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ABSTRACT

PASSARIN, T. A. R.. SPARSE ULTRASOUND IMAGING VIA LINEAR APPROXI-
MATION OF THE ACQUISITION MANIFOLD AND NON-CONVEX GREEDY PUR-
SUIT. 67 f. Doctoral Thesis – Graduate Program in Electrical and Computer Engineering,
Federal University of Technology - Paraná. Curitiba, 2019.

Model-based image and signal reconstruction has brought important improvements in
terms of contrast and spatial resolution to applications such as magnetic resonance ima-
ging and emission computed tomography. However, their use for pulse-echo techniques
like ultrasound imaging is limited by the fact that model-based algorithms assume a fi-
nite grid of possible locations of scatterers in a medium – an assumption that does not
reflect the continuous nature of real world objects and creates a problem known as off-
grid deviation. To cope with this problem, we present a method of dictionary expansion
and constrained reconstruction that approximates the continuous manifold of all possi-
ble scatterer locations within a region of interest (ROI). The creation of the expanded
dictionary is based on a highly coherent sampling of the ROI, followed by a rank reduc-
tion of the corresponding data that encompasses two possible approximation criteria: one
based on singular-value decomposition (SVD) and one minimize-maximum (Minimax).
Although we develop here a formulation for two-dimensional sparse imaging problems,
it can be readily extended to any D dimensions. We develop a greedy algorithm, based
on the Orthogonal Matching Pursuit (OMP), that uses a correlation-based non-convex
constraint set that allows for the division of the ROI into cells of any size. To evaluate the
performance of the proposed method, we present results of two-dimensional ultrasound
image reconstructions with simulated data in a nondestructive testing application. The
proposed method succeeds at reconstructing sparse images from noisy measurements and
provides higher accuracy than previous approaches based on regular discrete models. Re-
sults also confirm a theoretical expectation that the Minimax dictionary outperforms the
SVD dictionary on the estimation of the cardinality of the solution.

Keywords: ultrasonic imaging, image reconstruction, optimization methods, greedy al-
gorithms



RESUMO

PASSARIN, T. A. R.. RECONSTRUÇÃO DE IMAGENS ESPARSAS DE ULTRASSOM
ATRAVÉS DE APROXIMAÇÃO LINEAR DO MANIFOLD DE AQUISIÇÃO E BUSCA
ITERATIVA NÃO CONVEXA. 67 f. Tese de Doutorado – Programa de Pós-Graduação
em Engenharia Elétrica e Informática Industrial, Universidade Tecnológica Federal do
Paraná. Curitiba, 2019.

Nas últimas décadas, as técnicas de reconstrução de imagens e sinais baseadas em mo-
delos possibilitaram importantes melhorias em termos de contraste e resolução espacial
em aplicações como ressonância magnética e tomografia computadorizada. No entanto,
o uso de técnicas desse tipo em aplicações de pulso-eco como ultrassom é limitado pelo
fato delas pressuporem uma grade finita de posśıveis localizações para os refletores exis-
tentes num meio – um pressuposto que vai contra a natureza cont́ınua dos objetos do
mundo real, o que cria um problema conhecido como desvio da grade. Com o objetivo
de superar esse problema, este trabalho apresenta um método de expansão de dicionário
e de reconstrução com restrições que aproxima a variedade (comumente referida como
manifold) cont́ınua dos dados de aquisição formada por todas as localizações posśıveis de
refletores ao longo de uma região de interesse (RDI). A criação do dicionário expandido
baseia-se numa amostragem altamente coerente da RDI, seguida de uma redução de posto
matricial nos dados correspondentes para a qual são propostos dois critérios: um baseado
em decomposição em valores singulares (SVD) e um baseado em minimização do máximo
(Minimax). Embora a formulação seja aqui desenvolvida para o caso de 2 dimensões, a
mesma é extenśıvel para quaisquer D dimensões. É proposto um algoritmo baseado no
Orthogonal Matching Pursuit (OMP), que usa um conjunto de restrições não convexas
baseadas em correlação e permite que a RDI seja dividida em células de qualquer tama-
nho. O método proposto é avaliado através da reconstrução de imagens de ultrassom
em 2 dimensões a partir de dados simulados para uma aplicação de ensaios não destru-
tivos. O método proposto obteve êxito na reconstrução de imagens esparsas a partir de
dados de aquisição ruidosos e possibilitou maior acurácia do que abordagens concorrentes
baseadas em modelos discretos sem expansão do dicionário. Os resultados confirmaram
também uma expectativa teórica de que o dicionário Minimax supera o dicionário SVD
com relação à estimativa de cardinalidade da solução.

Palavras-chave: imagens de ultrassom, reconstrução de imagens, métodos de otimização,
algoritmos gulosos
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1 INTRODUCTION

1.1 MOTIVATION

Model-based image reconstruction methods provided important advances to ima-

ging techniques such as magnetic resonance imaging (MRI) (FESSLER, 2010) and emis-

sion computed tomography (ECT) (OLLINGER; FESSLER, 1997) in the last decades.

These methods rely on a known model which results in the captured signal being repre-

sented by a sum of N coefficient-weighted responses. These responses are usually Point

Spread Functions (PSF), and coefficients are usually intensity of pixels at a modelled

location. The discrete model is then fed to regression algorithms along with a vector of

acquired data, and the intensity on each pixel is determined (CENSOR, 1983). The use

of model-based techniques in pulse-echo imaging relies on a strong assumption: that all

reflectors (or scatterers) are located on any of a finite grid of N modelled positions (LAVA-

RELLO et al., 2006). Naturally, real-world inspected objects easily break this assumption

and many scatterers may be located off-grid. Many previous studies with model-based

algorithms for ultrasound imaging –including but not limited to the works of Lavarello

et al. (2006), Zanin et al. (2011), Zanin et al. (2012), Desoky et al. (2003), Lingvall et

al. (2003), Lingvall and Olofsson (2007), Olofsson and Wennerstrom (2007) and Viola

et al. (2008)– have reported that resolution and contrast are substantially improved in

comparison to delay-and-sum (DAS) algorithms when data comes from simulations with

scatterers located strictly on a modelled grid. However, images are corrupted by artifacts

when the grid is not respected, which is typical in data acquired from real measurements.

Consequently, DAS beamforming algorithms remain as state-of-the-art for ultrasound

imaging, despite having well understood physical limitations regarding spatial resolution

(JR, 2014; SMITH; WEBB, 2010).

The present work proposes to address the problem of discretely representing the

continuous object, with all possible scatterer locations, by a dictionary expansion. The

framework of dictionary expansion was recently proposed for 1-dimensional, shift-invariant

problems with focus on neural spike detection (EKANADHAM et al., 2011; KNUDSON
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et al., 2014). We generalize the framework so that it can be used in D-dimensional,

shift-variant problems. The expanded dictionaries then feed a sparsity-promoting greedy

algorithm, which is a generalization of the Orthogonal Matching Pursuit (OMP). The

sparsity assumption is in line with images expected in nondestructive testing (NDT)

ultrasound, in which small dimension discontinuities from flaws like cracks and oxidation

holes are searched.

The document is organized as follows: in Chapter 2, we review the foundations

of model-based imaging for pulse-echo applications as well as techniques of reconstruction

with regularization and sparsity promotion. Still in Chapter 2, we define off-grid scatterers

and explain how dictionary expansion works as a means to cope with them. Two approa-

ches of dictionary expansion (SVD and Minimax) are presented in Chapter 3, both based

on a highly coherent sampling of the continuous manifold followed by a rank reduction

procedure. We present them as two particular cases of a general formulation based on the

optimization of a cost function over the residual created by the rank reduction. Also in

Chapter 3, we present a generalization of the OMP (TROPP; GILBERT, 2007) algorithm

that works with the proposed expanded dictionaries. The non-convex constraints impo-

sed by the proposed algorithm work out a limitation of previous algorithms regarding the

approximation of the region of interest (ROI) to be imaged. Chapter 4 presents results

of our technique applied to the reconstruction of two-dimensional ultrasound images with

simulated data from an NDT application. Both SVD and Minimax dictionaries are tested

with several orders of approximation and under varying levels of noise. An example of

resulting image is compared to competing model-based approaches. Finally, Chapter 5

contains a discussion of the results and of some aspects of the proposed technique, as well

as directions for future works.

1.2 OBJECTIVES

1.2.1 GENERAL OBJECTIVE

To propose an expansion of the discrete linear acquisition model for ultrasound

imaging as a means to minimize the degradation that is caused in images when there are

scatterers located off the modelled grid.
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1.2.2 SPECIFIC OBJECTIVES

1. To reproduce the results reported in (EKANADHAM et al., 2011) and (KNUDSON

et al., 2014) with prototypical 1-dimensional data;

2. To extend the types of dictionary expansion proposed in (EKANADHAM et al.,

2011) and (KNUDSON et al., 2014) to 2-dimensional problems or propose a type

of dictionary expansion suitable for 2 dimensions;

3. To create representative computer simulations for the problem of detecting and

locating point-like scattereres through 2-dimensional ultrasound NDT;

4. To choose an existing algorithm or develop an algorithm suitable for solving the

optimization problem formulated using the expanded dictionaries;

5. To reconstruct 2-dimensional images from data simulating the ultrasound acquisi-

tion with point-like scatterers.

1.3 RELATED PUBLICATIONS

This work presents two dictionaries to be used with a proposed reconstruction

algorithm. The first of them (the SVD expansion) and the reconstruction algorithm

have been presented in (PASSARIN et al., 2018) along with some of the results, de-

velopments and discussions presented here. The article, available for open access at

https://www.mdpi.com/1424-8220/18/12/4097, was published under the Creative Com-

mons Attribution License (https://creativecommons.org/licenses/by/4.0/). The present

work contains excerpts, adaptations and extensions of the text of the article.

A less generic method for the construction of Minimax dictionaries than the one

presented in the present work was presented in (PASSARIN et al., 2017). The relation

and equivalences between the two methods are formalized in Appendix A.
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2 THEORETICAL FOUNDATIONS

2.1 MODEL-BASED IMAGING AND REGULARIZATION

Let RM be the space of the data observed through an acquisition process. A single,

unity amplitude event located at position τ ∈ RD (in the D-dimensional continuous space)

causes the discrete acquired signal y(τ) ∈ RM , known as the PSF. The physical meaning

of such event depends on the type of quantity being measured. In pulse-echo applications

such as ultrasound and radar imaging, the event denotes a point-like reflexivity (also

called a scatterer) (JENSEN, 1991, 2004), as represented in Fig. 1, and D typically equals

2 as the reflexivity is being mapped over a two-dimensional plane. The variation of the

set of D parameters τ within a region of interest describes a D-dimensional manifold

M := {y(τ) : τ ∈ ROI} (1)

of all possible PSFs on RM . We will develop our notation for the two-dimensional case

and consider the two parameters τ = [x, z]T (where ·T denotes the transpose) as the

lateral and axial spatial dimensions respectively.

An acquired signal c ∈ RM is assumed to be composed by a sum of individual

contributions from N events, or N samples from the continuous PSF manifold

c =
N∑
n=1

vny(xn, zn) + w, (2)

where vn is the amplitude of the n-th event and the vector w ∈ RM accounts for acquisition

noise, which we will assume to be Gaussian white noise with variance σ2.

In a pulse-echo image with N pixels, vn in (2) encodes the reflexivity of the

n-th scatterer, located at position (xn, zn), and is represented as the brightness of the

corresponding pixel. This naturally implies a sampling of the parameters (x, z) as a finite

number N of possible scatterer locations (or pixels) is assumed.

Once we have defined the N coordinate pairs (xn, zn) to be considered by the
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ROI

ROI

Figure 1: Acquisition of the point spread function (PSF). For each position (x, z)
of the unity amplitude scatterer within the ROI (left side), an M-sample response
y(x, z) ∈ RM (arranged as an M-pixel image, known as the B-scan, on the right
side) is generated by the acquisition model. The set of all possible PSFs within the
region of interest forms a manifold M onto the data space. This example is taken
from the pulse-echo ultrasound model described in Section 3.3.
Source: (PASSARIN et al., 2018).

acquisition model, we make hn = y(xn, zn), n = 1, . . . , N , and define the model matrix

H = [h1, . . . ,hN ] ∈ RM×N . Then (2) can be written in compact form as

c = Hv + w, (3)

where v = [v1, . . . , vN ]T is the vector of scatterer amplitudes. This model has been

used in B-mode (two-dimensional) (DESOKY et al., 2003; ZANIN et al., 2011, 2012;

LINGVALL et al., 2003; LAVARELLO et al., 2006; LINGVALL; OLOFSSON, 2007),

A-mode (one-dimensional) (MOR et al., 2010; CARCREFF et al., 2014), and three-

dimensional (KRUIZINGA et al., 2017) ultrasound imaging.

The reconstruction of a vector of amplitudes v̂ from a given acquisition c in (3)

is based on the minimization of a cost function, such as the Least Squares (LS) problem

v̂ = arg min
v
‖c−Hv‖2, (4)

which has a closed solution with the Moore-Penrose pseudoinverse

v̂ = H+c = (HTH)−1HTc. (5)

This is a linear problem and, although the inversion on (5) may lead to instability when

performed directly, there are well-known iterative methods to solve the problem (GOLUB;

LOAN, 1996).

However, model matrices for real-world problems are often ill-conditioned, which
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causes artifacts on the reconstructed signals in the presence of noise (HANSEN, 1998).

This is an issue even in reconstructions with simulated data where all events are on

grid, i.e., where the discrete acquisition model (3) is obeyed. The specific problem of

poor conditioning of the ultrasound acquisition model has been addressed with linear

regularization methods such as Truncated SVD (TSVD) (DESOKY et al., 2003) and

Tikhonov regularizarion (ZANIN et al., 2011, 2012; LINGVALL et al., 2003), where the

main goal is to stabilize the inverse operator.

Nonlinear, sparsity-promoting regularization penalties such as `p-(pseudo)norm

minimization with p ≤ 1 have shown successful results in ultrasound NDT, where the

assumption of sparsity in the space domain reflects the nature of discontinuities in obser-

ved materials (LAVARELLO et al., 2006; LINGVALL; OLOFSSON, 2007; GUARNERI

et al., 2015; CARCREFF et al., 2014).

Greedy algorithms effectively solve reconstruction problems in which the cost

function involves the `0 pseudonorm. In (OLOFSSON; WENNERSTROM, 2007), sparsity

is induced in the solution assuming that the presence of scatterers can be modelled by a

Bernoulli process with a low value for the probability parameter. The problem is then

solved with a greedy algorithm called Multiple Most Likely Replacement (MMLR) (CHI

et al., 1985). In (MOR et al., 2010), a Gabor dictionary is used in the reconstruction of

thickness with a Matching Pursuit (MP)-based algorithm that penalizes a relaxed support

measure corresponding to the `p-pseudonorm with 0 < p < 1.

2.2 OFF-GRID EVENTS AND DICTIONARY EXPANSION

Aside from poor matrix conditioning, another problem known as off-grid devia-

tion (EKANADHAM et al., 2011) limits the applicability of model-based approaches on

signal and image reconstruction. It derives from the fact that, in many applications, the

existing scatterers may not be located strictly on the N positions modelled by (2) and

(3), i.e., many scatterers may be off-grid. Fig. 2a illustrates a grid of N = 9 modelled

positions, represented by gray dots. Since three scatterers (represented by black dots) are

located on modelled positions, then the corresponding data vector c can be synthesized

according to the acquisition models (2) and (3). The same does not hold when an off-grid

scatterer (represented by a red dot) is added: attempts to reconstruct the locations and

amplitudes for the corresponding scatterers may fail, causing artifacts and degradation

on the reconstructed image.
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Figure 2: Local ROIs and sampling of local manifolds. (a) An illustrative discrete
acquisition model with N = 3× 3 = 9 modelled positions, represented by the gray
dots. The black dots represent 3 well located scatterers and the red dot represents
an off-grid scatterer. Because of the latter, the corresponding acquisition data
vector c cannot be synthesized as a linear combination of the columns of the discrete
model matrix H. (b) The ROI is divided into N local ROIs with area ∆x×∆z. (c)
Each local ROI is sampled with a fine grid with lateral and axial distances δx and
δz. (d) On the space RM of acquired data, the set of all possible PSFs within the
ROI forms a D-manifold. The gray dots are the PSFs of the modelled positions
of Fig. 2a. The black dots are on the grid, while the red dot is off-grid. (e) As
the ROI is divided into N local ROIs (Fig. 2b), the manifold is divided into N
corresponding local manifolds. (f) The acquisitions over the fine grid on each n-th
local ROI create R samples from the corresponding local manifold. Those samples
compose matrix M(n) ∈ RM×R.
Source: (PASSARIN et al., 2018).

Some formulations have been proposed for off-grid signal reconstruction, mainly

within the framework of Compressive Sensing. In (YANG et al., 2012), the acquisition

model considers a perturbation matrix summed column-wise to the (here referred to as H)

regular discrete model matrix. The formulation is applied to direction-of-arrival (DOA)

estimation using the derivatives of the columns of H with respect to the sampled para-

meters as perturbation matrix. In (TEKE et al., 2014), an adaptation of the Orthogonal

Matching Pursuit (OMP) algorithm is proposed, in which the columns of the model ma-

trix are iteratively updated in order to accommodate variations in the parameters of the

PSFs. The algorithm is applied to pulse-Doppler radar. In (TANG et al., 2013), the

problem of continuous line spectral estimation is approached with an algorithm based

on the atomic norm minimization, which is solved via semi-definite programming. Simi-

larly to the `1 minimization, the atomic norm minimization promotes sparse solutions. In
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(ZHU et al., 2011), the regression problem uses a Total Least Squares (TLS) penalization

with sparsity constraints. The motivation is that the “errors-in-variables” assumption of

the TLS regression might be able to capture the mismatch between the model matrix

and the acquired data. The method is then applied to cognitive radio sensing and DOA

estimation.

The framework of dictionary expansion was proposed in (EKANADHAM et al.,

2011) as a means to overcome the problem of off-grid deviation in neuron spike detection.

Each column hn of the discrete model H of (3) is replaced by K columns [b
(n)
1 , . . . ,b

(n)
K ] =

B(n) ∈ R(M×K) so that a data vector c resulting from the acquisition of an scatterer

located in the neighborhood of an n-th modelled position can be approximated by some

linear combination of B(n), i.e., by B(n)x(n), where x(n) ∈ RK . As a result, an arbitrarily

acquired c might be approximated as

c ≈
N∑
n=1

B(n)x(n) + w. (6)

In the 2-dimensional case, the neighborhood of the n-position is the region within (xn ±
0.5∆x, zn ± 0.5∆z). This is represented in Fig. 2b, where the 9 modelled locations give

place to 9 neighborhoods (local ROIs).

Two forms of approximation are proposed in (EKANADHAM et al., 2011) for

1-dimensional linear time-invariant (LTI) problems. The first one is the Taylor approxi-

mation, which relies on the fact that small shifts on a waveform can be well approximated

by its Taylor expansion, i.e., by linearly combining the original waveform and its time

derivatives. In this case, the column b
(n)
1 is identical to the original atom hn and the co-

lumns b
(n)
k for k > 1 correspond to its (k−1)-th time derivatives. The second is the Polar

approximation, which is motivated by the fact that the continuous manifoldM of an LTI

system lies over a hypersphere on the M -dimensional data space (EKANADHAM et al.,

2011). The PSFs of the neighborhood of each n-th modelled position are approximated

by an arc of a circle and the the column hn is replaced by three normal vectors with the

directions of the center (b
(n)
1 ) and the two trigonometric components (b

(n)
2 and b

(n)
3 ) of

the circle. While the Taylor approximation can be done for any order K, in the Polar

case K always equals 3.

An extension of the Basis Pursuit (BP) formulation (CHEN et al., 1998), referred

to as Continuous Basis Pursuit (CBP), is proposed in (EKANADHAM et al., 2011) for

the recovery of the expanded coefficients {x(n)}1≤n≤N . For the sake of conciseness, from

this point on we will represent sets {x(n)}1≤n≤N simply as {x(n)}. The formulation of
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CBP is given by

{x̂(n)} = arg min
{x(n)}

1

2σ2
‖c−

N∑
n=1

B(n)x(n)‖2 + λ

N∑
n=1

|x(n)1 | s.t. {x(n)} ∈ C (7)

where the constraint set C prevents recovered expanded coefficients from having any arbi-

trary values that do not represent actual PSFs. The definition of the convex set C varies

according to the type of approximation used. The sum of absolute values of the first

element x
(n)
1 of each K-tuple x(n) is added to the cost function to obtain sparse solutions.

The parameter λ controls the weights between the fidelity of the solution to the sparsity

prior and to the acquired data.

In (KNUDSON et al., 2014), a low-rank approximation of the PSFs within the

neighborhood of each n-th modelled position is performed by means of a Singular Value

Decomposition (SVD). The continuous manifold drawn by τ in a local ROI is sampled with

a very fine grid of R locations, generating R columns that form a matrix M(n) ∈ RM×R,

as represented in Fig. 2f. Each matrix M(n) then undergoes an SVD decomposition and

the K first left singular vectors compose the corresponding expanded coefficients B(n) for

the n-th local ROI.

An adaptation of the Orthogonal Matching Pursuit (OMP) (TROPP; GILBERT,

2007) algorithm, referred to as Continuous OMP (COMP), is also presented in (KNUD-

SON et al., 2014). It aims at solving the `2 − `0 problem

{x̂(n)} = arg min
{x(n)}

‖[x(1)1 , . . . , x
(N)
1 ]T‖0 s.t.

{
‖c−

∑N
n=1 B(n)x(n)‖2 ≤ ε

{x(n)} ∈ C

}
(8)

where the symbol ‖·‖0 denotes the `0 pseudonorm, i.e., the cardinality (number of nonzero

elements) of a vector and the parameter ε limits the energy of the residual of the solution.

In (PASSARIN et al., 2017), a minimize-maximum (Minimax) formulation is

presented for the definition of the expanded set {B(n)}. The resulting approximation

minimizes the maximum residual within the representation of each n-th local ROI. It is

motivated by the assumption that the off-grid deviation from a discrete grid follows a

uniform distribution, therefore the off-grid error should be as constant as possible, not

privileging any distance from originally modelled positions.
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3 DEVELOPMENTS

This chapter describes the formulations, methods and algorithms developed to

cope with the problem presented as motivation for this work.

Section 3.1 describes how the framework of dictionary expansion was applied to

the problem of 2-D pulse-echo ultrasound imaging and is divided in three subsections.

Subsection 3.1.1 describes the division of the ROI into local ROIs and the fine sampling

performed along the considered dimensions, which is the first step on the construction of

both dictionary expansions considered. Subsection 3.1.2 presents the adaptation of the

SVD expansion (KNUDSON et al., 2014) to our problem, while a new expansion method

referred to as the Minimax expansion is presented in Subsection 3.1.3.

Section 3.2 presents the reconstruction algorithm. The motivation for the deve-

lopment of a new algorithm is presented in Subsection 3.2.1. In Subsection 3.2.2, the

core idea of the proposed algorithm (the non-convex constraint set) is presented and

formalized. The algorithm is then described in Subsections 3.2.3 and 3.2.4.

Section 3.3 presents the acquisition set that was simulated in order to generate

the dataset used for validation and performance analysis of the proposed algorithm and

dictionaries.

3.1 RANK-K APPROXIMATION OF LOCAL MANIFOLDS

The core idea of dictionary expansion is the substitution of each n-th column hn

from the discrete model H by K basis vectors [b
(n)
1 , . . . ,b

(n)
K ] = B(n) whose column space

approximates the n-th local PSF manifoldMn. We develop two criteria to determine B(n):

SVD and Minimax. Both have been proposed for 1-dimension, shift-invariant problems

(KNUDSON et al., 2014; PASSARIN et al., 2017). Their extension to D-dimension

problems relies mainly on the first step, which is a fine sampling of each local manifold

Mn: here the regular, fine grid is defined for all D dimensions. As for the SVD expansion,

this extension is possible due to the fact that its formulation is non-parametric, i.e., the
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deviation from modelled positions is not mapped onto any independent variable and does

not play any role on the definition on the bases. On the other hand, in the Taylor and Polar

expansions (EKANADHAM et al., 2011), modelled positions are part of the dictionary

and the off-grid deviation is a parameter from which the remaining elements are derived.

Consequently, their extension to 2 or higher dimensions is not defined. While the original

formulation of the Minimax expansion (PASSARIN et al., 2017) is parametric (the off-

grid deviation is mapped onto a variable which is used to cast a polynomial regression),

we generalize the formulation to eliminate the need of regression functions and make

the corresponding weights also subject to optimization as a modulating matrix F(n), as

explained in Subsection 3.1.3.

3.1.1 HIGHLY COHERENT DISCRETE LOCAL MANIFOLDS

Fig. 2d shows an illustrative example of a D-manifold embedded in an M -

dimension data space. In this case, D = 2 and M = 3. It can be, for instance, a

PSF manifold resulting from the shifting of spatial coordinates x and z of a unitary am-

plitude event on the plane represented in Fig. 2a, followed by the acquisition of the data

vector c ∈ RM through an arbitrary acquisition process. The nine D-dimension modelled

positions shown in Fig. 2a correspond here to nine samples of the M -dimensional mani-

fold, as well represented by gray dots in Fig. 2d. The red dot corresponds to the data

caused by the off-grid reflector from Fig. 2a.

Fig. 2e shows the same manifold as Fig. 2d but, instead of having N modelled

positions, it divides the manifold into N local manifolds. Given ∆x,∆z > 0, for each

(xn, zn) we define the n-th local manifold

Mn := {y(x, z) : x ∈ [xn − 0.5∆x, xn + 0.5∆x], z ∈ [zn − 0.5∆z, zn + 0.5∆z]}. (9)

It shall be noted that no correspondence is required between the positions of a

simple model and the local manifolds of an expanded model, but we keep it for unity of

notation.

We start by performing a fine sampling on each local manifoldMn, as represented

in Fig. 2f. In practice, this means acquiring the PSF of a set of points from a fine grid of

R points defined for each local ROI (Fig. 2c). The result is a matrix M(n) ∈ RM×R whose

columns are local manifold samples. The finer this grid is, the better the approximation

of the local manifold. For simplicity of notation, we keep regular spacing δx and δz for the

lateral and axial directions respectively. The number of sampled points is R = Rx × Rz,



25

where Rx > 1 and Rz > 1 are the number of locations defined on the lateral and axial

directions respectively. In the example of Fig. 2c, Rx = Rz = 7, thus R = 49.

Our sampling includes the boundaries of the local ROIs. For this reason, the

relation between the spacing and the number of locations on the lateral direction is given

by

δx =
∆x

Rx − 1
(10)

and the same holds for all other directions.

Once we have the local discrete manifolds {M(n)}, we create a rank-K appro-

ximation for each of them and define the sets of K basis vectors {B(n)}, which form

orthonormal bases for such approximations, to be later used on inverse reconstruction

problems such as (7) and (8).

For a clean notation throughout the remaining of Section 3.1, we suppress indices

n and represent matrices related to the n-th local ROI such as M(n) and B(n) as simply

M, B and so forth. It shall be noted that the processes presented in those sections have

to be independently performed for every n-th local ROI. Although the construction of

expanded dictionaries is computationally demanding, it is an offline procedure that is

carried only once for each given acquisition set.

For each local matrix M, a rank-K approximation M̃ ∈ RM×R is to be defined

and also factorized in the form of Eq. (11):

M̃ = BF, (11)

where B is an orthonormal basis matrix and F ∈ RK×R modulates B to form M̃. We

assume that rank(M) > K, tipically rank(M) = R. Any approximation creates a residuals

matrix R ∈ RM×R, as shown in Fig. 3. Our two approximation approaches are defined

by the minimization of a cost function that operates on R. Having B orthonormal is

required by the algorithm presented in Section 3.2.

As can be seen in Fig. 3, each i-th column from R contains the residual for the

approximation of the corresponding i-th local manifold sample from M. To work each

residual independently, we define in Eq. (12) a vector of residual norms n ∈ RR which

will be used in the cost function

n = [‖r1‖, ‖r2‖, . . . , ‖rR‖]T . (12)
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Figure 3: Structure of the matrix equations. M contains R local manifold samples
(see Fig. 2f) and is approximated by the rank-K product BF, resulting in residuals
R. The SVD expansion is defined by minimizing the Frobenius norm of R, while the
Minimax expansion is defined by minimizing the maximum residual norm maxi ‖ri‖
among the columns of R. The first columns of R, M and F are highlighted to show
that the minimization of the residual norm ‖ri‖ with respect to F (for a given B)
depends only on the corresponding column fi, making the problem separable into
R linear problems.

Now we define the cost function as the `p norm of n:

B̂, F̂ = arg min
B,F
‖n‖p s.t. R = M−BF (13)

Subsections 3.1.2 and 3.1.3 detail our two approximation criteria for the definition

of the dictionary expansion, which follow from setting p = 2 and p→∞ on the problem

of Eq. (13).

3.1.2 SVD EXPANSION

When p = 2 on Eq. (13), the problem boils down to finding the matrices B

and F that minimize the Frobenius norm (GOLUB; LOAN, 1996) of the residuals matrix

R. According to the Eckart-–Young theorem, a solution for this case is achieved by a

truncated SVD (ECKART; YOUNG, 1936). Consider the SVD of M

M = USVT , (14)

where U ∈ RM×M is the unitary matrix of left singular vectors, S ∈ RM×R is the diagonal

matrix of singular values and V ∈ RR×R is the unitary matrix of right singular vectors

(GOLUB; LOAN, 1996). The rank-K SVD truncation is obtained by using only the K

largest singular values from S and the K corresponding vectors from U and V. This low

rank approximation is given by

M̃ = ŨS̃ṼT , (15)

where M̃ ∈ RM×R, Ũ ∈ RM×K , S̃ ∈ RK×K and Ṽ ∈ RR×K .
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The K columns of Ũ form an orthonormal basis for M̃ and compose the expanded

set B, while the product S̃ṼT composes the modulating matrix F:

B = Ũ, (16a)

F = S̃ṼT . (16b)

This criterion for the choice of the expanded set defines the order-K SVD Expan-

sion of the discrete acquisition model. Naturally, large values for K mean more degrees of

freedom in the approximation, which reduces the residuals. Fig. 4a shows how the value

of K affects the average and maximum residual norms for the centermost local ROI of

the acquisition set presented in Section 3.3.

3.1.3 MINIMAX EXPANSION

When p → ∞, Eq. (13) becomes a minimize-maximum (Minimax) problem,

as the `∞ norm extracts the maximum absolute value among the elements of a vector

(BJÖRCK, 1996). In this case, the solution is the pair B,F that minimizes the maximum

residual norm among all ni = ‖ri‖. The values obtained for the other, nonmaximal

elements of n are not taken into account in the problem.

As we will see in Section 3.2, the residuals from recovered events are used in

each iteration of our greedy algorithm to decide whether the expected reconstruction

residual has been achieved (causing the algorithm to stop) or not. Due to factors such as

acquisition noise, modelling errors and the greedy nature of the algorithm, the recovery of

event positions within their respective local ROIs is subject to inaccuracies. This becomes

an important problem when the residual norm ‖ri‖ has a high variance within the local

ROI (as i varies from 1 to R) as in the example of Fig. 4b. That is the main motivation

for the development of the Minimax expansion. The use of a cost function with p → ∞
imposes a tendency of decreasing the variance among the residual norms ‖ri‖. It has been

used, for instance, in filter design, where regions of flat magnitude response are desired

(LU, 2002; SHPAK, 2003).

To find a solution for the Minimax problem, we alternate between the optimiza-

tion of B and F until a convergence criterion is met. As an initial guess for F, we use

the matrix which is optimal for the quadratic case, i.e. the product of Eq. (16b). We

performed several tests where F was initialized with white Gaussian noise. In all cases
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Figure 4: Residual norms ‖ri‖ from the low rank approximation of the centermost
local manifold of the ultrasound acquisition set presented in Section 3.3, withR = 75
(Rx = 5 and Rz = 15). (a) Average and maximum values from SVD and Minimax
approximations with K ranging from 3 to 35. While the SVD expansion yields
smaller average values, the maximum values are smaller with the Minimax expan-
sion, as well as difference between the average and the maximum. (b) Individual
residual norms from SVD approximation with K = 10, spatially arranged according
the corresponding positions of the local ROI. (c) Individual residual norms from
Minimax approximation with K = 10, spatially arranged according the correspon-
ding positions of the local ROI. Notice that the surface formed by the residual
norms from the Minimax expansion is significantly flatter than that from SVD ex-
pansion. A consequence is higher accuracy on the estimation of this residual by the
reconstruction algorithm described in Subsection 3.2.3 when using the Minimax
dictionaries.
Source: extended from (PASSARIN et al., 2018).
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the resulting basis vectors B spanned the same column space as that obtained when F

was initialized with (16b), but the algorithm took roughly twice the number of iterations

to reach the convergence criterion.

For a given modulating matrix F, we search for the basis matrix B that solves

the problem of Eq. (17):

B̂ = arg min
B
‖n‖∞ s.t. R = M−BF. (17)

We recast the problem of Eq. (17) as a Second Order Cone Program (SOCP)

(BOYD; VANDENBERGHE, 2004; ANTONIOU; LU, 2007) by introducing a scalar va-

riable rmax, which is then minimized while also constrained to be equal to or grater than

each residual norm ‖mi −Bfi‖:

B̂ = arg min
B
rmax s.t. ‖Bfi −mi‖ ≤ rmax, ∀i ∈ {1, . . . , R}. (18)

We solve the SOCP of Eq. (18) with SDPT3 package for Matlab (TOH et al., 1998).

Appendix B details the equivalence between the elements of (18) and those of the standard

form of SOCPs.

We now turn to the optimization of the modulating matrix F for a given basis

B, i.e.

F̂ = arg min
F
‖n‖∞ s.t. R = M−BF. (19)

Differently from the optimization of B for a given F, this problem is linear. As can

be observed in Fig. 3, for a given matrix B, the problem of Eq. (19) can turn to the

optimization of F according to Eq. (20):

F̂ = arg min
F

max
i
‖ri‖ s.t. ri = mi −Bfi, ∀i ∈ {1, 2, . . . , R}. (20)

But the minimization of each residual norm ‖ri‖ on the problem of Eq. (20) is a totally

independent LS problem which can be solved with the pseudoinverse of B:

fi = B+mi, ∀i ∈ {1, 2, . . . , R}. (21)

By simply grouping the R vector equations on Eq. (21) we obtain a compact

form for the solution of the problem of Eq. (20):

F = B+M. (22)
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The inverted bar operator “\” in Matlab was used to solve Eq. (22). When the

inversion of Eq. (22) is performed, every residual norm ‖ri‖ achieves its lowest possible

value (for a given B). The resulting F, when compared to the one obtained by Eq. (16b),

either preserves or decreases the maximum residual norm.

We perform an alternate optimization of B and F solving the problems of Eq. (17)

and (20) respectively. The alternate method, named Alternate Minimax Rank Reduction

(AMRR), is summarized in Algorithm 1.

Algorithm 1 Alternate Minimax Rank Reduction (AMRR)

Input: M, K, εAMRR

1: [Ũ, S̃, Ṽ]← TSVD(M, K)

2: F← S̃ṼT

3: R←M− ŨF

4: rnew ← maxi ‖ri‖
5: repeat

6: rold ← rnew
7: B← arg minB rmax s.t. ‖Bfi −mi‖ ≤ rmax ∀i ∈ {1, . . . , R}
8: F← B+M

9: R←M−BF

10: rnew ← maxi ‖ri‖
11: until (rold − rnew)/rold < εAMRR

12: B← GramSchmidt(B)

13: F← BTM

Output: B, F

The function TSVD on line 1 performs the SVD of matrix M and returns the K

principal singular vectors and singular values. Matrix F is then initialized with the pro-

duct S̃ṼT following Eq. (16b). The alternated optimizations of B (line 7) and F (line 8)

are performed until the variation of the maximum residual norm meets the stop criterion

of line 11. For the creation of the Minimax dictionaries used on the reconstructions of

Chapter 4, we used εAMRR = 10−4.

Both operations of line 7 and line 8 either decrease or maintain the value of the

cost function of Eq. (17) with p→∞, which guarantees the convergence of AMRR. Yet,

there is no guarantee that the minimum found is the global minimum.

The reconstruction algorithm described in Section 3.2 requires that all bases B

are orthonormal, a condition that is not guaranteed after the alternating steps of AMRR.

This condition is met by submitting B to a Gram-Schmidt process on line 12. Matrix F

is then updated on line 13 to match the new orthonormal B.
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Figs. 4a to 4c show an example of how the residual norms ‖ri‖ behave for the

SVD and Minimax expansions. The residuals are taken from the approximations for the

centermost local ROI on the ultrasound acquisition model described in Section 3.3. In

Fig. 4a, the average and maximal values of ‖ri‖ are taken from the collection of R = 75

residual norms, for K varying from 3 to 35. Notice that the Minimax expansion yields

smaller values for the maximum residual norm for all cases, while also narrowing the

difference between the average and the maximal values, at the cost of larger average

values.

In Figs. 4b and 4c, all the R = 75 residual norms from the expansions with

K = 10 are plotted with a spatial disposition corresponding the respective points in the

centermost local ROI. Fig. 4b shows the result for the SVD and Fig. 4c for the Minimax

expansion. Notice that the surface formed by the residual norms from the Minimax

expansion is significantly flatter than its SVD counterpart.

As an intermediate step towards the formulation of the Minimax expansion pre-

sented in this section, a polynomial Minimax expansion was formulated and evaluated

for a prototypical 1-dimensional problem and reported in (PASSARIN et al., 2017). Ap-

pendix A describes the formulation of the polynomial Minimax expansion. Section A.1

details how the Minimax expansion presented here generalizes the polynomial Minimax.

3.2 RECONSTRUCTION ALGORITHM

3.2.1 LIMITATIONS OF CONIC CONSTRAINTS

Two main algorithms were proposed to work with expanded dictionaries: the

convex CBP (EKANADHAM et al., 2011) and the greedy COMP (KNUDSON et al.,

2014). The first one aims at solving problem (7) while the second attempts to solve

problem (8). A hybrid approach called Interpolating Band-excluded Orthogonal Matching

Pursuit (IBOMP) was also proposed and applied to frequency estimation (FE) and time

delay estimation (TDE) (FYHN et al., 2015). Basically, it performs a rough greedy

estimation of the support of the solution, followed by a refining convex optimization.

In order to implement a constraint set C, all the aforementioned algorithms have

at least one step involving a constrained convex optimization where the constraints define

either first-order (SVD, Minimax and Taylor) or second-order (Polar) cones. Fig. 5a

illustrates an example of a first-order cone for K = 2. The black curved line represents the

projection onto the basis B(n) of a continuous 1-dimensional PSF manifold. The R vectors
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Figure 5: (a) Illustrative case of projection of local manifold samples M(n) on a
basis B(n), for K = 2. The curved line represents the projection of a continuous
1-dimensional manifold, while the dots represent the projection of the samples
(columns of M(n)) on B(n). When ∆ is sufficiently small, the projections have single-

signed, relatively large values on the first component f
(n)
1 and smaller values on the

remaining components. In this case, the definition of a first-order cone (represented
by the shadowed region) is possible and can be used in the reconstruction algorithm
combined with a non-negativity constraint for the first component, ensuring that the
recovered coefficients represent weighted copies of the local manifold, rather than
other arbitrary combinations. The upper and lower angles of the cone depend on

maxi(f
(n)
2,i /f

(n)
1,i ) and mini(f

(n)
2,i /f

(n)
1,i ) respectively. (b) As ∆ increases, the angle of

the cone may as well increase, making the constraint less effective, as a broader area
is allowed for the recovered coefficients f (n). (c) An example where the definition
of a convex cone is no longer possible. This imposes a limit on the definition of ∆.
Source: (PASSARIN et al., 2018).

that compose a local manifold matrix M(n), when projected onto B(n), result in vectors

f (n), represented by the dots, which compose the columns of F(n). When a reconstruction is

performed, the recovered coefficients set x(n) ∈ R2 for this n-th local ROI is constrained to

lie within a first-order cone, represented by the shadowed area (which extends indefinitely

to the right). This cone is defined by two linear constraints that impose upper and lower

bounds for the relation x
(n)
2 /x

(n)
1 , combined with a non-negativity constraint for the first

component x
(n)
1 . This constraint set aims to avoid arbitrary combinations for x(n) that do

not represent positively-weighted copies of actual manifold samples. The upper black dot

dictates the upper angle of the cone, and is defined from the modulating matrix F(n) as

(f
(n)

1,̂i
, f

(n)

2,̂i
), where î = max

i
(f

(n)
2,i /f

(n)
1,i ),

i.e., the maximum relation between the first and second components found among the

projections of M(n). Similarly, the lower black dot is defined by

(f
(n)

1,̂i
, f

(n)

2,̂i
), where î = min

i
(f

(n)
2,i /f

(n)
1,i ),

and defines the lower angle of the cone. For higher orders of K, such a cone is defined for

all K − 1 relations between each k-th (k ≥ 2) component and the first one. The resulting
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linear constraint set is defined as (KNUDSON et al., 2014; PASSARIN et al., 2017)

min
1≤i≤R

(
f
(n)
k,i

f
(n)
1,i

)
≤ x

(n)
k

x
(n)
1

≤ max
1≤i≤R

(
f
(n)
k,i

f
(n)
1,i

)
, f

(n)
1,i ≥ 0, ∀k ∈ {2, . . . , K}, n ∈ {1, 2, . . . , N},

(23)

where f
(n)
k,i denotes the element on the k-th line and i-th column on F(n). The principle

is similar for the Polar expansion, though in that case the cones are of second order

(EKANADHAM et al., 2011).

Notice that the cone-based convex constraints assume that the projection of M(n)

on the K components of B(n) yields relatively large, positive, small-variance values for

the first component and small values for the remaining, yielding relatively small values

for minimum and maximum relations of (23). If this assumption is broken, the cone

will span too large an area of the right half-plane, i.e., it will constrain less, being less

effective, as represented in Fig. 5b. This means that a large set of arbitrary combinations

of coefficients can be recovered, many of them not representing actual weighted PSFs. In

some cases, defining the cone is not even possible, like in the example depicted in Fig. 5c.

Assuring a well behaved relation between the first and the remaining components,

as shown in Fig. 5a, implies choosing considerably small values for ∆x and ∆z, what limits

the applicability of recovery algorithms based on conic constraints. For instance, on the

simulated acquisition set of Section 3.3, choosing ∆x = ∆z = 0.2mm still causes the first

component to have both positive and negative values on certain local manifolds.

3.2.2 NON-CONVEX CONSTRAINTS

The problem described in Subsection 3.2.1 is the main reason why our algorithm

does not rely on conic constraints. Instead, it attempts to constrain each K-tuple of

recovered coefficients x(n) to be similar to any column of the modulating matrix F(n).

The current section explains the motivation for this constraint and how it is formalized.

As expressed in Eq. (2), an acquired signal c should ideally be composed by a

linear combination of samples from the PSF manifold M. This means, recalling Fig. 2f,

that c should be composed by a linear combination of vectors that are very similar to the

columns m
(n)
i of the matrices M(n), i.e.,

c ≈
N∑
n=1

M(n)v(n) + w, (24)

where vectors {v(n)} are the weights of the linear combination. But our low-rank dictio-
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nary {B(n)} is only capable of reproducing the low-rank approximation M̃ instead of M,

so we go one step further on the approximation of c

c ≈
N∑
n=1

M̃(n)v(n) + w. (25)

The factorization of Eq. (11) allows us to rewrite Eq. (25) as

c ≈
N∑
n=1

B(n)F(n)v(n) + w. (26)

If we assume that each n-th local ROI contains at most one scatterer, then the number

non-zero elements of each v(n) is at most one, and the product F(n)v(n) in Eq. (26)

results in a scaled copy of one column of F(n). This means that, when c is written as

approximately a combination of the bases {B(n)}

c ≈
N∑
n=1

B(n)x(n) + w, (27)

each K-tuple of coefficients {x(n)} should ideally be a scaled copy of any of the columns

of the corresponding matrix F(n). Since our fine sampling of the manifold (Fig. 2f) is not

continuous, we relax this ideal restriction and require the K-tuples {x(n)} to be similar

to a scaled copy of any column of F(n). We translate “similarity” as high correlation, as

formalized in the non-convex constraint set

C :=

{
{x(n)} :

(
max
1≤i≤R

〈x(n), f
(n)
i 〉

‖x(n)‖‖f (n)i ‖

)
≥ µc, ∀n ∈ {1, 2, . . . , N}

}
, (28)

where 〈a,b〉 = aTb denotes the inner product of two vectors.

The minimum correlation parameter µc controls how similar to any of the ma-

nifold samples on M(n) a recovered event must be. If a given x(n) passes the test (28),

proving to be sufficiently similar to some i-th modulating vector f
(n)
i , then the approxi-

mation

m̃
(n)
i

‖x(n)‖
‖f (n)i ‖

= B(n)f
(n)
i

‖x(n)‖
‖f (n)i ‖

≈ B(n)x(n) (29)

is assumed and the product B(n)x(n) is considered as a valid weighted copy of a PSF

within the n-th local ROI, rather than an arbitrary combination of the n-th basis vectors.

This constraint is imposed by our greedy algorithm on the decision of which expanded

set B(n) will be added to the reconstruction problem at each iteration.
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3.2.3 OMP FOR EXPANDED DICTIONARIES

The proposed algorithm, summarized in Algorithm 2 (page 37), is an extension

of the OMP algorithm, referred to as OMP for Expanded Dictionaries (OMPED).

It attempts to solve a problem similar to (8) (i.e., to explain an acquired data

vector c with the expanded dictionary {B(n)}) with the non-convex constraint set C defi-

ned in (28). The stop criterion is based on the residual yielded by the LS solution with a

given cardinality, yet instead of comparing the residual to a fixed parameter ε, we compare

it to an estimate of the current residual that takes into account the expected acquisition

noise and the estimated residuals resulting from the reduced-rank approximation.

The input parameter enoise contains the expected `2 norm of the acquisition noise.

In practice, this value can be obtained from acquisitions with samples of the inspected

material known to have neither discontinuities nor other sort of scatterers. For our simu-

lations, we use the relation

e2noise = ‖w‖2 ≈Mσ2, (30)

which holds if the noise vector w contains white Gaussian noise with variance σ2. The

approximation of (30) becomes an equality as M →∞. We assume the equality and use

enoise =
√
Mσ2.

We define the support S of the solution, which is initialized as the empty set, and

its complement Sc = {1, . . . , N} \ S. The solution residual e ∈ RM is initialized with the

vector of acquired data c on line 2.

At each iteration, an index j ∈ Sc is added to S as we choose the expanded set

B(j) which is capable of causing the maximal decrease on the energy of the residual, as

represented on the left side of (31). Since the columns of each B(n) are orthonormal, the

identity

ĵ = arg min
j
‖e−B(j)B(j)Te‖ = arg max

j
‖B(j)Te‖ (31)

holds as a consequence of Parseval’s relation (BARRETT; MYERS, 2004), which allows

us to perform the simpler operation of taking the norm of each product B(j)Te.

This operation is a generalization of the measurement of maximum correlation on

the original OMP (TROPP; GILBERT, 2007). A constraint based on (28) is imposed to

prune candidates that do not accomplish the minimum correlation required. The resulting
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criterion is formalized as

ĵ = arg max
j∈Sc

∥∥∥B(j)Te
∥∥∥ s.t. max

1≤i≤R

〈B(j)Te, f
(j)
i 〉

‖B(j)Te‖‖f (j)i ‖
≥ µc. (32)

To clarify the equivalence between the constraint sets of (32) and (28), we recall that,

since every B(n) is orthonormal, the product B(j)Te yields the coefficients that reconstruct

the portion of the residual e that lies on the column space of B(j). Were all the bases

orthogonal to each other, formally

B(i)TB(j) = 0,∀i, j ∈ {1, . . . N}, i 6= j, (33)

then the equality B(j)Te = x(j) would apply exactly.

The constraint in (32) allows to recover only positive-amplitude events. It can be

adapted to consider both positive and negative amplitudes by simply replacing the inner

product by its absolute value |〈B(j)Te, f
(j)
i 〉|.

The algorithm must consider the case in which no index meets the correlation

criterion of (32). This case is treated from line 5 to line 8: while problem (11) remains

infeasible, a decrease of ∆µ is made on the parameter µc and a new attempt to compute

the index j is performed.

The support S is then updated to include the new index j (line 9) and used to

compute the coefficients

{x̂(n)} = arg min
{x(n)}

‖c−
N∑
n=1

B(n)x(n)‖2 s.t. x(n) = 0, ∀n ∈ Sc (34)

(where 0 ∈ RK is the zero vector), which then yield a residual

e = c−
∑
n∈S

B(n)x(n). (35)

An estimate of the residual resulting from the low rank approximation is compu-

ted on vector erank ∈ RM as

erank =
∑
n∈S

r
(n)

î

‖x(n)‖
‖f (n)
î
‖
, (36a)

where î = arg max
1≤i≤R

〈x(n), f
(n)
i 〉

‖x(n)‖‖f (n)i ‖
, (36b)
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and r
(n)
i denotes the i-th column from R(n). Based on (28), the index i in (36b) is a

function of n: for every index n in the current support S, the correlations performed in

(36b) estimate which i-th PSF within the n-th local manifold best explains the recovered

coefficients x(n) (see Figs. 2c and 2f).

The residual r
(n)
i , from the dictionary low-rank approximation, is then used as

template for the estimation of the current approximation residual. The amplitude estimate

is taken from the ratio between the norms of the recovered coefficients x(n) and of the

similar modulating vector f
(n)
i .

The current total residual norm is estimated as

eest = (‖erank‖2 + e2noise)
1
2 , (37)

where the addition is performed under the assumption that the acquisition noise and the

vector erank have negligible correlation.

Algorithm 2 OMP for Expanded Dictionaries (OMPED)

Input: {B(n)}, {F(n)}, {R(n)}, c, enoise, µc, ∆µ

1: S ← ∅
2: e← c

3: repeat

4: j ← Compute from (32)

5: while j = ∅ do

6: µc ← µc −∆µ

7: j ← Compute from (32)

8: end while

9: S ← S
⋃
{j}

10: {x(n)} ← Compute from (34)

11: e← Compute from (35)

12: erank ← Compute from (36)

13: eest ← Compute from (37)

14: until eest ≥ ‖e‖ or Sc = ∅
Output: S, {x(n)}n∈S

The algorithm greedily increases the support until the estimated residual norm

eest reaches the norm ‖e‖ of the actual residual yielded by the LS or all indices n =

1, . . . , N have been added to the support S. Notice that the expected noise energy e2noise

(known a priori) is taken into account in both sides of the condition eest ≥ ‖e‖ on line 14:

while its contribution to eest is explicit in Eq. (37), the contribution to e is implicit and
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Figure 6: Illustrative example of OMP and OMPED algortihms.
Source: own authorship.

is based on the assumption that c in Eq. (35) contains additive noise that cannot be

represented by the bases {B(n)}.

Figure 6 illustrates the iterative nature of OMPED, which follows the same logic

of OMP. The initial value of the residual is the acquired vector c itself. Then, the index j

that satisfies Eq. (32) is determined and included to the support. A partial solution with

cardinality 1 is obtained from Eq. (34) and its respective residual is determined through

Eq. 35. On the second iteration, the residual is used to define the new index ĵ to be

added to the support. A partial solution with cardinality 2 and its respective residual

are determined. The process repeats until the stop criterion is met and the last partial

solution is delivered as final solution.

3.2.4 RECOVERY OF LOCATIONS AND AMPLITUDES

OMPED yields a support S as well as the sets of expanded coefficients {x(n)}n∈S.

The computation of the locations and amplitudes follows the same principle used on (36a)
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and (36b): each event is located inside an n-th local ROI; its high resolution location is

assigned the same as that of the i-th response m
(n)
i within the R responses of the fine grid

(Fig. 2c) which most correlates to x(n). Recalling the approximation m
(n)
i ≈ B(n)f

(n)
i , we

determine i by finding out which f
(n)
i most correlates to x(n):

î(n) = arg max
1≤i≤R

〈x(n), f
(n)
i 〉

‖x(n)‖‖f (n)i ‖
, ∀n ∈ S. (38)

The amplitude estimations vn result from the ratios between the norms of x(n)

and of the chosen template f
(n)
i :

vn =
‖x(n)‖
‖f (n)
î
‖
, ∀n ∈ S, î as in (38). (39)

As consequence, the spatial resolution of the reconstructed events is the same as

that of the fine sampling represented in Fig.2c, i.e., δx and δz for the lateral and axial

axes respectively.

3.3 SIMULATED ACQUISITION SET

To simulate the ultrasound NDT acquisition set from (GUARNERI et al., 2015),

represented in Fig. 7a, we used the Field II package for Matlab (JENSEN, 2004). A

piston transducer with 3mm radius (125µm mathematical element size) interrogates a

steel sample object (sound speed 5680m/s). The excitation pulse has center frequency

fc = 5MHz and 6dB fractional bandwidth of 100%. The simulated transducer slides

horizontally along the surface of the object, acquiring scanlines from 31 lateral positions

ui, from u0 = 0mm to u30 = 30mm (center of transducer), with a distance of 1mm

between consecutive lateral positions. The 31 scanlines are sampled with sampling rate

fs = 25MHz and concatenated to form the acquisition vector c.

Following (GUARNERI et al., 2015), the model grid has 31×41 = 1271 modelled

locations distributed with regular spacing of 1mm on both x and z directions. On x direc-

tion, the locations are the same as the transducer positions, i.e. x = 0mm, 1mm, . . . , 30mm.

On z direction, 41 locations are modelled regularly between 18mm and 58mm, i.e.,

z = 18mm, 19mm, . . . , 58mm.

As explained in Subsection 3.1.1, in the expanded acquisition model, the grid

locations give place to local ROIs. Our expanded model has 1271 local ROIs with ∆x =

∆z = 1mm, with centers corresponding to the modelled locations of the regular model.
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Figure 7: (a) Simulated set. The transducer, fixed vertically at z = 0, slides
horizontally over the surface of the interrogated object, acquiring scanlines at 31
positions x = {u0, . . . , u30}, corresponding to 0mm up to 31mm with 1mm step.
The scanlines are concatenated to form the acquired vector c. A PSF y(x, z) is
determined by placing a unity amplitude scatterer on position (x, z) and acquiring
the corresponding c. (b) Extracts from the acquired data for the three center-most
transducer positions, with a unity amplitude scatterer located at the center of the
ROI. Witouht noise (top) and with additive White Gaussian noise with σ = 0.08
(middle) and σ = 0.12 (bottom).
Source: (PASSARIN et al., 2018) adapted from (GUARNERI et al., 2015).
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Consequently, our ROI extends from x = −0.5mm to x = 30.5mm and from z = 17.5mm

to z = 58.5mm. The highly coherent local manifolds were created with Rx = 5 and

Rz = 15, thus R = 75. Therefore, δx = 250µm and δz = 71.4µm.

We simulated the acquisition for 200 cases of 5 unity amplitude scatterers ran-

domly distributed over the ROI. The scatterers positions were not forced over any kind

of grid. White Gaussian noise with three different levels (no noise, σ = 0.08 and

σ = 0.12) was added to each simulated acquisition. Since the energy of the acquired

signal (without noise) varies according to factors such as distance to transducer and cons-

tructive/destructive interference, we consider that the parametrization of noise in terms of

its standard deviation σ is more appropriate than signal-to-noise ratio (SNR). To provide

a visual notion of the noise levels, Fig. 7b shows an extract of acquired data for the three

noise levels from an acquisition where a single scatterer was placed on the center of the

ROI. Scanlines from the three center-most positions of the transducer are concatenated.
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4 RESULTS

The current chapter presents the results obtained from image reconstructions

with both OMP and OMPED algorithms from data acquired from simulations with the

acquisition set presented in Section 3.3.

The recovery accuracy of OMPED with respect to count of misses and spatial

accuracy, with both SVD and Minimax dictionaries, is evaluated in Section 4.1. In Sec-

tion 4.2, the performance of both dictionaries with respect to cardinality estimation is

compared and briefly discussed. A comparison between OMP using finer model grids and

OMPED is performed in Section 4.3. For a visual notion of the advantage brought by the

proposed methods, Section 4.4 displays the results of the reconstruction of an image with

OMPED as well as other model-based algorithms.

4.1 RECOVERY ACCURACY

To compute the accuracy on the recovery of scatterers, OMPED was ran with

a fixed number of 5 iterations, with µc = 0.8 and ∆µ = 0.1, using SVD and Minimax

dictionaries with K varying from 2 to 10 for the 200 simulated acquisitions with the three

levels of noise. Each recovered scatterer whose distance to the closest original simulated

scatterer was equal to or smaller than 0.5mm in both axial and lateral directions was

computed as a hit – otherwise it was computed as a miss. Fig. 8 shows the percentage of

misses from 1000 recovered scatterers for all 9 values of K and 3 noise levels. Even for

the highest level of noise, misses are kept below 10% for 6 ≤ K ≤ 10.

A small increase in the count of misses is observed for values of K ≥ 8. This is

possibly explained by the fact that, for K ≥ 8, increasing K adds few useful information

to the dictionary at the cost of increasing coherence. For the SVD basis, the decay of the

singular values sk can be used as a measure of useful information. Fig. 9 shows how sk

behave for the centermost local manifold M(636). Notice that values of sk for k ≥ 8 are

significantly smaller than the previous ones. In general, in terms of misses count, the best
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Figure 8: Percentage of misses (from 1000 simulated events) as a function of K,
for three levels of noise, with OMPED running with a fixed number of 5 iterations
(each of the 200 simulated acquisition had 5 scatterers). Each recovered scatterer
whose distance to the closest original simulated scatterer was greater than 0.5mm
in any direction (axial or lateral) was computed as a miss. Regarding this criterion,
the performance of the expanded dictionaries peaks near K = 8. For K > 8, few
useful information is added to the dictionary (see Fig. 9) at the expense of increased
coherence.
Source: extended from (PASSARIN et al., 2018)
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Figure 9: 35 first singular values sk from the SVD of M(n) for the center-most
local ROI of the ultrasound acquisition set escribed in Section 3.3. In this case,
increasing the order of expansion to K ≥ 8 adds relatively few useful information
to the dictionary, at the cost of increased coherence.
Source: (PASSARIN et al., 2018).

performing dictionary was Minimax for K ≤ 6 and SVD for K > 6.

For every hit, the distance between the original and the recovered scatterers

was computed. The average distances are shown in Fig. 10a. Also for this criterion

the Minimax dictionaries showed better performance for low values of K while the SVD

dictionaries performed better for larger values of K.

The computation of hits and misses does not take into account the amplitude

of recovered scatterers, i.e., recovered scatterers are implicitly considered as having unity

amplitude. To endorse this assumption, the average amplitudes of recovered events are

shown in fig. 10b. Notice that, for all cases, the average amplitudes are between 0.98 and

1.01, i.e., the average amplitude error is less than 2%. The average absolute amplitude

resulting from the reconstructions with OMP using the regular dictionary H was 0.70,

0.70 and 0.71 for noise levels σ = 0 (no noise), σ = 0.08 and σ = 0.12 respectively.

4.2 ESTIMATION OF RESIDUAL AND STOP CRITERION

The residual norm ‖erank‖, caused by the dictionary rank reduction, is estimated

at each iteration of OMPED and then combined with enoise to form the estimated regres-

sion residual eest used on the stop decision. That computation involves the estimation

of the high resolution locations of each recovered scatterer and their corresponding ap-
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Figure 10: Accuracy of SVD and Minimax dictionaries. (a) Distance between re-
covered events (hits) and their corresponding simulated true event. (b) Average
amplitude of the events computed as hits, without noise (top) and with noise levels
σ = 0.08 (middle) and σ = 0.12 (bottom). All simulated events have unity ampli-
tude.
Source: extended from (PASSARIN et al., 2018)

proximation residuals r
(n)
i (Eq. (36b)). Inaccuracies on these estimations may degrade

the computation of ‖erank‖ and consequently eest. As can be seen in Figs. 4b and 4c,

this degradation is less significant with the Minimax than with the SVD dictionaries. A

practical result expected is an increased accuracy on the computation of eest with Mini-

max dictionaries compared to the SVD, what provides an increased accuracy on the guess

of the cardinality of the final solution. To verify this result, we simulated 200 noiseless

acquisitions, each with a single scatterer randomly located over the ROI, and ran a single

iteration of OMPED for each acquisition. For this controlled case, eest should ideally equal

the reconstruction residual norm ‖e‖ returned by OMPED. Fig. 11 shows the average of

the absolute difference |eest − ‖e‖|. For all values of K from 2 to 10, the Minimax bases

yielded a more accurate residual prediction, as expected.

OMPED was executed one more time on the 5-scatterer dataset of Section 3.3,

this time with the residual-based stop criterion defined on line 14 of Algorithm 2, with

a maximum of 10 iterations. Because all images contained 5 scatterers, the algorithm

was expected to stop on iteration 5, i.e, yield a cardinality of 5. Since the approximation

residual estimated with the Minimax bases is more accurate than with the SVD bases,

reconstructions with Minimax dictionaries should more frequently stop at the expected

(5th) iteration. The histograms of Fig. 12a show this outcome: the peak of stops at

iteration 5 is slightly greater with Minimax. In the neighboring final iterations 4 and 6,

Minimax is also more frequent than SVD. The maximum iteration allowed was 10, at
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Figure 11: Average of residual norm prediction errors |eest − ‖e‖| from reconstruc-
tions of 200 simulated noiseless acquisitions with one single scatterer each. The
Minimax dictionaries yield a more accurate prediction of the residual.
Source: own authorship.

which the algorithm stopped when eest failed to reach ‖e‖, a phenomenon that was less

frequent with the Minimax bases. The results for values of K from 2 to 10 and for the

3 noise levels are summed on the histograms of Fig. 12a. A total of 5400 reconstruction

(3 noise levels × 200 images × 9 orders K) per type of dictionary are computed for each

type of expansion. The individual histograms for the reconstructions without noise and

with σ = 0.08 and σ = 0.12 are shown in Figs. 13a, 13b and 13c respectively.

Fig. 12b shows an example of the evolution of the regression residual norm ‖e‖
and the estimated residual norm eest. As new events are iteratively added to the solution,

the latter decreases while the former increases. On iteration 5, ‖e‖ drops below eest and

OMPED correctly meets the stop criterion, yielding a final solution with cardinality 5.

White Gaussian noise with σ = 0.08 was added to the data. OMPED ran with Minimax

(K = 8) dictionary.

4.3 COMPARISON TO OMP WITH FINER GRID

The reconstruction problem solved by OMPED with an expanded dictionary of

order K is NK-large, while the problem posed with a corresponding regular model is

N -large. A question that naturally arises is: would the use of a K-finer regular grid

(creating an NK-large reconstruction problem) with the original OMP be as effective as

using an order-K expanded dictionary with OMPED?
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Figure 12: (a) Histograms of final iteration (when eest reaches ‖e‖) for OMPED
running with SVD and Minimax dictionaries, for K varying from 2 to 10. The Mi-
nimax dictionaries allow OMPED to stop more frequently at the correct iteration.
Results from all values of K are summed. The total number of reconstructions is
5400 for each type of expanded dictionary. (b) Example of evolution of eest and
‖e‖ along the iterations of OMPED. In this case, eest dropped below ‖e‖ at the
5th iteration, which was correctly identified as the final iteration. The simulated
object contained 5 scatterers. White Gaussian noise with σ = 0.08 was added to
the acquired data. OMPED ran with Minimax dictionary with K = 8.
Source: extended from (PASSARIN et al., 2018).

To answer that question, we ran OMP with three different models. The first one

follows the original grid described in Section 3.3 (∆x = ∆z = 1mm andN = 31×41 = 1271

modelled locations). The second covers the same ROI but makes the grid twice as dense

in each dimension, i.e., ∆x = ∆z = 0.5mm. For the third model, the ROI is also the same

and the grid is thrice as dense in each dimension, that is, ∆x = ∆z = 1/3mm. These three

models are referred to as K = 1, K = 4 and K = 9 respectively. The same simulated

dataset of 200 images × 5 scatterers described in Section 4.1 was used.

For comparison to the regular model (K = 1), the Minimax and SVD dictionaries

with K = 1 were created and fed to OMPED to run on the same dataset. Note that,

although these dictionaries have the same dimensions as a regular model, they are not

composed of PSFs, but of single-vector approximations of local manifolds according to

the two criteria. The results for K = 4 and K = 9 are taken from Section 4.1 (Fig. 8).

The performance results in terms of percentage of misses are shown in Fig. 14a

(without noise), Fig. 14b (σ = 0.08 noise) and Fig. 14c (σ = 0.12 noise). Notice that

the increment of the order K decreases the number of misses on both algorithms, but the

decrease is more significant on OMPED. In all cases (even K = 1), OMPED performed
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Figure 13: Histograms of final iteration (when eest reaches ‖e‖) for OMPED running
with SVD and Minimax dictionaries, for K varying from 2 to 10, separated by noise
level. (a) No noise. (b) σ = 0.08. (c) σ = 0.12.

better than OMP.

4.4 RECONSTRUCTED IMAGES: EXAMPLES

Fig. 15a shows the ground truth for a simulation from the dataset of Section 4.1.

The scatterers are labelled 1 to 5 and their locations are displayed in Table 1. The

deviations from the nearest modelled locations in both axes are also displayed in Table 1.

Gaussian noise was added to the acquired data with σ = 0.08. The reconstructed image

using OMPED with a Minimax dictionary (K = 5) is shown in Fig. 15b. No limit was

imposed on the number of iterations, i.e., the algorithm correctly stopped at the 5th

iteration based on the values of the estimated and actual residuals. The activated pixels

are the same in the ground truth of Fig. 15a and the OMPED result of Fig. 15b. While all

simulated scatterers had unity-amplitude, the recovered amplitudes ranged from 0.9398

to 1.0387. Both Figs. 15a and 15b have 41× 31 pixels corresponding to the local ROIs of

the expanded model.

The result of the reconstruction using OMP with the regular dictionary model H

is shown in Fig. 15c. We ran 10 iterations of the algorithm in order to show that some

scatterers are not found even when the number of iterations doubles the previously known

number of scatterers.

Fig. 15d shows the image yielded by the LS (unregularized) solution of Eq. (4).

As is common in unregularized model-based solutions, the image is dominated by noise

(BOVIK, 2000). We also applied `1 regularization to the LS problem, which corresponds
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Figure 14: Comparison between OMP with finer grid OMPED: percentage of misses
obtained with for K = 1 (a), K = 4 (b) and K = 9 (c) with algorithm OMP and
OMPED, the latter with SVD and Minimax dictionaries. In the case of OMP, the
order K implies a finer discretization of the model grid. In all cases, OMPED
performed better than OMP. The decrease in the number of misses as K increases
is greater in OMPED than in OMP.
Source: own authorship.

to the Basis Pursuit (BP) formulation:

v̂ = arg min
v
‖c−Hv‖2 + λ‖v‖1. (40)

Scatterer x (m) x deviation (mm) z (mm) z deviation (mm)
1 25.0020 0.0020 31.0036 0.0036
2 2.4417 0.4417 39.8512 -0.1488
3 4.5961 -0.4039 54.6730 -0.3270
4 22.1781 0.1781 56.8436 -0.1564
5 19.1593 0.1593 59.3316 0.3316

Table 1: Locations and off-grid deviations of the points in the example image

The `1-regularized formulation was solved with the L1 LS package for Matlab

(KIM et al., 2007). The resulting image is shown in Fig. 15e. While a small value for λ

yields an image dominated by noise, such as that of Fig. 15d, larger values cause the image

to be too sparse, suppressing some features. This is a consequence of the penalization of

recovered amplitudes on (40). The chosen regularization parameter λ = 2.0691 minimizes

the norm ‖v − v̂‖, where v is the ground truth and v̂ is the BP result. Notice that the

only recovered scatterer corresponds to scatterer 1, which has the least deviation from

the grid, as displayed in Table 1.
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(a) Ground truth (b) OMPED

(c) OMP (d) Least Squares (e) `1-regularized

Figure 15: Example of image simulated and reconstructed, from the dataset descri-
bed in Section 3.3. All images are normalized by the maximum absolute pixel value.
(a) Ground truth, with 5 unity-amplitude scatterers randomly distributed over the
ROI. (b) Result from OMPED with Minimax (K = 5) dictionary. The algorithm
correctly identified the 5th iteration as the final one. (c) Result from OMP with
regular model H. 10 iterations were run to show that some scatterers are not found
even when the number of iterations doubles the number of scatterers present on
the ground true image. (d) Solution of the unregularized LS problem of Eq. (4).
The image is dominated by noise. (e) Solution of the `1-regularized problem (40).
The penalization of the recovered amplitudes causes the suppression of most points
on the resulting image. The chosen regularization parameter λ = 2.0691 minimizes
the norm ‖v − v̂‖, where v is the ground truth.
Source: extended from (PASSARIN et al., 2018).
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5 CONCLUSION

To cope with the problem of off-grid deviation in image reconstruction from pulse-

echo data, we developed a technique of dictionary expansion based on a highly coherent

sampling of the PSF manifold followed by a rank reduction procedure. The resulting

dictionaries feed a greedy algorithm developed to work with non-convex constraints that

avoid the recovery of arbitrary coefficients combination that do not represent actual PSFs.

For the rank reduction step, two criteria were presented and developed. The first one is a

purely LS-based criterion (SVD), based on (KNUDSON et al., 2014), whose implementa-

tion is relatively simple and which yielded the best global results on our experiments with

simulated ultrasound NDT data both in terms of hits/misses and average hit distance.

The second one is a nonlinear (Minimax) cirterion, based on (PASSARIN et al., 2017),

with a more complex implementation, which provided better results in terms or accuracy

of residual estimation and, consequently, stop decision and cardinality estimation on the

OMPED algorithm. While in (PASSARIN et al., 2017) the Minimax formulation is based

on a polynomial regression, we generalized the optimization procedure so that the regres-

sion functions are implicitly optimized as a modulating matrix F. For not constraining

the matrix F to any family of functions, our formulation of Minimax rank reduction yields

a solution at least as optimal as that of the Polynomial Minimax expansion formulation,

as explained in Appendix A.

Since no assumption is made regarding the geometry of the continuous PSF ma-

nifold, our expansion formulations are applicable to both shift-invariant and shift-variant

problems. On the other hand, for instance, the Polar expansion (EKANADHAM et al.,

2011) is conceived based on the fact that the PSF manifold of any shift-invariant system

lies over a hypersphere. In two-dimensional ultrasound (our main motivating application),

the fact that the Spatial Impulse Response (SIR) is spatially variant (TUPHOLME, 1969;

JENSEN, 2004) puts the direct acquisition model in the class of shift-variant systems.

The criterion for definition of the orderK of expansion may vary according to each

application. In cases where it is possible to carry out simulations (as presented here) or
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a relevant amount of data with accessible ground truth is available, K can be determined

empirically. Moreover, in our case, a minimum in the number of misses is identifiable and

lies near to a transition on the baseline of singular values shown in Fig. 9. A suggestion

for future studies is the development of a generalized criterion for the definition of K.

The behavior of the singular values yielded by an SVD decomposition of matrices M(n)

is potentially a starting point for such investigation.

The original OMP algorithm (TROPP; GILBERT, 2007) is a particular case of

OMPED where K = 1 and the parameter µc (Eqs. (28) and (32)) is set to zero. Running

OMP with a K times finer (denser) grid treats a problem with the same size as running

OMPED with an order-K dictionary, but OMPED consistently outperformed OMP on

the cases simulated in this work.

In both OMP and OMPED, the residual vector e on each iteration is orthogonal

to all active elements of the dictionary, what places OMPED in the family of Orthogonal

Matching Pursuit algorithms. The same does not hold for the COMP algorithm presented

in (KNUDSON et al., 2014): the fact that the LS regression performed at each iteration

contains linear constraints may result in eventual coherence between the residual and the

active elements of the dictionary.

Another particularity of OMPED in regard to previously proposed algorithms

for expanded dictionaries (EKANADHAM et al., 2011; KNUDSON et al., 2014; FYHN

et al., 2015) is that it is not based on conic constraints, which removes any restrictions

on the choice of the sizes ∆x and ∆z (and further dimensions if that is the case) for the

division of the ROI into local ROIs.

5.1 CONTRIBUTIONS

The original contributions of the present work are listed below.

1. Application of the framework of dictionary expansion (EKANADHAM et al., 2011;

KNUDSON et al., 2014) to the problem of two-dimensional ultrasound imaging;

2. Extension of the SVD expansion (KNUDSON et al., 2014) to a two-dimensional

problem;

3. Development of the Minimax expansion, which creates a dictionary where the ma-

ximum residual norm is minimal;
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4. Development of the OMPED algorithm that, contrary to the algorithms presented

in the works of Ekanadham et al. (2011), Knudson et al. (2014) and (FYHN et al.,

2015) and thanks to a non-convex constraint set, allows for the use of local ROIs of

any size.

5.2 ACCOMPLISHMENT OF OBJECTIVES

We conclude that the general and specific objectives declared in Section 1.2 were

accomplished, as detailed below.

As an intermediate step towards the formulation of the generalized Minimax

expansion described in Subection 3.1.3, a polynomial Minimax expansion was formulated

and evaluated for a prototypical one-dimensional problem. The results of a comparison to

the types of expansion proposed in (EKANADHAM et al., 2011) and (KNUDSON et al.,

2014) were reported in (PASSARIN et al., 2017), accomplishing the specific objective 1.

The formulation of the polynomial Minimax expansion and its relation to the generalized

Minimax expansion presented in Subsection 3.1.3 are described in Appendix A.

The specific objective 2 was accomplished in Section 3.1 both by the extension

of the SVD expansion to two dimensions (Section 3.1.2) and by the proposition of of the

generalized Minimax expansion for two dimensions (Subsection 3.1.3).

To accomplish specific objective 3, simulations were carried using Field II package

(JENSEN, 2004), as described in Section 3.3. The simulations reproduced the acquisition

environment of (GUARNERI et al., 2015) for ultrasound NDE.

The convex constraints used in previously proposed algorithms impose restrictions

that limit the creation of acquisition models, as explained in Subsection 3.2.2. To work out

that limitation, an extension of the OMP algorithm which uses non-convex constraints was

formulated in Subsection 3.2.3. The results reported in Chapter 4 proved the algorithm

effective, accomplishing specific objective 4.

Also on Chapter 4 results were presented from the image reconstruction from 200

simulated cases representing ultrasound acquisition with point-like scatterers randomly

distributed over a ROI. Performance of the proposed algorithm was assessed in terms of

cardinality of the solution (Fig. 12a), rate of event recovery (Fig. 8), recovered location

accuracy (Fig. 10a) and recovered amplitude accuracy (Fig. 10b). A reconstrcuted image

was also displayed as example and compared to the results obtained with other model-

based reconstruction algorithms which do not account for off-grid deviations (Fig. 15).
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Therefore, specific objective 5 was achieved, as well the general objective.

5.3 FUTURE WORK

The adaptation of OMP into OMPED, with a constraint imposed on the selection

of the index added to the support at each iteration, might be replicable to other greedy

search algorithms. The class of forward-backward algorithms is of special interest in signal

and image recovery because of its capacity of later “correction” of “wrong” choices made

on the selection of indices to add to the support (MILLER, 2002; SOUSSEN et al., 2011),

which constitutes a motivation for future investigation.

One limitation of our technique is that one single point-like event is identifiable

inside each local ROI. The search for a means to overcome this limitation, allowing for

the recovery of several scatterers inside the same local ROI is a relevant topic for further

investigation and may broaden the applicability of the proposed technique.

Our simulated data considered point-like reflectors, with spatial coordinates (x, z)

as the only nonlinear parameters. The ultrasound NDT literature contains parametric

reflection models for more complex discontinuity structures, such as spherical voids and

circular cracks, where the distortion of ultrasound waves is modelled as a nonlinear func-

tion of parameters like diameter and angle to the surface (SCHMERR; SONG, 2007;

VELICHKO et al., 2017). The proposed method is applicable to those cases as long

as those parameters are comprised in the parameter set τ in (1) and sampled like the

parameters of spatial location. In this case, characterization of discontinuities could be

performed along with location. Classification of discontinuities could also be jointly per-

formed if dictionaries for several types of discontinuities are combined. An equivalent

principle has been used in the joint detection and identification of neuron activity using

using SVD (KNUDSON et al., 2014) and Taylor (EKANADHAM et al., 2014) expanded

dictionaries.

Finally, the application of the proposed method to real acquired data and to

simulated data representing more complex structures (e.g. using the CIVA environment

(CALMON et al., 2006)) is an important next step.
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APPENDIX A -- POLYNOMIAL MINIMAX EXPANSION

As an initial step on the development of the Minimax expansion described in

Subsection 3.1.3, a Minimax expansion approach based on a polynomial regression was

derived for a prototypical 1-dimensional linear time-invariant (LTI) case. We refer to

this approach as Polynomial Minimax. The derivations are presented in this appen-

dix. Comparisons of performance between the Polynomial Minimax and other expansion

approaches were reported in (PASSARIN et al., 2017). Here we refer to the Minimax

expansion presented in Subsection 3.1.3 as Generalized Minimax

Consider a one-dimensional linear time-invariant (LTI) system whose impulse

response h(t) so that the response to a delayed impulse δ(t− τ) is h(t− τ). The delayed

response h(t−τ) is time sampled, generating the vector y(τ) ∈ RM Recalling the manifold

definition of (1), in this case the vector of nonlinear parameters τ contains only the time

delay τ

τ = [τ ]. (41)

The blue circle curve in Fig. 16a shows y(∆), i.e., the response delayed by an arbitrary

real-valued ∆ for τ .

The problem of deconvolving an arbitrary signal that has been output by the

system consists in finding a set of N impulses at the input, each having amplitude vn and

delay τn, such that the time-sampled output c can be represented as a finite combination

of impulse responses:

c =
N∑
n=1

vny(τn) + e (42)

where e ∈ RM represents additive Gaussian measurement noise with zero mean and

variance σ2. This formulation is found in many applications of inverse problems such

as neuron spike detection (EKANADHAM et al., 2014) and 1-dimensional ultrasound

nondestructive testing (NDT) (CARCREFF et al., 2014; MOR et al., 2010), where the

signal to be reconstructed is modelled as a limited sum of shifted impulses with arbitrary

amplitudes.
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Figure 16: Sampling of 1-dimensional LTI manifold. (a) Responses y(∆), y(2∆) and
off-grid response y(1.5∆) (b) Black line: 3-component PCA view of the manifold
drawn by the variation of τ in the LTI acquisition model y(t−τ ). The circle, X and
square marks correspond to τ = ∆, τ = 1.5∆ (off-grid) and τ = 2∆ respectively.
Source: adapted from (PASSARIN et al., 2017).

In order to build the acquisition model, a discretization of the delay τ is required.

Without loss of generality, we define a regular sampling of τ at intervals of size ∆ so that

each n-th modelled delay τn is defined as n∆. The resulting discrete model H is defined

as

H = [h1,h2, . . . ,hN , ] = [y(∆),y(2∆), . . . ,y(N∆)], (43)

which allows for writing (42) in compact the form of (3).

The problem of off-grid deviation arises when some component of the data vector

c corresponds to a response y(τ) with a value for τ not contemplated by the model H,

i.e., not a multiple of ∆. To cope with that phenomenon, the acquisition model (42) can

be adapted to

c =
N∑
n=1

vny([n+ τn]∆) + e, (44)

where τn can vary continuously within the interval [−0.5, 0.5], defining a time bin with

length ∆. Each column hn in H is replaced by a matrix B(n) ∈ RM×K whose columns

combine linearly to approximate the n-th corresponding local manifold (time bin) y([n+

τn]∆), τn = [−0.5, 0.5]. The resulting approximated acquisition model is expressed in (6).

The polynomial Minimax criterion for the definition of B(n) is based on a polyno-

mial regression, with τn as the independent variable. We want to approximate deviations

within the n-th time bin as an order-k polynomial composition of the columns b
(n)
k of
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B(n):

y([n+ τn]∆) ≈
K∑
k=1

τ k−1n b
(n)
k (45a)

y([n+ τn]∆) ≈ b
(n)
1 + τnb

(n)
2 + τ 2nb

(n)
3 + · · ·+ τK−1n b

(n)
K (45b)

y([n+ τn]∆) ≈ B(n)[1, τn, τ
2
n, . . . , τ

K−1
n ]T . (45c)

In order to cast the regression problem, a fine sampling of the off-grid deviation

τn is performed uniformly within the interval [−0.5, 0.5], yielding a set of R different

deviations τn,i, i = 1, . . . , R. Let

m
(n)
i = y([n+ τn,i]∆) ∀i ∈ {1, . . . , R} (46)

be the i-th (out of R) manifold sample within the n-th time bin, and let

f
(n)
i = [1, τn,i, τ

2
n,i, . . . , τ

K−1
n,i ]T ∀i ∈ {1, . . . , R} (47)

be the vector formed by the values yielded from taking all the K − 1 powers of τn,i. The

R manifold samples yield R instances of approximation (45c):

m
(n)
i ≈ B(n)f

(n)
i ∀i ∈ {1, . . . , R}, (48)

each of which yield a vector of residuals r
(n)
i ∈ RM :

r
(n)
i = m

(n)
i −B(n)f

(n)
i ∀i ∈ {1, . . . , R}. (49)

Our goal now is the definition of a set {d(k)
n } that minimizes the residual norms

‖rn,i‖ for every τi drawn from our oversampling of the time bin. One simple approach

would be solving a simple Least Squares (LS) problem:

{B̂(n)} = arg min
{B(n)}

√√√√ R∑
i=1

‖r(n)i ‖2 s.t. {r(n)i = m(n) −B(n)f
(n)
i } ∀i ∈ {1, . . . , T}. (50)

In order to create an egalitarian approximation, i.e. an approximation that dis-

tributes the residuals along the delays τn ∈ [−0.5, 0.5], the problem is formulated as a

minimize-maximum (Minimax) residual:

B̂(n) = arg min
B(n)

rmax s.t.

{
‖r(n)i ‖ ≥ rmax

r
(n)
i = m(n) −B(n)f

(n)
i

}
∀i ∈ {1, . . . , R}. (51)
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Figure 17: Residual norms ‖r(1)i ‖ for the waveform of Fig. 16a. Least Squares
solution is yielded by (50) and Minimax solution is yielded by (51).
Source: (PASSARIN et al., 2017).

The real-valued scalar rmax in (51) is a slack variable introduced in the problem. It is

minimized in the cost function and, through the set of inequalities ‖r(n)i ‖ ≥ rmax, this

minimization is propagated to the maximum residual norm maxi ‖r(n)i ‖. As consequence,

problem (51) is equivalent to:

B̂(n) = arg min
B(n)

max
i
‖r(n)i ‖ s.t. {m(n) −B(n)f

(n)
i = r

(n)
i } ∀i ∈ 1, . . . , R. (52)

Problem (51) a is Second-Order Cone Program (SOCP) which can be solved by

convex optimization packages such as SeDuMi (STURM, 1999), SDPT3 (TOH et al.,

1998) and CVX (GRANT; BOYD, 2014, 2008).

Fig. 17 shows the residual norms ‖r(1)i ‖ (n = 1 denotes expansion of the first time

bin) for the waveform of Fig. 16a as yielded by the LS (50) and Minimax (51) expansions.

A.1 RELATION BETWEEN POLYNOMIAL MINIMAX AND GENERALIZED MI-
NIMAX EXPANSIONS

We refer to the Minimax expansion presented in Subsection 3.1.3 as Generalized

Minimax, in opposition to the Polynomial Minimax expansion presented in Appendix A.

The term Generalized derives from the fact that the modulating matrices {F(n)} are also

subject to optimization along with the basis matrices {B(n)}, whereas in the Polynomial

Minimax the matrices {F(n)} contain samples of the polynomial terms τ k−1. The cor-

respondence between the two approaches is presented in the current appendix. As in

Subsection 3.1.3, we suppress indices n and represent matrices related to the n-th local

ROI such as M(n) and B(n) as simply M, B and so forth.

The search for the Polynomial Minimax basis is performed via a vector regression
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Figure 18: To cast a regression problem, the off-grid deviation of a given point
within the the n-th ROI is mapped onto D independent variables (two in this
example): α and β denote the deviation of the point from the corresponding mo-
delled position in the lateral (x) and axial (z) axis respectively. Their values vary
within the range [−0.5, 0.5], normalized over ∆x and ∆z, so that the coordinates of
a point are (x, z) = (xn + α∆x, zn + β∆z).

problem. To cast the regression problem, it is necessary to map the off-grid deviation of

each of the R points sampled within the local ROI onto D independent variables, one for

each dimension. In our case D = 2, then two variables are required to locate any given

point relative to a modelled position: α for the x direction and β for the z direction, as

represented in Fig. 18. The values of α and β are constrained within the normalized range

[−0.5, 0.5] so that any point witihn a local ROI has coordinates

[x, z]T = [xn + α∆x, zn + β∆z]
T .

Now each i-th point from the fine sampling of the n-th local ROI (see Fig. 2c) can have

its position expressed in terms of its off-grid deviation αi and βi:

[x, z]T = [xn + αi∆x, zn + βi∆z]
T .

The basis of the regression problem is expressed in Eq. (53). Each column mi

from M will have a rank-K approximation m̃i, composed by a linear combination of

the basis vectors bk. Such linear combination is determined by K regression functions

fk(α, β).

mi ≈ m̃i =
K∑
k=1

bkfk(αi, βi) ∀i ∈ {1, 2, . . . , R} (53)

If the K functions fk(α, β) are determined, we can define a minimax optimization
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problem for the basis vectors bk:

B̂ = arg min
B

max
i
‖ri‖ s.t.

{
ri = mi −

K∑
k=1

bkfk(αi, βi)

}
∀ i ∈ {1, 2, . . . , R} (54)

Now let vectors fi ∈ RK be defined in Eq. (55):

fi = [f1(αi, βi), . . . , fK(αi, βi)]
H ∀i ∈ {1, . . . , R} (55)

We group all the R vectors fi to form the matrix F, as shown in Eq. 56.

F =


f1(α1, β1) f1(α2, β2) . . . f1(αR, βR)

f2(α1, β1) f2(α2, β2) . . . f2(αR, βR)
...

...
. . .

...

fK(α1, β1) fK(α2, β2) . . . fK(αR, βR)

 (56a)

F = [f1, f2, . . . , fK ] (56b)

The definition of F allows for writing the system of R equations of problem (54) in

compact form:

B̂ = arg min
B

max
i
‖ri‖ s.t. R = M−BF. (57)

The resulting Eq. (57) presents the same optimization problem as Eq. (17).

On (PASSARIN et al., 2017), a prototypical one-dimension problem is approa-

ched, thus only one independent variable τ is defined for the off-grid deviation. A simple

choice is then made as the family of polynomials fk(τ) = τ k−1 is used. This set of functions

may be sufficiently versatile for one-dimension problems, but defining its best extension for

two or higher dimensions is not straightforward. Rather than choosing a set of analytically

determined functions fk(α, β) and sampling them over the set (αi, βi) : i ∈ {1, 2, . . . , R}
to obtain F, we make F also subject to optimization.
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APPENDIX B -- CASTING THE MINIMAX PROBLEM AS SOCP

In (18), we introduce a variable rmax, which is the only term on the cost function,

and constrain it to be equal to or grater than every residual norm ‖ri‖ = ‖Bfi −mi‖.
For any candidate solution, the minimization of rmax forces the minimization of solely

the largest residual norm among all ‖ri‖. This is a common choice in the formulation of

minimax problems in linear programming (WILLIAMS, 2013). The resulting problem of

Eq. (18) can be translated into a Second Order Cone Program (SOCP) (BOYD; VAN-

DENBERGHE, 2004)(ANTONIOU; LU, 2007).

The standard form of SOCPs (BOYD; VANDENBERGHE, 2004)(ANTONIOU;

LU, 2007) is presented in Eq. (58).

min
y

wTy s.t. ‖Aiy + gi‖ ≤ cTi y + si ∀i = {1, . . . , R} (58)

To translate the problem of Eq. (18) into the SOCP (58), we start by defining

the variables vector y ∈ RKM+1:

y = [bT1 , . . . ,b
T
K , rmax]

T . (59)

We then define the weights vector w ∈ RKM+1:

w = [0T , . . . ,0T , 1]T , (60)

where 0 ∈ RM is an all-zero vector, so that

wTy = rmax. (61)

The product Bfi can be replaced with the following identity:

(fTi ⊗ I)[bT1 , . . . ,b
T
K ]T = Bfi, (62)

where ⊗ denotes the Kronecker product and I ∈ RM×M is the identity matrix. This allows
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for the definition of Ai ∈ RM×(KM+1):

Ai = [fTi ⊗ I,0] ∀i ∈ {1, . . . , R}, (63)

Finally we define vectors gi ∈ RM :

gi = −bi ∀i ∈ {1, . . . , R}. (64)

Since the affine terms si are not used, they are set to zero:

si = 0 ∀i ∈ {1, . . . , R}. (65)

When we replace the members of the SOCP (58) with the equivalences (59)-(65),

we obtain the problem of (18).


