
UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ
PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA E

INFORMÁTICA INDUSTRIAL

HUDSON JORGE

EXTENSIONS TO CLOUDSIM SIMULATOR BASED ON A FIRST
ORDER PARASITIC COUPLING OVERHEAD MODEL TO STUDY

THE CPU SCALATION IN CLOUDS SYSTEMS

DISSERTAÇÃO

CURITIBA

2018

HUDSON JORGE

EXTENSIONS TO CLOUDSIM SIMULATOR BASED ON A FIRST
ORDER PARASITIC COUPLING OVERHEAD MODEL TO STUDY

THE CPU SCALATION IN CLOUDS SYSTEMS

Dissertação apresentada ao Programa de Pós-
graduação em Engenharia Elétrica e Informática
Industrial da Universidade Tecnológica Federal do
Paraná como requisito parcial para obtenção do grau
de “Mestre em Ciências” – Área de Concentração:
Informática Industrial.

Orientador: Emilio C. G. Wille

CURITIBA

2018

Dados Internacionais de Catalogação na Publicação

Jorge, Hudson

Extensions to cloudsim simulator based on a first order parasitic cou-
pling overhead model to study the CPU scalation in clouds systems [re-
curso eletrônico] / Hudson Jorge.-- 2019.

1 arquivo eletrônico (74 f.): PDF; 1,49 MB.

Modo de acesso: World Wide Web
Título extraído da tela de título (visualizado em 22 abr. 2019)
Texto em inglês com resumo em português
Dissertação (Mestrado) - Universidade Tecnológica Federal do Pa-

raná. Programa de Pós-graduação em Engenharia Elétrica e Informática
Industrial, Curitiba, 2018

Bibliografia: f. 72-74.

1. Engenharia elétrica - Dissertações. 2. Processamento paralelo

(Computadores). 3. Processamento paralelo (Computadores) - Simula-
ção por computador. 4. Computadores - Redes. 5. Modelagem de siste-
mas complexos. 6. Dispositivos de treinamento simulado. I. Wille, Emílio
Carlos Gomes. II. Universidade Tecnológica Federal do Paraná. Pro-
grama de Pós-graduação em Engenharia Elétrica e Informática Industrial.
III. Título.

CDD: Ed. 23 – 621.3

Biblioteca Central da UTFPR, Câmpus Curitiba.
Bibliotecário: Adriano Lopes CRB-9/1429

Ministério da Educação
Universidade Tecnológica Federal do Paraná
Diretoria de Pesquisa e Pós-Graduação

TERMO DE APROVAÇÃO DE DISSERTAÇÃO Nº 810

A Dissertação de Mestrado intitulada “Extension to Cloudism Simulator Based on a First Order

Parasitic Coupling Overhead Model to Study the CPU Scalation in Cloud Systems” defendida em

sessão pública pelo(a) candidato(a) Hudson Jorge, no dia 22 de outubro de 2018, foi julgada para a

obtenção do título de Mestre em Ciências, área de concentração Telecomunicações e Redes, e

aprovada em sua forma final, pelo Programa de Pós-Graduação em Engenharia Elétrica e Informática

Industrial.

BANCA EXAMINADORA:

 Prof(a). Dr(a). Emilio Carlos Gomes Wille - Presidente – (UTFPR)

 Prof(a). Dr(a). Luis Carlos Erpen de Bona - (UFPR)

 Prof(a). Dr(a). Elias Procópio Duarte - (UFPR)

A via original deste documento encontra-se arquivada na Secretaria do Programa, contendo a

assinatura da Coordenação após a entrega da versão corrigida do trabalho.

Curitiba, 22 de outubro de 2018.

To my parents, that gave all they had, material and spiritual, to support
my ambitions and achievements. My efforts are to honor them enough,
even knowing it is an impossible task.

To my daughter and son, for the opportunity to give them what my
parents gave to me.

To my friends, for the good advices and the knowledge shared.

To my mentor, for the patience and professionalism.

AGRADECIMENTOS

There are always a set of people that without them it would be impossible to achieve

our projects and ambitions. There is not enough words to thanks all of them for all they gave

in terms of support, knowledge, advice or just acceptance. But some are crucial in the long run

projects, and this work is one of them.

Special thanks for my mentor Prof. Dr. Emilio C. G. Wille, for the patience in listening hours

of contradictory explanations, correcting me and always putting on focus the target. Special

thanks for my family, that supported long periods of absent, even when I was with them. I wish

to thanks my business coleagues that helped me when I needed knowledge they have and shared

gracefully.

In memory of Munir Jorge, my beloved Father.

RESUMO

JORGE, Hudson. EXTENSIONS TO CLOUDSIM SIMULATOR BASED ON A
FIRST ORDER PARASITIC COUPLING OVERHEAD MODEL TO STUDY THE CPU
SCALATION IN CLOUDS SYSTEMS. 74 f. Dissertação – Programa de Pós-graduação em
Engenharia Elétrica e Informática Industrial, Universidade Tecnológica Federal do Paraná.
Curitiba, 2018.

O aumento de performance em CPUs paralelas é dependente de muitos fatores como
comportamento das aplicações, cache disponı́vel, eficiência do uso do cache. Simuladores em
computadores são usados para prever ou comparar a performance de processadores multi-core;
eles são categorizados como modelos ciclo-precisos ou de alto nı́vel. Os modelos cliclo-precisos
são baseados na teoria de filas para passo-a-passo conduzir a simulação a executar as operações
necessárias para consumir um modelo que representa o tamanho da aplicação. Os modelos de
alto nı́vel são usados para coletar, usualmente através de hardware adicional, informações não
acessı́veis que representam o comportamento do sistema em operação. Nos dois casos, eles são
complexos porque uma longa sequência de filas (ciclo-preciso) controlam o processo, fazendo
com que a simulação sejam muito demoradas. No caso de alto nı́vel, muitas vezes é necessário
um hardware completamente diferente do sistema real a fim de ler os estados necessários. Além
disso, às vezes sistemas com lógica programável são usados para implementar o controle de
cache, filas e protocolos de comunicação o que aumenta o tempo de execução, por causa as
restrições de clock desse hardware adicional. Baseado em um modelo simples proposto por
Kandalintsev e Lo Cigno, o Modelo BFO (First Order Performance), toda a complexidade
da arquitetura interna é estudada como interferência parası́tica de uma CPU/core lutando por
recursos comuns. Eles introduziram um fator de acoplamento, que incorpora a essencia do
comportamento de performance observado em um sistema. Neste trabalho, usamos o modelo
BFO para implementar um simulador ciclo-preciso rápido capaz de manusear grandes sistemas.
Para tanto o simulador CloudSim foi extendido para se comportar como um simulador ciclo-
preciso. Basicamente implementamos modelos de CPU e modelos de aplicação que poder
dar conta da complexidade de diferentes tipos de cenários (comportamento de CPU distintos
quando rodando diferentes tipos de aplicação). Usando medidas off line nós treinamos o modelo
para extrair os fatores de acoplamento necessários para alimentar o simulador. Testamos o
comportamento em pares para estar seguros de que a implementação poderia reproduzir os
testes medidos. Nossas simulações consideram até 14 cores (no caso de m Xeon E5-2880v4) e
para melhorar a qualidade dos resultados introduzimos um fator de correção para minimizar o
erro observado (que parece ser exponencial), com bons resultados.

Palavras-chave: processamento paralelo, arquiteturas multi-core, computação de alta
performance, technologia, simulação, modelamento de performance.

ABSTRACT

JORGE, Hudson. EXTENSION TO CLOUDSIM SIMULATOR BASED ON A
FIRST ORDER PARASITIC COUPLING OVERHEAD MODEL TO STUDY THE CPU
SCALATION IN CLOUDS SYSTEMS. 74 f. Dissertação – Programa de Pós-graduação em
Engenharia Elétrica e Informática Industrial, Universidade Tecnológica Federal do Paraná.
Curitiba, 2018.

Parallel CPU performance scaling is dependent of many factors such applications behavior,
cache available, efficiency of cache use. Computer simulators are used to predict or benchmark
the performance of multi-core processors; they are categorized as cycle accurate or high-level
models. The cycle accurate models are based on queue theory to step-by-step conduct the
simulation to perform the operations needed to consume a model that represents the application
size. The high-level models are used to collect, usually via additional hardware, not accessible
information that represents the behavior of the running system. In those two cases, they are
complex because a very long sequence of queues (cycle accurate) controls the process, making
the simulation very time consuming. And in the case of high-level, sometimes it needs a
complete different hardware from the actual system to read the needed states. In addition,
sometimes programmable logic systems are used to implement the cache controls, queues and
communication protocols what enlarges the running time, to accommodate the clock restrictions
of the additional hardware. Based on a simple model proposed by Kandalintsev and Lo Cigno,
the Behavioral First Order Performance Model (BFO), all the complexity of the internals of the
architecture is studied as parasitic interference of one CPU/core fighting for shared resources.
They introduced a coupling factor, which incorporates the essence of the observed performance
behavior in a system. In this work, we used the BFO model to implement a fast cycle-
accurate simulator capable of handling even large systems. To do it the CloudSim simulator
was extended to behave as a cycle-accurate simulator. Basically we implemented CPU and
application models that can handle the complexity of the different types of scenarios (distinct
CPU behavior when running different kinds of applications). Using off line measurements we
trained the model to extract the coupling factor needed to feed the simulator. We tested the
pairwise behavior to make sure that the implementation could reproduce the measured tests.
Our simulations consider up to 14 cores (in case of Xeon E5-2880v4) and to improve the results
quality we introduced a correction factor to minimize the (seemly exponential) error observed,
with good results.

Keywords: parallel processing, multi-core architectures, high performance computing,
technology, simulation, performance modeling.

LISTA DE FIGURAS

–FIGURA 1 Speedup vs. Number of CPUs . 22
–FIGURA 2 Speedup vs. serial fraction s . 23
–FIGURA 3 Scalability of Fixed-Size (Amdahl’s law) and Fixed-Time Models

(Gustafson’s law). 26
–FIGURA 4 Typical Memory Organization in Multi-core Systems 30
–FIGURA 5 RPM First-Level Cache (FLC) implementation. 34
–FIGURA 6 RPM Second-Level Cache (SLC) implementation. 34
–FIGURA 7 Internal Organization of Core Model - Power4 single core modeled 35
–FIGURA 8 Internal Organization of 4-Core System Model - Power4 CPU modeled . . 35
–FIGURA 9 Task Load definition: Tasks schedule in one CPU core in one slice of time

T. 37
–FIGURA 10 Interference between tasks running on different cores. (a) Task A running

on CPU core c1, with no interference of CPU core c2, (b) Task A running
on CPU core c1 is interfered by task B running on CPU core c2. 38

–FIGURA 11 CloudSim Layered Design . 43
–FIGURA 12 CloudSim Layered Architecture. 44
–FIGURA 13 CloudSim Layered Architecture . 46
–FIGURA 14 Cloudlet Processing Update Process. 48
–FIGURA 15 Cloudlet Simulation Cycle. 49
–FIGURA 16 Extensions on Cloudlet class and object instantiation helped by

CloudletCorrection class. 50
–FIGURA 17 Extensions on Cloudlet class and object instantiation helped by

CloudletCorrection class. 51
–FIGURA 18 RMSE error vs. Number of cores. 67
–FIGURA 19 RMSE error vs. Number of Cores. With γ = 0.1 shows good reduction in

RMSE error . 68

LISTA DE TABELAS

–TABELA 1 Usage of taskset pinning flag. The flag is the hexadecimal interpretation
when OFF = 0 and ON = 1. 55

–TABELA 2 Instructions per second (MIPS) calculated for each CPU type in the ideal
case. 59

–TABELA 3 Coupling Factors βA→B for OPTERON 2214HE . 60
–TABELA 4 Coupling Factors βA→B for XEON E5-2680v4 . 60
–TABELA 5 Coupling Factors βA→B for i7-6500U . 60
–TABELA 6 CloudSim simulating various stressors results with Opteron 2214HE

parameters (declared in CloudSim with MIPS=3000) 62
–TABELA 7 CloudSim simulating various stressors results with Xeon E5-2680v4

parameters (declared in CloudSim with MIPS=6000) 63
–TABELA 8 CloudSim simulating various stressors results with i7-6500U parameters

(declared in CloudSim with MIPS=5000) . 64
–TABELA 9 RMSE between CloudSim simulations over stressors and real world

measurements with Opteron 2214HE. Tests calibrated for 320s of runtime. 65
–TABELA 10 RMSE between CloudSim simulations over stressors and real world

measurements with Xeon E5-2680v4. Tests calibrated for 320s of runtime. 65
–TABELA 11 RMSE between CloudSim simulations over stressors and real world

measurements with i7-6500U. Tests calibrated for 320s of runtime. 65
–TABELA 12 Testing the model accuracy calculating RMSE between Extended

CloudSim simulations and real world XEON E5-2680v4. In addition the
RMSE between Extended CloudSim and the Original CloudSim (that uses
the linear CPU escalation model). Tests calibrated for 320s of runtime to
permit cache stabilization. 66

–TABELA 13 Testing the improvement in RMSE between Extended CloudSim
simulations and real world XEON E5-2680v4 and Extended CloudSim with
Correction Factor γ = 0.1. Tests calibrated for 320s of runtime to permit
cache stabilization. 68

LISTA DE SIGLAS

HPC High Performance Computing
BCE Base Core Equivalent
SLATE System-Level Analysis Tool for Early Exploration
BCE Base Core Equivalent
FPGA Field Programmable Gate Array
API Application Programming Interface
DVFS Dynamic Voltage and Frequency Scaling
MIPS Million Instructions Per Second
GPU Graphics Processing Unit
SSD Solid State Disk

SUMÁRIO

1 INTRODUCTION . 13
1.1 MOTIVATION . 15
1.2 OBJECTIVES . 17
1.2.1 General Objectives . 17
1.2.2 Specific Objectives . 17
1.3 STRUCTURE OF THE DISSERTATION . 18
2 PARALLEL PROCESSING PERFORMANCE MODELS . 20
2.1 PERFORMANCE IN MULTI-CORE PARALLEL SYSTEMS REVIEW 20
2.2 AMDAHL’S LAW, DEFINITIONS AND CONSEQUENCES . 21
2.2.1 Amdahl’s Law and speedup in multi-core systems . 22
2.2.2 Amdahl’s Law Corollary - The Fixed Size Law Applied to Multi-core 23
2.3 TIME FIXED LAW, THE GUSTAFSON’S LAW . 25
2.4 MEMORY BOUND MODEL, THE SUN AND NI’S LAW . 27
2.5 MEMORY WALL PROBLEM . 29
3 PERFORMANCE MODELING . 32
3.1 MODELING FOR PERFORMANCE PREDICTION . 32
3.1.1 RPM - High-Level Model . 32
3.1.2 SLATE - Cycle-Accurate Model . 34
3.1.3 The Behavioral First Order (BFO) CPU Performance Model . 36
4 EXTENSIONS ON CLOUDSIM TO IMPLEMENT THE BFO MODEL 42
4.1 THE CLOUDSIM . 42
4.1.1 CloudSim Design . 42
4.1.2 CloudSim Architecture . 44
4.1.3 CloudSim Classes . 45
4.1.4 Datacenter Internal Processing . 48
4.2 FIRST ORDER BEHAVIORAL MODEL IMPLEMENTATION IN CLOUDSIM . . . 49
4.2.1 Cloudlet Class Extension . 49
4.2.2 Pe Class Extension . 50
4.2.3 PowerHost Classes Overwriting . 51
4.2.4 Datacenter modeled by XML file . 51
5 FRAMEWORK FOR MULTI-CORE SYSTEMS EVALUATION 53
5.1 OVERHEAD MEASUREMENTS . 53
5.1.1 How to empirically obtain the coupling factors β . 55
5.1.2 Testing Programs and Hardware configurations . 57
5.1.3 Training Phase: Results of the calibration tests . 58
5.1.4 Simulation Phase: Validation of extensions made on CloudSim 60
5.1.4.1 Part I: Reproducing the ideal scenarios . 61
5.1.4.2 Part II- Interference in Pairwise Scenarios . 61
5.1.5 Generalization Phase - Use of Extended CloudSim to predict the behavior of different

loads scenario . 64
5.1.6 Refining the model to improve results with increased number of cores 66

6 CONCLUSIONS AND FUTURE RESEARCH . 69
6.1 CONCLUSIONS OF THE MODEL BEHAVIOR AND THE CLOUDSIM

EXTENSIONS IMPLEMENTATION . 69
6.2 LESSONS LEARNED AND FUTURE WORK . 71
REFERENCES . 72

13

1 INTRODUCTION

One well known empiric result in HPC (High Performance Computing) area is that

n identical CPUs working in parallel will not deliver n times the speed of one CPU alone,

independent of the architecture used for interconnect them. There are many reasons for that, for

example memory and cache availability, I/O interruptions and disk wait time. This measurable

behavior points towards that no multi-CPUs architecture can give exclusive resources to

each individual CPU, making the overall performance decreases, due to the shared resources

competition among the CPUs. In addition to it, the software also play an important role since it

should be designed to make use of this parallel CPUs environment, implementing algorithms

optimized for this parallel architecture.

This has been a long time discussion, that probably started with the famous

observation of Amdahl (AMDAHL, 1967) that statistically a software execution in a multi-

CPU environment can be divided in two parts, the parallel ratio that represents the fraction of

the execution time where the CPUs have all the resources (physical and logical) available to

execute their jobs and the serial ratio that represents the fraction of the execution time where

the CPUs have to wait for a resource be free or available. In the time of Amdahl’s observation

the serial fraction was estimated to be as big as 30%.

Overtime, new architectures came to better supply the CPUs with promptly available

resources, it was pushed by the needs of the supercomputation area, these new architectures

along with optimized software algorithms pushed the HPC area to new standards. Gustafson

(GUSTAFSON, 1988) noticed that the Amdahl’s law was not predicting well the measured

performance in his lab. The key assumption he stated is that Amdahl’s law was too restrictive

because assumed that the serial fraction remained the same size independent of the problem

size to be computationally solved, that is why nowadays the Amdahl’s law is also known as

Fixed Size law. According to Gustafson, the software designers make use of the new multi-CPU

architecture resources and developed new algorithms that escalates down the serial fraction in

14

the same proportion of the problem size. This means that if the problem is doubled in size, the

serial fraction is halved. This is known as Gustafson’s law or Fixed Time law. It is Fixed Time

because the serial fraction has the same absolute time independent of the problem size.

This discussion, was pacified for some time in HPC area, because the Fixed Time law

assured that the multi-CPU architectures could perform very well if the software (Operational

System (OS) and Algorithms) was designed to extract the best of these architectures. However,

in the domestic and general purpose computation area the single CPU architecture was the

common approach, since the Moore’s law (MOORE, 1965) was still delivering results. In

the servers market, very limited multi-core CPUs architectures were available for use, mainly

because of the costs to implement these chips. Sudenly it all changed, mainly because of the

Moore’s law failings (TRACK et al., 2017), the multi-core approach presented as the only

viable solution to continue the exponential growth of the power computing.

Since than, the discussion of CPU performance scaling reopenned, the main driver

is because, even if the multi-core CPUs implementations are based on HPC architectures,

they are more limited in a silicon chip because of restricted available space and limitations

of the interconnection topologies possible to be implemented between the processors. For

example some supercomputers implement hypercubic interconexion topology, what is hard

to implement in silicon. Based on these limitations Marty and Hill (HILL; MARTY, 2008)

have developed a corolary of the Ahmdahl’s law, based on the concept of BCE (Base Core

Equivalent). This work served as a baseline for Sun and Ni’s work (SUN; NI, 1990),

they created a model adherent to multi-core processor architectures, showing that they can

perform near to Gustafson’s law if there is enough cache memory available inside the chip.

Moreover, Sun and Chen (SUN; CHEN, 2010) showed that it is possible to perform reasonably

well even in presence of the Memory Wall problem (that is the disparity between how

fast a CPU can operate on data and how fast it can get/put data on memory), but the effort

is to be put in faster and larger cache memories and algorithms to clean it from leftover garbage.

The statistical models are fundamental to guide the research and industry on where

to put efforts to improve performance over the generations of multi-core processors, as well

as guide the software research to improve the use of the parallel architecture. However, they

cannot predict the actual performance, also known as speed up, of a system based on the

architecture and the software currently running on top of it. Therefore, there is room for other

15

kind of performance models, one capable to predict the performance in the systems based on

observable statistics collected on runtime. There are several works in this area, usually they

are or too complex for implementation in real systems or are based on “hard to measure”

parameters. For example, Barroso et. al. (BARROSO et al., 1995) created the RPM (Rapid

Prototyping for Multiprocessor) an engine based on queue analysis, it presents a very good

precision on the predictions, but it is slow to run since it executes the pipe of instructions in

dedicated hardware (like cache and cache controller) to access the needed cache statistics.

Nanda et. al. (NANDA et al., 2000) developed MemorIES that substitute physically the L1, L2

and L3 caches by a dedicated hardware capable to collect the cache statistics and calculate the

processor’s performance. This model is used to orient the design of servers and besides being

faster then other models it uses parameters inaccessible in commercial servers.

To address the need for a model capable of deliver good and fast results based on

observable statistics (in multi-core processors, usually the HPC counters) Kandalintsev and Lo

Cigno (LO CIGNO; KANDALINTSEV, 2012) proposed a simple model based on the measured

behavior an application presents when running on the multi-core system in controlled conditions

and corrects it for the normal conditions of use. This model is further developed in Kandalintsev

PhD thesis (KANDALINTSEV, 2016) ”Application Interference in Multi-Core Architectures:

Analysis and Effects” where a methodology to collect the parameters of the model are described

as well as the methodology to test the model against the real world systems, even a methodology

to collect the statistics to feed online algorithms, specially in case of CRM (Cloud Resource

Manager) implemented to use the model to improve the decision of resource allocation. This

work is one of the pillars of our work, and will be extensively explained in further chapters.

1.1 MOTIVATION

In the literature, performance estimation tools for computing systems are mainly

of two category: high-level models and precise cycle accurate simulators (KUNKEL et al.,

2000). The second category give almost exact results, one example of it was implemented

by Bergamaschi et. al. (BERGAMASCHI et al., 2007), resulting in a tool named SLATE

(System-Level Analysis Tool for Early Exploration). This tool presented nearly exact results,

but it is very time consuming, being helpful to orient computing systems design for example,

since it can predict the actual task performance and point out bottlenecks. This result in a tool

not suited to quick decisions that a live running system sometimes have to do, for example

scheduling of tasks or thread switching.

16

On the other hand, the high-level models do not touch the behavior of the processors.

These models are based on empirical observations of the overall system performance, or are

based on abstract models (that can be split in several loosely coupled models). One example of

this approach was proposed by Torrelas et. al. (TORRELLAS et al., 1990), where a queueing

network model of the memory architecture of multi-CPU systems showed good results for

some class of tasks. One problem with this approach is that some parameters in the model

are not directly measured, but rather are estimated. Other problem is that the actual CPU

role is not take into acount, making the model not suitable to simulating programs purposes.

Refinements on the model were done resulting in SPLASH (Stanford Parallel Applications for

Shared-memory) (SINGH et al., 1992) that is a set of parallel applications for use in the design

and evaluation of shared-memory multiprocessing systems.

In our point of view, a new alternative to approach the CPU performance model is the

work by Kandalintsev named “A behavioral first order CPU performance model for clouds

management” (LO CIGNO; KANDALINTSEV, 2012). This simple model proposes a CPU

centric model, based only on measurable parameters, capable to produce better approximations

of the real systems performance than the actual linear CPU scaling performance paradigm

usually present in the literature (JIANG et al., 2012), (SHRIVASTAVA et al., 2011), (TANG

et al., 2007) and (FELDMAN et al., 2009). The model avoids to touch CPU internals, what

makes it computationally very fast and suitable to be implemented in simulators, since it is

possible to model the CPU performance individually.

The idea of being possible to simulate the CPU performance when running different

tasks is one key driver in the present work. The idea is that if we modify an existing simulator

to implement the Kandalintsev’s model, it could enhance the results giving a better simulator

platform to researchers and developers to implement their own algorithms (like schedulers, load

balancers, and so on). Reviewing the literature, we choose CloudSim simulator (CALHEIROS

et al., 2011), because it is flexible enough to be extended, it is free software, well documented

and most of all (besides being created to Cloud Simulations purpose) it could be adapted

to simulate what we were interested, that is the CPU scaling performance in multi-core

computational systems.

17

1.2 OBJECTIVES

1.2.1 GENERAL OBJECTIVES

The main objective of this work is to extend the CloudSim Simulator, implementing

into it the BFO (Behavorial First Order) performance model of Kandalintsev and Lo Cigno.

This objective is divided in two sub-objectives, the first is to improve the accuracy of the results

presented by the original CloudSim in terms of the actual performance of real multi-core

systems. The second objective corresponds to propose an extended model to explicitly consider

te number of cores that work in parallel. The original BFO model presents an elevated level

of error , specially when the number of parallel cores are higher than 8 cores. Our extended

model can improve the simulations results from CloudSim.

CloudSim is a good choice because it follows a common paradigm, that the CPU

performance scaling is linear, that is reasonable considering that it is very common that the

systems, specially in Clouds that are the focus of CloudSim, are consuming little computation

power compared with what the system has available. This will be used in favor of this research,

because we have granted a simulator that has no performance correction implemented, and we

guarantee that our implementation is unique for this purpose.

The BFO model proved to be a good choice, because it can give us the baseline to

compare the real performance of multi-core systems against the simulator (calibrating it), and

then use it to validate the implemented model when the number of cores raise or the size of the

problem increases or decreases. It is expected that the result of these cycle (implementation of

the model, training of the simulator, generalization of use cases in the simulator, comparison

with real systems measurements) will lead us to an implementation adherent with real world

scenarios, as well as with a method to serve anyone interested in implement its own research in

this area.

1.2.2 SPECIFIC OBJECTIVES

The specific objectives of this work are:

1. To validate the BFO model by comparing it against results from an experimental system.

This is important to gain experience on the performance counters available in the

processors, as well as the correct use of the tool to generate the load for the CPUs: the

18

stressors stress-ng (UBUNTU-WIKI, 2008), and the tool to read the counters perf (WIKI,

2015).

2. To implement the BFO model in the CloudSim simulator. This is made via extension of

some classes and creation of brand new classes inside the CloudSim package.

3. To validate the extended CloudSim against the real world systems data collected.

4. To use the extended CloudSim to predict the behavior of different loads patterns.

5. To propose and test an extended model that considers explicitly the number of cores that

work in parallel.

1.3 STRUCTURE OF THE DISSERTATION

This dissertation has six chapters (Introduction, Parallel Processing Performance

Models, Performance Modeling, Extensions on CloudSim to Implement the BFO Model,

Framework for Multi-Core Systems Evaluation, Conclusions and Future Research).

In the chapter Parallel Processing Performance Models, we describe in detail some

important models to characterize the CPU escalation problem, that is the Amdahl’s law (or

Fixed Size law), the Gustafson’s law (or Fixed Time law) and the Sun and Ni’s law (or

Memory Bound law). These are statistical models constructed to speculate about the scaling

capabilities of a parallel computational system, and the multi-core processors are such a system.

In the chapter Performance Modeling starts with a bibliographic review where the

cycle accurate and high-level models are explained and one of a kind in described, the RPM (a

high-level model) and the SLATE (a cycle-accurate model). In the sequence, the model created

by Kandalintsev and Lo Cigno is explained in details, as well as it is described how to obtain

the coupling factor β using off line procedures.

In the chapter Extensions on CloudSim to Implement the BFO Model we see the

actual implementation of the BFO model in CloudSim. It is shown the UML diagrams with

the detailed implementation of the model. The first part shows the CloudSim core simulation

engine, and the second part is dedicated to the implementation.

19

The chapter Framework for Multi-Core Systems Evaluation is dedicated to explain the

methodology followed to train and to test the model using measurements done in real world

systems. It is done as a comprehensive guide on how the tests and corrections were made to

train the simulator and the use of it to extend the results, comparing it with the real world

computational systems. In addition, at the end we propose an extension of BFO model based

in a logarithmic rule to correct the coupling factor as a function of the number of parallel cores

active. This reduces the RMSE error that grows with the number of cores.

In the chapter Conclusions and Future Research are compiled all the findings, as well

as, the observations and the insights the research leaded us.

20

2 PARALLEL PROCESSING PERFORMANCE MODELS

2.1 PERFORMANCE IN MULTI-CORE PARALLEL SYSTEMS REVIEW

By empirical measurements we know that when working with multi-core CPUs the

overall performance (speed up) does not grow linearly with respect to the number of available

cores. This is related to use of shared resources during runtime, for example, internal caches,

bus, interfaces, I/O, RAM, and network. Because of it, the cores cannot run independently

making the combined performance (speed up) be less than the number of number of cores

working in parallel.

This problem was first addressed by Amdahl (AMDAHL, 1967) and leaded to

a discouragement of manufacturers in the earlier times of the computer industry. Some

decades after that, Gustafson (GUSTAFSON, 1988) revisited the problem because the micro-

architecture of modern computation had overcome some of the architectural problems saw by

Amdahl, showing that for multi-CPU scenario the performance scaled less restrictively than

Amdahl’s assumptions, arguing that software designers adapt their algorithms to scale down

the serial part in a way that the execution time is fixed. After some years Sun and Ni (SUN;

NI, 1990) showed how memory plays an important role on the performance, assuming that

the execution of an algorithm scales in the memory (specially caches), the model is known as

memory bound. This model is promising and has influenced the foundations of modern multi-

core architectures in a sense to improve memory access avoiding what is known as memory

wall problem. As one of the goals of the actual work is to predict the CPU scaling based on a

behavioral model where the inputs are collected by data collected in an experimental system, a

complete understanding of those three laws is of fundamental importance, since it gives us the

ground to discuss the results and what can be improved.

21

2.2 AMDAHL’S LAW, DEFINITIONS AND CONSEQUENCES

The first work that called attention to the scalability problem in parallel computer

systems was done by Eugene Amdahl (AMDAHL, 1967), and consists of an observation that

the execution time is formed by two parts, the one that benefits with the parallel processing,

and the other that is irreducible and does not benefit with the parallel processing. He divided

the processing timespan in two parts, the parallel that is related to the amount of time that the

CPUs run independently, with no conflicts with the other CPUs, and can be expressed as the

ratio p with p ∈ [0,1]. The second part is related to amount of time that cannot be reduced

by the parallelism, due to the conflicts in the shared resources, this is called serial execution

time and can be expressed as the ratio s with s ∈ [0,1] and s = 1− p. Equation 1 shows the

mathematical formulation of the Amdahl’s law, where the speedup S(n) is defined as how much

faster a parallel arrangement will get if compared with the same problem is solved with a single

CPU. This law is a pure statistical description of the problem when all the multiple CPUs are

supposed to be running at maximum capacity (i.e. 100%).

S(n) =
1

(1− p)+ p
n

(1)

When Amdahl put his observations the Main Frame vendors were discussing the

possibility of work with multiple CPUs in parallel to scale up the processing power for

customers. The result stopped the parallel CPUs approach. At that time the parallel ratio

was estimated to be around 70%, leading to a maximum speed up of 3.33. With the single

CPU approach wining, all the engineering efforts were put to develop CPUs increasingly

powerful, pushing the engineers and scientists to keep in this direction for decades. What kept

the industry drive was the Moore’s law, that is an observation made by Gordon Moore, where

the number of transistors roughly doubles in the integrated circuits every two years (MOORE,

1965). To unveil the potential of this claim one have to combine Moore’s law with Polllack’s

Rule (POLLACK, 1999) that states that for a single core microprocessor the performance

increases roughly proportional to the square root of the increase in its complexity. What leads

a performance increase of about 40%, each two years, due to the doubling in number of logical

ports.

However, recently Moore’s law has been losing its momentum, generating a profound

impact in the electronic and software industry. Conte (CONTE et al., 2015) has affirmed that:

“Year-over-year exponential computer performance scaling has ended. Complicating this is

22

the coming disruption of the “technology escalator” underlying the industry: Moore’s law. To

fundamentally rethink and restart the performance-scaling trend requires bold new ways to

compute and a commitment from all stakeholders”.

New alternatives come in place to keep the law working, even “artificially”, and the

parallel processing via multiple CPUs working together came back again as a solution. But as

we know the performance will not scale linearly with the number of CPU cores. Therefore,

the characterization of the real performance of CPU cores running in parallel has become very

important to keep the exponential growth escalator of Moore’s law still working.

2.2.1 AMDAHL’S LAW AND SPEEDUP IN MULTI-CORE SYSTEMS

Amdahl’s law presents an asymptotic behavior as shown in Figure 1 (speed-up for

parallel ratios of p = 0.7, p = 0.9, p = 0.95 and p = 0.995). Equation 2 shows that the maximum

speed-up depends only on the parallel ratio.

S(n)max = lim
n→∞

S(n) = lim
n→∞

1
(1− p)+ p

n
=

1
(1− p)

(2)

Figure 1: Speedup dependency on number of CPUs (n) and Parallel Ratio (p).
Source: (Based on Equation 1)

Synthesizing this behavior, no matter how many parallel cores we have in a system, the

overall speedup is limited to a maximum value, that is dependent on how efficiently parallelized

the system can be.

23

Figure 2: Asymptotic maximum speedup function of the serial ratio s.
Source: ((GUSTAFSON, 1988))

Another way to see it is shown in Figure 2, where the maximum speedup is plotted as a

function of the serial ratio s. Basically it plots the result of Equation 2 for each s = 1− p. Note

that when s is small, the speedup grows quickly, what is already expected since with a smaller

s the more efficient is the parallel part of the system.

2.2.2 AMDAHL’S LAW COROLLARY - THE FIXED SIZE LAW APPLIED TO MULTI-
CORE

To understand the consequences and the opportunities derived by Amdahl’s Law

when applied to multi-core architecture Hill and Marty (HILL; MARTY, 2008) have derived a

corollary, where the micro-architecture of multi-core systems is further explored to refine the

results of Amdahl’s law in such environment. The speed-up reflects the timespan reduction

when the task is running in a multi-core system compared to the same task running on a

single core. For now we will explore this assumption to formulate the speedup for multi-core

systems, but the reinterpretation of this assumption is the basis for the work of Gustafson

(GUSTAFSON, 1988), that better explain the behavior of highly parallelized systems.

The formulation of the corollary starts with the assumption that a multi-core chip is

formed by n cores, and each core can individually deliver a processing power of one BCE

(Base Core Equivalent), meaning that all the cores are identical. At this point, the speedup is

measured in BCEs, as one single core has one BCE, the speedup of a multi-core is the total

24

amount of BCEs for a particular micro-architecture and this is limited to n BCEs (when the

s = 0). The other assumption is that the architects can come up with more efficient systems

that can treat the serial part with a performance that scales in the order of per f orm(r) (in

other words, the sequential part can be seen as a single processor with r BCE processing

power). In addition, if r BCEs are spent to the serial part treatment, the parallel part can scale

up to m = n/r BCEs. According to Bokar (BORKAR, 2007) the serial performance can be

considered per f orm(r) =
√

r, that is an assumption coherent to Pollack’s Rule (POLLACK,

1999).

To continue the analysis, we have the definition of fixed size speed-up shown in

Equation 3, meaning that the performance of the parallelized system (enhanced) is compared

with the single core system (original). To calculate the speedup, the performances are calculated

as the reciprocal of the execution times.

SpeedupFS =
Enhanced Per f ormance
Original Per f ormance

=
TOriginal

TEnhanced
(3)

Considering that the task has a fixed size w, we have in consequence the execution

times presented in Equations 4a and 4b:

TOriginal =
w

per f orm(1)
(4a)

TEnhanced = Serial time+Parallel time =
(1− p)w

per f orm(r)
+

Pw
n
r .per f orm(r)

(4b)

Combining Equation 3 with Equations 4a and 4b, we end up with a SpeedupFS shown

in Equation 5:

SpeedupFS =

w
per f orm(1)

(1−p)w
per f orm(r) +

Pwr
n.per f orm(r)

=
1

1−p
per f orm(r) +

p.r
per f orm(r).n

(5)

This formulation seems unrelated to Amdahl’s law, but if we consider that the enhanced

system can deliver a constant performance per f orm(r) = c and that m = n/r, the Equation 5

becomes:

SpeedupFS =
c

(1− p)+ p
m
, (6)

that is exactly the original Amdahl’s law with the serial scaling of r BCEs and the parallel

processing scaling of m BCEs.

25

That is why Equation 5 is a corollary of the original law. This result is important to

send a message to micro-architects to develop multi-core systems that can handle the serial

part more efficiently as well as support non blocking parallelization. This would lead to better

performance. The great contribution of Hill and Marty work is the baseline to think in a more

restrictive environment that is the micro-chips, where the degrees of freedom are diminished,

due to topological and physical reasons.

2.3 TIME FIXED LAW, THE GUSTAFSON’S LAW

The problem with Amdahl’s law and its corollary is that it is too restrictive.

Empirically we know that the performance scaling is not linear, but it is not as bad as the

predictions we have so far. This was the point of start for Gustafson’s work (GUSTAFSON,

1988) that observed it and conjectured that the fixed size approach is not dominant in modern

architecture multi-CPUs. According to him literally: “We now have timing results for a 1024-

processor system that demonstrate that the assumptions underlying Amdahl’s 1967 argument

are inappropriate for the current approach to massive ensemble parallelism.” and “Yet for

three very practical applications (s = 0.4 – 0.8 percent) used at Sandia, we have achieved the

speedup factors on a 1024-processor hypercube which we believe are unprecedented: 1021 for

beam stress analysis using conjugate gradients, 1020 for baffled surface wave simulation using

explicit finite differences, and 1016 for unstable fluid flow using flux-corrected transport. How

can this be, when Amdahl’s argument would predict otherwise?”

Of course, the kind of interconnection architecture cited (“hyper-cube”) is not easy,

if not impossible, to reproduce in microprocessors that are essentially planar. However, he

started an argumentation that puts more light on the study of the real behavior of the speedup

that is more adherent to the actual state of art in microprocessors. It was proposed that the tacit

assumption that the parallel workload p is fixed independently of the number of available cores

N is not always true, but actually the problem size scales with the number of processors. It

is because when a more powerful processor is used, the problem expands to the user to make

use of the increased facilities (for example, grid resolution, number of time-steps, difference

operator complexity, and other parameters) making the time to complete the task approximately

constant. This assumption is know as Fixed Time and relaxed the Fixed Size assumed by

Amdahl.

26

Figure 3(a) and Figure 3(b) shows both models, Fixed-Size and Fixed-Time, with the

resulting speedup. To derive the Fixed-Time speedup imagine that the workload w running on

(a) Fixed-Size Model: SpeedupFS = 1/(s+ p/N)

(b) Fixed-Time Model: SpeedupFT = s+N p

Figure 3: Scalability of Fixed-Size (Amdahl’s law) and Fixed-Time Models (Gustafson’s law).
Source: (GUSTAFSON, 1988)

a single CPU scales up to w′ on a multi-core processor, with the assumption that the time in

each core is fixed (normalized to 1), we have thus w′ = (1− p)w+ pNw. Equation 7 shows the

SpeedupFT , also known as Gustafson’s Law:

SpeedupFT =
Sequential Time o f Solving w′

Parallel Time o f Solving w′
=

Sequential Time o f Solving w′

Sequential Time o f Solving w
=

w′

w

=
(1− p)w+ pNw

w
= (1− p)+N p = s+N p

(7)

Equation 7 suggests that there is a linear scaling of speedup that we know is not true,

but shows better results when considering experimental data. So something is missing on this

law, that will be explained in the next section, with a refination of this model, known as Sun and

Ni’s law (or Memory Bounded Model). From now, it is important to get a better understanding

of the techniques to calculate the scaling, so we will have the arsenal to understand next section.

For example, if n = r in Equation 5 the speedup is equal to per f orm(r), this is used as

27

the initial condition for the analysis that follows. Now if n = mr is the scaled number of cores

to be used in the fixed time model approach (that assumes the scaling is only in the parallel

portion) thus w′ = mw, then we have the total workload:

(1− p)w
per f orm(r)

+
pw

per f orm(r)
=

(1− p)w
per f orm(r)

+
pw′

per f orm(r)m
(8)

Comparing Equation 8 with the scaling of serial part, that is the initial situation where

n = r, we have:

Speedup =
Sequential Time o f Solving w′

Sequential Time o f Solving w
=

(1−p)w
per f orm(r) +

pw′
per f orm(r)m

w
per f orm(r)

= (1− p)+mp

(9)

To analyse what Equation 9, if we consider a situation where 1024 cores are working

in parallel, and considering p = 0.99 in fixed time model, we will have a speedup of about 10.

On the fixed-time model it jump to about 1013. What is behind the assumption of a fixed time

model is that there are always room for more work to process in the parallel processing part. To

illustrate it, let’s see what happens when we escalate the parallel part during the scaling up the

number of cores:

Total Work = Serial Work+Parallel Work = (1− p)w+ pw′ = [1+(m−1)p]w (10)

Once the parallel work is escalated, compared with the total work calculated by

Equation 10, the new parallel ratio p′ is shown on Equation 11:

p′ =
m f w

[1+(m−1)p]w
=

p
1
m + m−1

m p
(11)

If m→ ∞ in Equation 11, then p′ → 1, showing that the serial part is less and less

important in the scaling process.

2.4 MEMORY BOUND MODEL, THE SUN AND NI’S LAW

The Gustafson’s assumption that the parallel part scales up to meet a fixed time bound

is not always true, and Sun and Ni (SUN; NI, 1990) observed that the parallel scaling problem

was related to the memory scaling capabilities of the systems. This is a natural approach, if

we take the assumption that it is impossible to put infinite resources in the chip, so there is a

bounding in the scaling capabilities of the computational system imposed usually by memory

28

limitations.

Sun and Ni proposed the Memory Bound Model, for that they defined the SpeedupMB

as shown in Equation 12, where w∗ is the scaled workload under a memory space constraint, in

other words the memory is bounded.

SpeedupMB =
Sequential Time o f Solving w∗

Parallel Time o f Solving w∗
(12)

If we assume that a single core is a pair processor-memory, once we scale up the

number of cores, the memory will also scales up. Letting y = g(x) represents the parallel part p,

the workload increases when the memory capacity increases for a factor of m. Implicating that

w = g(M) and w∗ = g(m.M), with M being the amount of memory for one processor-memory

pair. We can say that w∗ = g(m.g−1(w)). Thereby Equation 13 shows the generic speedupMB

for any g(x).

SpeedupMB =
(1− p)w+ p.g(m.g−1(w))

(1− p)w+ p.g(m.g−1(w))
m

(13)

It is important to say that g(x) is a function that depends on the application running

in the computational system, because it reflects the scaling that the memory experiments when

running the application, that is essentially connected with the essence of the algorithm being

used by the application. In other words, scaling is function of the kind of application running.

It is confirmed by the empirical data collected for the present work.

The generic formulation of Memory Bound Model was further developed by Sun and

Ni considering that there are many algorithms with polynomial complexity, and usually this

complexity is fully characterized using only the highest term of the polynomial. This way,

considering g(x) = a.xb, with a,b ∈ Q. Thus we can say that g(m.x) = a(m.x)b = mb.a.xb =

mb.g(x), now calling mb = ḡ(m) as a power function with degree of 1. Equation 13 becomes

Equation 14 that is also know as Sun and Ni’s Law.

SpeedupMB =
(1− p)w+ p.ḡ(m)w

(1− p)w+ p.ḡ(m)w)
m

=
(1− p)+ p.ḡ(m)

(1− p)+ p.ḡ(m)
m

(14)

To gain insight on what Equation 14 represents and how to use it, consider the situation

where the application to be studied is an algorithm for matrix multiplication. The complexity

of this algorithm when solved by brute force is polinomial with degree 3, actualy y = 2N3 with

29

N meaning the dimension of the two NxN matrices being multiplied. We can say that x = 2N3

what leads to g(N) = 2(
√ x

3) and ḡ(x) = x
1
2 . Puting these results on Equation 14, we have the

Equation 15:

SpeedupMB =
(1− p)+ pḡ(m)

(1− p)+ pḡ(m)
m

=
(1− p)+ p.m

3
2

(1− p)+ p.m
1
2

(15)

This clearly is not the linear scaling predicted by Fixed Time Model. If we consider

the work-flow scaling in Memory Bound as w∗ and in Fixed Time as w′, if each element of

the matrix that is stored in memory is used at least one time, then w∗ ≥ w′ what leads to

SpeedupMB ≥ SpeedupFT . In fact Gustafson’s law is a particular case when ḡ(m) = m.

Initially this is good news for the multi-core solution, but there is a drawback, as said

before, there is a physical limitation with the amount of memory available and the access time

to treat this scaling problem, it is know as memory wall problem (WULF; MCKEE, 1995).

In simplistic words, one can say that there is no room in local memory (specially caches) to

guarantee the locality (cache hits) during all the execution time. This means that, delays to

retrieve all the needed data plus instructions plays important role when the size of the problem

grows. To take it in account in the next session the memory wall is considered in the model.

2.5 MEMORY WALL PROBLEM

The access time to memory has big impact on performance. Over the time, this impact

has became much worse, because when we compare the access time to memory with respect

with the clock cycle period, it has increased several orders of magnitude. It has certainly

decreased in terms absolute values, but relative to the clock cycle (that dictates the instruction

execution pace) it increased significantly. For example, in 1980 the memory latency was about

0.3 cycles of clock, in 2005 this value has jumped to 220 cycles of clock.

To mitigate this effect and improve the performance of the CPUs, memory caches

were aggregated into the CPU chips. In multi-core chips, caches are distributed alongside the

cores. These cache memories are much faster than normal memories, but they are much smaller

because of manufacturing costs and chip space. This approach works well because it relies on

the locality of the software, meaning that must of the time processors are executing repeatedly

a small segment of instructions and data. For example, most of the time the algorithms are

executing “for loops”.

30

But this architecture has a drawback, if the information needed is not in the cache, the

processor first look it in the cache, receiving a cache miss information, and only after screening

all cache levels (L1, L2 and L3) it is allowed to seek the information in the external memory.

It makes the external memory access even slower. This architecture is usually more efficient

than not using caches. However, in highly parallel systems, if we don’t have enough cache to

respond to the scaling of the problem size, it can create a bottleneck to the CPU scaling for the

parallel tasks.

Figure 4 shows the memory organization in multi-core systems, caches L1 are the

closer to the core, L2 caches can be shared among pair of cores. L3 cache can exist or not, if

not existing it is the external memory (usually DRAM).

Figure 4: Typical Memory Organization in Multi-core Systems.

The diminishing CPU scaling due to lack of cache in multi-cores is known as the

memory wall problem, first introduced by Wulf (WULF; MCKEE, 1995). To have an idea of

how this impacts the system scaling, an Intel i7-6500U implements L3 cache size of 4096kB,

L2 caches with size of 256kB and L1 caches with size of 32kB. It has basically the same core

architecture of a Xeon E7-8890 v4, nevertheless Xeon will have 60MB for L3 cache, 4MB for

L2 and L1 caches. But Xeon scales much better then i7, being a processor of choice for Servers

and specialized systems, with i7 being more suitable to personal computer systems.

The memory wall scaling can be modeled using the same approach used to model

Fixed Time and Memory Bound speedups. In this case we assume that the total work for a task

is composed of two parts, the data processing work wp and the data communication (access)

work wc, and w = wp +wc.

31

If assumed that wc is independent of the workload and independent of the total

workload (what is reasonable since the memory access time and the lines of code are The

same independently to the number of cores for a particular situation), and wc is function of r

and supposing the scaling of the number of cores from r to mr, as per Memory Bound model

we will have :

SpeedupMB =

wc
per f orm(r) +

pw∗p
per f orm(r)

wc
per f orm(r) +

pw∗p
m.per f orm(r)

=
wc + pw∗p

wc +
pw∗p
m

=
wc + p.g(m.g−1(wp))

wc +
p.g(m.g−1(wp))

m

(16)

In Equation 16, if g(x) is rational, we have the simplification bellow:

SpeedupMB =
wc + p.ḡ(m).wp

wc +
p.ḡ(m).wp

m

(17)

Equation 17 can be compared with Equation 14 to have an idea of the memory wall

impact over the speedup due to the effect of memory scaling and latency. What we see is that wc

dominates the serial workout, meaning that the scaling of wp can reach a saturation. This leads

to an obvious conclusion, if is to put effort to keep improving the hardware efficiency, research

in memory improvements should be a focal point.

First of all, it is important to say that all these models are essentially right if they

have their assumptions met. The models were constructed to speculate and further advance the

knowledge on what is important and what can be neglected for parallel computing, regarding

the CPU scaling. In addition, these models give a ground to think where to concentrate efforts

in architecture research and development to extract the best performance. However, these

models are not enough to calculate a real world scaling problem, because they were created to

give general answers and to support benchmarking. In the next chapter we will address a model

form Kandalintsev and Lo Cigno (LO CIGNO; KANDALINTSEV, 2012), that was developed

to address the problem of predicting the real scaling based on measured coupling factors.

32

3 PERFORMANCE MODELING

3.1 MODELING FOR PERFORMANCE PREDICTION

In the previous chapter we saw statistical laws that help to understand the performance,

in terms of CPU scaling, considering the time-span divided in two parts, the serial and the

parallel ratio. This was useful to understand the play role of the macro components

(architectural and software design) and the impacts on the overall system performance.

However, in practice, the execution ratios are not known beforehand, and they are not easily

measured, since they are dependent on the nature of hardware design and its interaction with

the software it is running. This opens the necessity for models and tools capable to predict

the performance based on the behavior of some components. There are several of such tools

and models, according to Kunkel et. al. (KUNKEL et al., 2000) they usually fit in two types,

cycle-accurate models and high-level models. Unfortunately, for the research goals none of

these approaches are good fits, because our idea is to have a performance model capable

to assist on real time decisions made by the Operating System or a Resource Management

software.

Bellow we describe one cycle-accurate model and one high-level model, it will give us

a good ground to understand why the BFO model proposed by Kandalintsev and Lo Cigno is

better suited for our purposes.

3.1.1 RPM - HIGH-LEVEL MODEL

RPM (Rapid Prototyping Engine) (BARROSO et al., 1995) is a high-level model tool

designed to multi-core prototyping. It is based on a hardware emulation of the processor. It is

build using FPGA (Field Programmable Gate Array) to build the cache, memory, coherence

and communication controllers, and some off-the-shelf components including processors,

SRAMs, DRAMs, FIFOs, bus interface and drivers, and backplane.

33

The idea is to put the original processor served with the FPGA services instead of

the internal cache or the coherence and communication controllers. This way it is possible to

register the statistics of events not accessible in multi-core processors, that are crucial to model

the performance behavior in a very accurate way. This approach is very powerful to benchmark

one architecture running a real application. However, RPM emulates the cache operations 80

times slower than the original computational system.

Figures 5 and 6 shows the First-Level Cache (FLC) and Second-Level Cache (SLC)

implementation for RPM. In Figure 5, the FLC controller is implemented in FPGA1 and

FPGA2 (in Memory Controller 1 (MC1)), they connect to the Address and Data Bus of the

processor, in this case a SPARC L64831. When the processor read the L1 cache, the cache

controller answer in Data Bus in case of a cache hit, otherwise it seek for the SLC using the

cache controller Address Bus. Figure 6 details the SLC controller architecture. Again, if the

there is a cache hit, Memory Controller 2 (MC2) deliver the data segment to MC1 (it is based

on a send/receive protocol implemented in hardware). In case of cache miss, the SLC controller

will seek for a new segment in the external memory. This is a known process, but the details of

implementation can be studied to improve the performance.

Moreover, the FLC and SLC controllers work in a different clock, usually 8 times

faster than the processor clock (pclock). It is useful to get the details of the process and study

the intermediate states. However, the FPGA maximum clock is usually less than the processor

maximum clock, usually in a factor of 10, and added to it pclock is set 8 times slower than the

FPGA clock, it means that this setup runs 80 times slower than the processor in a production

environment. It makes this approach, very usefull for prototyping and benchmarking, but not

usefull for real time performance measurements.

The same approach, high level emulation, is implemented by several authors/tools.

For example Eyerman et. al. (EYERMAN; EECKHOUT, 2009), developed a methodology to

study SMT (Simultaneous Multi-Thread) processors. It uses the same approach of RPM in a

sense that the cache study is central in the analysis. However, modern multi-core processors

have internal counters that can be read in real time, making it possible to infer the relevant

statistics, instead of directly measuring it as RPM does.

Anyways, besides very accurate, these models are time consuming and not suitable for

real time decisions. They best fit for benchmark, as stated in the introductory paragraph of the

34

Figure 5: RPM First-Level Cache (FLC) implementation diagram; it shows the L1 cache
implemented in FPGA and the Bus coherence to access L2 cache (refer to Figure 6 for details).

Source: (BARROSO et al., 1995)

Figure 6: RPM Second-Level Cache (SLC) implementation diagram; it shows the L2 cache
implemented in FPGA and the Bus controller to access external Memory (AD Bus).

Source: (BARROSO et al., 1995)

section.

3.1.2 SLATE - CYCLE-ACCURATE MODEL

SLATE (System-Level Analysis Tool for Early Exploration) (BERGAMASCHI et al.,

2007) is a tool based on a methodology that models the CPU core internals, based on execution

and wait times, in a queue driven analysis. It is based on SystemC performance modeling,

that consists on the description of the model to be simulated in terms of components (caches,

queues, cores and interconnection between them). In each component it is associated the times.

35

For example, cores have execution time and caches have wait times (associated to the time to

make the data available). Figure 7 and Figure 8, shows a complete Power4 CPU modeling.

The Power 4 is a quad-core, single thread, single instruction CPU, with L2 and L1 caches

implemented. In Figure 7 it is modeled a single core and its components (decode, dispatch,

issue queues, execution units, and so on). All are modeled in high-level in terms of delays

and execution times, and the engine calculates cycle by cycle the state of the system (that is

why it is cycle accurate model). The modeled core is then used as the building block of the

model in Figure 8, where are modeled the interconnections and the controls of the multi-core

environment.

Figure 7: Internal Organization of Core Model - Power4 single core modeled.
Source: (BERGAMASCHI et al., 2007)

Figure 8: Internal Organization of 4-Core System Model - Power4 CPU modeled.
Source: (BERGAMASCHI et al., 2007)

Cycle-accurate models are useful to prototype the CPU design, to predict the behavior

of the architecture under test with predefined applications modeled in terms of load and size. It

36

is not suitable to our purposes, since our idea is to simulate the multi-core performance scaling

of commercial processors and not prototype a new processor.

3.1.3 THE BEHAVIORAL FIRST ORDER (BFO) CPU PERFORMANCE MODEL

In Kandalintsev’s PhD Thesis ”Application Interference in Multi-Core Architectures:

Analysis and Effects” (KANDALINTSEV, 2016), Chapter 3 is dedicated to explain the BFO

model conceptually and mathematically. He observes that it is well known that the interference

between cores plays an important role in multi-core processors, for example, Burger et. al.

(BURGER et al., 1996) explains how the velocity gap between processor speed and memory

access has increased and the consequences in performance of processing, similar work is

developed by Carvalho et. al. (CARVALHO, 2002) pointing that performance of modern CPUs

are dependent on the performance of internal cache that are shared by the cores. Xu et. al. (XU

et al., 2012) studied how to minimize the impact of the interference among the cores studying

algorithms to provide fairness in the use of caches.

Based on a inter-core interference interpretation, Kandalintsev proposed a model that

studies the decrease in performance of a CPU core, due to concurrency with others CPU cores

for common shared resources. It models the observable behavior, the increase in execution

time when the CPU core is competing with others for shared resources, comparing with the

situation where the CPU core presents no concurrency. The model defines the extra time to

complete a job when concurrency is present as overhead (OH).

The model proposes that the overhead will be measured when the CPU cores under

test are fully occupied (100% load), but admits that the actual OH is a function of the actual

load in the CPU cores. In other words, if the CPU cores are using less than 100% of capacity,

they will have lesser probability to find some resource already occupied. This assumption is

compatible with the Amdahl’s law corollary, where the speed-up of multi-core systems are

better than the Amdahl’s law predicts (in terms of BCEs) if the actual utilization is lower than

what is available in the processor. In fact it is expected that the serial ratio be lowered by the

performance function per f (n) and it is accepted to be per f (n) =
√

n by experience, being n

the actual amount of BCEs demanded.

Starting now with the formal definitions of the model we have:

37

1. Assumptions: The overhead is present when there are tasks running in parallel, otherwise

there is no overhead. The model considers steady state performance (meaning tasks

that run for long time), examples are video encoding, scientific simulations and data

streaming. It is assumed that the dominant interaction between tasks is pairwise, i.e.,

the total overhead is the sum of the overhead running in pairs. The expectation here is to

have the overhead overestimated, but still a good approximation of the real system.

2. Definitions and Notation: The task load, Li = L(Ti) with Li ∈ [0,1], is defined as the time

required by task i in a particular CPU core, assuming that the CPU core can be running

several tasks in time shared way. The total load per-core is the sum of the task loads and

sum up to a maximum of 1. Figure 9 presents a graphical view of load task and how to

calculate it. N is defined as the number of CPU cores. Lsys is the normalized system load

Figure 9: Task Load definition: Tasks schedule in one CPU core in one slice of time T.

and is defined as the sum of total loads of all CPU cores in the system; Lsys ∈ [0,N]. The

pipe notation Ti|Tj denotes that the tasks Ti and Tj are running in different CPU cores.

Using pipe notation we have Lsys(A|B) being the normalized system load when task A is

running in one CPU core and task B in another CPU core.

Lsys(A|B) = LA +LB +Loh
A|B (18)

Loh
A|B is the parasitic load caused by task A running in one CPU core and task B running

in another CPU core. This is maybe the most essential part of the model and reflects the

waiting time where one CPU core has to stop the execution of a task because of a busy

common resource, extending the execution time. The idea is that this extended execution

time is enough to model the interaction and make dependable predictions. In Figure 10

it is shown the interpretation of the Loh
A|B, where it can be seen that the interaction is only

present when there are tasks running in parallel on both CPU cores. The formal definition

38

Figure 10: Interference between tasks running on different cores. (a) Task A running on CPU core
c1, with no interference of CPU core c2, (b) Task A running on CPU core c1 is interfered by task
B running on CPU core c2.

of Loh
A|B is derived by the equation 19,

Loh
A|B = βA|BLALB (19)

where βA|B expresses the level of interference (or coupling) that task A running in one

CPU core and task B running in another CPU core exert on each other. This interference

is assumed to be constant and dependent only on the nature of the tasks itself. If two

tasks have affinity to the same resources, is expected to be higher than if the tasks

have different affinities. Equation 19 shows Loh
A|B as function of βA|B that represents the

interference due to the nature of the tasks, and the product of the individual loads. The

idea behind it is to map the amount of time where the interference actually works as the

product of the individual loads.

One could think that β could make more explicit the internals of the processors and

peripherals. It could be done considering it as a vector, and each component would refer

39

to one common resource, like a FPU (Floating Point Unit) that is shared with two cores

or because the cores are hyper-threaded, same for ALU (Arithmetic and Logic Unit) and

this analysis would be extended to caches, memory, disk, I/O, etc. The problem with it

is that this vector would be like 40 or even 50 components long (TANG et al., 2007), it

would greatly increase the complexity of the model.

In order to overcome this problem the overhead load function is decomposed in individual

performance penalties related to each task,

Loh
A|B = βA→BLALB +βB→ALALB (20)

where βA→B represents the interference of task A over task B and βB→A represents the

interference of task B over task A.

The same formulation can be expressed in matrix notation, by Equations 21 and 22, or in

shorten form by equation 23,

βA→BLALB =
[
LA 0

](
βA→A βA→B

βB→A βB→B

)[
0

LB

]
(21)

βB→ALBLA =
[
0 LB

](
βA→A βA→B

βB→A βB→B

)[
LA

0

]
(22)

Loh
1→2 = TT

1 BT2 (23)

where B is the matrix of β -coefficients, T1 and T2 are vectors that represents the task

running on CPU core 1 and 2, respectively, and Loh
1→2 is the overhead that the tasks

running on CPU core 1 impose to the tasks running on CPU core 2. This matrix

representation is very useful because usually the CPU cores are running threads that

sometimes have the same kind of task, specially in some kind of servers, like database,

web-services or specialized services. In this matrix formulation the diagonal has the

interference effect of threads of one kind of task over threads of same kind but running

in different CPU cores.

A further generalization can be formulated to calculate the pairwise overhead with the

40

two CPU cores running a multitude of tasks, lets say n CPU cores and m tasks. Equations

24 and 25 show this generalized formulation,

Loh
sys = Loh

c1→c2 +Loh
c1→c3 + ...+Loh

c1→cn

+Loh
c2→c1 +Loh

c2→c3 + ...+Loh
c2→cn

+ ...+Loh
cn→c1 +Loh

cn→c2 + ...+Loh
cn→cn−1

=
n

∑
i=1

n

∑
j=1
j 6=i

TT
i BT j

(24)

where the overhead imposed on CPU core ci, running m tasks from t1 to tm, by the

interference of CPU core c j, running the same tasks, is calculated by:

Loh
ci→c j = βt1→t2Li

t1L j
t2 +βt1→t3Li

t1L j
t3 + ...+βt1→tmLi

t1L j
tm+

βt2→t2Li
t1L j

t2 +βt2→t3Li
t2L j

t3 + ...+βt2→tmLi
t2L j

tm+

βtm→t2Li
tmL j

t2 +βtm→t3Li
tmL j

t3 + ...+βtm→tmLi
tmL j

tm

=
[

Li
t1 Li

t2 ... Li
tm

]

βt1→t1 βt1→t2 ... βt1→tm

βt2→t1 βt2→t2 ... βt2→tm

...

βtm→t1 βtm→t2 ... βtm→tm

L j

t1

L j
t2

...

Li
tm

(25)

Finally the estimated performance of the system (meaning a particular CPU core ci)

can be seen as its effective load Lsys, that is calculated as the subtraction of the ideal

system load (the load when there is no concurrency) by the system overhead calculated

by Equation 25. The overhead represents a “penalty” on the ideal system load caused

by the interference due to the contention for shared resources. Equation 26 shows the

effective load computation,

Lsys =
n

∑
i=1

Ti−
n

∑
i=1

n

∑
j=1
j 6=i

TT
i BT j . (26)

For our purposes BFO is better suited than the high level models or the cycle-

accurate models, because it describes in only by the use of single parameter β the interference

between the cores of a processor, speeding up the performance prediction calculations. It is

fundamental if one wants to predict the performance behavior of a processor for other purposes

than prototyping, or benchmarking processors. For example, if someone wants to predict the

performance of a computational system with commercial processors running an commercial

application, with the interference of other applications running in parallel. For example,

41

a personal computer running several services in parallel, or a server running administrative

services in parallel to the core application.

42

4 EXTENSIONS ON CLOUDSIM TO IMPLEMENT THE BFO MODEL

4.1 THE CLOUDSIM

CloudSim is a well known simulator used in industry and in academia as well.

According to the CloudSim creator, this software is “...an extensible simulator toolkit that

enables modeling and simulation of Cloud computing systems and application provisioning

environments.”. It is an open source Java based programming framework that implements an

API (Application Programming Interface) where a user is free to extend the classes if needed.

The simulation is based on a creation of a executable class (with main method) that implements

the logic that is under study. CloudSim is suitable to simulate the most common areas of

research like energy efficiency, performance/QoS, and as already said it can be extended to

cover other areas as well. As open source the authors only asks to cite their work if you used

and/or extended the simulator in your own research.

4.1.1 CLOUDSIM DESIGN

The CloudSim is originally designed to represent in software level the abstraction of

a Cloud system. Figure 11 shows a Cloud layered design that is the basis for the CloudSim

implementation. However, in our extensions, these services will not use as originally designed

for, instead it will be used as a platform to run our jobs and check the CPU performance scaling

against the measured performance. Therefore, the only levels we will touch are the System

Level, that is where the physical and virtual resources are modeled, and the User Level, that

is where the scenario to be simulated is implemented. For our purposes, the virtual resources

with physical resources are tied together in a way that they are indistinguishable. This is a must

in our stage of development, because in real clouds the virtual resource is constantly changing,

it would make our efforts to validate the model too difficult if not impossible.

In the System Level we have the so called Cloud Resources, that are the computational

resources like compute nodes (named Hosts) and the CPUs and vCPUs (virtual CPUs), RAM

43

Figure 11: CloudSim Layered Design
Source: (CALHEIROS et al., 2009)

and vRAM (virtual RAM), Disk and vDisk (virtual Disk) that compose it. Hosts can be

optimized to deliver computational power, storage or networking, so in the CloudSim we

will have Hosts specialized in each of these functions. This level represents the classes and

abstractions for the IaaS (Insfrastructure as a Service) service model. We adopted CloudSim

release 3.2 more specificaly the extension called DVFS CloudSim (GUÉROUT et al., 2013),

it was developed by Guérout et al. to implement DVFS (Dynamic Voltage and Frequency

Scaling). This implementation is used because it implements the basis of TLM (Transaction-

Level Modeling) simulation, that allows the recalculation of the state of every element every

tick of the simulation clock.

The User Level represents the user applications, represented as tasks to be consumed.

CloudSim uses the Cloudlet class to abstract the application modeling it in terms of a size in

bytes a task represents, this Cloudlet will be consumed in a VM objects that have an amount

of vRAM, vCPU, and vDisk, those VMs are instantiated in Hosts objects that contain the

description of physical CPU, RAm and disk. To avoid a vCPU change the physical CPU during

the runtime, we fixed the scheduler to pic and fix a pair vCPU-CPU in a Host. Moreover, to

automatize the modeling, we introduced an XML based description archive to describe the data-

center, and its components (Hosts, VMs, Cloudlets) in terms of its components. The details of

this implementation will be shown in the next sections.

44

4.1.2 CLOUDSIM ARCHITECTURE

A brief description of the CloudSim API will help to understand the implementation.

It is a Java based API, modeled as extensible classes that can be modified in a reasonable time

to match the necessities of a researcher, notably for modeling VM allocation, modeling Cloud

Market, modeling Network Behavior, modeling a Federation of Clouds, modeling Data Center

Power Consumption and modeling Dynamic Entities Creation.

Figure 12: CloudSim Layered Architecture.
Source: (CALHEIROS et al., 2011)

CloudSim has a layered architecture that can be seen in Figure 12. This model shows

an hierarchical software structure where one layer is client of the bellow layer and provides

a service for the layer on its top. There are three main layers: User Code, CloudSim and

CloudSim core simulation engine. The User Code is subdivided in Simulation Specification

and Scheduling Policy. CloudSim is subdivided in User Interface Structures, VM Services,

Cloud Services, Cloud Resources and Network. How these layers and entities workout together

is described bellow.

The User code is the space where the researcher/user can write a code to simulate the

scenarios under test. The user creates a code based on the simulation specifications, making use

of the classes made available by CloudSim layer. To facilitate and accelerate the programming,

45

User Code layer makes available the DataCenterBroker class, it represents the mediating entity

responsible for the negotiations (for example an application call to be executed) between SaaS

(Software as a Service) and Cloud Providers.

The CloudSim layers provides the abstracted and extensible classes that represents

the building blocks of a Cloud system. The User Interface Structures contains the Cloudlet

and the Vm (Virtual Machine) classes. The Cloudlet class provides an abstracted model for

the application demands in terms of quantity of computational resources required like how

many MIPS (Million Instructions Per Second), how much memory and size of the archive to

be processed. The Vm class provides an abstracted model for a Virtual Machine in terms of its

physical resources demanded (the usually named flavor). The Vm resources are CPUs, MIPS,

memory size, disk size (storage) and network bandwidth. The Vm Services layer contains the

life-cycle management of the Vm and Cloudlet entities, it is done via the Cloudlet Execution and

VMM (VM management) classes. The Cloud Services layer provides the abstracted and some

already implemented classes to support the VMM and the Cloudlet Execution, these services

are related to allocate a Host that have available resources to a Vm to run and once it allocated

make the queued Cloudlet’s calculate the estimated execution time other elements like energy

consumption and costs. On the other hand once the Cloudlet’s queue become empty the Vm is

deallocated finishing the life-cycle. CloudSim also supports the pause/resume of the Cloudlet’s.

4.1.3 CLOUDSIM CLASSES

Figure 13 shows the class design diagram of CloudSim. The diagram does not

shows all the components in the CloudSim Package that someone can download, but it has

the fundamental parts that build the simulator. It will be described the ones touched in our

implementation, following the CloudSim documentation (CALHEIROS et al.,).

• Cloudlet: It is an implementation to the application modeling. It stores, along with all

the information encapsulated in this class, the ID of the Vm that is running it. This class

models the Cloud-based application services (such as content delivery, social networking,

and business work-flow). CloudSim orchestrates the complexity of an application in

terms of its computational requirements. Every application service has a pre-assigned

instruction length and data transfer (both pre and post fetches) overhead that it needs

to undertake during its life cycle. This class can also be extended to support modeling

of other performance and composition metrics for applications such as transactions in

database-oriented applications.

46

Figure 13: CloudSim Layered Architecture
Source: (CALHEIROS et al., 2011)

• CloudletScheduler: It is an abstract class that represents the policy of scheduling

performed by a virtual machine. So, classes extending this must execute Cloudlet’s. Also,

the interface for Cloudlet management is also implemented in this class.

This abstract class is extended by the implementation of different policies that determine

the share of processing power among Cloudlet’s in a Vm. Two types of provisioning

policies are offered: space-shared (CloudetSchedulerSpaceShared) and time-shared

(CloudletSchedulerTimeShared).

• Datacenter: This class is a CloudResource whose hostList is virtualized. It deals

with processing of Vm queries (i.e., handling of VMs) instead of processing Cloudlet-

related queries. So, even though an AllocPolicy will be instantiated (in the init()

method of the superclass, it will not be used, as processing of cloudlets are handled

by the CloudletScheduler and processing of Virtual Machines are handled by the

VmAllocationPolicy. This class models the core infrastructure-level services (hardware)

that are offered by Cloud providers (Amazon, Azure, App Engine). It encapsulates a

set of compute hosts that can either be homogeneous or heterogeneous with respect to

their hardware configurations (memory, cores, capacity, and storage). Furthermore, every

Datacenter component instantiates a generalized application provisioning component that

implements a set of policies for allocating bandwidth, memory, and storage devices to

hosts and VMs.

• DatacenterCharacteristics: It represents static properties of a resource such as resource

47

architecture, Operating System (OS), management policy (time- or space-shared), cost

and time zone at which the resource is located along resource configuration.

• Host: It executes actions related to the management of virtual machines (e.g., creation

and destruction). A host has a defined policy for provisioning memory and network

bandwidth, as well as an allocation policy for Processing Elements Pe’s (CloudSim class

that models the vCPUs) to the virtual machines. A host is associated to a datacenter. It can

host virtual machines. This class models a physical resource such as a compute or storage

server. It encapsulates important information such as the amount of memory and storage,

a list and type of processing cores (to represent a multi-core machine), an allocation

of policy for sharing the processing power among Vm’s, and policies for provisioning

memory and bandwidth to the Vm’s.

• Vm: This class represents a virtual machine: It runs inside a Host, sharing hostList with

other Vm’s. It processes cloudlets. This processing happens according to a policy, defined

by the CloudletScheduler. Each Vm has an owner, which can submit cloudlets to the Vm

to be executed. This class models a virtual machine, which is managed and hosted by

a Cloud host component. Every Vm component has access to a component that stores

the following characteristics related to a virtual machine: accessible memory, processor,

storage size, and the Vm’s internal provisioning policy that is extended from an abstract

component called the CloudletScheduler.

• VmmAllocationPolicy: It is an abstract class that represents the provisioning policy of

hosts to virtual machines in a Datacenter. It supports two-stage commit of reservation of

hosts: first, we reserve the host and, once committed by the user, it is effectively allocated

to he/she. This abstract class represents a provisioning policy that a Vm Monitor utilizes

for allocating Vm’s to hosts. The chief functionality of the VmmAllocationPolicy is to

select the available host in a data center that meets the memory, storage, and availability

requirement for a Vm deployment.

• VmScheduler: It is an abstract class that represents the policy used by a VMM to share

processing power among Vm’s running in a host. This is an abstract class implemented

by a Host component that models the policies (space-shared, time-shared) required

for allocating processor cores to Vm’s. The functionalities of this class can easily be

overridden to accommodate application-specific processor sharing policies.

48

4.1.4 DATACENTER INTERNAL PROCESSING

Figure 14 shows a sequence diagram with the Cloudlet processing update process.

In each simulation step the task units (Cloudlet’s) must be consumed in the respective Vm

Figure 14: Cloudlet Processing Update Process.
Source: (CALHEIROS et al., 2011)

scheduled to treat this task. It is done step by step until no Cloudlet’s are left in the list

of Cloudlet’s. To make it work, the Datacenter entity receives an internal event informing

that a task unit completion is needed. The Datacenter entity invokes a method called

updateVMsProcessing() for each Host in the list of hosts it manages. Each Host upon receiving

this request contacts the Vm in its own list of Vm’s invoking the updateCloudletProcessing().

Each Vm answers the Host with the task unit status (finish, suspended, executing) with the

Datacenter entity. Each Vm’s in the list return the next expected completion time, and the least

completion time among all is then sent to DataCenterEntity. This value is used to progress the

simulated clock to the next tick (one tick is equal the least completion time among all computed

values). This sequence is repeated until the last Vm compute the last task unit, then the clock

49

freezes and the simulation stops.

The CloudSim simulation cycle is represented in the sequence diagram of Figure 15.

It all starts with the registration of all Datacenter’s in CISRegistry entity, this way CIS

Figure 15: Cloudlet Simulation Cycle.
Source: (CALHEIROS et al., 2011)

(Cloud Information System) has the information to deliver to brokers of what Datacenter’s

are available. Once a user decides to deploy VM’s, it calls the DatacenterBroker that

queries CISRegistry about the Datacenter’s available, receiving a list of available Datacenter’s.

DatacenterBroker then queries the Datacenter’s to retrieve their characteristics (prices, power

consume, virtualization technology, number of hosts, number of CPUs, vRAM, vDisk, and so

on). The information is then used by DatacenterBroker to deploy the Vm on behalf of the user,

based on pre-implemented schedulers or via a customized scheduler, it is also true about the

Cloudlet’s (also known as task unit) that are scheduled to be run in the VM’s or Cloudlet’s.

Once the Datacenter advances one tick of the clock it recalculates the state of the execution

until the completion of all Cloudlet’s, when it informs DatacenterBroker that the Cloudlet’s

were all consumed. All the reports and logs can be processed or post-processed and then the

DatacenterBroker destroys all Vm’s created.

4.2 FIRST ORDER BEHAVIORAL MODEL IMPLEMENTATION IN CLOUDSIM

4.2.1 CLOUDLET CLASS EXTENSION

In CloudSim, CPUs are modeled by its capacity of consumption of the Cloudlet’s

only based in immutable MIPS. It is not enough, because when we have different tasks, in

different workflows, the same CPU has different performance (in other words, has different

50

capacity in MIPS). To work with this complexity we incorporate in the Cloudlet class the

attributes named applicationType and correctionFactor. It permits that when the simulation

consumes a Cloudlet, the CPU model can adapt to the type application it is running and perform

accordingly to the previous measurements conducted in real systems. This implementation is

shown in Figures 16(a) and 16(b). Where the original Cloudlet class is extended to have the

attributes applicationType, that stores the name of the application a cloudlet object is carrying,

and correctionFactor, that will be used to correct the cloudlet object size to be consumed

by the CPUs. The correctionFactor is a table that we constructed in a helper class, the

CorrectionFactor class. These tables with the correctionFactor are previously calculated in the

real world CPUs for that particular application. See section 5.1.4.1 for details on the calculations

of the correctionFactor.

(a) CloudletApplication as an extension of
Cloudlet class

(b) Constructor of CloudletApplication asks for
correctionFactor during instantiation of an object

Figure 16: Extensions on Cloudlet class and object instantiation helped by CloudletCorrection class.

For our implementation the CloudSim simulator chosen was the CloudSim-3.0.3

(GROZEV, 2012). Because it improved the control of the simulation advance compared with

the former versions.

4.2.2 PE CLASS EXTENSION

The Pe Class was extended to accommodate the new CPU model, it was included the

name of the real world CPU. This is important because this information need to be retrieved

during simulation to apply the correct β that is dependent on the CPU type and the application

type. For it in runtime, Datacenter class asks for the method host.updateVmsProcessing,

the Class PowerHost will ask for the CPU model, that now return the MIPS corrected by

the interference model. The new extended class is named PeNuma that instanciate an object

of the class PeArchitecture that implements the interference calculation. The PeArchitecture

class constructor uses a helper class named VmPeCloudletNumaMap to implement the correct

51

interference matrix based on the vector (CPU type, application type, NUMA zone), besides

NUMA zone is part of the original design, it was not implemented yet. Figure 17(a) and 17(b)

shows the extended classes, new helper classes and the relations they have.

(a) PeNuma as an extension of Pe class (b) Constructor of PeNuma instanciate a
PeArchitecture object that asks for the
interference model (couplingMatrix) in the
helper VmPeNumaMap

Figure 17: Extensions on Cloudlet class and object instantiation helped by CloudletCorrection class.

4.2.3 POWERHOST CLASSES OVERWRITING

To pin the vCPUs into CPUs (PeNUma objects), instead of checking the list of

Pe’s at each tick of the simulator clock, we overwrite this method to maintain the original

association when the VmList was originally created by the scheduler. This is done in the

method updateVmsProcessing. Moreover, the PeList, was overloaded to accommodate the new

Pe model (PeNuma class).

4.2.4 DATACENTER MODELED BY XML FILE

To make the simulations the most flexible possible, the datacenter object constructor

is fed by the helper class SimulationXMLParse, that parses the parameters read from the file

Experience.xml. The file models Hosts, CPus, Vms and Cloudlets that will be used in the

simulation. Bellow we see some extracts of the file, to understand the modeling.

< simulation >

< datacenters >

< datacenter >

< arch > x86 < /arch >< os > Linux < /os >< vmm > Xen < /vmm >

<!−−ProcessingHostCreation−−>

< host >

< ram> 10000</ram>< storage> 1000000</storage>< bw> 300000</bw><maxP> 250</maxP>

< staticPP > 0.7 < /staticPP >

52

< cpus >< cpu >

< num > 1 < /num >< governor > per f ormance < /governor >< architecture > i7 < /architecture >

< numaZone > 0 < /numaZone >

< /cpu >

< cpu >

< num > 2 < /num >< governor > per f ormance < /governor >< architecture > i7 < /architecture >

< numaZone > 1 < /numaZone >

< /cpu >

< mips > 1550.14 < /mips >< /host >

< /datacenter >< /datacenters >

< vms >< vm ><mips > 1550.14 </mips >< cpu > 4 </cpu >< ram > 128 </ram >< bw > 2500 </bw >

< size > 2500 < /size > 1550.14 < vmm > Xen < /vmm >< /vm >< /vms >

< cloudlets >< cloudlet >< length > 347027.4 < /length >< pes > 4 < /pes >

< application > int128 < /application >< /cloudlet >< /cloudlets >

< /simulation >

53

5 FRAMEWORK FOR MULTI-CORE SYSTEMS EVALUATION

The objective of this chapter is to present a methodology to get the parameters used

to feed the simulations, as well as, the methodology to validate the simulators predictions with

actual measured behavior collected on commercial systems. For that, we will divide the work

in three phases:

1. First is the testing phase, where will be used real world collected data to calculate the

coupling factors used in the BFO model. For that we will use some performance and

benchmarking tools to read from the CPU counters and manipulate it following the

method described in the section Overhead Measurements.

2. Second is the training phase, where the coupling factors and the adjusts of the real CPU

power (in MIPS) are introduced in the simulator. It is used to reproduce the real world

measured scenarios, but with one CPU only (meaning no concurrency). This is to ensure

the CPU model is well done and can reproduce the results measured for the so called ideal

scenarios.

3. Third is the simulation phase, this phase will be subdivided in two parts: the simulation

to reproduce simple scenarios already tested during the testing phase and the simulations

to generalize the simulator, showing it can be used to simulate new scenarios. The

generalization simulations will be compared with tests in the real systems.

5.1 OVERHEAD MEASUREMENTS

To use the model it is necessary to acquire by experiments the coupling factor β . The

methodology adopted to acquire the data necessary to calculate them is described bellow:

1. The hardware performance counters (HPC) statistics will be used. They are available in

all OSs and are accessible by tools like perf, that is part of most of Linux distributions,

or System Monitor in case of Windows OS. The HPC are special registers that collect

54

hardware statistics on runtime and have almost no overhead associated. According to

Yilmaz (YILMAZ, 2010) these registers are extensively used for program debugging and

profiling. In this work we will work with perf tool. This restriction is acceptable because

according to Weaver et. al. (WEAVER; DONGARRA, 2010), the accuracy of HPC does

not dependent on the OS and measuring tools, so it can be generalized even when other

OSs are being used.

2. The basic metric that will be used is the number of instructions per clock cycle (Ic). This

metric shows naturally the problem of the interference when a CPU core is waiting to

use an already busy resource, or if it is fetching data that is not in the local cache. This

last reason is really important one, because caches are much faster than accessing the

local memory that in its turn is faster than accessing remote (i.e. in other NUMA 1 zone)

memory. The effects of these factors is a stalling of the CPU core, that looses CPU clocks

to wait for the busy resource or the data to be available.

As any measure, the HPC are not exact and have some degree of uncertainty, the main

reason is that these counters have to be collected on-line, so it uses resources to be

processed and stored. According to Zaparanuks et al. (ZAPARANUKS et al., 2009) this

accuracy is dependent of the number of enabled counters being collected and managed.

However, this overhead in collecting and treating the counters is not the only source of

error, another one is due to the interruptions that CPU core treat during runtime, the result

is a possible duplication in the count of the interrupted instruction. This is always a over-

count leading to overestimation of performance, but luckily it is small and sometimes

partially compensate the underestimation caused by the overhead in collecting the data.

Waver et al. (WEAVER; DONGARRA, 2010) estimates it to be less than 1% what is

good for most of the practical purposes.

3. To train the model, i.e. to obtain the coupling factors β , first we will run multiple times

(say 30 times) each of the tasks chosen, based in math intensive (specially matrix), video

compression (that will use disk and GPU (Graphics Processing Unit)), some combination

of stress tests (using stress tool to capture some uses (disk intensive, RAM intensive, i/o

intensive or CPU intensive). It will give the “ideal performance” that will be used to

compare with the performance with interference of activities in parallel. The second step

is to run the same tasks, but now launching the task A in one CPU core and the other task

B in another CPU core.

4. The methodology of measurement: The tasks will be launched using the perf tool, and
1NUMA (Non-Uniform Memory Access) is a kind of architecture for shared memory.

55

Table 1: Usage of taskset pinning flag. The flag is the hexadecimal interpretation when OFF = 0
and ON = 1.

CPU 3 CPU 2 CPU 1 CPU 0 Taskset flag
OFF OFF OFF ON 0x1
OFF OFF ON OFF 0x2
OFF ON OFF OFF 0x4
ON OFF OFF OFF 0x8

the result will be the average of 30 runs. Moreover to pin the task to a particular CPU

core, the tool used will be taskset, that can be concatenated with perf.

5. When using the (extended) CloudSim to analyse a given multi-core system we used the

root mean square error (RMSE), showed in Equation 27, to evaluate the quality of the

predictions. The RMSE is given by:

RMSE =

√√√√1
n

n

∑
i=1

(
Ipred
c (i)− Imeas

c (i)
Imeas
c (i)

)2

(27)

where Ipred
c (i) is the ith value of Ic predicted by the extended CloudSim and Imeas

c (i) is the

ith value of Ic measured in commercial systems, a low RMSE means better PREDICTION

and n is the number of runs during the validation phase.

5.1.1 HOW TO EMPIRICALLY OBTAIN THE COUPLING FACTORS β

In order to obtain the pairwise coupling factors β needed to the simulations, we will

consider two distinct moments of measurements, the first one where a stressor is issued alone

in one CPU core and no other activity is issued any other core (we will call it Phase 1). The

second moment (the Phase 2) is when stressors are issued synchronously in a pair of cores,

these stressors can be distinct ones or not.

Phase 1: In this phase we will use taskset to pin the stressor to one core, and use perf

to read the number of instructions, named here X j
i , with i ∈ {0,1,2,3, ...} being the number

of the core in the processor and j = {A, B, C, D} is the stressors available to test represented

here by letters. As the stressors are issued via stress-ng for a pre-defined amount of time ∆t

(we used ∆t = 320s), we define x j
i = X j

i /∆t as the capacity of core i to consume the stressor j,

we will use the dimensional [mips/s] for x j
i . As the stressor is issued for 100% CPU power,

for definition of BFO model, the task load Lsys = 1, and in this case L f ull
i, j = 1, meaning that for

56

core i running stressor j the full utilization is reached. This test is done in all cores and with all

stressors.

Now we can compare what happens when comparing these measurements pairwise, in

other words, what should be the behavior of the system if no interference exist pair-wisely. In

this case Lsys = 2, for definition, and we can say, without loss of generality, that for cores 0 and

1 and stressors A and B,

Lsys = L f ull
0,A +L f ull

1,B = 2 , (28)

however, in general XA,phase1
0 6= XB,phase1

1 and L f ull
0,A = L f ull

1,B = 1, what means that the total

number of instructions XA,phase1
0 +XB,phase1

1 have different weights for stressor A and B. We

define ε as the instruction ratio, as a representation of the weight that XA,phase1
0 and XB,phase1

1

has in the total of instructions available with no interference considered.

εA =
XA,phase1

0

XA,phase1
0 +XB,phase1

1

and εB =
XB,phase1

1

XA,phase1
0 +XB,phase1

1

. (29)

As the time of test is fixed ε can also be calculated in terms of the core capacity x,

εA =
xA,phase1

0

xA,phase1
0 + xB,phase1

1

and εB =
xB,phase1

1

xA,phase1
0 + xB,phase1

1

. (30)

Phase 2: The perf tool will present the total instructions that stressor A and B

consumed to be completed. Because of the definitions of BFO model, we would need the

instructions consumed in core 0 and core 1 individualized. To calculate it we assumed that ε is

constant if the task load is unchanged, that is our case because stress-ng still consumes 100% of

the core processing power. Defining Zmeas.
sys as the number of instructions read in perf for Phase

2, we have:

XA,phase2
0 = εA.Zmeas.

sys and XB,phase2
1 = εB.Zmeas.

sys , (31)

symilarly, using x,

xA,phase2
0 = εA.

Zmeas.
sys

∆t
and xB,phase2

1 = εB.
Zmeas.

sys

∆t
. (32)

By definition, overhead OH is the part of the system processing that is spent with the

57

interference, in our case it is OH = (XA,phase1
0 +XB,phase1

1)−Zmeas.
sys . In terms of task load,

Loh
sys =

OH
Zmeas.

sys
=

(XA,phase1
0 +XB,phase1

1)−Zmeas.
sys

Zmeas.
sys

. (33)

Now we have all to calculate β , by definition of overhead,

Loh
sys = β .L0,phase2

A .L1,phase2
B , (34)

and we know that L0,phase2
A = L1,phase2

B = 1, that lead us to Equation 36 with the final form of β .

β = Loh
sys =

(XA,phase1
0 +XB,phase1

1)−Zmeas.
sys

Zmeas.
sys

(35)

Finally, in the simulator, it is needed the individual contributions βA→B and βB→A, that

can easily be calculated as,

βA→B = εA.β and βB→A = εB.β . (36)

5.1.2 TESTING PROGRAMS AND HARDWARE CONFIGURATIONS

In the training and validation phases, we will use the stress-ng to generate the CPU

activity of different profile to collect the data for the coupling factors. The choice for it is

because it can generate controlled loads in various dimensions of the system, generating CPU

load, RAM load, I/O load in a controlled way. The native load profiles, also known as stressors,

chosen for this work are:

1. INT128: This stressor generates 1000 iterations of a mix of 128 bit integer operations. It

is good for benchmarking the CPU performance for operations over integers.

2. FFT: This stressor generates blocks of 4096 samples for Fast Fourier Transform

calculations. It is good for benchmarking the CPU performance for DSP (Digital Signal

Processing) applications.

3. MATRIXPROD: This stressor generates matrix product of two 128 by 128 matrices of

double floats. Testing on 64 bit x86 hardware shows that this provides a good mix of

memory, cache and floating point operations and is probably the best CPU method to use

to make a CPU run hot.

4. CALLFUNC: This stressor generates recursively call 8 argument C function to a depth

of 1024 calls and unwind. It is good to benchmarking the memory scaling capabilities on

58

the processor cache.

The hardware used to make the measurements are:

1. Notebook with one processor Intel i7-6500U (2 individual cores, or 4 cores with hyper-

thread 3 activated) , 16GB of RAM , 256 GB SSD (Solid State Disk) and 1GBps Ethernet

network adapter.

2. Server Dell with two processors AMD Opteron (2 individual cores, no hyper-thread) ,

32GB of RAM, 2TB HD and 4 1GBps Ethernet network adapter.

3. Server AirFrame Nokia with two processors XEON (24 individual cores, or 48 cores with

hyper-thread activated), 256BG of DDR4 RAM, 512 GB SSD and 2x 6TB HD Raid 2.

5.1.3 TRAINING PHASE: RESULTS OF THE CALIBRATION TESTS

In the training phase the objective is to generate enough statistics in an experimental

system in order to calculate the coupling factors β . The methodology to collect the statistics

as well as the cases covered (the combinations of hardware and stressors) were discussed in

earlier sections. Now we will present the results of the experimentation done in the training

phase.

In Table 2 it is shown the number of instructions per second that each stressor generates

for the ideal case, that is when only one CPU core is in use, and the background activity is

minimum. This data is calculated as the average over 10 interactions on each CPU core for

each run of the script. Considering a case where a processor have n CPU cores and the script

will run for k stressors, the number of times the same statistic for instructions per second (m) is

collected is m = A2
n.k

2.10. For example, for 2 cores (n = 2), 4 stressors (k = 4) and 10 runs for

each combination, we have m = A2
2.4

2.10 = 1.16.10 = 160. This number is shown in the table

as the row Number of Tests.

It is important to note that the value of MIPS measured varies in a fixed CPU type

depending on each stressor. For example, consider the OPTERON CPU, for the stressor

INT128 the value of measured MIPS is 1927.93, this contrasts with the FFT stressor that

presented a value of 2163.79 MIPS. This is due to each stressor to use the resources in a

3Hyper-Threading is a technology where a single core is used to process two pipelines of instructions (threads),
therefore it is perceived by the OS as if there were two active cores.

59

Table 2: Instructions per second (MIPS) calculated for each CPU type in the ideal case.
CPU / Stressor INT128 FFT MATRIXPROD CALLFUNC

i7-6500U
(MIPS) 1550.14 3204.71 4399.28 5289.63

Opteron 2214HE
(MIPS) 1927.93 2163.79 1063.88 2190.07

XEON E5-2680v4
(MIPS) 1873.95 3990.38 5238.49 6168.87

Number of tests 160 160 160 160

particular way. The performance is also dependent to the CPU architecture and the pattern

of the use of the resources. This information is very important because in CloudSim the

capacity of a CPU (vCPU or pCPU) is defined in MIPS, and it is not dependent on the task to be

simulated (named there Cloudlets), but if we are to simulate different kinds of task/applications,

it is necessary to correct it.

Basically the correction is done by adjusting the size of the Cloudlet before the start of

the simulation to maintain the time of execution coherent with the observed in the real world.

For example, if a 2000 MIPS CPU is defined in CloudSim for a Host and VM objects, that

represent a specific market CPU core, and this CPU has to consume a 10,000M instructions

from INT128 and another 10,000M from CALLFUNC, if not corrected both tasks would finish

in the same execution time of 5s. But, as we can see, the CPU would present different time

of execution in the experimental world, it would finish CALLFUNC earlier then INT128.

To illustrate it imagine that we were representing an i7-6500U CPU core, the task INT128

will be corrected to INT 128Corrected = 10,000Mx2000/1550.14 = 12,902M instructions, and

CALLFUNC to CALLFUNCCorrected = 10,000Mx2000/5289.63 = 3,781M instructions. So,

the INT128 will finish in 6.451s and CALLFUNC in 1.89s. This correction will be important

in the second phase that is the CloudSim extensions mimetizing the results in real world, and

it is done during the instantiation on the Cloudlet when the correction factor is used, making

it transparent to the user of the simulator. And the correction factors will be derived from the

Table 2.

The results are shown in Table 3 for OPTERON, Table 4 for Xeon E5-2680v4 and

Table 5 for i7-6500U. These tables are the inputs for the creation of the CorrectionFactor class

in the extended CloudSim. For sake of simplicity, here we will create the class with the tables

embedded, however, in a more professional approach it would be better implemented it in a

XML archive. The class CloudletApplication than should import these data in runtime during

60

the object instantiation. This way the user just need to import the XML from a repository and

use the credentials for the intended environment to be simulated.

Table 3: Coupling Factors βA→B for OPTERON 2214HE
row:task A

/
column:taskB

INT128 FFT MATRIXPROD CALLFUNC

INT128 0.1973 0.553 1.2441 0.0698
FFT 0.6207 0.0487 0.0583 0.0524

MATRIXPROD 0.6865 0.0286 0.0536 0.00125
CALLFUNC 0.0792 0.0530 0.0026 0.2161

Table 4: Coupling Factors βA→B for XEON E5-2680v4
row:task A

/
column:taskB

INT128 FFT MATRIXPROD CALLFUNC

INT128 0.2847 0.1792 0.0927 0.1140
FFT 0.3816 0.0752 0.2054 0.2228

MATRIXPROD 0.2592 0.2696 0.1376 0.2158
CALLFUNC 0.3754 0.3445 0.7054 1.1595

Table 5: Coupling Factors βA→B for i7-6500U
row:task A

/
column:taskB

INT128 FFT MATRIXPROD CALLFUNC

INT128 0.3966 0.1785 0.1078 0.1265
FFT 0.3691 0.0192 0.2203 0.2101

MATRIXPROD 0.3059 0.3025 0.1287 0.2588
CALLFUNC 0.4317 0.3468 0.3112 2.0482

5.1.4 SIMULATION PHASE: VALIDATION OF EXTENSIONS MADE ON CLOUDSIM

After collecting and processing the data in the previous phase, the next step is validate

the extended CloudSim to make sure it reproduces the results observed in the experimental

systems. This phase will have two parts, the first one is to ensure that CloudSim reproduces the

ideal results. In the second part we will apply the concept of interference overhead, to simulate

the tests with two CPU cores interfering with one another. These two parts will ensure that

CloudSim is capable to reproduce the BFO model validating the model and the implementation

in software.

61

5.1.4.1 PART I: REPRODUCING THE IDEAL SCENARIOS

In this part, it is tested the concept that the Cloudlet must be corrected in its size,

to reflect that the use of a CPU core from a particular task have differences inherent to it, as

explained in Training Phase section. The methodology, for the tests to be done, is to create

simulation environments mimetizing the real world systems, where cloudlets of different kind

(applicationType) and sizes are created and executed. The simulated execution time will be the

parameter to be compared with the real systems measured execution time.

Initially we will take the ideal tests scenario executed in the trainning phase and tweak

the simulator parameters (in this case the correctionFactor) to calibrate the simulator. After

this initial simulations, some cloudlets (bigger and smaller) will be simulated, and compared

with the experimental measurements (over 10 runs). The quality of the results is based on the

root mean square error showed in Equation 27. Table 6 shows the results of the tests for the

stressors INT128 (Table 6(a)), FFT (Table 6(b)), MATRIXPROD (Table 6(c)) and CALLFUNC

(Table 6(d)). The cloudlets sizes are 25%, 50%, 100%, 200% and 400% of the ideal scenarios.

For RMSE analysis, the lower the better, so a RMSE = 0 would mean no difference between

measured and simulated results. Following the same logic the Table 7(a),(b),(c) and (d) shows

the results for Xeon and Table 8(a),(b),(c) and (d) shows the results for i7-6500U.

With these results we can see that the cloudlets can approximate the real world

scenarios very well, as expected in these scenarios the execution time escalates linearly. Maybe

it is not a very good approximation if the cloudlet is very short, since the model used has the

assumption that the tasks/CPU cores are steady state. Meaning that the caches are already

stabilized, since tasks too short and possibly uncoordinated can raise the memory access due to

more often cache fails.

5.1.4.2 PART II- INTERFERENCE IN PAIRWISE SCENARIOS

Now the goal is to put CloudSim to simulate the scenarios that were used to

calculate the coupling factors β . In this part what is to be tested is the extensions made in

all classes to support the overhead calculations. This is important to check the model and the

implementation, after that the next phase will treat with the situation where tasks will occupy

all the cores in a VM, and then compare the performance of the simulated scenario with the

experimental tests.

62

Table 6: CloudSim simulating various stressors results with Opteron 2214HE parameters
(declared in CloudSim with MIPS=3000)

(a) Simulating Opteron 2214HE for INT128
INT128
Cloudlet 25% 50% 100% 200% 400%

size
(Millions Inst.) 86756.85 173513.7 347027.4 694054.8 1388109.6

corrected size
factor=1.5561 135000 270000 540000 1080000 2160000

CloudSim
exec. time (s) 45.01 90.03 179.98 360.04 719.96

Real System
exec. time (s) 47.55 90.03 180.41 359.52 718.05

∆% -5.34 -0.95 -0.24 0.14 0.27
RMSE (%) 0.0435 0.0225 0.0100 0.0102 0.0091

(b) Simulating Opteron 2214HE for FFT
FFT

Cloudlet 25% 50% 100% 200% 400%

size
(Millions Inst.) 97370.55 194741.1 389482.2 778964.4 1557928.8

corrected size
factor=1.3865 135000 270000 540000 1080000 2160000

CloudSim
exec. time (s) 45.00 89.99 180.04 359.97 719.99

Real System
exec. time (s) 46.98 90.93 180.49 360.33 720.97

∆% -4.21 -1.03 -0.25 -0.10 -0.14
RMSE 0.0398 0.0194 0.0093 0.0062 0.0096

(c) Simulating Opteron 2214HE for MATRIXPROD
MATRIXPROD

Cloudlet 25% 50% 100% 200% 400%

size
(Millions Inst.) 47874. 6 95749.2 191498.4 382996.8 765993.6

corrected size
factor=2.8199 135000 270000 540000 1080000 2160000

CloudSim
exec. time (s) 45.02 90.02 180.05 360.08 720.03

Real System
exec. time (s) 46.67 90.88 180.15 360,21 720.43

∆% -3.54 -0,95 -0,06 -0,04 -0,06
RMSE 0.0425 0.0234 0.0082 0.0110 0.0088

(d) Simulating Opteron 2214HE for CALLFUNC
CALLFUNC

Cloudlet 25% 50% 100% 200% 400%

size
(Millions Inst.) 98553.15 197106.3 394212.6 788425.2 1576850.4

corrected size
factor=1.3698 135000 270000 540000 1080000 2160000

CloudSim
exec. time (s) 44.98 90.03 180.08 360.07 720.11

Real System
exec. time (s) 47.53 91.09 180.75 361.23 719.29

∆% -5.37 -1.16 -0.37 -0.32 0.11
RMSE 0.0460 0.0225 0.0133 0.0115 0.0073

Table 9 synthesizes the RMSE calculated over the simulation results against the

pairwise measurements done in training phase for OPTERON, likewise Table 10 shows the

RMSE when the processor is Xeon and Table 11 considers i7-6500U.

We observed that the error is acceptable, showing very good approximation with the

63

Table 7: CloudSim simulating various stressors results with Xeon E5-2680v4 parameters (declared
in CloudSim with MIPS=6000)

(a) Simulating Xeon E5-2680v4 for INT128
INT128
Cloudlet 25% 50% 100% 200% 400%

size
(Millions Inst.) 84327.75 168655.5 337311 674622 1349244

corrected size
factor=3.2018 270000 540000 1080000 2160000 4320000

CloudSim
exec. time (s) 45.03 90.02 180.01 360.03 719.94

Real System
exec. time (s) 47.67 90.99 180.51 359.17 721.19

∆% -5.54 -1.07 -0.28 0.24 -0.17
RMSE 0.0435 0.0225 0.0100 0.0102 0.0091

(b) Simulating Xeon E5-2680v4 for FFT
FFT

Cloudlet 25% 50% 100% 200% 400%

size
(Millions Inst.) 179586 359172 718344 1436688 2873376

corrected size
factor=1.5035 270000 540000 1080000 2160000 4320000

CloudSim
exec. time (s) 45.01 90.01 180.00 359.96 720.03

Real System
exec. time (s) 47.56 90.67 180.19 358.93 719.31

∆% -5.36 -0.73 -0.11 -0.29 0.10
RMSE 0.0453 0.0186 0.0062 0.0099 0.0062

(c) Simulating Xeon E5-2680v4 for MATRIXPROD
MATRIXPROD

Cloudlet 25% 50% 100% 200% 400%

size
(Millions Inst.) 235732.05 471464.1 942928.2 1885856.4 3771712.8

corrected size
factor=1.1454 270000 540000 1080000 2160000 4320000

CloudSim
exec. time (s) 44.99 90.02 180.03 359.99 720.08

Real System
exec. time (s) 47.77 91.01 179.45 360.21 721.03

∆% -5.82 -1.09 0.32 -0.06 -0.13
RMSE 0.0520 0.0233 0.0106 0.0053 0.0068

(d) Simulating Xeon E5-2680v4 for CALLFUNC
CALLFUNC

Cloudlet 25% 50% 100% 200% 400%

size
(Millions Inst.) 277599.15 555198.3 1110396.6 2220793.2 4441586.4

corrected size
factor=0.9726 270000 540000 1080000 2160000 4320000

CloudSim
exec. time (s) 44.99 90.02 180.07 360.04 720.08

Real System
exec. time (s) 47.83 90.89 179.84 359.23 719.41

∆% -5.94 -0.96 0.13 0.23 0.09
RMSE 0.0477 0.0208 0.0077 0.0088 0.0058

measured experiment. It is important to note that these tests are validating the BFO model and

the CloudSim extensions as well, therefore the accuracy of the CloudSim is improved.

64

Table 8: CloudSim simulating various stressors results with i7-6500U parameters (declared in
CloudSim with MIPS=5000)

(a) Simulating i7-6500U for INT128
INT128
Cloudlet 25% 50% 100% 200% 400%

size
(Millions Inst.) 69756.3 139512.6 279025.2 558050.4 1116100.8

corrected size
factor=3.2255 225000 450000 900000 1800000 3600000

CloudSim
exec. time (s) 45.05 90.03 180.05 359.99 719.99

Real System
exec. time (s) 47.73 91.09 180.25 359.07 720.93

∆% -5.61 -1.16 -0.11 0.26 -0.13
RMSE 0.0471 0.0214 0.0069 0.00104 0.0073

(b) Simulating i7-6500U for FFT
FFT

Cloudlet 25% 50% 100% 200% 400%

size
(Millions Inst.) 144211.95 288423.9 576847.8 1153695.6 2307391.2

corrected size
factor=1.5602 225000 450000 900000 1800000 3600000

CloudSim
exec. time (s) 44.99 90.03 180.04 360.04 719.97

Real System
exec. time (s) 48.00 90.83 180.71 360.94 719.03

∆% -6.27 -0.88 -0.37 -0.25 0.13
RMSE 0.0457 0.0173 0.0128 0.0106 0.0077

(c) Simulating i7-6500U MATRIXPROD
MATRIXPROD

Cloudlet 25% 50% 100% 200% 400%

size
(Millions Inst.) 197967.6 395935.2 791870.4 1583740.8 3167481.6

corrected size
factor=1.1365 225000 450000 900000 1800000 3600000

CloudSim
exec. time (s) 45.00 90.02 180.07 360.01 720.02

Real System
exec. time (s) 46.79 91.32 180.36 361.24 720.73

∆% -3.83 -1.42 -0.16 -0.34 -0.10
RMSE 0.0422 0.0245 0.0073 0.0110 0.0058

(d) Simulating i7-6500U for CALLFUNC
CALLFUNC

Cloudlet 25% 50% 100% 200% 400%

size
(Millions Inst.) 238033.35 476066.7 952133.4 1904266.8 3808533.6

corrected size
factor=0.9452 225000 450000 900000 1800000 3600000

CloudSim
exec. time (s) 45.09 90.07 180.03 360.04 720.07

Real System
exec. time (s) 47.88 91.01 180.44 359.53 719.37

∆% -5.83 -1.03 -0.23 0.14 0.10
RMSE 0.0486 0.0219 0.0095 0.0075 0.0062

5.1.5 GENERALIZATION PHASE - USE OF EXTENDED CLOUDSIM TO PREDICT
THE BEHAVIOR OF DIFFERENT LOADS SCENARIO

In this section the idea is to test the extended CloudSim in different loads scenarios,

and compare the results with experimental measurements. In addition, the same scenario is set

65

Table 9: RMSE between CloudSim simulations over stressors and real world measurements with
Opteron 2214HE. Tests calibrated for 320s of runtime.

core1/core2
(not siblings) INT128 FFT MATRIXPROD CALLFUNC

INT128 0.0206 0.0174 0.0292 0.0075
FFT 0.0174 0.0142 0.0123 0.0368

MATRIXPROD 0.0292 0.0123 0.0355 0.0277
CALLFUNC 0.0075 0.0368 0.0277 0.0221

Table 10: RMSE between CloudSim simulations over stressors and real world measurements with
Xeon E5-2680v4. Tests calibrated for 320s of runtime.

core1/core2
(not siblings) INT128 FFT MATRIXPROD CALLFUNC

INT128 0.0305 0.0343 0.0022 0.0174
FFT 0.0343 0.0356 0.0166 0.0143

MATRIXPROD 0.0022 0.0166 0.0320 0.0192
CALLFUNC 0.0174 0.0143 0.0192 0.0381

Table 11: RMSE between CloudSim simulations over stressors and real world measurements with
i7-6500U. Tests calibrated for 320s of runtime.

core1/core2
(not siblings) INT128 FFT MATRIXPROD CALLFUNC

INT128 0.0243 0.0110 0.0151 0.0082
FFT 0.0110 0.0275 0.0086 0.0077

MATRIXPROD 0.0151 0.0086 0.0026 0.0096
CALLFUNC 0.0082 0.0077 0.0096 0.0287

in the original CloudSim (only correcting the MIPS for each stressor), this will give us results

as if the multi-core CPUs scales linearly, because that is what is inherently assumed in the

original CloudSim implementation.

Of course the number of possible combinations that can be tested is too big, so we will

pick up some representative scenarios we think can lead us to conclusions on the effectiveness

of the method and the simulators capacity. The first natural scenario is to increase the number of

cores, and this will be done for XEON E5-2680v4 only, the reason why is because OPTERON

2214HE and i7-6500U are essentially dual core, remembering that the i7 is quad core only

when hyper-threading is enabled, but remembering that hyper-threading was turned off for the

testing phase. The tests in Table 12 were performed over all stressors, and represents the overall

results we got. Of course some stressors perform better than the others, but remembering that it

depends on the multi-core architecture which will be favored, but as the only processor possible

was XEON, we prefer to give the consolidated overall data.

66

Table 12: Testing the model accuracy calculating RMSE between Extended CloudSim simulations
and real world XEON E5-2680v4. In addition the RMSE between Extended CloudSim and the
Original CloudSim (that uses the linear CPU escalation model). Tests calibrated for 320s of
runtime to permit cache stabilization.

4 cores 6 cores 8 cores 10 cores 12 cores 14 cores
RMSE

(Ext.CloudSim
vs.

XEON)

0.0287 0.0983 0.1356 0.2334 0.4521 0.8034

RMSE
(Ext. CloudSim

vs.
Orig. CloudSim)

0.1498 0.2345 0.2847 0.4334 0.8521 1.5034

Considering the line RMSE (Ext.CloudSim vs. XEON), that represents the model

and simulator proposed against the experimental measurements, the RMSE enlarges with

respect to the number of cores. With 4 or 6 cores the error is very good, with absolute

values always less than 5%. When the number of cores rise up the model show less

accuracy, for 8 cores we cannot guarantee a good approximation since up 15% or more

individual absolute error showed up. This is an indicator that for a large number of CPUs

a higher order behavioral model is going to be needed. Now considering the line RMSE

(Orig.CloudSim vs. XEON), that represents the linear scaling model, we see that the RMSE

is always worst when compared with the previous line. This means that the model gives us a

better prediction on CPU performance scaling than the simple approach of linear scaling model.

5.1.6 REFINING THE MODEL TO IMPROVE RESULTS WITH INCREASED NUMBER
OF CORES

Figure 18, shows an test with the number of cores ranging from 4 to 14. The RMSE

error grows fast when compared with the measured Xeon performance in the same circunstances

(the Ext.CloudSim vs. Xeon plot). In the same Figure we see the Ext. CloudSim vs. Orig.

CloudSim , where we see the part of the error, in case of linear performance scaling compared

with the BFO model, this shows that the BFO model has always better results since, in this

case, the model’s predicted performance is less than the linear. The RMSE seems to grow

exponentially, and because of it we imagined to compensate this error, since the our model

always predict better performance scaling than the measured in experimental systems, when the

number of cores is greater than 2. In order to improve the accuracy of the model, we decided

to increase the coupling factor by a log factor that depends on the number of cores. Equation

67

Figure 18: RMSE error vs. Number of cores.

37 shows the proposed correction, where N is the number of cores, being N ≥ 2, and γ is a

non-negative constant to best fit the results, γ ∈ [0,1].

β
′ = β + γ.β . log2 N = β (1+ γ. log2 N) , (37)

where β ′ is the new coupling factor in our extended model.

We performed the same tests over and over with different γ to find if we could reduce

substantially the RMSE error. What we found is that, for our log correction, there is a trade off:

to make good predictions with N big we sacrifice the error when N is small. However, as the

error introduced for small N grow slower than the reduction of the error for N large, we found

that γ = 0.1 can produce good results in the range of our Xeon with 14 cores. Table 13 shows

the Extended CloudSim RMSE, repeating first line of Tabel 12, and comparing with the RMSE

with Extended CloudSim with γ , in Figure 19 shows these results, where the error still grows

with respect to N, but it is much more acceptable, being maximum at 0.1086 at N = 14. The

“without gamma” line is the same shown in Figure 18 to be compared with our extended model

(“with gamma”).

68

Table 13: Testing the improvement in RMSE between Extended CloudSim simulations and real
world XEON E5-2680v4 and Extended CloudSim with Correction Factor γ = 0.1. Tests calibrated
for 320s of runtime to permit cache stabilization.

4 Cores 6 Cores 8 Cores 10 Cores 12 Cores 14 Cores
RMSE

(Ext. CloudSim (γ = 0)
vs.

XEON)

0.0287 0.0983 0.1356 0.2334 0.4521 0.8034

RMSE
(Ext. CloudSim (γ = 0.1)

vs.
XEON

0.0293 0.0352 0.0456 0.0614 0.0815 0.1086

Figure 19: RMSE error vs. Number of Cores. With γ = 0.1 shows good reduction in RMSE error

69

6 CONCLUSIONS AND FUTURE RESEARCH

6.1 CONCLUSIONS OF THE MODEL BEHAVIOR AND THE CLOUDSIM
EXTENSIONS IMPLEMENTATION

The objective of this study was to produce an extension in the CloudSim tool,

by incorporating the BFO model by Kandalintsev and Lo Cigno, in order to improve its

performance in the simulation of multicore systems.

The simulator has consistently presented good results in the training phase, with

absolute errors of almost zero. Actually this was expected, since the pairwise model is

extracted directly from measurements, so we understand the errors are related with the way the

simulator operates internally. As the tick of the clock is a fixed value, the simulator always

will present an execution time equal or greater than the real, this is caused by a cloudlet could

be totally consumed in the middle of a tick, but the completion time is computed in the end of

the slice of the time. To improve the quality of the simulation results the tick was set “small

enough”, for the tests ran it was fixed in 10 milliseconds. But for really big simulations,

where the time of simulation should be optimized we found that a tick of one hundredth of the

smallest cloudlet size leads to errors less than 0.2% in average.

During the simulation phase, again the results of the simulator were adherent to the

measured during the training phase, and this was expected because the model is a first order

model, and the coupling factors are a way to express the scaling behavior using the overhead

concept. The RMSE errors are quite small, and should be zero, for the same reasons explained

in training phase section.

The generalization part of the simulation presented some interesting results, first

one is that the error increases rapidly with the number of CPU cores, for example with 4

cores its is about 2% to 3%, for 6 cores it jumps to 9% and sometimes 10%, and it continues

70

growing when 14 cores are used, we have error in order of 80%. It suggested that the first

order model was not enough to deal with a great number of cores. To improve results of

the model we introduced a logarithmic correction that worked well putting the error for 14

cores to about 11%, widening the range where the model could be used. It is something for

further investigation if correction law could be used, improving yet more the results. One

more remark about γ factor, it is unclear if it is applicable to any pair of applications, since

we calculated the RMSE always using one stressor at a time, being the result the arithmetic

average among all the tests. It should be clarified in further tests and analysis. Second, the

size of the Cloudlets have influence in the accuracy of the simulated results. It is due the fact

that, the model used, as well as, the simulator’s CPU model consider the system in steady state.

However, in real systems, there is transitory responses when the caches are adapting to the

demand. For the simulator perspective we can always improve the result by implementing small

clock tick, but it elevates the time of a simulation. Users have to have it in mind during the setup.

Additionally, we can list some of the findings and conclusions of this research:

1. First, the implementation of the BFO model in CloudSim has shown good results in all

tests and could be a choice for researchers interested in simulating the performance of

their own application in multi-core systems. It would demand some time to model its

own application behavior. That is not an easy task right now, but we propose an approach

to approximate β using application/stressor with similar behavior.

2. Second, in all scenarios of test the implemented model showed better results than the

linear escalation assumption, not a single case tested showed the contrary, this rises

the confidence in the model, that for the stressors tested was capable to model the

performance tendencies. Showing very good adherence with the physical hardware tested

up to 6 cores for XEON processors. The results were improved using the log correction

using the correction factor γ = 0.1.

3. Third, the performance counters used to make the measurements in this research, could

be the basis to implement on line statistics to calculate the βs automatically.

4. Fourth, the proposed model is not good for transitory conditions, for example: when the

time to stabilize the cache was not negligible the error increased even in two processors

tests. It suggests that a transitory model could be studied, in further research, to take into

account the cache training time.

71

5. Fifth, considering the CPU performance scaling laws presented in Chapter 3, the

performance of multi-core chips will improve when more software design were

implemented to make use of the parallelized computational environment. It tends to be

more linear, but what is observed is that very little effort is being done in the software

development field to make it a reality. So at least at the moment and probably for some

time in the future, the model proposed is still valid and useful.

6.2 LESSONS LEARNED AND FUTURE WORK

The first lesson learned in this research is related to the basic assumption of a β factor

could successfully model the CPU performance scaling. This was discovered to be partially

true, even if powerful concept, the error accumulates very fast and a correction factor γ had to

be introduced, not really solving the problem, but kept the error in a acceptable range.

The second lesson learned is that the BFO model simplified the math of CPU

performance scaling, but introduced a very complex situation to deal in the real world, that is

the performance needs to be benchmark before being used. It leads to a series of adaptations

that pointed to a necessity to deep the analysis of the performance intrinsics, for example the

influence of the memory scaling function g(M) of the Memory Bound model could be related

to the γ . It is a god point to be studied in a future work.

The third lesson learned is that the extended CloudSim as it is now, in a way to be

properly used, depends on a study on how to generate automatically the βs and γs with an

online algorithm. Or a study to classify the applications behavior by similar coupling factors β

and/or correction factors γ .

The fourth lesson learned is that there is never “free lunch”, a first thought that a simple

model can solve all, leaded to a very complex scenario yet fertile in terms of questions yet to be

answered.

72

REFERENCES

AMDAHL, G. M. Validity of the single processor approach to achieving large scale computing
capabilities. In: AFIPS spring joint computer conference. 1967.

BARROSO, L. A. et al. Rpm: a rapid prototyping engine for multiprocessor systems.
Computer, v. 28, n. 2, p. 26–34, Feb 1995. ISSN 0018-9162.

BERGAMASCHI, R. A. et al. Performance modeling for early analysis of multi-core
systems. In: In Proceedings of the 5th IEEE/ACM/IFIP International Conference on
Hardware/Software Codesign and System Synthesis (CODES+ISSS). 2007. p. 209–214.

BORKAR, S. Thousand core chipsa technology perspective. In: 2007 44th ACM/IEEE Design
Automation Conference. 2007. p. 746–749. ISSN 0738-100X.

BURGER, D.; GOODMAN, J. R.; KäGI, A. Memory bandwidth limitations of
future microprocessors. SIGARCH Comput. Archit. News, ACM, New York,
NY, USA, v. 24, n. 2, p. 78–89, maio 1996. ISSN 0163-5964. Disponı́vel em:
<http://doi.acm.org/10.1145/232974.232983>.

CALHEIROS, R. N. et al. cloudsim 3.0 API. Disponı́vel em:
<http://www.cloudbus.org/cloudsim/doc/api/index.html>.

CALHEIROS, R. N. et al. Cloudsim: A toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms. Softw. Pract. Exper., John
Wiley & Sons, Inc., New York, NY, USA, v. 41, n. 1, p. 23–50, jan. 2011. ISSN 0038-0644.
Disponı́vel em: <http://dx.doi.org/10.1002/spe.995>.

CALHEIROS, R. N. et al. Cloudsim: A novel framework for modeling and simulation of
cloud computing infrastructures and services. CoRR, abs/0903.2525, 2009. Disponı́vel em:
<http://arxiv.org/abs/0903.2525>.

CARVALHO, C. The gap between processor and memory speeds. In: In Proceedings of the
IEEE International Conference on Control and Automation (ICCA). 2002.

CONTE, T. M.; TRACK, E.; DEBENEDICTIS, E. Rebooting computing: New strategies for
technology scaling. Computer, v. 48, n. 12, p. 10–13, Dec 2015. ISSN 0018-9162.

EYERMAN, S.; EECKHOUT, L. ”per-thread cycle accounting in smt processors”.
In: Proceedings of the 14th International Conference on Architectural Support
for Programming Languages and Operating Systems. New York, NY, USA:
ACM, 2009. (ASPLOS XIV), p. 133–144. ISBN 978-1-60558-406-5. Disponı́vel em:
<http://doi.acm.org/10.1145/1508244.1508260>.

FELDMAN, M.; LAI, K.; ZHANG, l. The proportional-share allocation market for
computational resources. v. 20, p. 1075 – 1088, 09 2009.

73

GROZEV, N. CloudSim-3.0.3. 2012. GitHub. Disponı́vel em:
<https://github.com/Cloudslab/cloudsim/releases/tag/cloudsim-3.0.3>.

GUÉROUT, T. et al. Energy-aware simulation with dvfs. Simulation Modelling Practice and
Theory, v. 39, p. 76 – 91, 2013. ISSN 1569-190X. S.I.Energy efficiency in grids and clouds.
Disponı́vel em: <http://www.sciencedirect.com/science/article/pii/S1569190X13000786>.

GUSTAFSON, J. Reevaluating amdahl’s law. In: . 1988. (Comm. ACM), p. 532–533.

HILL, M. D.; MARTY, M. R. Amdahl’s law in the multicore era. Computer, v. 41, n. 7, p.
33–38, July 2008. ISSN 0018-9162.

JIANG, J. W. et al. Joint vm placement and routing for data center traffic engineering. p. 2876–
2880, 03 2012.

KANDALINTSEV, A. Application Interference in Multi-Core Architectures: Analysis
and Effects. Tese (phdthesis) — Università degli Studi di Trento, Department of Information
Engineering and Computer Science University of Trento, Italy, abr. 2016.

KUNKEL, R. J. E. S. R. et al. A performance methodology for commercial servers. IBM
Journal of Research and Development, n. 44, p. 851–872, jun. 2000.

LO CIGNO, R.; KANDALINTSEV, A. A behavioral first order cpu performance model for
clouds’ management. In: International Congress on Ultra Modern Telecommunications and
Control Systems and Workshops. 2012. p. 40–48. ISBN 978-1-4673-2016-0.

MOORE, G. E. Cramming more components onto integrated circuits. April 19 1965.

NANDA, A. K. et al. Memories: A programmable, real-time hardware emulation tool for
multiprocessor server design. In: . 2000. v. 35, p. 37–48.

POLLACK, F. J. New microarchitecture challenges in the coming generations of cmos
process technologies (keynote address)(abstract only). In: Proceedings of the 32Nd Annual
ACM/IEEE International Symposium on Microarchitecture. Washington, DC, USA:
IEEE Computer Society, 1999. (MICRO 32), p. 2–. ISBN 0-7695-0437-X. Disponı́vel em:
<http://dl.acm.org/citation.cfm?id=320080.320082>.

SHRIVASTAVA, V. et al. Application-aware virtual machine migration in data centers. In:
Proceedings - IEEE INFOCOM. 2011. p. 66 – 70.

SINGH, J. P.; WEBER, W.-D.; GUPTA, A. Splash: Stanford parallel applications for shared-
memory. SIGARCH Comput. Archit. News, ACM, New York, NY, USA, v. 20, n. 1, p. 5–44,
mar. 1992. ISSN 0163-5964. Disponı́vel em: <http://doi.acm.org/10.1145/130823.130824>.

SUN, X.-H.; CHEN, Y. Reevaluating amdahl’s law in the multicore era. J. Parallel Distrib.
Comput., Academic Press, Inc., Orlando, FL, USA, v. 70, n. 2, p. 183–188, feb 2010. ISSN
0743-7315. Disponı́vel em: <http://dx.doi.org/10.1016/j.jpdc.2009.05.002>.

SUN, X. H.; NI, L. M. Another view on parallel speedup. In: Proceedings
SUPERCOMPUTING ’90. 1990. p. 324–333.

TANG, C. et al. A scalable application placement controller for enterprise data centers. In: 16th
International World Wide Web Conference, WWW2007. 2007. p. 331–340.

74

TORRELLAS, J.; HENNESSY, J.; WEIL, T. Analysis of critical architectural and
programming parameters in a hierarchical. In: Proceedings of the 1990 ACM SIGMETRICS
Conference on Measurement and Modeling of Computer Systems. New York, NY,
USA: ACM, 1990. (SIGMETRICS ’90), p. 163–172. ISBN 0-89791-359-0. Disponı́vel em:
<http://doi.acm.org/10.1145/98457.98754>.

TRACK, E.; FORBES, N.; STRAWN, G. The end of moore’s law. Computing in Science
Engineering, v. 19, n. 2, p. 4–6, Mar 2017. ISSN 1521-9615.

UBUNTU-WIKI. stress-ng. 2008. Disponı́vel em: <https://wiki.ubuntu.com/Kernel/Reference/stress-
ng>.

WEAVER, V. M.; DONGARRA, J. Can hardware performance counters produce expected,
deterministic results. In: . Atlanta, GA: , 2010.

WIKI, P. Linux kernel profiling with perf. 2015. Disponı́vel em:
<https://perf.wiki.kernel.org/index.php/Tutorial>.

WULF, W. A.; MCKEE, S. A. Hitting the memory wall: Implications of the obvious.
SIGARCH Comput. Archit. News, ACM, New York, NY, USA, v. 23, n. 1, p. 20–24, mar.
1995. ISSN 0163-5964. Disponı́vel em: <http://doi.acm.org/10.1145/216585.216588>.

XU, D. et al. Providing fairness on shared-memory multiprocessors via process scheduling.
In: Proceedings of the 12th ACM SIGMETRICS/PERFORMANCE Joint International
Conference on Measurement and Modeling of Computer Systems. New York, NY, USA:
ACM, 2012. (SIGMETRICS ’12), p. 295–306. ISBN 978-1-4503-1097-0. Disponı́vel em:
<http://doi.acm.org/10.1145/2254756.2254792>.

YILMAZ, C. Using hardware performance counters for fault localization. v. 0, p. 87–92, August
2010.

ZAPARANUKS, D.; JOVIC, M.; HAUSWIRTH, M. Accuracy of
performance counter measurements. In: . Boston, Massachusetts,
USA: , 2009. (in Proc. of IEEE ISPASS), p. 23–32. Disponı́vel em:
<https://www.researchgate.net/publication/258340962 Accuracy of Performance Counter Measurements>.

