UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETRÔNICA CURSO SUPERIOR DE TECNOLOGIA EM SISTEMAS DE TELECOMUNICAÇÕES

> LIVIA MARUBAYASHI AMARI MARSHAL PARIZZOTO COLLI

REESTRUTURAÇÃO E OTIMIZAÇÃO DE UMA REDE DE SERVIDORES

TRABALHO DE CONCLUSÃO DE CURSO

CURITIBA 2012

LIVIA MARUBAYASHI AMARI MARSHAL PARIZZOTO COLLI

REESTRUTURAÇÃO E OTIMIZAÇÃO DE UMA REDE DE SERVIDORES

Trabalho de Conclusão de Curso de graduação, apresentado à disciplina de Trabalho de Diplomação, do Curso Superior de Tecnologia em Sistemas de Telecomunicações do Departamento Acadêmico de Eletrônica – DAELN – da Universidade Tecnológica Federal do Paraná – UTFPR, como requisito parcial para obtenção do título de Tecnólogo.

Orientador: Prof. Dr. Kleber Kendy Horikawa Nabas

CURITIBA 2012

LIVIA MARUBAYASHI AMARI

MARSHAL PARIZZOTO COLLI

REESTRUTURAÇÃO E OTIMIZAÇÃO DE UMA REDE DE SERVIDORES

Este trabalho de conclusão de curso foi apresentado no dia 28 de Setembro de 2012, como requisito parcial para obtenção do título de Tecnólogo em Sistemas de Telecomunicações, outorgado pela Universidade Tecnológica Federal do Paraná. Os alunos foram arguídos pela Banca Examinadora composta pelos professores abaixo assinados. Após deliberação, a Banca Examinadora considerou o trabalho aprovado.

Prof. Cézar Janeczko. Coordenador de Curso. Departamento Acadêmico de Eletrônica.

Prof. Décio Estevão do Nascimento.

Responsável pela Atividade de Trabalho de Conclusão de Curso. Departamento Acadêmico de Eletrônica.

BANCA EXAMINADORA

Prof. Mauricio Leal de Souza Ramos, ES

Prof. Dr. Kleber Kendy Horikawa Nabas Orientador

Prof. Lincoln Herbet Teixeira, MSc

AGRADECIMENTOS

A Deus.

Aos nossos pais e irmãos por tudo principalmente pelos incentivos e cobranças.

A todos os professores pelos conhecimentos transmitidos, em especial aos relacionados a Redes pois esse conhecimento foi fundamental para a elaboração deste trabalho e principalmente ao Professor Kleber Nabas pela paciência, orientação e apoio.

RESUMO

AMARI, Livia Marubayashi; COLLI, Marshal Parizzoto. **Reestruturação e Otimização de uma Rede de Servidores**. 2012. 44 f. Trabalho de Conclusão de Curso (Curso de Tecnologia em Sistemas de Telecomunicações), Departamento Acadêmico de Eletrônica, Universidade Tecnológica Federal do Paraná. Curitiba, 2012.

Este trabalho tem por objetivo a análise e organização da rede do Programa de Pós-graduação em Engenharia Elétrica e Informática Industrial (CPGEI) da Universidade Tecnológica Federal do Paraná (UTFPR) facilitando na resolução de problemas e sua estruturação. Entre os procedimentos a serem aplicados estão a virtualização dos servidores utilizando Linux e o *software Citrix XenServer* e a configuração dos serviços, o que otimiza o espaço físico e o hardware disponível. A identificação dos pontos de redes facilitando na resolução de problemas e auxiliando na organização da rede. O planejamento da distribuição de IPs utilizando *VLSM (Variable Length Subnet Mask)* o que possibilita um melhor aproveitando dos IPs disponíveis já que a Rede do CPGEI trabalha com IPs verdadeiros, além disso soluciona o problema da falta de IPs.

Palavras-chave: Análise. Organização. Configuração. Virtualização. Rede.

ABSTRACT

AMARI, Livia Marubayashi; COLLI, Marshal Parizzoto. **Restructuring and Optimization of a Network of Servers**. 2012. 44 p. Trabalho de Conclusão de Curso (Curso de Tecnologia em Sistemas de Telecomunicações), Departamento Acadêmico de Eletrônica, Universidade Tecnológica Federal do Paraná. Curitiba, 2012.

This monograph has the purpose of analysing and organizing the network of Graduate Program in Electrical Engineering and Industrial Informatics (CPGEI) in Federal Technological University of Parana (UTFPR) facilitating the resolution of problems and their structuring. The procedures applied use Linux based virtualization, Citrix XenServer software, and the configuration of services, which optimizes hardware resources. The monograph will also cover the identification of logical network spots, facilitating troubleshooting and helping network management, IP distribution using VLSM (Variable Length Subnet Mask) to allow better IP addresses utilization as CPGEI network uses real IPs, aside from helping the prevention of lacking IPs addresses.

Keywords: Analysing. Organizing. Configuration. Virtualization. Network.

LISTA DE FIGURAS

Figura 1 - Versões do XenServer	.22
Figura 2 - Tela inicial da instalação do XenServer	.23
Figura 3 - Termos de uso	.24
Figura 4 - Seleção do disco rígido onde serão instalados os arquivos	.24
Figura 5 - Seleção do local de cópia dos arquivos de instalação	.25
Figura 6 - Seleção de pacotes adicionais	.25
Figura 7 - Verificação da integridade do CD	.26
Figura 8 - Escolha da senha para acessar o XenServer	.26
Figura 9 - Escolha do IP, Sub-rede e gateway da rede	.27
Figura 10 – Configuração do nome do servidor e do DNS	.27
Figura 11 - Escolha do servidor de sincronização da região da hora	.28
Figura 12 - Iniciar a instalação do XenServer	.28
Figura 13 - Instalação do XenServer concluída	.29
Figura 14 - Tela inicial do XenServer	.29
Figura 15 - Escolha do template da nova máquina virtual	.31
Figura 16 - Escolha do método de instalação da ISO	.31
Figura 17 - Escolha da configuração de hardware da VM	.32
Figura 18 - Criação do disco virtual	.32
Figura 19 - Escolha da placa de rede virtual e finalização da instalação	da
Máquina Virtual	.33
Figura 20 - IPs	.40
Figura 21 - Divisão em Sub-Redes e Computadores	.41
Figura 22 - Divisão em Sub-Redes	.41
Figura 23 – Exemplo de Sub-rede	.42
Figura 24 - Rede de Servidores Antiga	.43
Figura 25 – Nova Rede de Servidores	.44

LISTA DE SIGLAS

CPGEI	Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial
DAELN	Departamento Acadêmico de Eletrônica
DHCP	Dynamic Host Configuration Protocol
DNS	Domain Name System
IP	Internet Protocol
NTP	Network Time Protocol
SSH	Secure Shell
UTFPR	Universidade Tecnológica Federal do Paraná
VLSM	Variable Length Subnet Mask
VM	Virtual Machine

SUMÁRIO

1 INTRODUÇÃO	10
1.1 PROBLEMA	11
1.2 JUSTIFICATIVA	11
1.3 OBJETIVOS	12
1.3.1 OBJETIVO GERAL	12
1.3.2 OBJETIVOS ESPECÍFICOS	12
1.4 MÉTODOS DE PESQUISA	13
2 LINUX	14
2.1 Histórico do Linux	14
2.2 Distribuições Linux	15
3 SERVIDORES – Serviços de Rede	17
3.1 DHCP	19
3.2 DNS	19
4 CITRIX XenServer	20
4.1 Especificações	20
4.1.1 Pré-Requisitos (Hardware)	21
4.1.2 Compatibilidade	22
4.2 Versões	22
4.3 Instalação do Sistema Operacional	24
4.4 Instalação das Máquinas Virtuais	30
4.4.1 Instalando uma Máquina Virtual	31
4.5.1 Configuração DHCP	34
4.5.2 Configuração DNS	35
4.5.3 Configuração SSH	36
4.6 Vantagens	37
4.7 Características	37
4.7.1 Snapshots	38
4.7.2 Escalabilidade	38
4.7.3 Gerenciamento remoto	38
4.7.4 Incorporação de Software	39
5 VLSM	40
6 RESULTADOS E ANÁLISES	44
7 CONCLUSÃO	46
REFERÊNCIAS	47

1 INTRODUÇÃO

O acesso a tecnologia tem se tornado cada vez mais fácil. Com o aumento da demanda, ao projetar uma rede é importante levar em conta fatores que futuramente farão diferença como escalabilidade, organização e planejamento. A Rede deve não somente atender suas necessidades presentes mas também ser capaz de atender futuras demandas. Atualmente existem técnicas simples que podem otimizar a Rede e torná-la mais segura sem agregar altos custos.

Com a crescente informatização de processos a tecnologia está cada vez mais presente em nosso dia-a-dia. Em geral simples procedimentos cotidianos antigamente executados sem a utilização de computadores e/ou a informatização atualmente não são mais realizados sem os mesmos.

Redes de computadores se tornaram tão importantes tanto em ambientes corporativos como em ambientes domésticos o que torna necessária a sua otimização e seu melhoramento contínuo.

Na rede do Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial (CPGEI) da Universidade Tecnológica do Paraná (UTFPR) isso não é diferente, seu funcionamento é importante para o desenvolvimento dos trabalhos ali realizados influenciando diretamente no desempenho das atividades do departamento.

Tendo conhecimento da importância da Tecnologia da Informação, pretende-se organizar e aplicar alguns conceitos para a otimização da rede, afim de minimizar e/ou solucionar alguns problemas existentes e também facilitar a resolução de futuros problemas, visando um melhor desempenho.

1.1 PROBLEMA

Em redes como a do CPGEI, é necessário possuir um conhecimento sobre sua organização, distribuição e funcionamento para melhorando seu desempenho. Realizar o mapeamento da rede, saber onde cada ponto se conecta no *switch* pode diminuir o tempo de resolução de problemas.

Atualmente não há uma documentação com dados da rede que possam ser consultados em uma eventual situação crítica para resolução de um problema. Isso dificulta e atrasa o trabalho de atendimento e suporte aos usuários da rede.

Outro fator preocupante é a quantidade de servidores existentes para gerenciar a rede assim como onde os servidores estão atualmente alocados, além de um pouco antigos, as peças para reposição são difíceis de serem encontradas e também quando encontradas são caras. Não há *backup* para recuperação de configurações e dados. Virtualizando os servidores com o *Citrix XenServer*, ameniza e/ou soluciona a falta de *hardware* adequado para servidores e facilita o gerenciamento dos mesmos.

Por fim, a falta de IPs pode se tornar a ser um problema em uma Rede como a do CPGEI. Usamos uma máscara de rede C, possuindo apenas 254 IPs livres, sendo alguns reservados para a secretaria, servidores, *switches* e impressoras. Planejar e calcular uma rede utilizando o Variable Length Subnet Mask (VLSM), separando as redes em sub-redes por laboratório / professores / secretaria e administração, pode não somente otimizar o uso de IPs mas também tornar a Rede mais organizada e segura.

1.2 JUSTIFICATIVA

A organização da rede tornará a resolução de problemas mais rápida e fácil além de melhorar seu desempenho.

Para qualquer organização ou instituição a demora na resolução de problemas relacionados à Rede pode significar perda, podendo ela ser financeira ou não.

A aplicação deste projeto pode solucionar alguns problemas atuais da Rede do CPGEI como a falta de informação para a resolução de problemas e também na identificação de anomalias (ataques externos, segurança, etc.), a insuficiência de IPs e a dificuldade na Manutenção dos Servidores.

1.3 OBJETIVOS

1.3.1 OBJETIVO GERAL

Realizar a virtualização dos servidores como Dynamic Host Configuration Protocol (DHCP), Domain Name System (DNS) da rede do CPGEI através da instalação do software Citrix XenServer.

1.3.2 OBJETIVOS ESPECÍFICOS

- Configurar a virtualização dos Servidores e Serviços;
- Mapear os pontos de rede;
- Ilustrar, documentar a rede do CPGEI;
- Calcular, organizar e distribuir as faixas de IPs através do VLSM.

1.4 MÉTODOS DE PESQUISA

O mapeamento da Rede do CPGEI será realizado utilizando o *pentascanner* para encontrar os pontos de rede das salas dos professores, secretaria e laboratórios. Após a conclusão do mapeamento, os pontos de rede serão analisados bem como as instalações para que a estruturação da rede seja planejada com o VLSM e também a virtualização com o *Citrix XenServer* e suas devidas máquinas virtuais alocando os serviços antes distribuídos pelos vários servidores.

2 LINUX

2.1 Histórico do Linux

Conforme Nemeth (2004), o Linux se originou em 1991 como um projeto pessoal de Linus Torvalds, um universitário finlandês. Ele concebeu o projeto originalmente como uma modesta ramificação do Minix, um sistema operacional modelo escrito por Andrew S. Tanenbaum. Entretanto, o Linux gerou grande interesse no mundo como um todo, e o kernel rapidamente assumiu vida própria. Explorando o poder do desenvolvimento corporativo, Linus foi capaz de empreender uma tarefa muito ambiciosa. O kernel versão 1.0 foi lançado em 1994.

"O sistema *Linux* tem sua origem no *Unix*, um sistema operacional multitarefa e multiusuário que tem a vantagem de rodar em uma grande variedade de computadores" (HISTORICO LINUX, 2006).

"Ele é dividido em 2 partes, a 1ª é o *kernel*, que é o núcleo do sistema responsável pela comunicação com o hardware e o 2ª são os programas e serviços que dependem do kernel para interação" (HISTORICO LINUX, 2006). No quadro 1 é possível observar o histórico da evolução do Linux.

		(continua)
Ano)	Cronologia
1965		A <i>Bell Telephone Labs</i> da <i>AT&T</i> , juntamente com a <i>General Electric</i> e o projeto MAC do <i>MIT</i> (Massachusetts Institute of Technology), desenvolvem o sistema operacional <i>Multics</i> .
1973		O Unix é reescrito em linguagem C pelo próprio criador da linguagem, Dennis Ritchie. O uso do Unix dentro da AT&T cresceu tanto que foi criado um grupo de suporte interno para o sistema, que cediam cópias do código fonte para fins educacionais em universidades.
Entre 1982	1977	A AT&T combinam várias versões do Unix de Ritchie e Thompsom em um único sistema chamado de Unix System III.

(aantinua)

15

	(conclusão)
Ano	Cronologia
1978	A Universidade de Berkeley (Califórnia), partindo de uma versão do Unix anterior ao System III, desenvolvia seu próprio Unix chamado de <i>BSD</i> (Berkeley Systems Division) e em 1978 lança uma versão para computadores <i>VAX</i> .
1983	A AT&T percebendo o potencial comercial do Unix, iniciou a venda do <i>System V</i> comprometendo-se a dar suporte aos seus usuários. <i>Richard Stallman</i> cientista do MIT lança o projeto <i>GNU</i> (GNU's not Unix) que tinha a pretensão de criar um sistema operacional do tipo Unix gratuito, em função do desagravo de muitos programadores que haviam contribuído para o aprimoramento do Unix e consideravam injustos que a AT&T e outros se apropriassem do fruto deste trabalho.
1984	O projeto GNU é iniciado oficialmente.
1989	Um estudante finlandês chamado <i>Linus Torvalds</i> inicia um processo pessoal de aprimoramento do Kernel do <i>Minix</i> um sistema operacional do tipo Unix escrito por <i>Andrew Tannenbaum</i> , chamando esta vertente de Linux como abreviação de Linus's Minix.
1991	Em 5 de outubro deste ano, Linus Torvalds anuncia a primeira versão oficial do Linux.
1992	No início deste ano, o Linux se integra a GNU com o objetivo de produzir um sistema operacional completo.

Quadro 1 – Histórico Linux Fonte: Histórico Linux (2006).

2.2 Distribuições Linux

Segundo Nemeth (2004), o projeto do Linux difere de outras variações do UNIX no aspecto em que ele define somente um kernel de sistema operacional. O kernel tem de ser empacotado juntamente com comandos, *daemons* e outros *softwares* para formar um sistema operacional completo e utilizável – em termos de Linux, uma "distribuição". Todas as distribuições do

Linux compartilham da mesma linguagem de kernel, porém os materiais auxiliares que vêm junto com este kernel podem variar razoavelmente entre estas distribuições.

O quadro 2 mostra algumas características das distribuições mais usadas:

	(continua)
Distribuição	Descrição
Ubuntu	Ele é baseado no Debian Sid (a eterna versão "instável"), incorporando melhorias e correções, de forma a proporcionar um sistema bastante estável e fácil de usar. O Ubuntu utiliza o Gnome como interface padrão, mas é possível instalar os pacotes do KDE através do metapacote "kubuntu-desktop", que pode ser instalado através do Synaptic (o gerenciador de pacotes padrão) ou através do apt-get.
Slackware	Podemos dizer que o Slackware é uma das mais famosas distribuições. O seu criador segue uma filosofia bem rígida: mantê-la o mais parecido com o UNIX possível. As prioridades da distribuição são: estabilidade e simplicidade, e é isso que a torna uma das mais populares. Possui uma interface de instalação bem amigável, além de uma série de scripts que auxiliam na instalação e desinstalação de pacotes, o que a torna uma alternativa tanto para usuários iniciantes como os já experientes.
Debian	O Debian GNU/Linux é uma distribuição que segue toda filosofia do projeto GNU, oficialmente contendo apenas pacotes com programas de código- fonte livre, feito por voluntários espalhados pelo mundo, e sem fins lucrativos. Apesar de atualmente ser usado com o kernel Linux, ele se intitula como um sistema operacional que pode usar outros kernels como o Hurd. O Debian conta com mais de 3.950 pacotes, que facilitam e muito a instalação e gerenciamento de programas no sistema. Além do mais, ele é o pai do apt, a ferramenta de atualização de pacotes automática, feita pela internet. Mas há quem diga que o Debian ainda tem muito que melhorar, como a simplificação do processo de instalação.
SuSE	No início, a SuSE baseava sua distribuição no Slackware, mas logo depois tomou rumo diferente, começando a implementar os pacotes com o RPM, e fazendo mudanças na forma de organização do sistema. Criaram também uma ferramenta de configuração do sistema chamada YaST, que facilita mexer nas configurações da Distribuição

(conclusão)

Distribuição	Descrição
Mandriva	Tem uma ótima suíte de administração do sistema (DrakConf), excelente implementação da edição para 64-bits e extenso suporte à internacionalização. Adotou o modelo de desenvolvimento aberto muito antes de outras distribuições populares, com intensivos testes nas fases beta e freqüentes lançamentos estáveis.

Quadro 2 – Informações Sobre as Distribuições Linux Fonte: Distribuições Linux (2007).

3 SERVIDORES – Serviços de Rede

Segundo Morimoto (2005), um servidor é uma máquina que fica o tempo todo ligada, sempre fazendo a mesma coisa. Existem vários tipos de servidores, como servidores web, servidores de arquivos, servidores de impressão, etc. O Linux vem crescendo rapidamente em todas estas áreas. Quase 70% dos servidores web do mundo usam o Apache, a maioria dele rodando Linux. O Samba é mais rápido e estável que o Windows como servidor de arquivos e impressores e, graças a isso, continua crescendo rapidamente. Quase todos os servidores DNS da internet utilizam Bind, rodando sobre o Linux ou sobre alguma versão Unix.Quando se fala em compartilhar a conexão com a web ou configurar um firewall, novamente o Linux é o sistema mais usado e, quando pesquisamos sobre um sistema robusto para rodar um banco de dados como o Oracle, MySQL ou Postgre SQL, novamente o Linux é o mais comentado e recomendado. Ou seja, utilizar o Linux em servidores é simplesmente natural. O sistema é feito para ser configurado uma vez e depois ficar ativo durante anos, sem precisar de manutenção.

No livro Morimoto (2005), também afirma que de início, configurar um servidor Linux pode parecer complicado, pois existem muitas opções de distribuições e ferramentas de configuração disponíveis. Praticamente qualquer distribuição Linux pode ser usada como servidor, pois os serviços utilizados, como o Apache, Bind, MySQL, etc. serão os mesmos mudando apenas o processo de instalação. Mas as distribuições mais usadas são o Debian, o Fedora (ou Red Hat, para quem precisa de suporte comercial), SuSE e Mandriva (Mandrake). Cada uma delas oferece um conjunto diferente de utilitários de configuração, junto com utilitários "genéricos, como o Webmin e o Swat, que podem ser usados em qualquer uma.

"DHCP (Dynamic Host Configuration Protocol) permite que um administrador defina dinamicamente características aos clientes que se conectem a rede" (MENDONÇA, 2004).

"DHCP (Dynamic Host Configuration Protocol) é o protocolo usado para solicitar e designar um endereço IP, gateway padrão e endereço de servidor DNS a um host da rede" (FILIPPETTI, 2006).

3.2 DNS

"O DNS (Domain Name System) – Sistema de Nomes de Domínios – é de fundamental importância em uma rede. Ele é responsável por informar o nome ou o número IP dos hosts do domínio" (MENDONÇA, 2004).

"Sistema de resolução de nome. Converte nomes de domínios (nome de host de computador) em endereços IP" (FILIPPETTI, 2006).

4 CITRIX XenServer

O Citrix XenServer é um sistema operacional que tem como principal função gerenciar máquinas virtuais Linux e Windows, servidores ou não. Assim com um mesmo *hardware* é possível alocar vários sistemas operacionais em uma máquina só, sem que haja interferências de uma máquina na outra pelo *software* desenvolvido pela Citrix chamado de *hypervisor.*

Assim como o *Citrix XenServer* há mais *softwares* no mercado que realizam a mesma função mas a escolha dele é que por motivos educacionais as licenças são gratuitas para gerenciar um número pequeno de servidores, apenas necessitando a renovação em um intervalo de tempo.

Ele está sendo amplamente utilizado em empresas que visam agilidade e performance quando há uma grande demanda de acessos ou quando há a necessidade de realocação do servidor para outro *host* ou lugar.

As máquinas virtuais são servidores emulados dentro de um servidor de virtualização (*Citrix XenServer*), a principal diferença é que em um servidor de virtualização como o nome já diz, múltiplas máquinas virtuais são executadas em um mesmo *hardware*, o que não é possível em um servidor comum, onde apenas é possível configurar um servidor a cada vez.

4.1 Especificações

O *Citrix XenServer* necessita como todo o software de uma máquina que possa suportar e garantir o perfeito funcionamento do mesmo. Assim se faz necessário de uma configuração de *hardware* mínima.

Da mesma forma, há uma lista de sistemas operacionais suportados pelo software.

4.1.1 Pré-Requisitos (Hardware)

Para a instalação do Citrix XenServer (servidor de virtualização do Citrix), necessita-se do seguinte hardware (CITRIX, 2012):

- Processador 64-bit x86;
- CPU: mínimo de 1.5 GHz, recomendado 2 GHz ou superior;
- Tecnologia Intel® VT or AMD-V[™] necessária para suportar várias maquinas virtuais;
- Memória física : 2GB até 1TB;
- Até 64 processadores lógicos;
- Placa de rede de 100Mb/s ou superior;
- Até 16 placas de redes físicas (CITRIX, 2012).

Para a instalação do Citrix XenClient necessita-se do seguinte hardware (CITRIX, 2012):

- Processador x86
- Microsoft® Windows® 2000, Windows XP, Windows Server® 2003, Windows Server 2008, Windows Vista, or Windows 7 (todas as ediçoes)
- .NET Framework 2.0 SP1 ou posterior;
- Clock de CPU: mínimo de 750 MHz, recomendado 1 GHz ou superior;
- Memória física: mínimo de 512 MB;
- Espaço em disco: mínimo de 100 MB;
- Placa de rede (CITRIX, 2012).

4.1.2 Compatibilidade

Os sistemas operacionais que são elegíveis para serem instalados no XenServer são os seguintes(CITRIX, 2012):

- Microsoft Windows 64-bit: Windows Server 2008 (SP1, SP2, R2, R2 SP1); Windows Server 2003 Standard, Enterprise, Datacenter Edition (SP2), Windows 7 (SP1) (CITRIX, 2012);
- Microsoft Windows 32-bit: Windows Server 2008 (SP1, SP2); Windows Server 2003 Web, Standard, Enterprise, Datacenter (SP0, SP1, SP2, R2); Windows Small Business Server (2003 SP1, SP2, R2); Windows XP (SP2, SP3); Windows 2000 SP4; Windows Vista (original and SP1); Windows 7 (SP1) (CITRIX, 2012);
- Linux 64-bit: Red Hat Enterprise Linux (5.0, 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 6.0); CentOS (5.0, 5.1, 5.2, 5.3, 5.4, 5.5, 5.6); Oracle® Enterprise Linux (5.0, 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 6.0); Novell SUSE Enterprise Linux (10 SP1, 10 SP2, 10 SP3, 10 SP4, 11, 11 SP1); Debian Squeeze 6.0, Ubuntu Lucid Lynx 10.04 (CITRIX, 2012);
- Linux 32-bit: Red Hat Enterprise Linux (3.6, 3.7, 3.8, 4.5, 4.6, 4.7, 5.0, 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 6.0); CentOS (4.5, 4.6, 4.7, 5.0, 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 6.0); Oracle Enterprise Linux (5.0, 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 6.0); Novell SUSE Linux Enterprise Server (9 SP1, 9 SP2, 9 SP3, 9 SP4, 10 SP1, 10 SP2, 10 SP3, 10 SP4, 11, 11 SP1); Debian Lenny (5.0); Debian Squeeze 6.0, Ubuntu Lucid Lynx 10.04 (CITRIX, 2012).

4.2 Versões

A Citrix oferece quatro versões de software: *Free, Advanced, Enterprise* e *Platinum* conforme pode ser analisado na figura 1. A primeira, como o nome já diz, é a versão gratuita onde os recursos mais essenciais estão disponíveis como, por exemplo, virtualização das máquinas virtuais, ferramenta de conversão do *software* de uma máquina física para uma virtual, permite a criação de *snapshots* e também a reversão entre outros.

Na versão *Advanced*, há a inclusão de recursos como otimização de memória, alerta e relatório de desempenho do sistema, automatização de máquinas virtuais para proteção de recuperação. Na versão *Enterprise* há cache inteligente, gerenciamento de energia do servidor, equalização e gerenciamento de carga do sistema, administração baseadas em funções.

XenServer Features				
Free Virtual Infrastructure	Free	Advanced	Enterprise	Platinum
XenServer Hypervisor	~	~	~	~
Conversion Tools	~	~	~	~
Management integration with Microsoft System Center VMM	~	~	~	~
Resilient distributed management architecture	~	~	~	~
VM disk snapshot and revert	~	~	~	~
XenCenter Management Console	~	~	~	~
XenMotion Live Migration	~	~	~	~
Advanced Management and Automation				
Automated VM protection and recovery[1]		~	~	~
Distributed virtual switching		~	~	~
Heterogeneous Pools		~	~	~
High Availability		~	~	~
Memory Optimization		~	~	~
Performance alerting and reporting		~	~	~
Dynamic workload balancing			~	~
GPU pass-thru			~	~
Host power management			~	~
IntelliCache			~	~
Live memory snapshot and revert			~	~
Provisioning Services (virtual)			~	~
Role-based administration			~	~
StorageLink			~	~
Web management console with delegatedadmin			~	~
Provisioning Services (physical)				~
Site Recovery				~
Cost per server	Free	\$1,000	\$2,500	\$5,000

Figura 1 – Versões do *XenServer* Fonte: Citrix (2012). E por fim, na versão *Platinum* há provisionamento de serviços (fisicamente) e recuperação de site.

A versão *free* foi a utilizada neste projeto por não envolver custos adicionais além de oferecer todas as ferramentas necessárias para o desenvolvimento do projeto.

4.3 Instalação do Sistema Operacional

Pode-se dizer que o projeto tem início com a instalação do Citrix. A instalação é bem intuitiva e simples de um modo geral muito parecida com a instalação de um Linux. Para instalar o sistema operacional, o download da ISO deve ser realizado no site do Citrix e gravado em um CD virgem. A versão utilizada foi a 5.5.

Possuindo o hardware necessário pronto, deve-se prosseguir para a instalação. Iniciando pelo *boot* da ISO gravada. Há duas opções: Padrão e Avançada, como mostra na figura 2. A opção padrão é a selecionada por não necessitar de opções avançadas. Clique em instalar (*Install*) e será solicitado para que você tenha certeza de que fez o backup dos arquivos do HD antes de continuar com a instalação. Selecione "Ok" e pressione a tecla "Enter".

Figura 2– Tela Inicial da Instalação do XenServer Fonte: Autoria Própria.

Aceite os termos de uso, figura 3:

No processo de instalação poderá aparecer uma mensagem de erro informando que a virtualização de *hardware* não está ativada e que não é possível iniciar máquinas virtuais. Apenas ignore a mensagem.

Selecione o disco desejado, como mostra na figura 4. Para que sejam instalados os arquivos da instalação, neste caso foi selecionado um disco virtual.

<u>~</u>	Virtua	1 Machine Stora	ge 🔚	78
Which dis One stora disks. Yi to create	ks would you like ge repository wil ou can choose not an advanced conf	to use for Vir l be created th to prepare any iguration after	tual Machine st at spans the se storage if you installation.	orage? lected wish
	[*] sda - 20 GB	EUMware, UMware	Virtual SI	
	and the second se			
[] Enable	e thin provisioni	ng (Optimized s	torage for XenD	esktop)
[] Enabli	e thin provisioni	ng (Optimized s	torage for XenD	esktop)
[] Enabli	e thin provisioni	ng (Optimized s	torage for XenD	esktop)

Figura 4 – Seleção do Disco Rigido Onde Serão Instalados os Arquivos. Fonte: Autoria Própria.

No próximo passo, figura 5, escolha de onde os arquivos de instalação

serão instalados. Neste caso a escolha foi local, porém há a possibilidade de escolher outras fontes caso haja essa necessidade.

elcome to XenServer - Version 6.0.0 (#50762p) Copyright (c) 2011 Citrix Systems, Inc.
Select Installation Source
Please select the type of source you would like to use for this installation
Local media HTTP or FTP NFS
Ok Back
<tab>/<alt-tab> between elements </alt-tab></tab>
Figura 5 – Seleção do Local de Cópia dos Arquivos de Instalação.
Fonte: Autoria Própria.

Quando questionado sobre fontes adicionais como mostra na figura 6, escolha "No", pois são necessários apenas os arquivos do CD. Se você quiser, poderá testar o CD de instalação como mostra na figura 6, porém não é necessário uma vez que atualmente os aplicativos de gravação já realizam o teste automático. Se esse for o seu caso, ignore o teste como mostra a figura 7.

Figura 6 – Seleção de Pacotes Adicionais Fonte: Autoria Própria.

<tab>/<alt-tab> between elements <f12> next screen</f12></alt-tab></tab>
Figura 7 – Verificação da Integridade do CD Fonte: Autoria Própria

Na figura 8, é solicitado uma senha. Esta senha será necessária para se ter o acesso ao *XenServer* e poder comandá-lo remotamente através do *XenClient* ou então na própria máquina física em uma eventual necessidade. Deste modo, escolha uma senha segura para acessar o servidor e guarde-a bem pois será necessária mais tarde na configuração remota.

Figura 8 – Escolha da Senha para Acessar o XenServer Fonte: Autoria Própria.

Na figura 9, devemos escolher um IP para acesso ao servidor. Como ele será um servidor escolha um IP (que não esteja sendo usado), sua respectiva sub-rede e também qual será o *gateway* da rede.

Welcome to XenServer - Version 6.0.0 (#50762p) Copyright (c) 2011 Citrix Systems, Inc.
Networking
Please specify how networking should be configured for the management interface on this host. (a) Automatic configuration (DHCP) (b) Static configuration: IP Address: Subnet mask: Gatemay: Ok Back
<pre></pre>
Figura 9 – Escolha do IP, Sub-rede e Gateway da Rede
Fonte: Autoria Própria.

É possível alterar o nome do servidor assim como definir o DNS como mostra na figura 10.

loome to XenServer - Version 6.0.0 (#50762m)
opyright (c) 2 Hostname and DNS Configuration
Hostname Configuration
() Hutomatically set Via DHCP
(*) manually specify:
хепзегчег-агимациу
DNS Configuration
(*) Automatically set via DHCP
() Manually specify:
DNS Server 1:
DNS Server 2:
DNS Server 3:
Ok
ZTab/ZZ014_Tab/ between elements
Figura 10 – Configuração do Nome do Servidor e do DNS
Fonte: Autoria Própria.

Na figura 11, escolha a região do servidor para sincronizar o fuso horário e por fim, na figura 10, escolha utilizar o Network Time Protocol (NTP) automático do servidor DHCP.

Inicie a instalação.

Î	NTP Configuration
	Please specify details of the NTP servers you wish to
	use (e.g. pool.ntp.org)?
	[] NTP is configured by my DHCP server
	NTP Server 1:
	NTP Server 2:
	NTP Server 3:
	Ok Back
STATE	t-Tah) botugon plowents ' / (F12) next sere
b> / /01	t-Tab) hetween elements !

Por fim, como mostra na figura 12, inicie a instalação no "*Install XenServer*". O tempo de instalação dependerá do *hardware* escolhido e também da velocidade do disco rígido.

	Confirm Installation We have collected all the information require to install XenServer. Please confirm you wish to proceed: all dat on disk sda will be destroyed! Install XenServer Back	ired ta
(Tab>/ <alt-t< td=""><td>b> between elements ¦</td><td>(F12) next scree</td></alt-t<>	b> between elements ¦	(F12) next scree

Figura 12 – Iniciar a Instalação do XenServer Fonte: Autoria Própria.

Finalizada a instalação, exibirá uma imagem (figura 13), informando que a instalação foi concluída. Clique em "Ok" e o computador será reiniciado.

Após a reinicialização, será exibida a figura 14, informando a versão da *XenServer* e as informações de rede. É possível navegar nos menus e verificar as máquinas virtuais, configurações de rede, gerenciar máquinas virtuais entre outras funções.

nServer 6.0 2	3:17:11	xenserver-aru
Con	figuration ———	
Customize System	UMware, Inc. UMware Virtua	l Platform
<mark>Status Display</mark> Network and Management Interface Authentication	XenServer 6.0	.0-50762p
Virtual Machines Disks and Storage Renositories	Management Net	twork Parameters
Resource Pool Configuration	Device	eth0
Hardware and BIOS Information	IP address	192.168.1.69
Keuboard and Timezone	Netmask	255.255.255.0
Remote Service Configuration Backup, Restore and Update	Gateway	192.168.1.1
Technical Support	Press <enter></enter>	to display the SSL ke
Reboot or Shutdown	fingerprints H	for this host
Local Command Shell		
<pre><enter> OK <up down=""> Select</up></enter></pre>	<enter> Finger</enter>	rprints <f5></f5> Refresh

Figura 14 – Tela Inicial do XenServer Fonte: Autoria Própria.

4.4 Instalação das Máquinas Virtuais

Neste tópico, as máquinas virtuais necessárias serão configuradas para a implementação da nova topologia de rede. A princípio, pode-se optar

por deixar todos os serviços em um mesmo servidor, pois há esta possibilidade. Entretanto optou-se por segregar as funções devido a facilidades oferecidas de recuperação e backup. Por isso, foram criadas três máquinas virtuais a fim de dispor os serviços de forma que a rede fique de certo modo disponível, ou seja, caso seja necessário realizar o reparo de um disco ou de uma configuração que foi mal sucedida, apenas aquele serviço seja impactado. Vale lembrar que dependendo do serviço é inevitável que a rede continue funcionando, como por exemplo se um firewall for comprometido.

4.4.1 Instalando uma Máquina Virtual

Para iniciar o processo, um aplicativo gerenciador do *XenServer* deve ser instalado, o *XenCenter*. Esta será a principal ferramenta para realizar quase todas as operações com o servidor de virtualização. O XenCenter roda em Windows apenas, assim deve-se instalá-lo em uma máquina de monitoramento que esteja com o Windows instalado. Uma vez instalado, conecte ao *XenServer* pelo IP configurado na instalação do software utilizando o botão "*Add New Server*". Na janela que se abre digite o IP do servidor e a senha utilizada na instalação. Com isso o programa irá sincronizar com a aplicação e irá mostrar uma série de informações relacionadas ao servidor conectado: uso de CPU, uso de memória, *logs* de atividades das máquinas virtuais entre outros.

No menu "*VM*" e depois "*New VM*" como mostra a figura 16, selecione o modelo de configuração que será utilizado. Os modelos são limitados, então deve-se escolher "*Other install media*" e fazer uso do cd de instalação do Linux Server 9.10, escolhido e usado neste projeto. Ainda que o modelo esteja na lista de opções, será necessário o uso do CD/DVD de instalação do sistema operacional desejado pois o *XenCenter* não provê o *download* automático de cada versão.

Na figura 15 pode-se escolher a instalação a partir do CD/DVD de

instalação ou então por um repositório de ISOs. Foi testado as duas opções, embora a opção de instalar pelo CD/DVD é a mais simples e foi usada.

- mprace	Search	Q		
Name	Name	Category	*	Template details
	SUSE Linux Enterprise Server 11 (32-bit)	SUSE		Template which allows VM
ome server	SUSE Linux Enterprise Server 11 (64-bit)	SUSE		installation from install media
20 & Memory	SUSE Linux Enterprise Server 11 SP1 (32-bit)	SUSE		
orage	SUSE Linux Enterprise Server 11 SP1 (64-bit)	SUSE		
etworking	🖸 Ubuntu Lucid Lynx 10.04 (32-bit)	Ubuntu		
nish	🖸 Ubuntu Lucid Lynx 10.04 (64-bit)	Ubuntu		
	🖸 Ubuntu Maverick Meerkat 10.10 (32-bit) (ex	Ubuntu		
	Ubuntu Maverick Meerkat 10.10 (64-bit) (ex	Ubuntu		
	C Other install media	Misc		
	Solaris 10 (experimental)	Misc	E.	
	Xen API SDK	Misc	-	

Figura 15– Escolha do *Templat*e da Nova Máquina Virtual Fonte: Autoria Própria.

Locate the opera	ing system installation media
Template Name	Select the installation method for the operating system software you want to install on the new VM.
Installation Media	Install from ISO library or DVD drive:
Home Server CPU & Memory	DVD drive 0 on xenserver-anvwagdg
Storage	Boot from network
Networking	
Finish	
CITRIX'	

Figura 16 – Escolha do Método de Instalação da ISO Fonte: Autoria Própria.

Na figura 17, escolha quantos processadores e memória virtuais cada máquina virtual irá utilizar. É possível alterar estas configurações posteriormente com a máquina virtual desligada.

Allocate processo	r and memory resources	(
Femplate Name Installation Media Jome Server CPU & Memory Storage Networking Sinish	Specify the number of virtual CPUs and the amount of memory that will be initially allocated to t virtual machine. Number of vCPUs: 1 Memory: 256 MB	he new
citrix.		

Figura 17 – Escolha da Configuração de Hardware da VM Fonte: Autoria Própria.

O próximo passo é criar um disco virtual que será usado pela máquina virtual como mostra a figura 18. Crie um disco com um tamanho suficientemente bom para guardar logs e configurações do sistema.

Template Name Installation Media Home Server	The virtual machine template you selected earlier provides the properties of these virtual disks, and add more disks if r Alternatively, you can select the second option below to cr network and does not use any virtual disks. When you have finished configuring disks for the new virtu	the virtual disks list equired. eate a diskless VM t ual machine click N	ed below. You hat can be bo	i can change oted from the
Storage	step.			
Networking	Use these virtual disks:	Size	Shared	Add
Finish	Location			
Finish	Cocalistorage on xenserver-anwwagdg	5 GB	False	Delete
Finish	Clocal storage on xenserver-anwwagdg	5 GB	False	Delete Propertie
Finish	Cocal storage on xenserver-anwwagdg Use storage-level fast disk clone	.5 GB	False	Delete
Finish	Local storage on xenserver-anwwagdg	5 GB	False	P

Figura 18 – Criação do Disco Virtual Fonte: Autoria Própria.

Por fim, escolha o MAC-Address automático como exemplificado na figura 19 e finalize a instalação.

Template Name Installation Media	The virtual machine template you have selected provides the virtual network interfaces li can configure or delete the default virtual network interfaces here, and add more if requir Virtual network interfaces on Linux	sted below. You red.
Home Server	MAC Network	Add
torage	📩 <autogenerated mac=""> Network 0</autogenerated>	Delete
Networking		Propertie

Figura 19 – Escolha da Placa de Rede Virtual e Finalização da Instalação da Máquina Virtual. Fonto: Autoria Bráncia

Fonte: Autoria Própria.

Nesse ponto, a instalação irá progredir como uma instalação de um sistema operacional normal e aparecerá um sub-menu no servidor principal. Ao fim da instalação terá apenas uma máquina virtual instalada no servidor, porém é necessário neste caso de três máquinas, então há duas opções: clonar a já existente e realizar os ajustes necessários para fazer a nova ou instalar tudo de novo como um novo servidor. Foi utilizado o segundo método para este projeto.

4.5.1 Configuração DHCP

A configuração do DHCP será simples, pois a estrutura da rede se manterá a mesma. Portanto, caso o servidor da rede antiga seja Linux, bastaria copiar as configurações do servidor para este novo.

Como será configurado um servidor novo, será iniciada a configuração do zero. Assim, é necessário baixar os pacotes do DHCP com o comando:

Ele irá realizar a instalação automaticamente, assim antes de começar a configuração, sempre faça uma cópia dos arquivos, caso alguma configuração dê errado.

Vá no diretório /etc/dhcp3 e execute o comando abaixo para realizar o backup do arquivo de configuração.

mv dhcpd.conf dhcpd.conf.old

Depois modifique a configuração do DHCP para utilizar no servidor. Abra o arquivo "*dhcpd.conf*".

È necessário então, conferir em qual placa de rede o serviço irá verificar. Veja qual é o IP da máquina e também qual é a interface que está sendo usada, utilizando o comando *ifconfig.* Altere no arquivo /*etc/default/dhcp3-server* onde aparecer "*INTERFACES*".

Por fim reinicie o serviço ele será então carregado com as novas configurações.

4.5.2 Configuração DNS

Na configuração do DNS, foi necessário criar as zonas que determinaram a configuração do domínio, que no caso foi criado domínio CPGEI. Assim, após a instalação do Bind pelo apt-get, Na pasta /var/named edite o arquivo named.conf.

Após a criação da zona, crie o arquivo correspondente a configuração da mesma para que esta funcione corretamente. Nele estão as informações referentes aos domínios presentes na rede. Assim foram apenas copiadas as informações já existentes. Entretanto, para que seja concluída completamente a configuração, é necessária a criação de um arquivo para que caso o usuário digite o IP do domínio, no caso de IP externos que é o do CPGEI, o servidor reconheça que o *host* pertence ao seu domínio e então redirecione corretamente.

Uma vez finalizado este processo, reinicie o serviço e ele estará funcionando. Porém as configurações somente terão efeito na internet após umas 4hrs até que todos os servidores DNS do globo se atualizem com ele.

4.5.3 Configuração SSH

Para configuração do SSH, será utilizado um servidor no qual um serviço instalado irá ouvir uma porta, geralmente a 22, e proverá acesso a máquina por meio de um protocolo seguro. Este recurso pode ser habilitado para todos os servidores pois facilita a configuração remota do servidor.

Assim, não há a necessidade de ir até o servidor caso precise configurar algo. Há também a possibilidade de se ter acesso aos servidores por meio do *XenCenter*. Entretanto a visualização dos comandos será um pouco mais lenta, pois os dados terão que passar obrigatoriamente pelo *XenCenter*.

O SSH neste caso será um servidor especifico que proverá acesso a rede, ou seja, caso necessite visualizar alguma configuração, resolver algum problema, ou realizar manutenção nas maquinas da rede, obrigatoriamente as conexões irão passar por este servidor, o que aumenta a segurança da rede.

Para configurá-lo, devemos instalar o pacote do servidor SSH. Dentre os mais conceituados está o *OpenSSH server*. Portanto ele será usado como base. Para baixar o pacote no Debian/Ubuntu, execute o seguinte comando:

apt-get install openssh-server

Com isso os pacotes serão transferidos para o servidor e instalados. Após, o arquivo de configuração, sshd_config deve ser aberto dentro da pasta /etc/ssh/.

Neste arquivo configure a porta, altere para uma outra que não seja a 22, pois aumentará a segurança, modifique a linha *#PermitRootLogin* de *"yes"* para *"no"*, assim o *root* não poderá acessar diretamente o servidor. Após as configurações realizadas, reinicie o serviço com o seguinte comando:

/etc/init.d/ssh restart

4.6 Vantagens

Projeto: Manter topologia e virtualização de servidores.

- Reduz a quantidade de servidores (espaço físico);
- Melhor gerenciamento dos servidores (1 hardware apenas, gerenciável por qualquer computador via SSH ou no próprio servidor);
- Não há necessidade de mudar topologia, não alterando cabeamento ou estrutura;
- Rápida implementação, é necessário apenas migrar as configurações dos servidores.

4.7 Características

Embora a licença adquirida para utilizar na rede do CPGEI seja *free*, ela oferece uma série de vantagens.

4.7.1 Snapshots

Os snapshots têm uma função bastante útil quando se fala em máquinas virtuais. Após ter configurado e deixado o servidor rodando da maneira desejada, pode-se realizar um *backup* das configurações usando o *snapshot*, que irá gravar todas as configurações do servidor (ligado, executando programa x e/ou y, z serviço ativo).

4.7.2 Escalabilidade

Uma vez arquitetado o projeto de virtualização com um número de máquinas virtuais que serão necessárias para suprir a rede não há necessidade de criar máquinas extras. Pois se houver a necessidade de criar novas máquinas virtuais posteriormente, é possível criá-las, entretanto apenas é necessário tomar cuidado com o esgotamento de recursos do *hardware*.

4.7.3 Gerenciamento remoto

O gerenciamento remoto auxilia na resolução de problemas mesmo que não seja possível a presença física do técnico no local.

Com o Citrix XenServer, com seu software de gerenciamento XenCenter, é possível realizar praticamente qualquer reparo em máquinas virtuais danificadas de qualquer lugar. Isso é possível pois o software permite acesso à linha de comando do sistema operacional virtual direto pelo aplicativo, como se você estivesse mexendo na própria máquina física.

Aliando esse recurso à possibilidade de se conectar ao seu servidor pelo software XenCenter, você pode trabalhar de casa sem se preocupar com problemas que venham a surgir.

4.7.4 Incorporação de Software

Com este recurso, o Citrix *XenServer* é capaz de criar uma máquina virtual idêntica a que está atualmente em uso. Desta forma, ele é capaz de copiar todos os arquivos de sistema e criar uma máquina virtual com as mesmas características não necessitando configurar a máquina do zero e copiar os arquivos de configuração para que esta execute a mesma tarefa. Esse recurso auxilia imensamente o profissional que necessita de agilidade em transferência ou backup da rede.

5 VLSM

Na definição de Filippetti (2007), *Variable Lenght Subnet Mask* ou subredes de tamanho variável é um recurso que permite a divisão de sub-redes geradas (uma, algumas ou todas) em sub-redes ainda menores , permitindo uma melhor utilização dos endereçamentos IPs e permitindo que o recurso de sumarização seja usado (desde que o protocolo de roteamento suporte ambos: VLSM e sumarização). Protocolos *classfull*, como o RIPv1 e o IGRP, não suportam o VLSM, portanto, de nada adianta empregar essa técnica se sua rede está usando esses protocolos. Já o RIPv2, EIGRP e OSPF, pelo fato de serem protocolos *classless*, suportam tanto VLSM quanto sumarização de rotas.

VLSM – Vantagens:

- "Flexibiliza o esquema "engessado" de endereçamento IP, saindo da regra das Classes (A, B e C)" (Filipetti, 2007);
- "Permitem sumarizaçãoo de "n" redes IPs, em apenas um endereço, reduzindo o tamanho das tabelas de roteamento e o processamento pelo roteador" (FILIPPETTI, 2007).

VLSM – Desvantagens:

- "Apenas protocolos de roteamento do tipo *Classless* (ex.: RIPv2, OSPF, EIGRP, BGP) suportam esse tipo de endereçamento" (FILIPPETTI, 2007);
- "A utilização do método VLSM exige mais do administrador de rede, já que torna a definição do plano de endereçamento uma tarefa mais complexa" (FILIPPETTI, 2007).

Na rede do CPGEI portanto, a máscara de rede é de classe C e o endereço da rede é dado por 200.17.96.0, figura 20. A partir destes dados, deve-se escolher apenas os últimos 8 bits para aplicar o VLSM e arranjá-los

de forma que se possa conseguir dividir o endereço IP na quantidade de redes e IPs necessitados.

Figura 20 - IPs Fonte: Autoria Própria.

Nas figuras 21 e 22, pode-se observar os arranjos disponíveis de forma que cada bit é uma potência de base 2 com coeficiente 0 até 7. Utilizando 6 bits para rede – da esquerda para a direita - temos 64 redes com 4 computadores em cada rede, sendo o primeiro e o ultimo utilizados para endereço de rede e *broadcast* respectivamente. Da mesma forma que para 5 bits, terá 32 redes com 8 computadores e assim por diante.

Figura 21 – Divisão em Sub-Redes e Computadores. Fonte: Autoria Própria.

Figura 22 – Divisão em Sub-Redes. Fonte: Autoria Própria.

Na figura 23, é possível ver como ficaria o exemplo dos endereços IPs de cada computador para a primeira sub-rede com 4 bits para a rede gerando assim 16 sub-redes com 16 computadores.

 Rede: 0000 0000 Broadcast: 0000 1111
Computador 1: 0000 0001
Computador 2: 0000 0010
Computador 3: 0000 0011
Computador 4: 0000 0100
Computador 5: 0000 0101
Computador 6: 0000 0110
Computador 7: 0000 0111
Computador 8: 0000 1000
Computador 9: 0000 1001
Computador 10: 0000 1010
Computador 11: 0000 1011
Computador 12: 0000 1100
Computador 13: 0000 1101
Computador 14: 0000 1110

Sub-rede 1:0000 /28

Figura 23 – Exemplo de Sub-rede. Fonte: Autoria Própria.

6 RESULTADOS E ANÁLISES

Uma vez feita a escolha por utilizar o *Citrix XenServer* como servidor de Máquina Virtual, o processo de implementação aconteceu de forma simples e direta, não houve complicações na instalação de software.

A figura 24 ilustra a topologia de rede antiga ao contrário da figura 25 que mostra como ficaria a rede após o projeto de virtualização com o *Citrix XenServer*. Vale notar que apenas será necessário o uso de um computador no novo modelo ao invés de oito, reduzindo assim o espaço necessário e também o tráfego na rede.

A utilização do VLSM na rede do CPGEI foi apenas uma sugestão para o melhor aproveitamento dos IPs disponíveis, uma vez que não foi possível sua implementação por falta de hardware.

Figura 24 – Rede de Servidores Antiga. Fonte: Autoria Própria.

Figura 25 – Nova Rede de Servidores. Fonte: Autoria Própria.

7 CONCLUSÃO

Com a conclusão do projeto apresentado foi possível cumprir com a maioria dos objetivos propostos inicialmente. Uma solução de implementação para pequenas redes como as do porte da rede do CPGEI sem afetar os sistemas ou interromper seu funcionamento.

A virtualização juntamente com a aplicação do *Citrix XenServer* pode ser destacada como principal implementação do projeto com o sistema de virtualização dos servidores que permite o monitoramento do funcionamento dos Servidores da Rede de maneira remota, além da redução de hardware, melhor aproveitamento de espaço físico e recuperação das configurações.

Além do Planejamento de IPs feito através do VLSM que permitiu uma melhor distribuição e utilização de IPs. Sugerindo a ramificação de 1 endereço IP em 16 redes com 16 computadores podendo ser distribuídos em locais onde não é necessária a utilização de endereço IP verdadeiro.

REFERÊNCIAS

CITRIX. Disponível em <http://www.citrix.com>. Acesso em: 10 jun. 2012.

DISTRIBUIÇOES LINUX. Disponível em <http://pcworld.uol.com.br/reportagens/ 2007/10/19/idgnoticia.2007-10-19.1274631441> . Acesso em: 15 jul. 2012.

FILIPPETTI, Marco Aurelio. **Cisco CCNA 4.0:** exame 640-801 : guia de estudo completo. Florianopolis: Visual Books, 2006.

HISTORICO LINUX. Disponível em <http://www.vivaolinux.com.br/ artigo/Historia-do-GNU-Linux-1965-assim-tudo-comecou> . Acesso em: 15 jul. 2012.

MENDONÇA, Nelson; VILAS BOAS, Tiago. **Cursando GNU Linux.** Rio de Janeiro, RJ: Brasport, 2004.

MORIMOTO, Carlos E. **Redes e servidores linux:** guia pratico. Porto Alegre: Sul Editores, 2005.

NEMETH, Evi; SNYDER, Garth; HEIN, Trent R. **Manual completo do Linux:** guia do administrador. São Paulo: Makron Books, c2004.