcing the
necessity of pre-processing and optimizing reconstructed meshes within Unreal Engine before
final importation. Furthermore, the Volinga plugin was tested for NeRF-based reconstructions,
but its lack of continued support for NeRF models limited its usability for this research.

Additionally, the study revealed the importance of selecting an appropriate simulator for
the project. Among the tested platforms, CARLA was chosen due to its open-source nature,
strong support for autonomous driving research, and high compatibility with 3D models. How-
ever, other simulators, such as SUMO and LGSVL, were evaluated and found to be less suited
for integrating high-quality 3D reconstructions. The findings from these experiments highlight
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the necessity of developing a streamlined and automated pipeline for importing reconstructed
models into simulation environments, a key area for future improvements.

In summary, the results validate the feasibility of integrating 3D reconstructed environ-
ments into simulation frameworks while emphasizing the challenges that remain, particularly in
mesh optimization, real-time rendering, and automated integration pipelines. The insights gained
from this research not only contribute to the advancement of simulation-based autonomous
vehicle testing but also establish a foundation for further improvements in 3D reconstruction
methodologies, simulator compatibility, and performance optimization. Future research will focus
on enhancing reconstruction quality, improving the automation of the integration process, and
expanding simulation capabilities to include dynamic environmental factors for more realistic and

scalable autonomous vehicle simulations.
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6 CONCLUSION

This dissertation presented an extensive study on 3D reconstruction and simulation
methodologies, aiming to advance the integration of realistic virtual environments into au-
tonomous vehicle simulations. The research covered a broad spectrum of topics, from theoretical
concepts in reconstruction techniques to practical implementations and evaluations using state-
of-the-art tools and frameworks. By addressing key challenges in the field, this work provides
valuable insights that contribute both to academic research and industrial applications. A major
focus of this research was the development and assessment of datasets tailored for 3D recon-
struction. A structured approach to data collection was followed, including sensor selection, data
acquisition, and preprocessing, which led to the creation of a robust dataset. This included a full
dataset as well as a smaller subset optimized for rapid testing. The use of real-world data from
UTFPR further enhanced the practical applicability of the study, ensuring that the findings are
relevant to real-world scenarios.

A thorough analysis of various reconstruction techniques was provided, including point
cloud generation, mesh reconstruction, and post-processing methodologies. Tools such as
COLMAP, NeRF, 3D Gaussian Splatting, and MicMac were evaluated in detail, allowing for a
comprehensive understanding of their strengths and weaknesses. The comparison between
these methods, conducted using Cloud Compare, highlighted their accuracy, computational effi-
ciency, and feasibility for simulation integration. This analysis contributed to identifying the most
suitable techniques for creating high-fidelity 3D environments. One of the central challenges
addressed in this research was the integration of 3D reconstructed models into simulation plat-
forms, particularly Unreal Engine and CARLA. The study initially focused on importing the re-
constructed models into Unreal Engine as an intermediary step before integrating them into
CARLA, due to the additional file requirements and compatibility constraints of the CARLA sim-
ulator. A key finding was that manual integration requires specific file formats (.fox and .xodr),
which necessitates a two-step process: preparing the reconstructed mesh in Unreal Engine be-
fore importing it into CARLA. This insight provides a practical guideline for future researchers
working on similar integrations.

Furthermore, simulation tools were explored to assess their suitability for working with
reconstructed environments. CARLA was ultimately selected as the primary simulation platform
due to its open-source nature, realistic physics, and strong support for autonomous vehicle re-
search. Other simulators, such as SUMO and LGSVL, were considered but exhibited limitations
in their ability to handle detailed 3D environments. The research also involved practical testing
with Volinga, a tool that facilitates the importation of 3D Gaussian Splatting (3DGS) meshes
into Unreal Engine. However, experiments with NeRF-based meshes revealed that Volinga no
longer supports NeRF, limiting its use for specific reconstruction approaches. This dissertation
also introduced a systematic literature review (SLR), conducted using the PRISMA methodol-
ogy, to identify and categorize the most relevant research on 3D reconstruction and simulation
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techniques. The NVivo software was utilized to manage and analyze qualitative data from the
literature review, allowing for a structured synthesis of existing methodologies and technologies.
The dual focus of the SLR—on both reconstruction and simulation approaches—ensured a com-
prehensive overview of the field, facilitating a well-informed selection of tools and techniques.

Despite the progress made in this research, several areas remain open for further explo-
ration and improvement. A crucial future direction involves enhancing the quality of reconstructed
environments by incorporating higher-resolution datasets and leveraging more advanced recon-
struction techniques, such as neural radiance fields (NeRF) and deep learning-based point cloud
processing. Additionally, automating the integration pipeline between reconstruction tools and
simulation platforms like CARLA remains a key challenge. Developing a standardized workflow
or software tool that streamlines this process would significantly improve efficiency and acces-
sibility. Another promising avenue is the validation of reconstructed environments by comparing
them against real-world sensor data, ensuring that virtual simulations accurately represent phys-
ical environments. Expanding the scope of this research to include dynamic elements, such as
real-time traffic interactions and environmental conditions, would further improve the realism and
applicability of the simulation framework. Integrating sensor fusion techniques—combining Li-
DAR, RGB cameras, and depth sensors—could enhance reconstruction accuracy and overcome
limitations associated with individual sensor modalities.

This dissertation has contributed a validated methodology for 3D reconstruction and sim-
ulation, bridging the gap between real-world data acquisition and virtual environment simula-
tion. By addressing fundamental challenges in this domain and proposing practical solutions,
this work provides a strong foundation for future advancements. The findings not only enhance
our understanding of current reconstruction and simulation technologies but also pave the way
for further innovation, particularly in the integration of automated reconstruction-to-simulation
pipelines. The impact of 3D reconstruction technologies extends beyond autonomous vehicle
research. The methodologies developed and tested in this study can be applied to various do-
mains, including urban planning, digital twins, cultural heritage preservation, and virtual reality
applications. As technology advances, interdisciplinary collaboration between computer vision,
machine learning, and simulation engineering will play a key role in refining and expanding the
capabilities of 3D reconstruction for real-world applications. Ultimately, this work underscores the
transformative potential of 3D reconstruction technologies in shaping the future of simulation,
autonomous systems, and digital modeling. With continued research and technological develop-
ment, the integration of highly realistic reconstructed environments into real-time simulations will

become a crucial element in the evolution of autonomous systems and smart city technologies.
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