UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE MECÂNICA ENGENHARIA MECÂNICA

ANDREL DE SOUZA PECETE

ESTUDO EXPERIMENTAL DO PERFIL AXIAL DE PRESSÃO A FRIO DE UM LEITO FLUIDIZADO CIRCULANTE COM DISTRIBUIDOR DE AR

TRABALHO DE CONCLUSÃO DE CURSO

PONTA GROSSA 2014

ANDREL DE SOUZA PECETE

ESTUDO EXPERIMENTAL DO PERFIL AXIAL DE PRESSÃO A FRIO DE UM LEITO FLUIDIZADO CIRCULANTE COM DISTRIBUIDOR DE AR

Trabalho de Conclusão de Curso apresentado como requisito parcial à obtenção do título de Bacharel em Engenharia Mecânica, do Departamento Acadêmico de Mecânica - DAMEC, da Universidade Tecnológica Federal do Paraná / Ponta Grossa.

Orientador: Prof. Dr. Jhon Jairo Ramírez Behainne.

PONTA GROSSA 2014

Ministério da Educação Universidade Tecnológica Federal do Paraná Campus Ponta Grossa

Departamento Acadêmico de Mecânica

TERMO DE APROVAÇÃO

ESTUDO EXPERIMENTAL DO PERFIL AXIAL DE PRESSÃO A FRIO DE UM LEITO FLUIDIZADO CIRCULANTE COM DISTRIBUIDOR DE AR

por

Andrel de Souza Pecete

Este Trabalho de Conclusão de Curso (TCC) foi apresentado em 30 de julho de 2014 como requisito parcial para a obtenção do título de Bacharel em Engenharia Mecânica. O candidato foi arguido pela Banca Examinadora composta pelos professores abaixo assinados. Após deliberação, a Banca Examinadora considerou o trabalho aprovado.

Prof. Dr. Jhon Jairo Ramirez Behainne Prof. Orientador Profa. Dra. *Maria Regina Parise* Membro titular

Prof. Dr. *Luiz Eduardo Melo Lima* Membro titular Prof. Dr. *Laercio Javares Junior* Coordenador do Curso de Engenharia Mecânica UTFPR/*Campus* Ponta Grossa

Prof. Dr. *Luiz Eduardo Melo Lima* Responsável pelos Trabalhos de Conclusão de Curso

AGRADECIMENTOS

Este trabalho não poderia ter sido finalizado sem a ajuda de diversas pessoas e entidades às quais presto os meus sinceros agradecimentos:

Primeiramente, e principalmente, a Deus pela força, auxílio, condição intelectual, física e financeira de realizar uma faculdade e ao fim o Trabalho de Conclusão de Curso.

Ao Prof. Dr. Jhon Jairo Ramirez Behainne, que me ensinou sempre com muita disposição, entusiasmo, gentileza, grande sabedoria e conhecimento, os caminhos a serem seguidos para o desenvolvimento deste trabalho, e também pela confiança e apoio em todos os instantes.

Ao Prof. Dr. Ivanir Luiz de Oliveira, pela disponibilização do Laboratório de Fundição (CETEM) dos equipamentos e da areia, necessários para a realização do presente trabalho.

Ao Prof. Dr. Anderson Geraldo Marenda Pukasiewicz, pela disponibilização do Laboratório de Caracterização de Materiais e pelos equipamentos necessários para a realização do presente estudo.

Aos colegas Breno Boró, Gustavo Ratti e Jean Marcos Vaz, pela colaboração na adequação da UFRAF, e auxílio no desenvolvimento dos trabalhos experimentais.

Ao SENAI Ponta Grossa por realizar o peneiramento da areia em grande escala.

À minha família pelo apoio, incentivo e compreensão nos momentos mais difíceis desta jornada.

A todas as pessoas que contribuíram de alguma forma e/ou incentivaram a realização do presente trabalho, não menos importantes, porém não mencionadas, mas que com toda certeza estão presentes em meus pensamentos, merecendo toda a minha gratidão.

RESUMO

PECETE, Andrel de Souza. **Estudo experimental do perfil axial de pressão a frio de um leito fluidizado circulante com distribuidor de ar.** 2014. 106f. Trabalho de conclusão de curso (Graduação em Engenharia Mecânica) – Universidade Tecnológica Federal do Paraná. Ponta Grossa, 2014.

Nas últimas três décadas, а tecnologia de leito fluidizado circulante ganho destaque como uma alternativa promissora para geração de tem calor e energia. As caldeiras e fornalhas que utilizam LFC conseguem combinar altas taxas transferência de calor e massa com mínimas emissões de SO₂ e NOx, bem como excelentes rendimentos na conversão do combustível em calor. O sucesso de operações em caldeiras de LFC é dependente das características e natureza do combustível usado. No Brasil, estudos mais aprofundados sobre a operação destes sistemas são necessários visando, principalmente, o melhor aproveitamento das fontes energéticas de baixa qualidade atualmente disponíveis. Nesse sentido, a realização de estudos da fluidodinâmica em escoamento gás-sólido com diversas escalas de tamanho, geometrias e componentes internos, fazem-se imprescindíveis no avanço do desenvolvimento de reatores LFC. Unidades comerciais de caldeiras de LFC utilizam distribuidor de ar para manter as partículas combustíveis na região densa de queima, evitando o retorno do combustível para o fundo do reator sem o devido controle. Porém, em escala de laboratório ou em plantas piloto, o distribuidor é usualmente substituído por um dispositivo cônico, que pode trazer incertezas nas medições experimentais. Constatou-se a escassez de estudos realizados em unidades pilotos contendo um distribuidor de ar. Portanto, com o intuito de preencher essa lacuna, ensaios experimentais foram realizados, a fim de estudar os efeitos causados pela variação do tamanho de partícula, inventário de sólidos e velocidade de fluidização sobre o perfil de pressão axial na coluna riser, guando um distribuidor de ar tipo tuyere é inserido na sua base. Os experimentos seguiram a técnica de planejamento fatorial 2³ completo em duplicata, sem e com distribuidor de ar, totalizando 32 experimentos. A discussão dos dados foi realizada com base na análise dos perfis axiais de pressão obtidos, análise de variância ANOVA e gráficos Pareto. Observou-se que, sem e com distribuidor, o inventário de sólidos tem a maior influência sobre a resposta ao nível de confiança de 95%, seguido do diâmetro da partícula e de alguns efeitos combinados. Adicionalmente, foi encontrado que o efeito da velocidade de fluidização é significativo apenas quando o distribuidor de ar não é utilizado. A análise estatística demonstrou, de modo geral, que o distribuidor de ar influencia de forma significativa na variação da queda de pressão axial na coluna de fluidização.

Palavras-chave: Distribuidor de ar. Fluidodinâmica gás-sólido. Leito fluidizado circulante.

ABSTRACT

PECETE, Andrel de Souza. **Experimental study of the axial pressure profile of a cold circulating fluidized bed with air distributor**. 2014. 106p. Trabalho de Conclusão de Curso (Bacharelado em Engenharia Mecânica) - Federal University of Technology - Parana. Ponta Grossa, 2014.

In the last three decades, the circulating fluidized bed technology has been pointed out as a promising alternative for heat and electricity generation. The boilers and furnaces that use CFB can combine high rates of heat and mass transfer with minimal emissions of SO2 and NOx, and excellent yields in the conversion of fuel into heat. The success of operations in CFB boilers is dependent on the characteristics and nature of the fuel used. In Brazil, further studies on the operation of these systems are needed aiming mainly at the best utilization of low quality energy sources currently available. In this sense, conducting studies of fluid dynamics in gas-solid with different size scales, geometries and internal components, make yourself indispensable in advancing the development of reactors CFB. Units commercial CFB boilers using air distributor to keep the fuel particles burn in the dense region, preventing the return of fuel to the bottom of the reactor without due control. However, in laboratory scale or pilot plants, a conical device that can bring uncertainty in experimental measurements usually replaces the distributor. It was noted the paucity of studies in pilot units containing an air distributor. Therefore, in order to fill this gap, experimental tests were performed in order to study the effects caused by varying the particle size, solid inventory and fluidizing velocity on the axial pressure profile in the riser column, when a distributor tuyere type air is inserted at its base. The experimental technique of factor 2³ complete planning in duplicate, with and without air distributor, totaling 32 experiments. The discussion of the data was based on analysis of the axial pressure profiles obtained using ANOVA and Pareto charts. It was observed that, with and without distributor, the solids inventory has the most influence on the response to a confidence level of 95%, followed by the particle diameter and some combined effects. Additionally, it was found that the effect of the fluidization velocity is significant only when the air distributor is not used. Statistical analysis showed that, in general, the air distributor significantly influences the variation of the loss of axial pressure on the fluidization column.

Keywords: Air distributor. Gas-solid hydrodynamics. Circulating fluidized bed.

LISTA DE FIGURAS

Figura 1 - Regimes de fluidização em leitos contendo partículas	20
Figura 2 - Comportamento da curva ∆P em função de u _f para um leito com partícu de tamanho uniforme.	ılas 22
Figura 3 - Esquema de leito fluidizado circulante	22
Figura 4 – Partes constituintes principais de um LFC	24
Figura 5 - Riser de um LFC	25
Figura 6 - Efeito da velocidade superficial do gás e do fluxo de recirculação dos sólidos para a fração de vazio ao longo do eixo vertical de um riser	26
Figura 7 – Perfil radial da velocidade das partículas em função da distância desde eixo longitudinal do riser	• 0 27
Figura 8 – Perfil de pressão em função da altura em um LFC	28
Figura 9 – Classificação Geldart de comportamento fluidodinâmico de partículas.	30
Figura 10– Tipos de distribuidores de ar	35
Figura 11– Distribuidores de ar tipo placa	36
Figura 12– Distribuidores de ar tipo tuyere, bico ou bocal	38
Figura 13 - Bicos direcionais arranjados alternadamente com espaçamento iguais entre os bicos.	38
Figura 14 - Vista geral da UFRAF	43
Figura 15 – Diagrama esquemático da UFRAF	44
Figura 16 - Dispositivo cônico inferior acoplado ao riser	46
Figura 17 – Ciclone do LFC	46
Figura 18 – Válvula de retorno dos sólidos tipo L	47
Figura 19 – Linha de ar de aeração	48
Figura 20 - Sistema de fornecimento de ar de fluidização	49
Figura 21 – Placa de Orifício	49
Figura 22–Painel com manômetros em "U"	50
Figura 23 – Desenho técnico contendo as dimensões da Placa base	53
Figura 24 – Desenho técnico contendo todas as dimensões do tuyere	54
Figura 25 – Localização do distribuidor no leito (1 - Riser, 2 - Distribuidor de ar, 3 Cone).	- 55
Figura 26 – Distribuidor de ar com tuyeres acoplados	56
Figura 27 – Tuyere separado da placa base	56

LISTA DE GRÁFICOS

Gráfico 1 - Perfis axial de pressão para os experimentos com diâmetro de partícula (dp) de 256 µm, sem distribuidor de ar66
Gráfico 2 - Perfis axial de pressão para os experimentos com diâmetro de partícula (dp) de 181 µm, sem distribuidor de ar66
Gráfico 3 - Perfis axial de pressão para os experimentos com Inventário (<i>Inv</i>) de 5 kg, sem distribuidor de ar67
Gráfico 4 - Perfis axial de pressão para os experimentos com Inventário (<i>Inv</i>) de 3,5 kg, sem distribuidor de ar67
Gráfico 5 - Perfis axial de pressão para os experimentos com velocidade de fluidização (<i>uf</i>) de 4,5 m/s, sem distribuidor de ar68
Gráfico 6 - Perfis axial de pressão para os experimentos com velocidade de fluidização (<i>uf</i>) de 3,5 m/s, sem distribuidor de ar68
Gráfico 7 – Efeitos principais e combinados, padronizados, das variáveis de entrada, sobre a queda de pressão no riser para experimentos sem distribuidor de ar70
Gráfico 8 - Efeitos principais e combinados, padronizados, das variáveis de entrada, sobre a queda de pressão no riser para experimentos com distribuidor de ar74
Gráfico 9 - Perfis axial de pressão para os experimentos com diâmetro de partícula (<i>dp</i>) de 256 μm, com distribuidor de ar104
Gráfico 10 - Perfis axial de pressão para os experimentos com diâmetro de partícula (dp) de 256 µm, com distribuidor de ar104
Gráfico 11 - Perfis axial de pressão para os experimentos com Inventário (<i>Inv</i>) de 5 kg, com distribuidor de ar105
Gráfico 12 - Perfis axial de pressão para os experimentos com Inventário (<i>Inv</i>) de 3,5 kg, com distribuidor de ar105
Gráfico 13 - Perfis axial de pressão para os experimentos com velocidade de fluidização (<i>uf</i>) de 4,5 m/s, com distribuidor de ar106
Gráfico 14 - Perfis axial de pressão para os experimentos com velocidade de fluidização (<i>uf</i>) de 3,5 m/s, com distribuidor de ar106

LISTA DE ABREVIATURAS

BL	Bloco
СО	Compressor
PD	Pressão diferencial
PVC	Cloreto de polivinila
RS	Tomada de pressão do <i>riser</i>
SO	Soprador
SP	Tomada de pressão do standpipe
VA	Válvula agulha
VA-D	Válvula diafragma
VA-G	Válvula gaveta
VA-E	Válvula esfera
VAL-L	Tomada de pressão da válvula L
VL	Válvula L (SIGLA)
VL-V	Perna vertical da válvula L
VL-H	Perna horizontal da válvula L
VRP	Válvula reguladora de pressão
ROT	Rotâmetro

LISTA DE SIGLAS

- CD Com distribuidor de ar
- LFB Leito fluidizado borbulhante
- LFC Leito fluidizado circulante
- MME Ministério de Minas e Energia
- SD Sem distribuidor de ar
- UFRAF Unidade de Fluidização Rápida a Frio
- UTFPR Universidade Tecnológica Federal do Paraná

LISTA DE TABELAS

Tabela 1 - Matriz de planejamento contendo as variáveis e seus respectivos níveis
Tabela 2 - Coeficientes de contraste dos experimentos60
Tabela 3 - Valores de queda de pressão no riser para os experimentos sem e comdistribuidor de ar (SD e CD, respectivamente)64
Tabela 4 - Análise de variância ANOVA para os efeitos principais e combinados das varáveis controladas, com $R^2 = 0.99866$, em testes realizados sem distribuidor de ar
Tabela 5 – Valores de coeficientes de regressão e de nível descritivo (p), para nível de confiança de 95% (p < 0,05), em testes realizados sem distribuidor de ar72
Tabela 6 – Análise de variância ANOVA para os efeitos principais e combinados das variáveis controladas, com R ² = 0,999, em testes realizados com distribuidor de ar
Tabela 7 - Valores de coeficientes de regressão de nível descritivo (p), para nível de confiança de 95% (p < 0,05), em testes realizados com distribuidor de ar75
Tabela 8 – Comparação entre todos os experimentos feitos sem e com distribuidor de ar, para p < 0,050 (95%)77
Tabela 9 – Comparação entre os experimentos feitos sem e com distribuidor de ar (SD e CD, respectivamente), para todos os fatores em nível baixo (-) e alto (+), onde $p < 0,050$ (95%)

LISTA DE SÍMBOLOS

Α	Área da secção transversal do leito [m²]
Ar	Número de Arquimedes [-]
C_d	Coeficiente de arraste [-]
C _{d,or}	Coeficiente de descarga do orifício do distribuidor [-]
D	Diâmetro interno do leito [m]
d_{eq}	Diâmetro equivalente ao volume da esfera [m]
di	Diâmetro inscrito da partícula [m]
d_c	Diâmetro circunscrito da partícula [m]
d or	Diâmetro do orifício [m]
$d_{ ho}$	Diâmetro médio da partícula [m]
F	Fração de área livre [-]
Gs	Fluxo de recirculação de sólidos [kg/m².s]
Н	Altura do leito [m]
$m_{ ho}$	Massa das partículas sólidas dentro do leito [kg]
n _{or}	Número de orifícios no distribuidor [-]
Nor	Número de orifícios por unidade de área [m-2]
nt	Número de tuyeres do distribuidor[m]
Nt	Número de <i>tuyeres</i> por unidade de área [m ⁻²]
Ρ	Passo (distância entre <i>tuyeres</i>) [m]
Re _{mf}	Reynolds da partícula com velocidade mínima de fluidização [-]
Ret	Reynolds do gás no <i>tuyere</i> [-]
t	Espessura da parede do <i>tuyere</i> [m]
Uf	Velocidade de fluidização ou velocidade superficial do gás [m/s]
U _{mf}	Velocidade mínima de fluidização do gás [m/s]
Uor	Velocidade do gás no orifício do distribuidor [m/s]
Ut	Velocidade terminal das partículas [m/s]
U _{tr}	Velocidade de transporte das partículas [m/s]
V	Volume total do leito [m ³]
Vs	Volume de sólidos [m ³]
Xi	Fração mássica das partículas retida em cada peneira [-]

SÍMBOLOS GREGOS

ΔP_b	Queda de pressão no leito [Pa]
ΔP_d	Queda de pressão no distribuidor [Pa]
3	Fração de vazio no leito [-]
ε _{mf}	Porosidade mínima de fluidização [-]
$ ho_{ap}$	Densidade aparente das partículas [kg/m ³]
$ ho_{f}$	Massa específica do fluido [kg/m³]
$ ho_g$	Massa específica do gás fluidizante [kg/m³]
$ ho_{ ho}$	Densidade da partícula [kg/m ³]
μ_g	Viscosidade dinâmica do gás fluidizante [kg/m.s]
Φ	Esfericidade da partícula [-]
α	Nível de significância estatística [-]

SUMÁRIO

1	INTRO	DDUÇÃO	14
	1.1 F	PROBLEMA	15
	1.2 J	USTIFICATIVA	16
	1.3 C	DBJETIVOS	17
	1.3.1	Objetivo geral	17
	1.3.2	Objetivos específicos	17
2	REFE	RENCIAL TEÓRICO	18
	2.1 F	LUIDIZAÇÃO	18
	2.1.1	Regimes de fluidização	20
	2.2 L	EITO FLUIDIZADO RÁPIDO OU CIRCULANTE (LFC)	23
	2.3 C	CARACTERIZAÇÃO DAS PARTÍCULAS	28
	2.4 V	ELOCIDADES DE FLUIDIZAÇÃO E COEFICIENTE DE ARRASTO	31
	2.5 C	DISTRIBUIDOR DE AR	34
	2.5.1	Tipos de distribuidores	35
	2.5	.1.1 Distribuidor: tipo placa	35
	2	.5.1.1.1 Placa perfurada	36
	2	.5.1.1.2 Placa porosa	36
	2.5	.1.2 Distribuidor tipo <i>tuyere</i>	37
	2.5	.1.3 Distribuidor tipo tubo de espalhamento	39
	2.5.2	Projeto do distribuidor	39
3	MATE	RIAIS E MÉTODOS	42
	3.1 C 4	DESCRIÇÃO DA UNIDADE DE FLUIDIZAÇÃO RÁPIDA A FRIO (UFRA 2	۹F)
	3.1.1	Circuito de fluidização	45
	3.1.2	Sistema de Fornecimento de Ar de Aeração	47
	3.1.3	Sistema de fornecimento de Ar de Fluidização	48
	3.1.4	Instrumentação usada para a leitura dos dados experimentais	50
	3.1.5	Características do material constituinte do leito	51
	3.2 F	PROCEDIMENTOS	51
	3.2.1	Projeto do distribuidor de ar	52
	3.2.2	Procedimento experimental	56
	3.3 T	RATAMENTO DOS DADOS	59
	3.3.1	Determinação dos efeitos das variáveis	59
	3.3.2	Determinação do modelo estatístico	61

4 RESUI	TADOS E DISCUSSÃO	63	
4.1 Aı	nálise do sistema LFC sem distribuidor de ar	64	
4.1.1	Perfil de pressão axial sem distribuidor de ar	65	
4.1.2	Análise dos efeitos das variáveis controladas	69	
4.1.3	Modelo estatístico (sem distribuidor de ar)	71	
4.2 Aı	nálise do sistema LFC com distribuidor de ar	73	
4.2.1	Perfil de pressão axial com distribuidor de ar	73	
4.2.2	Análise dos efeitos das variáveis controladas (com distribuidor)	73	
4.2.3	Modelo estatístico (com distribuidor)	75	
4.3 C	omparação dos resultados sem e com distribuidor	76	
5 CONC	LUSÕES E SUGESTÕES PARA TRABALHOS FUTUROS	80	
REFERÊN	REFERÊNCIAS		
APÊNDICE	E A1	85	
APÊNDICE A2			
APÊNDICE	APÊNDICE B103		

1 INTRODUÇÃO

Desde os primórdios da humanidade, a energia tem ajudado o homem a evoluir, uma vez que, com o passar dos anos, ela tem sido usada para a transformação de matérias primas em infinidade de produtos acabados ou serviços. Nos tempos de hoje, uma boa parte da energia utilizada pelo homem tem origem no processo de combustão, no qual, a energia química da matéria é transformada em calor em caldeiras, para uso industrial ou para posterior geração de potência mecânica e eletricidade.

Numa caldeira, um combustível de natureza fóssil ou renovável (biomassa) e um agente oxidante são combinados para produzir calor, a fim de transformar água líquida em vapor. Muitos tipos de caldeiras foram desenvolvidos ao longo dos últimos anos, visando o melhor aproveitamento energético dos combustíveis com o menor impacto sobre o meio ambiente, principalmente, no caso do uso de combustíveis de origem fóssil como o carvão mineral.

Dentre as tecnologias de caldeiras desenvolvidas na procura por melhores rendimentos de queima e mínimas emissões atmosféricas aparecem as caldeiras de leito fluidizado, consideradas como as mais modernas atualmente disponíveis, nas suas duas versões: leito borbulhante e leito circulante. Em particular, a tecnologia de combustão em leito fluidizado circulante (LFC) é aplicada no mundo há quase quatro décadas, sendo utilizada em larga escala em países desenvolvidos para a geração de energia elétrica a partir do carvão mineral, principalmente nos Estados Unidos, alguns No Brasil, esta tecnologia é relativamente pouco países da Europa e China. conhecida, porém, vem ganhando destaque e chamado a atenção dos pesquisadores em universidades, empresas, institutos e centros de tecnologia espalhados pelo país, principalmente, na região sul, onde se concentram as maiores reservas do combustível fóssil, estimadas em aproximadamente 32 bilhões de toneladas (MINISTÉRIO DE MINAS E ENERGIA - MME, 2014). Projetos como o da planta termoelétrica USITESC de 440 MW, atualmente sendo implementada na cidade de Treviso, no estado de Santa Catarina, são indicativos do interesse pelo desenvolvimento comercial da tecnologia de LFC no país.

O sucesso na operação das fornalhas e caldeiras de leito fluidizado circulante está intimamente ligado à natureza e características dos combustíveis empregados. Assim, com a variedade ímpar de fontes energéticas disponíveis no Brasil, mais estudos teóricos e experimentais se fazem necessários, a fim de amoldar os avanços tecnológicos já conquistados Brasil afora à realidade dos combustíveis nacionais. Nessa tarefa, estudos de fluidodinâmica de escoamento gás-sólido com diversas escalas de tamanho, geometrias e componentes internos são considerados fundamentais para o avanço no desenvolvimento de reatores de LFC.

Sabe-se que fornalhas de LFC comerciais utilizam distribuidor de ar para manter as partículas combustíveis na região densa de queima, evitando o retorno do combustível para o fundo do reator sem o devido controle. Pouco tem se estudado sobre o efeito deste componente em equipamentos de laboratório, uma vez que, pelos tamanhos ou escalas envolvidas, o efeito do distribuidor de ar é comumente substituído por geometria apropriada do *plenum*, componente este que recebe o ar de fluidização na base da fornalha.

Com a construção recente de uma unidade a frio de LFC na UTFPR/Ponta Grossa em escala de laboratório, abre-se a possibilidade da realização de estudos direcionados à caracterização do comportamento de sistemas de LFC de pequeno porte com matérias primas nacionais. Assim, tendo em vista a necessidade de futuros desenvolvimentos de reatores de LFC em escala de laboratório, o presente projeto visa contribuir com a ampliação de conhecimento na caracterização do comportamento operacional de um sistema de LFC ao incluir um distribuidor de ar, componente normalmente inexistente em configurações de pequena escala.

1.1 PROBLEMA

Quais os efeitos sobre o perfil axial de pressão estática, ao variar parâmetros operacionais de um Leito Fluidizado Circulante (LFC) a frio em escala de laboratório quando equipado com um distribuidor de ar?

1.2 JUSTIFICATIVA

Estudos experimentais de fluidodinâmica em LFC são ainda escassos no Brasil. Poucos estudos têm sido realizados procurando fornecer informações do comportamento gás-sólido num sistema de LFC, tanto em escala de laboratório quanto em unidades pilotos ou comerciais. Até onde se conhece, nenhum trabalho tem sido reportado com estudos de parâmetros operacionais de unidades pequenas de LFC direcionadas a determinar o efeito produzido pela inclusão de um distribuidor de ar.

Com a projeção futura da construção de uma fornalha de LFC de pequeno porte para fornecer dados de rendimento de combustão de diversos combustíveis disponíveis no Brasil, um estudo do comportamento fluidodinâmico de um equipamento similar ao LFC, contendo um distribuidor de ar, se faz necessário, a fim de confirmar a presença ou não de dificuldades ou vantagens que possam comprometer o desenvolvimento do novo sistema de combustão.

O cone atualmente instalado no sistema experimental, desenvolvido no trabalho de Valaszek e Marin (2013), consegue substituir em parte o distribuidor de ar, uma vez que condições estáveis no regime de fluidização rápida foram atingidas nos experimentos realizados. Porém, com este dispositivo, imprecisões nas medições de inventário de partículas podem aparecer na seção do *riser*, devido à possibilidade do retorno de partículas na região do cone, em local abaixo do primeiro medidor de pressão estática posicionado no sistema, subestimando a perda de carga medida na coluna de fluidização. Sendo assim, a presença de um distribuidor de ar evitaria essa discordância, ao ser agora possível a retenção das partículas acima da base do *riser*. Adicionalmente, foi verificado o efeito provocado pela presença do dispositivo em relação aos parâmetros operacionais do sistema e aos resultados obtidos em pesquisas prévias.

1.3 OBJETIVOS

A seguir serão apresentados o objetivo geral e específicos deste trabalho.

1.3.1 Objetivo geral

Avaliar os efeitos causados pela variação do tamanho de partícula, inventário de sólidos e velocidade de fluidização sobre o perfil de pressão estática em um Leito Fluidizado Circulante (LFC) a frio em escala de laboratório, contendo distribuidor de ar.

1.3.2 Objetivos específicos

• Projetar e construir um distribuidor de ar para ser instalado no Leito Fluidizado Circulante em escala de laboratório a frio;

 Realizar testes operacionais do Leito Fluidizado Circulante, combinando as variações de tamanho das partículas, inventário de sólidos e velocidade de fluidização, com e sem distribuidor de ar;

• Comparar o comportamento de parâmetros operacionais com e sem distribuidor de ar, e com resultados disponíveis na literatura.

2 REFERENCIAL TEÓRICO

Nesse capítulo é realizado o levantamento bibliográfico relacionado aos assuntos de interesse neste estudo, tais como fluidodinâmica, características das partículas e distribuidores de ar presentes em leitos fluidizados.

2.1 FLUIDIZAÇÃO

A fluidização é o fenômeno pelo qual um gás ou um líquido, ao realizar uma passagem ascendente por uma coluna contendo partículas sólidas (leito), faz com que essas fiquem em suspensão, com o conjunto passando a se comportar de maneira semelhante a um fluído (KUNII; LEVENSPIEL, 1991, p. 1). Quando um fluido passa através de um leito de partículas, e essas fluidizam, o sistema sólido-fluido atinge regimes de fluidização dependentes das propriedades das partículas e da velocidade do fluido que escoa através do leito.

De acordo com Kunii e Levenspiel (1991, p. 10) a fluidização usada em leitos para operações industriais possui algumas vantagens e desvantagens. As vantagens são:

 Adequada para operações que necessitam de uma alta eficiência na conversão de combustíveis para geração de energia.

 Alta transferência de calor entre o gás, as partículas e qualquer objeto imerso (trocadores de calor). Assim sendo, a área necessária para a troca de calor pode ser relativamente pequena.

 As operações podem ser controladas de maneira contínua e com facilidade de manuseio, devido à presença de um escoamento uniforme de partícula e fluido.

 Em virtude da intensa mistura dos sólidos, atinge-se condição isotérmica dentro do reator.

É importante ressaltar também a minimização de impactos ambientais, uma vez que o sistema permite a adição de compostos calcários que podem reduzir emissões

de SO₂, bem como, operar a baixas temperaturas e excessos de ar, minimizando a formação de NOx térmico (MORITA, 2009, p. 8).

Em relação às desvantagens, Kunii e Levenspiel (1991, p. 10) citam:

 Erosão de orifícios, colunas e tubos imersos devido à abrasão ocasionada pelos sólidos.

• A uniformidade na temperatura e no rendimento são comprometidos quando a rápida mistura de sólidos gera tempos de residência variáveis no leito.

• Em leitos fluidizado borbulhantes com partículas muito finas torna-se difícil descrever o escoamento do fluido.

• É necessário realizar a reciclagem de sólidos friáveis que são pulverizados e arrastados.

Na década de 20, o alemão Fritz Winkler percebeu, através de experimentos, que ao colocar gases provenientes de combustão dentro de um compartimento no qual continha partículas de coque, ocorria a fluidização, criando assim a primeira demonstração da gaseificação de carvão em um leito fluidizado (BASU, 2006, p. 1). Sabe-se que a partir dessa década, a tecnologia de leito fluidizado foi utilizada de maneira mais expressiva na indústria química e de petróleo. Porém, somente a partir da década de 70 ela passou a ter um reconhecimento mais significativo (BITTANTI et al., 2000, p. 247), e posteriormente, nas décadas de 80 e 90, surgiu um interesse maior na utilização de leito fluidizado em instalações que necessitassem de geração de energia, por ser uma tecnologia mais limpa que as convencionais da época, e por possuir uma alta flexibilidade na utilização de diversos tipos de combustíveis. Nos últimos anos, o Brasil tem tido problemas relacionados à concentração da geração de energia elétrica a partir das usinas hidrelétricas na matriz energética. Isto abre possibilidades para a implementação de novas tecnologias de geração de energia térmica e elétrica, através do uso de reatores de leito fluidizado, a qual ainda tem sido pouco difundida no território nacional (BALTAZAR; CASTRO; SILVA, 2009, p. 59); esta tecnologia tem alto potencial para o melhor uso do carvão mineral disponível no Brasil, considerado de baixa gualidade (RAMIREZ – BEHAINNE, 2007).

A tecnologia da fluidização têm sido amplamente utilizada nas últimas décadas, tendo como destaque o seu uso em caldeiras. No processo de combustão fluidizada, o combustível é queimado em ambiente com intenso contato gás-sólido, gerando calor útil. A fornalha da caldeira operada com leito fluidizado contém uma

massa granular de sólidos constituído por partículas que geralmente variam de tamanho na faixa de 100 a 1000 µm (BASU, 2006, p.6).

2.1.1 Regimes de fluidização

As diferentes características dos regimes de fluidização existentes são essencialmente dependentes da velocidade do gás que passa pelos sólidos através do leito (FONSECA, 2009). Os regimes de fluidização podem ser visualizados na Figura 1, a qual mostra cada tipo de regime de acordo com a velocidade do fluido que passa pelas partículas através do leito.

Segundo Kunii e Levenspiel (1991), quando as partículas são relativamente pequenas e uma baixa vazão de gás ou líquido passa através dos espaços entre os sólidos, fazendo com que ainda permaneçam estacionárias, o regime é denominado **leito fixo** (Figura 1(a)).

Figura 1 - Regimes de fluidização em leitos contendo partículas. Fonte: Adaptado de Kunii e Levenspiel (1991).

Uma característica do leito fixo, que pode ser observada na Figura 2, é que a velocidade superficial do gás é função linear crescente da queda de pressão através do leito, isso ocorre devido ao aumento da velocidade do gás mantendo-se constante o espaço entre as partículas. Com o aumento gradual da velocidade, a queda de pressão atinge um valor máximo, a partir do qual a queda de pressão permanece constante e todos os sólidos ficam suspensos pelo fluxo de ar. É nesse ponto (transição entre regime fixo e fluidizado) que a força de arraste do ar sobre as partículas iguala-se à força gravitacional incidente sobre os sólidos gerando um equilíbrio de forças (BASU, 2006, p. 29). Assim, consegue-se um valor da queda de pressão que corresponde ao peso das partículas naquela determinada região do leito. A velocidade do gás na qual acontece este equilíbrio é conhecida como velocidade mínima de fluidização, $u_{\rm mf}$, determinando o regime de fluidização incipiente (Figura 1(b)). A grande diferença entre os regimes de leito fixo e de leito fluidizado é que ao atingir a velocidade mínima de fluidização a queda de pressão, medida sempre nos mesmos pontos, torna-se constante, uma característica predominante até o regime de fluidização turbulenta. Se a velocidade ultrapassar a velocidade de transporte das partículas, $u_{\rm tr}$, a queda de pressão passa a diminuir com o acréscimo da velocidade (Figura 2), caracterizando o regime de leito rápido ou de leito fluidizado circulante (RHODES, 1998).

A fluidização particulada (Figura 1(c)), é também chamada de homogênea, devido à presença de uma velocidade ligeiramente superior à velocidade mínima de fluidização, onde não ocorre ainda a formação de bolhas, mantendo uma distribuição uniforme das partículas expandidas. Porém, isso acontece geralmente quando é utilizado um líquido como agente fluidizante. Ao realizar a passagem de um gás através das partículas com velocidade acima da mínima fluidização, instabilidades são geradas e, consequentemente, aparecem bolhas, caracterizando a fluidização borbulhante (Figura 1 (d)). Mesmo assim, vale ressaltar que quando utiliza-se partículas muito pequenas existe a possibilidade da não ocorrência de bolhas, bem como a ocorrência de fluidização homogênea (KUNII; LEVENSPIEL, 1991).

Figura 2 - Comportamento da curva ∆*P* em função de *u*_f para um leito com partículas de tamanho uniforme. Fonte: Adaptado de Rhodes (1998).

Ao aumentar mais ainda a velocidade do fluido, atinge-se o regime de **fluidização turbulenta.** O regime de **fluidização rápida** (Figura 3) é conhecido quando a velocidade do gás atinge ou supera a velocidade de transporte das partículas, u_{tr} , onde o regime possui uma característica dispersa, desorganizada, fazendo com que os sólidos sejam lançados fora do leito (KUNII; LEVENSPIEL, 1991).

Figura 3 - Esquema de leito fluidizado circulante. Fonte: Adaptado de Kunii e Levenspiel (1991).

O leito fluidizado é denominado circulante quando operado em regime de fluidização rápida (SÁNCHEZ et al., 2010). Neste, um ciclone é acoplado externamente, com a função de reter as partículas arrastadas mediante força centrífuga. Na combustão, os ciclones separam os gases provenientes da queima das partículas arrastadas para fora do reator, permitindo que o material sólido seja ainda aproveitado no processo em sucessivas passagens. Como no leito fluidizado rápido o arraste de sólido é consideravelmente alto, há a necessidade de utilizar, além de um ciclone externo (Figura 3(b)), uma válvula de recirculação (L, J ou Loop-Seal), as quais têm por função promover o retorno das partículas ao *riser* ou coluna principal de reação, onde acontece a fluidização rápida.

2.2 LEITO FLUIDIZADO RÁPIDO OU CIRCULANTE (LFC)

O termo leito fluidizado rápido foi primeiramente utilizado por Yerushalmi et al. (1976), e foi definido como uma transição entre o regime turbulento e o transporte pneumático.

De acordo com Basu (2006, p. 253), no leito fluidizado rápido ou circulante existe uma alta velocidade relativa entre o gás e os sólidos, onde o gás escoa acima da velocidade terminal das partículas. A quantidade líquida dos sólidos arrastados para fora da coluna de fluidização ou *riser* transita pelos outros componentes do sistema, formando um circuito. Em combustores de LFC, a elevada taxa de recirculação de sólidos garante uniformidade na temperatura do leito (MORITA, 2009, p. 16). O leito rápido é caracterizado por ter uma agregação de sólidos em aglomerados que escoam pelas paredes do *riser* e se desfazem permanentemente, bem como por conter altas concentrações de partículas na base do leito (PÉCORA, 1995, p. 15).

De acordo com Basu e Cheng (2000) e Yang (2003), um circuito de LFC típico constitui-se de: um distribuidor de ar (Placa distribuidora), que tem por função reter os sólidos acima da base do leito e realizar a distribuição homogênea do ar, uma coluna principal (*Riser*), onde ocorre o movimento ascendente da mistura gás-sólido, um separador de partículas (Ciclone); uma coluna de retorno (*Standpipe*), um componente responsável pelo retorno das partículas à base do *riser* (Válvula de

Recirculação) que pode ser uma válvula L ou uma válvula Loop-Seal. A Figura 4 apresenta o esquema de um LFC com os seus principais componentes.

Figura 4 – Partes constituintes principais de um LFC. Fonte: Adaptado de Yang (2003).

Em um circuito de LFC o funcionamento do sistema configura-se primeiramente na entrada de ar pelo distribuidor, gerando a ascensão das partículas pela coluna principal (*riser*) em direção ao ciclone, onde ocorre a separação do gás e das partículas. Posteriormente, as partículas realizam movimento descendente pelo *standpipe* e retornam à base do *riser* através do sistema de recirculação (*Loop Seal* ou válvula L) (MORITA, 2009, p. 8).

O perfil axial de concentração de partículas mostra que existe uma região densa na base do *riser* e outra diluída próximo ao topo. Adicionalmente, na região de menor densidade transversal normalmente aparece um padrão de escoamento denominado de núcleo-anular, no qual, uma mistura gás-sólido diluída se movimenta em sentido ascendente pelo centro do *riser* e aglomerados de partículas retornam pelas paredes da coluna, formando um anel denso de partículas que aumenta em

espessura em direção à base do *riser.* Este padrão é visualizado na Figura 5 (BASU, 2006; RAMÍREZ, 2007).

Figura 5 - *Riser* de um LFC. Fonte: Adaptado de Basu (2006).

Segundo Weinstein et al. (1983), a queda de pressão, a velocidade superficial do gás e a taxa de recirculação das partículas através do *riser* dependem da altura de inventário de sólidos no *standpipe*. O ponto de inflexão, localizado na seção de mudança da fase densa para a diluída, é dependente da queda de pressão no *standpipe*. Para uma mesma quantidade de sólidos, o aumento da taxa de recirculação e da velocidade superficial do fluido geram um deslocamento do ponto de inflexão, diminuindo a região densa e aumentando o volume que possui maior porosidade (região diluída), conforme mostrado na Figura 6.

Figura 6 - Efeito da velocidade superficial do gás e do fluxo de recirculação dos sólidos para a fração de vazio ao longo do eixo vertical de um *riser*. Fonte: Adaptado de Weinstein et al. (1983) apud Ramirez-Behainne (2007).

Na Figura 6, a porosidade do leito (ϵ) representa a razão de volume sem a presença de partículas sólidas. Segundo Santos (2010), esta porosidade é descrita como:

$$\varepsilon = \frac{V - V_s}{V} = 1 - \frac{m_p}{\rho_s A H} \tag{1}$$

sendo que,

V: volume total do leito (m³);

 V_s : volume de sólidos (m³);

 m_p : massa das partículas sólidas dentro do leito (kg);

A: área da secção transversal do leito (m²);

H: altura do leito (m);

 ρ_s : densidade dos sólidos (kg/m³).

Como descrito anteriormente, a concentração de sólidos na direção radial também é conhecida e segue um perfil parabólico, onde a concentração de partículas aumenta próximo às paredes da coluna e é mínima no eixo longitudinal (WEINSTEIN et al., 1984a). Já a velocidade das partículas é mínima perto das paredes do *riser* e máxima no centro do leito, conforme visualizado na Figura 7, em virtude disso, os sólidos possuem um movimento ascendente com concentração diluída na região central do *riser*, e movimento descendente de partículas em concentração significativamente maior, perto das paredes (BADER et al., 1988).

Distância desde o eixo do riser (cm)

Na Figura 8 pode-se observar o comportamento da pressão em função da altura em diferentes locais do leito. Como mencionado anteriormente, a concentração de partículas na seção inferior do LFC é alta; em consequência disso, a diferença de pressão por unidade de altura do leito é elevada. Verifica-se também que o maior diferencial de pressão é entre os pontos E e F, compreendidos pelo *standpipe* e pela válvula L; em contrapartida, na região do ciclone e na parte alta do *standpipe* a queda de pressão é mínima. Em regime permanente, a pressão em A é menor que em F,

com isso, o montante de sólidos na válvula L consegue passar do standpipe para o riser.

Figura 8 – Perfil de pressão em função da altura em um LFC. Fonte: Adaptado de Basu (2006).

Para garantia de uma operação estável, um LFC precisa cumprir com o balanço de pressão ao longo do seu circuito. Este balanço é descrito na equação 2.

$$\Delta P_{F-A} + \Delta P_{A-B} + \Delta P_{B-C} + \Delta P_{C-D} = \Delta P_{D-E} + \Delta P_{E-F}$$
(2)

Onde os termos ΔP representam a perda de carga ou de pressão estática ao longo dos locais correspondentes.

2.3 CARACTERIZAÇÃO DAS PARTÍCULAS

Para compreender a fluidodinâmica das partículas em um leito fluidizado é necessário conhecer as principais características dos sólidos, tais como: densidade, esfericidade, distribuição granulométrica, diâmetro médio (FONSECA; LEONARDO, 2009, p. 7).

De acordo com Geldart (1986), existem dois tipos de densidade das partículas em um leito fluidizado: a densidade aparente (ρ_{ap}) e a densidade real (ρ_{rp}).

A densidade aparente das partículas sólidas (ρ_{ap}) é definida segundo Rhodes (1998) como a razão entre a massa da partícula sólida (m_p) e o seu volume com poros:

$$\rho_{ap} = \frac{m_p}{Volume \ com \ poros} \tag{3}$$

A densidade real das partículas sólidas (ρ_{rp}) é definida como a razão entre a massa da partícula sólida (m_p) e o seu volume real (sem poros):

$$\rho_{rp} = \frac{m_p}{Volume \ real \ da \ partícula \ (sem \ poros)} \tag{4}$$

A esfericidade de uma partícula refere-se à medida do fator de forma, onde o formato do sólido é comparado com o de uma esfera perfeita. Na prática, existe alguma dificuldade em se medir a esfericidade de uma partícula irregular, necessitando ser estimada por métodos aproximados na maioria das vezes (FONSECA; LEONARDO, 2009, p. 9). Segundo Peçanha e Massarani (1986), a esfericidade do sólido (\emptyset) pode ser calculada com aproximação mediante a razão entre o diâmetro inscrito (d_i) e o diâmetro circunscrito do sólido (d_c):

$$\phi = \frac{d_i}{d_c} \tag{5}$$

A máxima esfericidade é igual a 1, configura-se quando o diâmetro inscrito é igual ao diâmetro circunscrito, caracterizando uma esfera perfeita. Dessa maneira, partículas irregulares apresentam esfericidade menor que 1.

Normalmente, as partículas sólidas que conformam o leito não apresentam o mesmo tamanho. O tamanho médio das partículas pode ser determinado usando microscópios ou peneiras padronizadas (CORTEZ et al. 2008).

Segundo Cortez et al. (2008), o método de peneiramento é realizado com ajuda de malhas de diferentes tamanhos de abertura padronizadas, dispostas uma acima da outra em ordem crescente de abertura de furos, de baixo para cima. O processo inicia-se com o despejo do material na peneira superior, após inicia-se o processo de vibração durante um tempo determinado. Assim, retêm-se nas peneiras os diferentes tamanhos de partículas contidos na amostra. Posteriormente, essas diferentes massas já separadas são pesadas para, finalmente, determinar o diâmetro médio das partículas, também conhecido como diâmetro médio de *Sauter*, ou diâmetro médio da partícula (d_p). Segundo Kunii e Levenspiel (1991) o diâmetro médio de *Sauter* pode ser calculado por meio da equação (6):

$$d_p = \frac{1}{\sum_{i=1}^{X_i} / d_i}$$
(6)

sendo que,

 x_i : fração mássica das partículas retida em cada peneira;

 d_i : abertura média entre as peneiras consecutivas envolvendo a fração mássica retida.

Geldart (1986) classificou as partículas sólidas em quatro grupos (A, B, C e D) de acordo com suas diferentes propriedades de fluidização no mesmo ambiente. A Figura 9 mostra a classificação desses grupos.

Figura 9 – Classificação Geldart de comportamento fluidodinâmico de partículas. Fonte: Adaptado de Geldart (1986).

Partículas entre 20 µm e 90 µm compreendem o grupo A, possuem boa fluidização apresentando pequenos tamanhos de bolhas, devido a isso as forças entre os sólidos são fracas (BASU, 2006).

No grupo B, o tamanho das partículas varia entre 90 µm e 650 µm. De acordo com Kunii e Levenspiel (1991), esses sólidos também possuem boa fluidização e produzem leitos com ótima recirculação e bolhas grandes, as quais surgem após a velocidade mínima de fluidização (BASU, 2006).

Os menores sólidos compõem o grupo C, com tamanho de partículas inferior a 20 µm, são partículas muito finas e possuem dificuldade em fluidizar devido à alta coesão entre elas e, consequentemente, pela tendência na formação de canais preferenciais por onde circula o gás.

As partículas do tipo D possuem tamanho médio superior a 650 µm com alta densidade. Pela presença de bolhas grandes, a fluidização dessas torna-se lenta, sendo requerida uma alta velocidade de fluidização (BASU, 2006).

2.4 VELOCIDADES DE FLUIDIZAÇÃO E COEFICIENTE DE ARRASTO

Os sólidos inseridos em um leito fluidizado possuem um comportamento fluidodinâmico semelhante ao de um fluido confinado num recipiente. Para uma melhor compreensão do comportamento dos sólidos algumas propriedades fluidodinâmicas devem ser determinadas, tais como: velocidade mínima de fluidização (u_{mf}) , velocidade terminal da partícula (u_t) , velocidade de transporte das partículas (u_{tr}) e o coeficiente de arrasto (C_d) .

Quando o fluido de trabalho ocasiona a separação das partículas, mantendoas individualmente em suspensão, atinge-se a velocidade mínima de fluidização (u_{mf}). Nessa velocidade a força ascendente do fluido iguala-se ao peso das partículas (CARDENAS, 2009, p. 13).

Segundo Kunii e Levenspiel (1991), a velocidade mínima de fluidização (u_{mf}) pode ser obtida utilizando as equações (7) a (10).

$$Ar = 150 \frac{\left(1 - \varepsilon_{mf}\right)}{\emptyset^2 \varepsilon_{mf}^3} Re_{mf} + 1,75 \frac{1}{\emptyset \varepsilon_{mf}^3} Re_{mf}^2$$
(7)

Onde o número de Arquimedes (Ar) é definido como:

$$Ar = \frac{d_p^3 \rho_f (\rho_p - \rho_f) g}{\mu^2} \tag{8}$$

A porosidade mínima de fluidização (ε_{mf}) é conhecida como:

$$\varepsilon_{mf} = 1 - \frac{m_p / \rho_p}{V} \tag{9}$$

O número de Reynolds baseado na partícula com velocidade mínima de fluidização (Re_{mf}) é calculado pela equação (10):

$$Re_{mf} = \frac{\rho_f u_{mf} d_p}{\mu_g} \tag{10}$$

sendo que,

*d*_p: diâmetro da partícula (m);

 ρ_s : densidade da partícula (kg/m³);

 ρ_f : densidade do fluído (kg/m³);

*m*_p: massa das partículas (kg);

V: volume do leito (m³);

μ: viscosidade dinâmica do fluido (kg/m.s)

 Φ : Esfericidade da partícula (-).

Segundo Kunii e Levenspiel (1991), para partículas muito pequenas e Re_{mf} < 20, o segundo termo da equação (7) é desprezível e u_{mf} pode ser calculada pela equação (11):

$$u_{mf} = \frac{(\emptyset d_p)^2 (\rho_p - \rho_f) g}{150\mu} \left[\frac{\varepsilon_{mf}^3}{(1 - \varepsilon_{mf})} \right]$$
(11)

Já para partículas grandes e Re_{mf} >1000 despreza-se o primeiro termo da equação (7) e u_{mf} passa a ser calculada por meio da equação (12):

$$u_{mf} = \sqrt{\frac{(\emptyset d_p)(\rho_p - \rho_f)g}{1,75\rho_f}} \varepsilon_{mf}^3$$
(12)

Se a porosidade do leito na condição de mínima fluidização (ε_{mf}) e a esfericidade das partículas (\emptyset) não forem conhecidas, a velocidade mínima de fluidização (u_{mf}) pode ser calculada pela equação (13).

$$u_{mf} = \frac{\mu}{\rho_f d_p} \left(\sqrt{33,7^2 + 0,0408 \, Ar} - 33,7 \right) \tag{13}$$

A velocidade terminal (*u*_t), também conhecida como a máxima de fluidização sem arrasto para fora do recipiente, configura a velocidade de queda livre da partícula. Segundo Kunii e Levenspiel (1991), ela é calculada pela equação (12).

$$u_t = \sqrt{\frac{4d_p(\rho_s - \rho_g)g}{3\rho_g C_D}}$$
(12)

Sendo C_D o coeficiente de arrasto e definido pela equação (13):

$$C_D = \frac{24}{Re_p} \left[1 + \left(8,171e^{-4,0655\emptyset} \right) Re_p^{0,0964+0,5565\emptyset} \right] + \frac{73,69(e^{-5,0748\emptyset}) Re_p}{Re_p + 5,378e^{6,2122\emptyset}}$$
(13)

Onde Re_p é o número de Reynolds. Sendo este desconhecido, é necessário calcular a velocidade terminal através de processo iterativo, pois C_D está em função do Re_p .

Na prática, a velocidade terminal é inferior à velocidade de transporte das partículas (u_{tr}), uma vez que esta não é apenas determinada para uma partícula isolada e sim para o leito, onde a aceleração dos sólidos e as interações entre

partículas e partículas-parede interferem, obrigando ao aumento da velocidade do gás. Perales (1991) propôs uma equação para o cálculo dessa velocidade restrita a escoamentos com número de Arquimedes da partícula (Ar) compreendido entre 20 e 50.000:

$$u_{tr} = 1,415 \, \frac{\mu}{\rho_g d_p} A_r^{0,484} \tag{14}$$

2.5 DISTRIBUIDOR DE AR

Em um leito fluidizado o distribuidor de ar é utilizado para uniformizar e estabilizar a fluidização na seção de entrada do leito, evitando assim regiões não fluidizadas. Também, o distribuidor evita que os sólidos infiltrem para o *plenum* ou local onde alimenta-se o gás de fluidização. Assim, o distribuidor suporta o peso do material sólido durante o processo e minimiza o atrito das partículas no leito (YANG, 2003). Alguns problemas ocorrem quando um distribuidor de ar não é utilizado, como: distribuição não-uniforme do ar e retorno de sólidos, onde uma pequena parcela de partículas pode ficar fora da região de fluidização (BASU, 2006, p. 359).

Existem várias formas e tipos de distribuidores de ar, com funcionalidades particulares, apresentando vantagens e desvantagens. A escolha do tipo de distribuidor mais apropriado é realizada mediante análise das condições de projeto já pré-estabelecidas, bem como do custo envolvido. Levando em consideração a forma física, eles são classificados, de acordo com o tipo de entrada do gás, em: fluxo ascendente, fluxo lateral e descendente (YANG, 2003).

Em caldeiras de leito fluidizado borbulhante (LFB), distribuidores de ar são apenas requeridos na coluna do leito. Assim, em caldeiras o distribuidor de ar localizase na fornalha, e a velocidade do ar injetado está normalmente entre 0,5 e 1,7 m/s. Já em fornalhas de um leito fluidizado circulante (LFC), distribuidores de ar são requeridos em dois locais: na válvula *loop seal* e na parte inferior da fornalha ou coluna *riser*. Na região do *riser*, o distribuidor necessita operar com altas velocidades do gás, normalmente entre 4 e 6 m/s (BASU, 2006).

2.5.1 Tipos de distribuidores

Basu (2006) classifica os distribuidores de ar em três grupos:

• Tipo placa (Figura 10(a)): geralmente são constituídas por sulcos ou furos verticais, distribuídos em uma placa simples que pode ser também sinterizada. Essas placas são usadas em gaseificadores e caldeiras industriais.

• Tipo *tuyere* (Figura 10(b)): distribuem o ar dentro do leito através de tubos verticais de maneira ascendente ou descendente.

 Tipo tubo de espalhamento (Figura 10(c)): são formados por tubos constituídos de orifícios ao longo de sua extensão. Esse são introduzidos diretamente no leito sem a presença de uma placa ou uma caixa para dar suporte ao material sólido.

Figura 10– Tipos de distribuidores de ar. Fonte: Adaptado de Basu (2006).

2.5.1.1 Distribuidor: tipo placa

O distribuidor tipo placa é subdividido em dois principais subgrupos: placa perfurada (Figura 11(a)) e placa porosa (Figura 11(b)).

Figura 11– Distribuidores de ar tipo placa. Fonte: Adaptado de Basu (2006).

2.5.1.1.1 Placa perfurada

Os distribuidores mais simples de fabricar são os do tipo placa perfurada. Porém, eles não são largamente utilizados na indústria, sendo mais conhecidos entre os pesquisadores. Geralmente, o distribuidor tipo placa perfurada envolve uma fina malha de arame constituída por duas camadas perfuradas (BASU, 2006). Esse tipo de placa possui algumas desvantagens: quando construída por uma malha muito fina sofre empenamento em altas temperaturas; também, em casos onde o tamanho das partículas é inferior ao tamanho da malha, acaba ocorrendo a passagem dos sólidos pelos orifícios da placa.

2.5.1.1.2 Placa porosa

Para que tenham uma característica porosa, as placas desse tipo são, geralmente, construídas de material:

- Sintético;
- Cerâmico;
- Metal esponjoso.

Como as partículas utilizadas em leitos fluidizados podem possuir uma alta faixa de tamanho, esse tipo de placa está disponível em diversas espessuras e porosidades. O problema desse tipo de placa está em conseguir combinar boa resistência mecânica com custo moderado. Em contrapartida, essas placas evitam que o material sólido do leito retorne. A placa porosa possui uma característica exclusiva, a relação é aproximadamente linear entre a velocidade e a queda de pressão. Em todos os outros tipos, essa relação é quadrática. Dessa maneira, a diminuição da velocidade não causa uma má distribuição do ar, pois a queda de pressão não cai drasticamente como nos outros tipos de placas (BASU, 2006).

2.5.1.2 Distribuidor tipo tuyere

Distribuidores tipo *tuyere* são recomendados para condições de operações com altas temperaturas, bem como para prevenir que os sólidos passem para o fundo do sistema fluidizante (KUNII E LEVENSPIEL, 1991). Segundo Basu (2006) esse é o mais importante distribuidor usado em reatores de LFC. A Figura 12 mostra alguns tipos de distribuidores tipos *tuyere*. O tipo de bico mais comum utilizado é o bico simples (*simple nozzle*) (Figura 12(b)), formado por tubos verticais constituídos por orifícios laterais que em algumas ocasiões são fabricados com uma determinada inclinação para evitar que partículas passem pelo orifício. Também, algumas vezes eles são fundidos em perfis especiais em vez de serem manufaturados por tubos. Os bicos direcionais (Figura 12(a)) podem ser fundidos ao invés de soldados. As aberturas podem ser realizadas com seção quadrada, reduzindo o risco de retorno dos sólidos.

Os distribuidores tipo *bubble cap* (Figura 12(c)) são mais utilizados na indústria química que na indústria de geração de energia e, para evitar o retorno dos sólidos, eles são fabricados com um tampão semi-aberto acima da saída. Já os distribuidores com bico tipo fenda ou ponta de seta são fabricados com um tampão em forma de "teto inclinado" para evitar a presença de sólidos mortos (partículas que ficam depositadas entre o tampão e a saída de ar) sendo um problema que ocorre no *bubble cap* (BASU, 2006, p. 362).

Figura 12– Distribuidores de ar tipo *tuyere,* bico ou bocal. Fonte: Adaptado de Basu (2006).

Configurações de distribuidor como o da Figura 13 podem ser realizadas para melhorar a uniformidade na fluidização.

Figura 13 - Bicos direcionais arranjados alternadamente com espaçamento iguais entre os bicos. Fonte: Basu (2006).

2.5.1.3 Distribuidor tipo tubo de espalhamento

Existem ocasiões específicas em que é inviável o uso de *plenum* ou caixa de ar abaixo placa de suporte do leito, devido a limitações dimensionais ou quando uma mistura inflamável de gases é introduzida ao leito. Por essa razão, o fluido precisa ser injetado por meio de tubos sem uma placa ou suporte. O distribuidor ideal para essas situações é o tipo tubo de espalhamento, constituído por vários tubos horizontais com orifícios igualmente espaçados em torno desses tubos. Com esse tipo de distribuidor, utilizados e projetados de maneira correta, o risco de explosão é bem menor que nos demais distribuidores (BASU, 2006).

2.5.2 Projeto do distribuidor

Para projetar um distribuidor de ar, algumas situações e escolhas devem estar pré-definidas como: o tipo de leito fluidizado, as dimensões do leito, a velocidade superficial do gás e de mínima fluidização, a composição do fluido (se é inflamável ou não), o tamanho das partículas sólidas, a temperatura máxima de operação, a queda de pressão no leito, a potência do soprador de ar.

De acordo com Kunii e Levenspiel (1991) para projetar placas perfuradas e distribuidores tipo *tuyere,* a queda de pressão através dos orifícios necessita ser menor que fração de queda de pressão total no leito. Para tanto, primeiramente devese determinar a queda de pressão através do distribuidor (ΔP_d).

Segundo Basu (2006), para leito fluidizado borbulhante (LFB) experiências sugerem que a queda de pressão através do distribuidor (ΔP_d) necessita ser entre 0,1 a 0,3 vezes a queda de pressão através do leito (ΔP_b), e a velocidade superficial do gás (u_f) deve estar compreendida entre 0,5 e 2,0 m/s. Já, em leito fluidizado circulante (LFC), a fração de área aberta deve ser superior ao LFB quando o ar entra apenas pelo distribuidor, desconsiderando outras entradas de ar (como em unidades comerciais). Também, o valor de u_f deve estar entre 4,0 e 6,0 m/s. Para garantir que a fluidização seja uniforme, a ΔP_d em LFC deve assumir valores superiores ao do LFB e deve variar no intervalo de 1,0 a 4,0 kPa, dependendo de parâmetros como as

dimensões do leito e potência do soprador. Com base nesses requisitos iniciais, Basu (2006) determina que a velocidade do gás através dos orifícios (u_{or}) deve estar entre 30 e 90 m/s.

Segundo Kunii e Levenspiel (1991), a velocidade do gás através dos orifícios (u_{or}) pode ser calculada mediante a equação (15):

$$u_{or} = \frac{4 u_f}{\pi d_{or}^2 N_{or}} \tag{15}$$

Onde,

u_f: velocidade superficial do gás (m/s);
d_{or}: diâmetro do orifício (m);
N_{or}: (N° *tuyere*s / área) x (N° de orifícios / *tuyere*) [m⁻²].

Para que haja uma distribuição homogênea do gás é necessário que os *tuyeres* estejam igualmente espaçados. Essa dimensão é conhecida como "passo", do qual existem duas configurações: o passo quadrado e o passo triangular. Segundo Kunii e Levenspiel (1991), o passo quadrado pode ser calculado pela equação (16), e o passo triangular pela equação (17).

$$P = \frac{1}{\sqrt{N_t}} \tag{16}$$

$$P = \frac{\sqrt{2}}{3^{\frac{1}{4}}\sqrt{N_t}} \tag{17}$$

Sendo que,

 N_t : (N° de *tuyeres* / Área total do distribuidor) [m⁻²].

De acordo com Kunii e Levenspiel (1991), a queda de pressão através do distribuidor (ΔP_d) pode ser calculada pela equação (18):

$$\Delta P_d = \left(\frac{u_{or}}{C_{d,or}}\right)^2 \frac{\rho_g}{2} \tag{18}$$

Onde,

 $C_{d,or}$: Coeficiente de descarga no orifício [-]; ρ_g : Massa específica do gás [kg/m³].

De acordo com Quereshi e Creasy (1979), a espessura do *tuyere* (*t*) tem relação direta no valor de $C_{d,or}$, sendo que para $t / d_{or} > 1$, o coeficiente de descarga no orifício ($C_{d,or}$) pode ser obtido através da equação (19):

$$C_{d,or} = 0.82 \, (t/d_{or})^{0.13} \tag{19}$$

Segundo Geldart e Baeyens (1985, p. 70) se $t / d_{or} < 0,1$, e Ret> $3000,C_{d,or}$ pode ser aproximado para 0,6. Lembrando que Re_t , é o número de Reynolds calculado no *tuyere* e pode ser calculado pela equação (20):

$$Re_t = \frac{\rho_g u_{or} d_{or}}{\mu_g} \tag{20}$$

3 MATERIAIS E MÉTODOS

Neste capítulo são descritos os equipamentos, materiais e procedimentos utilizados para a elaboração do presente trabalho. São abordados aspectos relacionados às características do sistema experimental e das partículas que constituem o leito fluidizado rápido, bem como os procedimentos de projeto do distribuidor de ar. Adicionalmente, são descritos os procedimentos envolvidos na execução dos testes experimentais, assim como, as condições testadas.

3.1 DESCRIÇÃO DA UNIDADE DE FLUIDIZAÇÃO RÁPIDA A FRIO (UFRAF)

Valaszek e Marin (2013) projetaram e construíram a Unidade de Fluidização Rápida a Frio (UFRAF) utilizada neste estudo. O equipamento foi construído com recursos da Fundação de Apoio ao Desenvolvimento Científico e Tecnológico do Paraná e está instalado no Laboratório de Processos Termoquímicos da UTFPR – Campus Ponta Grossa. A unidade é dividida, conforme a Figura 14, em quatro subsistemas:

- Circuito de fluidização;
- Fornecimento de ar de fluidização;
- Fornecimento de ar de aeração;
- Instrumentação para aquisição de dados.

Figura 14 - Vista geral da UFRAF Fonte: Adaptado de Valaszek e Marin (2013). A Figura 15 mostra um diagrama esquemático da UFRAF contendo os

componentes principais com os suas respectivas nomenclaturas e localização.

Figura 15 – Diagrama esquemático da UFRAF. Fonte: Valaszek e Marin (2013).

3.1.1 Circuito de fluidização

O Circuito de Fluidização é constituído por:

- Uma coluna de fluidização, ou riser (RS);
- Um ciclone (Figura 17);
- Uma coluna descendente, ou standpipe (SP);
- Uma válvula de retorno dos sólidos do tipo L (VL) (Figura 18);

• Tomadas de pressões em vários pontos (*RS*-01, *RS*-02, *RS*-03, *RS*-04, *RS*-05, *RS*-06, SP-01, SP-02 e *VAL-L*) (Figura 15);

- Um dispositivo cônico (Figura 16);
- Uma válvula diafragma, para descarga de sólidos (VA-D) (Figura 16);
- Uma conexão T, para alimentação dos sólidos (Figura 17);

Uma mangueira flexível (Figura 17), para exaustão dos gases e partículas muito finas;

• Um filtro de mangas.

O *riser* é dividido em 07 módulos (*BL*-01 ao *BL*-07) e possui 06 tomadas de pressão (*RS*-01 à *RS*-06). Esta coluna envolve a região de ascensão das partículas que se dirigem para o ciclone. Na base do *riser* foi acoplado um dispositivo cônico (Figura 16) com a função de evitar o retorno dos sólidos durante a fluidização. Posteriormente, um distribuidor de ar foi acoplado acima do dispositivo cônico.

O Ciclone (Figura 17) é usado para separar as partículas grossas do ar de fluidização e das partículas mais finas, as quais saem pela mangueira flexível (Figura 17). As partículas muito finas ficam retidas no filtro de mangas, com o ar limpo sendo posteriormente liberado ao ambiente. As partículas mais grossas passam pelo ciclone e descem pelo *standpipe*.

Figura 16 - Dispositivo cônico inferior acoplado ao *riser*. Fonte: Adaptado de Valaszek e Marin (2013).

O standpipe possui duas tomadas de pressão (SP-01 e SP-02). Esta coluna é também conhecida como coluna descendente, por onde as partículas se dirigem até a válvula de retorno dos sólidos do tipo L (Figura 18). A válvula tipo L tem a função de promover o retorno das partículas até a base do *riser*, forçando essas partículas a passarem pela coluna de fluidização novamente.

Figura 17 – Ciclone do LFC. Fonte: Adaptado de Valaszek e Marin (2013).

A válvula L possui uma tomada de pressão (*VAL-L*) (Figura 18). Acoplada juntamente a essa tomada há uma mangueira para injeção do ar no ponto de aeração. O ar promove uma condição apropriada para o movimento das partículas até a base do *riser.*

Figura 18 – Válvula de retorno dos sólidos tipo L. Fonte: Adaptado de Valaszek e Marin.

3.1.2 Sistema de Fornecimento de Ar de Aeração

O Sistema de Fornecimento de Ar de Aeração foi acoplado à UFRAF com o objetivo de forçar as partículas acumuladas na válvula L a entrarem na coluna ascendente de ar. O ar de aeração é fornecido por um compressor (*CO*-1) tipo alternativo. A vazão de ar de aeração é regulada por uma válvula (VRP) (Figura 19) e medida pelos rotâmetros *ROT*-1 (escala de 0,045 Nm³/h a 0,45 Nm³/h (Normal m³/h)) e ROT-2 (escala de leitura de 0,4 Nm³/h a 4,8 Nm³/h). O ar, após passar pelo rotâmetro, direciona-se à válvula L pela mangueira para injeção de ar de aeração (Figura 18).

Figura 19 – Linha de ar de aeração. Fonte: Adaptado de Valaszek e Marin (2013).

3.1.3 Sistema de fornecimento de Ar de Fluidização

O ar responsável pela fluidização das partículas no leito é proveniente do Sistema de fornecimento de Ar de Fluidização, que é constituído, conforme a Figura 20, pelos seguintes componentes:

- 1 Soprador radial (SO-1), marca AEROMACK, modelo CRE-04;
- 1 T de 90°;
- 1 Válvula esfera (VA-E) DN25, PN10 de uma polegada.
- 1 tomada ¼";
- 1 Válvula gaveta (VA-G) da marca DOCOL, modelo DN50.

Figura 20 - Sistema de fornecimento de ar de fluidização. Fonte: Adaptado de Valaszek e Marin (2013).

O soprador (*SO*-1) transporta ar ambiente até a base do *riser* a uma velocidade desejada. A válvula esfera (*VA-E*) é utilizada para aliviar uma parcela desnecessária do ar, sendo que, quando necessário uma maior parcela de ar, a válvula de alivio pode ser fechada parcialmente ou totalmente. A tomada de $\frac{1}{4}$ " é usada para acoplar um termopar responsável pela leitura da temperatura do fluxo de ar. A válvula gaveta (*VA-G*) tem a função de regular a vazão do ar que provém do soprador. Posteriormente, o ar segue até a Placa de Orifício (figura 21) onde é realizada, através da diferença de pressões entre a jusante (*PO-J*) e montante (*PO-M*), a medição da vazão do ar que passa para o *riser*.

Figura 21 – Placa de Orifício. Fonte: Adaptado de Valaszek e Marin (2013).

3.1.4 Instrumentação usada para a leitura dos dados experimentais.

Os dados experimentais extraídos durante os testes consistem de medidas de pressão e de temperatura. Para tanto, foi construído e acoplado à UFRAF um sistema de medição de pressão manométrica composto por medidores de pressão de tubo em "U", preenchidos com água destilada, onde a unidade de medida é milímetros de coluna d'água. Os manômetros estão configurados lado a lado em um painel (Figura 22) e cada um deles possui suas respectivas mangueiras que realizam a medida das pressões em cada ponto específico do leito, conforme a Figura 15. No total, são 12 manômetros com suas respectivas tomadas de pressão, sendo estas: *RS*-01, *RS*-02, *RS*-03, *RS*-04, *RS*-05, *RS*-06, *SP*-01, *SP*-02, *VAL-L, PO-M, PO-D* (diferença entre a pressão a jusante e a montante da placa de orifício.

Figura 22–Painel com manômetros em "U". Fonte: Valaszek e Marin (2013).

3.1.5 Características do material constituinte do leito

O material utilizado durante a realização dos experimentos foi areia quartzosa com esfericidade de 0,69, medida utilizando o método proposto por Peçanha e Massarani (1986) apud Cortez et al. (2008). As medidas de diâmetro inscrito e de diâmetro circunscrito da partícula foram obtidas com a ajuda de um microscópio ótico marca *Olympus*, modelo BX60, localizado no laboratório de Caracterização de Materiais da UTFPR - Campus Ponta Grossa. A densidade aparente da areia foi medida por picnometria, revelando o valor médio de 2523 kg/m³.

Os experimentos foram realizados com dois tamanhos médios de areia: 256 μ m e 181 μ m, classificadas por peneiramento utilizando peneiras padronizadas Tyler. A areia de 256 μ m foi obtida no Laboratório de Fundição (CETEM) da UTFPR-Ponta Grossa; já a areia de 181 μ m foi obtida por meio das peneiras vibratórias do SENAI-Ponta Grossa. Visando a obtenção de faixa granulométrica estreita, a areia mais grossa foi passante na peneira com abertura de 300 μ m e retida na de 212 μ m. Já, a areia mais fina, foi passante em peneira com abertura de malha de 212 μ m e retida na de 150 μ m.

Por meio da Equação (14) foi possível conhecer a velocidade de transporte das partículas. A areia com diâmetro de partícula de 256 µm possui velocidade de transporte de 2,97 m/s e a areia com diâmetro de partícula de 181 µm possui velocidade de transporte de 2,54 m/s.

3.2 PROCEDIMENTOS

Neste item é apresentado, primeiramente, o procedimento de projeto do distribuidor de ar e, posteriormente, os procedimentos experimentais.

3.2.1 Projeto do distribuidor de ar

Com base na revisão da literatura, escolheu-se, para ser projetado e fabricado, um distribuidor tipo *tuyere.* Este tipo de distribuidor é o mais usado em combustores comerciais.

Primeiramente, foram escolhidos tubos padrões com rosca BSP de ¼" (13,72 mm) nas extremidades e com espessura (t) de 2,24 mm, para serem configurados como *tuyeres*. De acordo com Basu (2006), normalmente são usadas duas configurações para a distribuição espacial dos tubos ou *tuyeres* no distribuidor de gás: a quadrada e a triangular, onde os *tuyeres* ficam equidistantes. Com a necessidade de acoplar o distribuidor circular na base do *riser*, a configuração escolhida foi a triangular com 07 *tuyeres* homogeneamente distribuídos, conforme mostra a Figura 23.

Figura 23 – Desenho técnico contendo as dimensões da Placa base. Fonte: Autoria própria.

Com base nos requisitos de projeto de distribuidor para leito fluidizado circulante propostos por Basu (2006), que sugerem uma velocidade através do orifício de um *tuyere* entre 30 m/s e 90 m/s e uma queda de pressão através do distribuidor entre 1 kPa e 4 kPa, juntamente com as equações 15, 18, 19 e 20, foi definido o valor de 3 mm para o diâmetro dos orifícios nos *tuyeres*, bem como, a quantidade de 08

orifícios por *tuyere*. A distância entre *tuyeres*, ou passo (P), foi calculada mediante a equação 17, obtendo-se o valor de 28 mm.

Para facilitar a montagem, o distribuidor foi projetado em duas partes: a Placa base e os *Tuyeres*. A Placa base (Figura 23), foi fabricada em aço inoxidável AISI 304. Ela tem o formato de flange com 06 furos M10 e é acoplada entre a flange já existente do dispositivo cônico e a flange da base do *riser*.

Os *tuyeres* são fixados à Placa base por meio de roscas padrões BSP. O desenho técnico do *tuyere* ilustra-se na Figura 24.

Figura 24 – Desenho técnico contendo todas as dimensões do *tuyere*. Fonte: Autoria própria.

A Figura 25 mostra uma vista explodida detalhando o posicionamento do distribuidor de ar entre o dispositivo cônico e a base do *riser*.

Figura 25 – Localização do distribuidor no leito (1 - *Riser*, 2 - Distribuidor de ar, 3 - Cone). Fonte: Autoria própria.

A Figura 26 mostra a imagem do distribuidor fabricado, com os *tuyeres* já fixados na placa base e pronto para ser acoplado à UFRAF.

Na Figura 27 observa-se um dos oito *tuyeres* separado da placa base. No projeto, os *tuyeres* foram feitos separados da placa base levando em consideração a possibilidade de realizar experimentos futuros com diferentes diâmetros de orifício do *tuyere*. Assim sendo, facilita-se a troca de *tuyeres* com diferentes diâmetros de orifícios.

Figura 26 – Distribuidor de ar com *tuyeres* acoplados. Fonte: Autoria própria.

Figura 27 – *Tuyere* separado da placa base. Fonte: Autoria própria.

3.2.2 Procedimento experimental

Os experimentos foram realizados seguindo a técnica de planejamento fatorial completo em duplicata, proposta por De Barros Neto *et. al* (2002), no qual foram consideradas três variáveis em dois níveis: alto e baixo. Isso resultou em um planejamento fatorial do tipo 2³. Cada experimento precisou ser repetido, a fim de determinar o erro experimental. Isso foi feito para o caso operação da UFRAF sem e

com distribuidor de ar. Logo, foram realizados 16 experimentos sem distribuidor de ar e mais 16 experimentos com o distribuidor, totalizando 32 experimentos.

As variáveis escolhidas como parâmetros controláveis foram: Diâmetro da partícula (d_p), Inventário de sólidos e Velocidade de fluidização do gás (u_f). Os níveis baixo (-) e alto (+), para o tamanho de partícula foram 181 µm e 256 µm, respectivamente; para o inventário de sólidos foram considerados 3 kg e 5 kg respectivamente; finalmente, para a velocidade de fluidização do gás, os valores de 3,5 m/s e 4,5 m/s, respectivamente. Esses valores de velocidade foram escolhidos considerando que a velocidade de fluidização necessita ser igual ou superior à velocidade de transporte das partículas, a fim de garantir a recirculação externa dos sólidos no leito. As velocidades de transporte das partículas utilizadas são de 2,97 m/s e 42,54 m/s, para a areia maior e menor respectivamente.

A variável resposta escolhida neste estudo foi a queda de pressão no riser da UFRAF nos dois casos de operação analisados.

A Tabela 1 mostra a matriz de planejamento com a resposta média (\bar{y}), já considerando o teste e a sua repetição.

	V			
Teste	Diâmetro da partícula - d_p (µm)	Inventário de sólidos - <i>Inv</i> (kg)	Velocidade de fluidização - <i>u_f</i> (m/s)	Resposta média (y)
1	256 (+)	5,0 (+)	4,5 (+)	$\overline{\mathcal{Y}_1}$
2	256 (+)	5,0 (+)	3,5 (-)	$\overline{\mathcal{Y}_2}$
3	256 (+)	3,5 (-)	4,5 (+)	$\overline{\mathcal{Y}_3}$
4	256 (+)	3,5 (-)	3,5 (-)	$\overline{\mathcal{Y}_4}$
5	181 (-)	5,0 (+)	4,5 (+)	$\overline{\mathcal{Y}_{5}}$
6	181 (-)	5,0 (+)	3,5 (-)	$\overline{\mathcal{Y}_6}$
7	181 (-)	3,5 (-)	4,5 (+)	$\overline{\mathcal{Y}_7}$
8	181 (-)	3,5 (-)	3,5 (-)	$\overline{\mathcal{Y}_8}$

Tabela 1 – Matriz de planejamento contendo as variáveis e seus respectivos níveis.

Fonte: Autoria própria.

Para a realização de cada teste experimental, o inventário de sólidos, já peneirado, com o seu respectivo diâmetro de partícula, é pesado em uma balança digital de precisão, da marca Solotest, modelo BG 2000, com 0,001 g de resolução e

capacidade máxima de 2 kg. Antes de o leito ser alimentado com o inventário previamente pesado, liga-se o compressor (CO-1) para fornecer ar de aeração com vazão mínima necessária para evitar o retorno de sólidos pela tomada de pressão VAL-L. Após isso, os sólidos são introduzidos pela parte superior no sistema, descendo estes pelo *standpipe* e ficando acumulados na parte inferior da coluna de retorno de sólidos e na região da VAL-L.

Antes que o soprador (SO-1) seja ligado é necessário conferir se todos os manômetros de tubo em "U" estão no nível correto, necessita-se também conferir se a válvula diafragma (VA-D) está totalmente fechada e a válvula agulha (VA-A) totalmente aberta. Já a válvula gaveta (VA-G) deve ser aberta totalmente e depois fechada parcialmente com sete voltas completas. Outro procedimento importante é a captura de partículas finas que é feita por meio do filtro de mangas, o qual é pesado antes do teste e colocado na saída da mangueira flexível. Feito isso, o SO-1 pode ser ligado e espera-se que a temperatura do ar de fluidização estabilize. Para que as partículas comecem a circular pelo sistema, é necessário que a vazão do gás no ponto de aeração seja fixada no valor apropriado para cada condição de teste. Com essa vazão controlada, por meio da VRP e do rotâmetro ROT1 ou ROT2, espera-se que a temperatura do ar de fluidização estabilize novamente. Seguidamente, a velocidade de fluidização pretendida é regulada com acionamento na válvula tipo gaveta (VA-G), conforme os valores calculados com o modelo matemático semi-empírico desenvolvido em pesquisas prévias (VALASZEK e MARIN, 2013; RODRIGUES e BELTRANE, 2012) e com auxílio do software Engineering Equation Solver - EES[®].

Com a velocidade de fluidização regulada no valor pretendido, procede-se à realização das medições de pressão estática com os manômetros de tubo em "U". Para cada teste são realizadas quatro leituras, uma a cada cinco minutos de operação do sistema. Ao finalizar as leituras de pressão, retiram-se as partículas do leito pelos dutos inferiores da válvula L e da coluna *riser*. Uma vez o sistema é esvaziado, o soprador e o compressor são desligados e o filtro de mangas é pesado. Para a realização de um novo experimento é necessário limpar todas as tomadas de pressão e seus respectivos filtros, evitando assim o entupimento das mesmas.

Para a realização dos experimentos feitos com distribuidor de ar foi necessário aumentar o diâmetro da Placa de orifício de 25,1 mm para 39,4 mm, pois o distribuidor acrescenta queda na placa de orifício, dessa maneira o comprimento do manômetro referente à pressão montante (*PO-M*) era pequeno e não era suficiente

para medir a pressão. Ao aumentar o diâmetro da placa a pressão montante diminui e a leitura da pressão passa a ser possível.

3.3 TRATAMENTO DOS DADOS

Nesta seção descreve-se o tratamento dos dados experimentais, visando determinar os efeitos das variáveis estudadas sobre a queda de pressão no *riser* e o efeito causado pela inclusão do distribuidor de ar no leito fluidizado circulante.

As informações e dados obtidos nos experimentos foram organizados em gráficos e tabelas, contendo, por exemplo, informações sobre o perfil de pressão em função da altura do *riser*, efeitos das variáveis estudadas sobre o perfil de pressão e comparação dos resultados obtidos sem e com distribuidor de ar.

3.3.1 Determinação dos efeitos das variáveis

Segundo De Barros Neto et al. (2003), em um planejamento fatorial 2^3 devem ser considerados os efeitos principais de cada uma das 3 variáveis (E1, E2 e E3), os efeitos combinados entre duas variáveis (E12, E13 e E23) e o efeito combinado das 3 variáveis (E123). Onde E1, E2 e E3 são os efeitos causados pelo diâmetro da partícula (d_p) , inventário de sólido (*Inv*) e velocidade de fluidização (u_f), respectivamente.

A Tabela 2, elaborada da matriz de planejamento, representa a tabela de coeficientes de contraste, na qual são mostrados os efeitos possíveis.

				Efeitos	(E)			Bosposto
Teste	E1	E2	E3	E12	E13	E23	E123	(y)
1	+	+	+	+	+	+	+	$\overline{y_1}$
2	+	+	-	+	-	-	-	$\overline{y_2}$
3	+	-	+	-	+	-	-	$\overline{y_3}$
4	+	-	-	-	-	+	+	$\overline{\mathcal{Y}_4}$
5	-	+	+	-	-	+	-	$\overline{\mathcal{Y}_{5}}$
6	-	+	-	-	+	-	+	$\overline{y_6}$
7	-	-	+	+	-	-	+	$\overline{\mathcal{Y}_7}$
8	-	-	-	+	+	+	-	$\overline{\mathcal{Y}_8}$

 Tabela 2 - Coeficientes de contraste dos experimentos.

Fonte: Adaptado de Barros Neto et al. (2003).

O efeito principal de cada variável, de acordo com De Barros Neto et al. (2003), é calculado com a média dos efeitos nos dois níveis. Para as variáveis do trabalho em questão, as equações 21 a 27 mostram os efeitos principais e combinados:

$$E1 = \overline{y_{+}} - \overline{y_{-}} = \frac{(\overline{y_{1}} + \overline{y_{2}} + \overline{y_{3}} + \overline{y_{4}}) - (\overline{y_{5}} + \overline{y_{6}} + \overline{y_{7}} + \overline{y_{8}})}{4}$$
(21)

$$E2 = \overline{y_{+}} - \overline{y_{-}} = \frac{(\overline{y_{1}} + \overline{y_{2}} + \overline{y_{5}} + \overline{y_{6}}) - (\overline{y_{3}} + \overline{y_{4}} + \overline{y_{7}} + \overline{y_{8}})}{4}$$
(22)

$$E3 = \overline{y_{+}} - \overline{y_{-}} = \frac{(\overline{y_{1}} + \overline{y_{3}} + \overline{y_{5}} + \overline{y_{7}}) - (\overline{y_{2}} + \overline{y_{4}} + \overline{y_{6}} + \overline{y_{8}})}{4}$$
(23)

$$E12 = \overline{y_{+}} - \overline{y_{-}} = \frac{(\overline{y_{1}} + \overline{y_{2}} + \overline{y_{7}} + \overline{y_{8}}) - (\overline{y_{3}} + \overline{y_{4}} + \overline{y_{5}} + \overline{y_{6}})}{4}$$
(24)

$$E13 = \overline{y_{+}} - \overline{y_{-}} = \frac{(\overline{y_{1}} + \overline{y_{3}} + \overline{y_{6}} + \overline{y_{8}}) - (\overline{y_{2}} + \overline{y_{4}} + \overline{y_{5}} + \overline{y_{7}})}{4}$$
(25)

$$E23 = \overline{y_{+}} - \overline{y_{-}} = \frac{(\overline{y_{1}} + \overline{y_{4}} + \overline{y_{5}} + \overline{y_{8}}) - (\overline{y_{2}} + \overline{y_{3}} + \overline{y_{6}} + \overline{y_{7}})}{4}$$
(26)

$$E123 = \overline{y_{+}} - \overline{y_{-}} = \frac{(\overline{y_{1}} + \overline{y_{4}} + \overline{y_{6}} + \overline{y_{7}}) - (\overline{y_{2}} + \overline{y_{3}} + \overline{y_{5}} + \overline{y_{8}})}{4}$$
(27)

3.3.2 Determinação do modelo estatístico

Ao realizar experimentos em duplicata é possível determinar o erro decorrente da variação nas respostas. A variância experimental (s^2), de um conjunto de N experimentos duplicados, é estimada por meio da equação (28):

$$\hat{V}(y) = s^2 = \sum_{i} \frac{d_i^2}{2N}$$
(28)

onde, d_i é a diferença entre duas respostas com condições iguais repetidas correspondente ao i-ésimo experimento.

O erro experimental característico (*s*), também conhecido como erro-padrão, provém da raiz quadrada da equação (28) e pode ser descrito como:

$$s = \sqrt{\sum_{i} {d_i}^2 / {_{2N}}} \tag{29}$$

Barros Neto *et al.* (2003) propôs um modelo utilizado para identificar as respostas de um planejamento fatorial 2³. O modelo estatístico populacional é determinado pela Equação 28 que descreve a resposta (y), função das variáveis experimentais codificadas (x₁, x₂ e x₃) e dos coeficientes β_0 , β_1 , β_2 , β_3 , β_{12} , β_{13} , β_{23} e β_{123} .

$$y(x_1, x_2, x_3) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_{12} x_1 x_2 + \beta_{13} x_1 x_3 + \beta_{23} x_2 x_3 + \beta_{123} x_1 x_2 x_3 + \varepsilon(x_1, x_2, x_3)$$
(30)

Onde $\varepsilon(x_1, x_2 e x_3)$ é o erro aleatório associado às respostas $y(x_1, x_2 e x_3)$. Os valores dos β 's só poderiam ser determinados de maneira exata se fossem realizados infinitos experimentos. Assim, sendo os valores calculados, que substituem os β 's para um número finito de experimentos, os termos b₁, b₂, b₃, b₁₂, b₁₃, b₂₃ e b₁₂₃ são chamados de estimadores dos parâmetros populacionais (β_0 , β_1 , β_2 , β_3 , β_{12} , β_{13} , $\beta_{23} \in \beta_{123}$). Dessa maneira a Equação 28 pode ser reescrita descrevendo agora um modelo estimativo (\hat{y}) e não mais populacional (y):

$$\hat{y}(x_1, x_2, x_3) = b_0 + b_1 x_1 + b_2 x_2 + b_3 x_3 + b_{12} x_1 x_2 + b_{13} x_1 x_3 + b_{23} x_2 x_3 + b_{123} x_1 x_2 x_3$$
(31)

A Equação 29 pode ser escrita como um produto escalar entre matrizes:

$$\hat{y}(x_1, x_2, x_3) = \begin{bmatrix} 1 & x_1 & x_2 & x_3 & x_1 x_2 & x_1 x_3 & x_2 x_3 & x_1 x_2 x_3 \end{bmatrix} \begin{bmatrix} b_0 \\ b_1 \\ b_2 \\ b_3 \\ b_{12} \\ b_{13} \\ b_{23} \\ b_{123} \end{bmatrix}$$
(32)

Os valores de estimadores de parâmetros populacionais, também conhecidos como coeficientes de regressão, só são aceitos e colocados na equação do modelo estatístico quando o efeito correspondente ao coeficiente mostra-se significativo. Para tanto, é necessário que a hipótese nula seja rejeitada, ou seja, o valor *p*, conhecido como nível descritivo, deve ser menor que o nível de significância (α). Para um nível de confiança de 95% ($\alpha = 0,05$) o valor p deve ser menor que 0,05 para que a hipótese nula seja rejeitada. Isto quer dizer que, quando o valor *p* é menor que 0,05, a hipótese de que o efeito não é significativo é rejeitada e ele passa a ser significativo.

4 RESULTADOS E DISCUSSÃO

Neste capítulo são apresentados os resultados obtidos nos 32 experimentos realizados: 16 experimentos com distribuidor (CD) e 16 sem distribuidor (SD). Primeiramente, foram realizadas análises separadas do sistema LFC sem distribuidor de ar e com distribuidor de ar, a fim de conhecer a importância dos efeitos promovidos pelos parâmetros de entrada na resposta (queda de pressão no *riser*). Nessa primeira parte, os resultados foram analisados a partir de gráficos que ditam o perfil axial de pressão para cada experimento. Posteriormente, uma análise estatística foi realizada com auxílio de algumas ferramentas do *software* STATISTICA 7[®], obtendo-se o gráfico de Pareto e os coeficientes de regressão para a formulação do modelo estimativo estatístico. Finalmente, é realizada uma comparação entre os resultados obtidos sem e com distribuidor de ar.

Na Tabela 3 são apresentados os valores de queda de pressão no *riser*, encontrados para todos os experimentos realizados sem e com distribuidor de ar. Os valores das colunas SD e CD da Tabela 3 foram determinados conforme indicado nos Apêndices A1 e A2, sendo que cada um desses valores corresponde à diferença das médias das quatro leituras realizadas na tomada de pressão *RS*-01 e *RS*-06, para cada experimento. As 32 respostas obtidas foram inseridas no STATISTICA 7[®] para que os Paretos, os coeficientes de regressão e os modelos estatísticos pudessem ser determinados.

	١	Resposta – Queda de pressão no <i>Riser</i> (Pa)			
Teste	Diâmetro da partícula - <i>d_p</i> (µm)	Inventário de sólidos - <i>Inv</i> (kg)	Velocidade de fluidização - <i>u_f</i> (m/s)	SD	CD
1	256 (+)	5,0 (+)	4,5 (+)	2059,4	2505,6
2	256 (+)	5,0 (+)	3,5 (-)	1961,3	2839,0
3	256 (+)	3,5 (-)	4,5 (+)	735,5	779,6
4	256 (+)	3,5 (-)	3,5 (-)	664,4	806,6
5	181 (-)	5,0 (+)	4,5 (+)	728,1	804,1
6	181 (-)	5,0 (+)	3,5 (-)	367,7	257,4
7	181 (-)	3,5 (-)	4,5 (+)	73,5	134,8
8	181 (-)	3,5 (-)	3,5 (-)	36,8	132,4
1*	256 (+)	5,0 (+)	4,5 (+)	2058,2	2390,4
2*	256 (+)	5,0 (+)	3,5 (-)	1887,8	2834,1
3*	256 (+)	3,5 (-)	4,5 (+)	747,8	769,8
4*	256 (+)	3,5 (-)	3,5 (-)	706,1	794,3
5*	181 (-)	5,0 (+)	4,5 (+)	750,2	769,8
6*	181 (-)	5,0 (+)	3,5 (-)	250,1	382,5
7*	181 (-)	3,5 (-)	4,5 (+)	78,5	132,4
8*	181 (-)	3,5 (-)	3,5 (-)	2,5	129,9

Tabela 3 - Valores de queda de pressão no *riser* para os experimentos sem e com distribuidor de ar (SD e CD, respectivamente).

Fonte: Autoria própria. (*) repetição.

Ao analisar a Tabela 3 observa-se, de um modo geral, que os experimentos feitos com distribuidor de ar possuem valores de respostas maiores que os experimentos executados sem distribuidor de ar. Na seção 4.3 é apresentada uma análise mais detalhada destes resultados.

4.1 Análise do sistema LFC sem distribuidor de ar

Neste item são realizadas as análises dos resultados obtidos durante os experimentos sem o distribuidor de ar, onde as medições foram representadas por gráficos de altura (m) em função da pressão estática (Pa). Também foram realizadas análises estatísticas para determinar os efeitos das variáveis sobre a queda de pressão no *riser*.

4.1.1 Perfil de pressão axial sem distribuidor de ar

Os valores de pressão estática, obtidos durante os experimentos, foram representados nos Gráficos 1 a 6 em função da altura medida desde a base do *riser*. Este gráfico é conhecido como perfil de pressão axial e reflete o balanço de pressão ao longo do circuito de fluidização. Os pontos marcados nas curvas dos gráficos representam o valor médio das quatro leituras de pressão obtidas em cada tomada para o teste correspondente. Os valores de pressão estática obtidos estão disponíveis nos Apêndices A1 e A2 juntamente com outras informações pertinentes.

Pode-se observar por meio dos Gráficos 1 e 2, que para um mesmo inventário (*Inv*), e uma mesma velocidade de fluidização, os valores de pressão estática diminuem quando o diâmetro da partícula é variado de 256 µm (Gráfico 1) para 181 µm (Gráfico 2). Isso é explicado pelo fato de que, para diâmetros maiores, a diferença entre a velocidade de fluidização e a velocidade de transporte das partículas cai, quando comparado com o uso de partículas com diâmetros menores. Assim, a velocidade relativa entre o gás e os sólidos fica menor, resultando na diminuição da taxa de circulação externa dos sólidos e na consequente promoção de maior aglomeração de partículas na base do *riser*. O mesmo comportamento foi observado no trabalho de Kim e Kim (2002), onde ao aumentar o diâmetro da partícula percebeuse que os valores de pressão estática aumentam, deslocando o gráfico para a direita.

Outro fato constatado é que as linhas dos gráficos, que compreendem os valores de pressão estática nos pontos do *riser*, possuem uma maior inclinação para d_p e 256 µm que para os gráficos com d_p de 181 µm.

Gráfico 1 - Perfis axial de pressão para os experimentos com diâmetro de partícula (d_p) de 256 µm, sem distribuidor de ar. Fonte: Autoria própria.

Gráfico 2 - Perfis axial de pressão para os experimentos com diâmetro de partícula (d_p) de 181 µm, sem distribuidor de ar. Fonte: Autoria própria.

Os Gráficos 3 e 4 mostram o efeito da variação do inventário de sólidos (*Inv*) sobre o perfil de pressão estática. Por meio destes gráficos pode-se constatar a mesma evidência observada os Gráficos 1 e 2; isto é, ao diminuir o inventário de sólidos observa-se uma tendência para menores valores de pressão estática. A mesma situação foi observada nos experimentos de Kim *et. al* (2002). A razão desse acontecimento é explicada pelo aumento na porosidade média do leito com a

diminuição do inventário de sólidos. Dessa maneira, o balanço de pressão é mantido, corrigindo-se automaticamente para valores mais baixos de pressão estática.

Gráfico 3 - Perfis axial de pressão para os experimentos com Inventário (*Inv*) de 5 kg, sem distribuidor de ar.

Gráfico 4 - Perfis axial de pressão para os experimentos com Inventário (*Inv*) de 3,5 kg, sem distribuidor de ar. Fonte: Autoria própria.

Kim *et. al* (2002) variou também, em seus experimentos, a velocidade de fluidização, sendo constatado que o incremento dessa gera um aumento na pressão estática. Tal comportamento foi também observado no presente trabalho, e pode ser

visualizado nos Gráficos 5 e 6. Isso ocorre porque o incremento da velocidade de fluidização gera maiores forças de atrito da suspensão gás-sólido com as paredes da tubulação. De acordo com Basu (2006) e Rautiainen *et al.* (1999), esta perda pode se tornar importante sob algumas situações operacionais e de escala do sistema, principalmente envolvendo densidades de suspensão relativamente baixas e colunas de fluidização com diâmetro reduzido.

Gráfico 5 - Perfis axial de pressão para os experimentos com velocidade de fluidização (u_f) de 4,5 m/s, sem distribuidor de ar. Fonte: Autoria própria.

Gráfico 6 - Perfis axial de pressão para os experimentos com velocidade de fluidização (u_f) de 3,5 m/s, sem distribuidor de ar. Fonte: Autoria própria.

Pode-se observar que, para u_f de 4,5 m/s e 3,5 m/s, a queda de pressão no *riser* é pequena para níveis baixos de d_p e *Inv*. Já para d_p e *Inv* nos níveis altos, a queda de pressão torna-se mais relevante, ou seja, a diferença do valor de pressão estática entre os pontos *RS*-01 e *RS*-06 fica maior, tanto para u_f de 4,5 m/s quanto para 3,5 m/s.

O perfil de pressão com nível alto de d_p e baixo de Inv e o perfil com nível baixo de d_p e alto Inv, no Gráfico 5, possuem a mesma queda de pressão no *riser*. Isso pode ser visto pela inclinação entre os pontos *RS*-01 e *RS*-06, que é a mesma. O mesmo não acontece no Gráfico 6, onde a queda de pressão no *riser* para o nível alto de d_p e baixo de Inv é maior que para o nível baixo de d_p e alto Inv.

Deve-se ressaltar que a queda de pressão no *riser* é dependente não só dos efeitos principais de cada variável, mas também dos efeitos combinados entre duas variáveis e entre as três variáveis. Alguns trabalhos relatam que, para leitos fluidizados circulantes em pequena escala, a queda de pressão no *riser* não depende apenas do peso das partículas, mas também do atrito entre o gás e as partículas, do atrito entre as partículas e a parede do *riser* e, adicionalmente, da aceleração das partículas (LOUGE e CHANG, 1990; ISSANGYA 1999; RAUTIAINEN *et al.*, 1999).

4.1.2 Análise dos efeitos das variáveis controladas

Neste item é realizada uma análise da importância dos efeitos das variáveis controladas sobre a variável resposta, utilizando gráficos de Pareto e análises de variância (ANOVA). No Gráfico 7 ilustra-se um Gráfico Pareto obtido pelo *software* STATISTICA[®]. Por meio dele, percebe-se, para um nível de confiança de 95%, que todas as mudanças das variáveis, separadas e combinadas entre si ultrapassam o valor marcado pela linha de significância com p=0,05, sugerindo que elas possuem influência significativa sobre a resposta. As três variáveis separadas, possuem influência diretamente proporcional, o mesmo ocorre para a combinação das variáveis 1 com 2 e 2 com 3. Nesse sentido, ao aumentar o valor dessas variáveis, a resposta será aumentada significativamente.

Gráfico 7 – Efeitos principais e combinados, padronizados, das variáveis de entrada, sobre a queda de pressão no *riser* para experimentos sem distribuidor de ar. Fonte: Autoria própria.

Uma atenção especial deve ser dada ao efeito isolado da velocidade de fluidização (3), que sem distribuidor de ar, possui característica significativa. No entanto, para velocidade no nível alto, toda a massa fica acima da tomada *RS*-01, já para menor velocidade, uma parcela da massa fica abaixo da tomada *RS*-01. A significância da velocidade não pode ser mais verificada, quando o distribuidor é utilizado. Isso é melhor discutido na seção 4.2.2.

A Tabela 4 mostra a análise de variância ANOVA, onde SS é a soma dos quadrados, df é o número de graus de liberdade, MS é o quadrado médio, F é a divisão do MS de cada fator pelo erro puro do MS. Ou seja, quanto maior o F, maior é a significância do fator. O valor p é o nível descritivo, e para um nível de confiança de 95% (p<0,05) percebe-se que todas as variáveis controladas e suas combinações são significantes, com todos os valores p menores que 0,05. O diâmetro da partícula e o inventário de sólidos são os mais significativos, e quando combinados, são mais significativos que a velocidade de fluidização. O R², conhecido como coeficiente de determinação, mostra-se muito próximo de 1 (0,9986). Isso indica que 99,86% dos valores das respostas podem ser explicados pelos coeficientes do modelo.

Fator	SS	df	MS	F	р
<i>d</i> _{<i>p</i>} (1)	4550586	1	4550586	3188,303	0,000000
Inv (2)	3078019	1	3078019	2156,570	0,000000
u _f (3)	114645	1	114645	80,325	0,000019
1 e 2	643136	1	643136	450,604	0,000000
1 e 3	21922	1	21922	15,360	0,004424
2 e 3	50993	1	50993	35,728	0,000332
1, 2 e 3	21922	1	21922	15,360	0,004424
Erro puro	11418	8	1427		
SS Total	8492641	15			

Tabela 4 – Análise de variância ANOVA para os efeitos principais e combinados das varáveis controladas, com R^2 = 0,99866, em testes realizados sem distribuidor de ar.

Fonte: Autoria própria.

4.1.3 Modelo estatístico (sem distribuidor de ar)

Com auxílio do STATISTICA 7[®] foi possível conhecer os coeficientes de regressão, que são os estimadores dos parâmetros operacionais, definidos na Equação (31) como b₀, b₁, b₂, b₃, b₁₂, b₁₃, b₂₃ e b₁₂₃. Na Tabela 5 são mostrados os valores desses coeficientes usados para a formulação do modelo estatístico. Utilizando da ferramenta ANOVA foi possível conhecer os valores de nível descritivo (valor p) para cada efeito. E para um nível de confiança de 95% (p < 0,05) todos os efeitos mostraram-se significativos, pois a hipótese nula de todos os efeitos foram rejeitadas com todos os valores p menores que 0,05, conforme é mostrado na Tabela 5. Com isso, o modelo é estimado sem descartar efeito algum.
	Coeficientes de regressão													
b ₀	b ₁	b ₂	b ₃	b ₁₂	b ₁₃	b ₂₃	b ₁₂₃							
11780,12	-52,93	-3875,50	-2483,50	17,66	9,21	725,68	-2,63							
	Valores de nível descritivo (p)													
p _{médio}	p 1	p ₂	p ₃	p 12	p 13	p ₂₃	p ₁₂₃							
0,001880	0,001925	0,000197	0,004776	0,000184	0,013029	0,001234	0,004424							
Fonte: Auto	onte: Autoria própria.													

Tabela 5 – Valores de coeficientes de regressão e de nível descritivo (p), para nível de confiança de 95% (p < 0,05), em testes realizados sem distribuidor de ar.

O modelo estatístico para a queda de pressão no *riser* (ΔP_{riser}) em função do diâmetro da partícula (d_p), inventário de sólidos (Inv) e velocidade de fluidização (u_f), é conhecido ao reescrever a Equação (31) substituindo os valores de coeficientes de regressão da Tabela 3, desse modo o modelo fica:

$$\Delta P_{riser}(d_p, Inv, u_f) = 11780, 12 - (52,93d_p) - (3875,5Inv) - (2483,5u_f) + (17,66d_pInv) + (9,21d_pu_f) + (725,68Inv u_f) - (2,63d_p Inv u_f)$$
(33)

onde,

 ΔP_{riser} : Queda de pressão no *riser* - [Pa]; d_p : Diâmetro da partícula - [µm]; *Inv*: Inventário de sólidos - [kg]; u_f : Velocidade de fluidização - [m/s].

Vale ressaltar que o modelo definido na Equação (33) só é válido para valores de d_p , $Inv \in u_f$ compreendidos entre os seus respectivos níveis alto e baixo, definidos na Tabela 1.

Com esse modelo definido, pode-se estimar o valor da resposta para valores de parâmetros de entrada compreendidos entre os limites possíveis ainda não testados. Isso pode ser feito sem a necessidade de realizar novos experimentos. 4.2 Análise do sistema LFC com distribuidor de ar

Neste item são apresentadas as análises e a discussão dos resultados obtidos durante os experimentos realizados com distribuidor de ar.

4.2.1 Perfil de pressão axial com distribuidor de ar

Como esperado, os perfis de pressão axial referentes aos experimentos realizados com distribuidor de ar foram semelhantes aos perfis gerados para os experimentos feitos sem distribuidor. Portanto, a mesma discussão e análise feita no subitem 4.1.1 vale para esse subitem.

Ressalta-se apenas uma diferença relevante, que será melhor discutida no item 4.3 e faz referência à maior inclinação que as curvas possuem entre os pontos *RS*-01 e *RS*-06 (queda de pressão no *riser*). Essa diferença é devido à presença do distribuidor de ar, o qual garante que todo o inventário de sólidos fique acima do ponto *RS*-01. Isso não acontecia quando o distribuidor não era utilizado. Sem distribuidor, uma parcela de inventário, dependendo da combinação dos fatores, ficava abaixo do ponto *RS*-01, e não era contabilizada no balanço de pressão, gerando uma menor queda de pressão no *riser*. Os Gráficos referentes aos perfis de pressão axial, para os experimentos feitos com distribuidor de ar, estão disponíveis no Apêndice B.

4.2.2 Análise dos efeitos das variáveis controladas (com distribuidor).

Diferentemente do que foi observado no Pareto referente aos experimentos feitos sem distribuidor de ar (Gráfico 7), onde todos os efeitos principais e combinados mostraram-se significativos, o Gráfico 8 mostra que, ao utilizar o distribuidor de ar, os efeitos da velocidade de fluidização (3) e da combinação dela com o inventário (2 e 3) não são significativos. O restante dos efeitos, para um nível de confiança de 95%,

ultrapassa o valor marcado pela linha de significância com p=0,05, e portanto, possuem influência significativa sobre a resposta.

Pode-se constatar que os efeitos combinados do diâmetro da partícula com a velocidade (1 e 2) e das três variáveis juntas (1,2, e 3), possuem agora, influência, inversamente proporcional maior sobre a resposta, em comparação com o caso sem distribuidor de ar (Gráfico 7). Os efeitos principais do diâmetro da partícula (1) e do inventário de sólidos (2), também mostraram-se mais influentes.

Sabe-se que a quantidade de massa no *riser* influencia, de maneira diretamente proporcional, a queda de pressão no *riser*. Assim sendo, quando o distribuidor não é utilizado, a parcela de *Inv* que fica acima da tomada *RS*-01 é maior para velocidades altas que para velocidades baixas. Porém, quando o distribuidor é inserido, tanto para velocidade alta quanto baixa, toda a massa fica acima da tomada *RS*-01. Isso faz com que a diferença entre a queda de pressão no *riser* seja próxima, diminuindo a significância da velocidade sobre a resposta em comparação aos experimentos sem distribuidor.

Gráfico 8 - Efeitos principais e combinados, padronizados, das variáveis de entrada, sobre a queda de pressão no riser para experimentos com distribuidor de ar. Fonte: Autoria própria.

A Tabela 6, assim como a Tabela 4, mostra a análise de variância ANOVA, porém agora, elaborada para os dados dos experimentos com distribuidor. A análise é a mesma feita para o Gráfico 8, onde o fator u_f , e a combinação de 2 com 3, não demonstraram ser significativos (p>0,05).

Fator	SS	df	MS	F	р
<i>d</i> _p (1)	7529664	1	7529664	3966,659	0,000000
Inv (2)	5179064	1	5179064	2728,353	0,000000
u_f (3)	761	1	761	0,401	0,544368
1 e 2	2055237	1	2055237	1082,708	0,000000
1 e 3	195286	1	195286	102,878	0,00008
2 e 3	2588	1	2588	1,363	0,276578
1, 2 e 3	171163	1	171163	90,169	0,000012
Erro puro	15186	8	1898		
SS Total	15148948	15			

Tabela 6 – Análise de variância ANOVA para os efeitos principais e combinados das variáveis controladas, com $R^2 = 0.999$, em testes realizados com distribuidor de ar.

Fonte: Autoria própria.

4.2.3 Modelo estatístico (com distribuidor).

Na Tabela 7 são mostrados os valores dos coeficientes usados para a formulação do modelo estatístico estimado da resposta, agora para os experimentos realizados com distribuidor de ar.

Tabela 7 - Valores de coeficientes de regressão de nível descritivo (p), para nível de confiança de 95% (p < 0,05), em testes realizados com distribuidor de ar.

		C	Coeficientes	de regressã	0									
b ₀	b 1	b ₂	b ₃	b ₁₂	b ₁₃	b ₂₃	b ₁₂₃							
28333,21	-137,33	-8589,72	-5672,93	42,16	25,37	1640,98	-7,35							
	Valores de nível descritivo (p)													
p _{médio}	p ₁	p ₂	p ₃	p ₁₂	p 13	p ₂₃	p ₁₂₃							
0,000013	0,000013 0,000007 0,000002 0,000060 0,000001 0,000064 0,000012 0,000012													
Fonte: Auto	onte: Autoria própria.													

O modelo estatístico para a queda de pressão no *riser* (ΔP_{riser}) em função do diâmetro da partícula (d_p), inventário de sólidos (Inv) e velocidade de fluidização (u_f), é conhecido ao reescrever a Equação (31) substituindo os valores de coeficientes de regressão da Tabela 5, desse modo o modelo, para experimentos com distribuidor de ar fica:

$$\Delta P_{riser}(d_p, Inv, u_f) = 28333,21 - (137,33d_p) - (8589,72Inv) - (5672,93u_f) + (42,16d_pInv) + (25,37d_pu_f) + (1640,98Inv u_f) - (7,35d_p Inv u_f)$$
(34)

onde,

 ΔP_{riser} : Queda de pressão no *Riser* - [Pa]; d_p : Diâmetro da partícula - [µm]; *Inv*: Inventário de sólidos - [kg]; u_f : Velocidade de fluidização - [m/s].

Assim como na Equação 33, o modelo definido na Equação (34) só é válido para valores de d_p , Inv e u_f compreendidos entre os seus respectivos níveis alto e baixo, definidos na Tabela 1. Também, com esse modelo definido, pode-se estimar o valor da resposta para valores de parâmetros de entrada compreendidos entre os limites possíveis ainda não testados com distribuidor de ar. Isso pode ser feito sem a necessidade de realizar novos experimentos, utilizando distribuidor de ar.

4.3 Comparação dos resultados sem e com distribuidor

Com o auxílio do programa STATISTICA 7[®], uma análise por grupo foi feita para saber, por meio da ferramenta "teste-t" para amostras dependentes, se a diferença de resposta entre os testes feitos sem e com distribuidor, são significantes ou não (p<0,05 ou p>0,05, respectivamente).

Primeiramente, compararam-se as respostas de todos os experimentos feitos sem e com distribuidor de ar. Essa comparação é descrita na Tabela 8, e de maneira geral, percebe-se que a queda de pressão axial aumenta significativamente (p<0,05) quando o distribuidor é usado.

	Média	Número de	Diferença	t	Nível descritivo
	(Pa)	respostas (N)	(Pa)	-	(p)
Sem Distribuidor	040.0				
(SD)	819,2				
Com Distribuidor	4000.0	16	-209,6	-2,775	0,014150
(CD)	1028,9				
Fonte: Autoria própi	ria.				

Tabela 8 – Comparação entre todos os experimentos feitos sem e com distribuidor de ar, para p < 0,050 (95%).

A Tabela 9 mostra uma análise mais detalhada, onde são comparadas as repostas de cada fator, no seu nível baixo (-) e alto (+). Portanto para cada fator, no seu nível, foram comparadas 8 respostas sem distribuidor e 8 com distribuidor. Isso resultou em 6 comparações.

Eator	Média	Número de	Diferença entre	4	Nível de significância
Falor	(Pa)	respostas (N)	SD e CD (Pa)	Ľ	(p)
d_p (-) SD	285,9	8	-57,0	-2,083	0.075707
d_p (-) CD	342,9	_		-	0,075727
d_p (+) SD	1352,5	0	-362,3	-2,774	0,027510
d_p (+) CD	1714,9	- 0			
Inv (-) SD	380,6	Q	-79,3	-5,398	0,001010
<i>Inv</i> (-) CD	459,9	0			
<i>Inv</i> (+) SD	1257,8	0	-340,0	-2,441	0,044682
<i>Inv</i> (+) CD	1597,8	0			
u _f (-) SD	734,5	0	-287,4	-2,062	0,078094
u _f (-) CD	1022,0	- 8			
<i>u_f</i> (+) SD	903,9	0	-131,9	-2,292	0,055604
<i>u_f</i> (+) CD	1035,8	- 8			

Tabela 9 – Comparação entre os experimentos feitos sem e com distribuidor de ar (SD e CD, respectivamente), para todos os fatores em nível baixo (-) e alto (+), onde p < 0,050 (95%).

Fonte: Autoria própria.

O d_p , no nível baixo, e a u_f , no nível baixo e alto, não mostraram-se significativos (p>0,05), mesmo havendo uma diferença de respostas entre SD e CD, todavia ficaram próximos de 0,05. Já o d_p , no nível alto, e o *Inv*, nos dois níveis, mostraram-se significativos, (p<0,05), quando utiliza-se distribuidor de ar.

O Inv, no nível baixo, mostrou-se o mais significativo dos fatores, seguido do d_v , no nível alto, e do Inv no nível alto.

A explicação para o d_p no nível alto ser significativo em relação ao seu nível baixo é que quanto maior for a partícula, maior é a porcentagem de *Inv* que fica abaixo da tomada de pressão *RS*-01, quando o distribuidor não é usado. Isso acontece, porque a velocidade relativa gás-sólido para a partícula de 256 µm é menor que para 181 µm. Dessa forma, uma maior parcela de partículas fica acumulada abaixo da tomada *RS*-01 quando o distribuidor não é usado. Por isso, o valor-p para diâmetro de 181 µm é superior ao valor-p para 256 µm.

O fato de a u_f não ter se mostrado significante ao utilizar distribuidor, pode ser explicado pela combinação da u_f com os níveis altos e baixos dos outros dois fatores (d_p e Inv). Ou seja, ao diminuir a velocidade, com d_p e Inv no nível alto, a queda de pressão é acrescida devido à menor porosidade média que o *riser* passa a ter, causada pela maior parcela de massa concentrada no *riser*. Isso acontece porque a queda de pressão por atrito não chega a ser significante em relação à queda de pressão ocasionado pela diminuição da porosidade do leito. Porém, para o nível baixo de d_p e alto de Inv, a diminuição da velocidade gera um decréscimo na resposta. Isto sugere que, nesse caso, a diferença de resposta é altamente influenciada pela parcela de queda de pressão por atrito.

5 CONCLUSÕES E SUGESTÕES PARA TRABALHOS FUTUROS

Assim como em trabalhos anteriores, foi comprovado, de maneira experimental, que o balanço de pressão gerado em um leito fluidizado circulante, alimentado com areia quartzosa é semelhantemente caracterizado pela formação de um perfil de pressão dependente da altura do leito, condizendo coerentemente com os dados encontrados na literatura.

A análise de variância mostrou, para um nível de confiança de 95%, que ao aumentar o diâmetro da partícula do nível baixo para o alto, percebeu-se um acréscimo da queda de pressão no *riser*, de modo significativo. O mesmo aconteceu com o Inventário de sólidos, sendo esse último fator um pouco menos significativo que o primeiro. Isso aconteceu para experimentos feitos sem e com distribuidor de ar. Diferentemente, ocorreu para a velocidade de fluidização, que demonstrou ser significativa apenas quando o distribuidor não foi utilizado.

O efeito combinado das variáveis mostrou-se menos significativo que os efeitos principais do inventário de sólidos e do diâmetro da partícula. Porém, ao usar o distribuidor, para um nível de confiança de 95%, os efeitos combinados mostraramse significativos também, com exceção do efeito combinado do inventário de partículas e da velocidade.

Foi possível perceber que nem todas as combinações possuem efeitos diretamente proporcionais à resposta. Isso aconteceu com as combinações de efeitos dos três fatores e do diâmetro da partícula com a velocidade, os quais mostraram-se inversamente proporcionais à resposta.

Todos os três fatores e todas as suas combinações possíveis, foram significativos para a criação dos modelos estimativos, tanto com, quanto sem distribuidor. Com isso, é possível realizar estimativas com boa precisão sem precisar de experimentos dentro dos limites pré-estabelecidos aos fatores.

Pôde-se observar que a velocidade de fluidização, dependendo da sua combinação com outros fatores, diminui ou aumenta a queda de pressão no *riser*, quando alterada do nível baixo para o alto. Sendo que, para níveis altos de *dp* e *Inv*, a velocidade é inversamente proporcional à resposta. Conclui-se que, nesse caso, a parcela de queda de pressão por massa de sólidos é maior que a parcela de perda por atrito. O inverso acontece quando o nível de *dp* é baixo e de *Inv* alto, onde a

parcela de queda de pressão por atrito mostrou-se mais importante que a perda por massa, e portanto a velocidade torna-se diretamente proporcional à resposta. Um estudo experimental mais detalhado pode ser realizado para confirmar esta observação.

A presença do distribuidor de ar demonstrou ser determinante para o aumento do diferencial de pressão no *riser*. Assim, a presença do distribuidor na UFRAF diminui o erro na medição de pressão. Quando ele não é usado, uma parcela de massa de sólidos, dependendo da combinação dos fatores, fica abaixo da tomada de pressão *RS*-01, ficando essa parcela fora do balanço de pressão. Dessa forma, o distribuidor se faz indispensável para a realização de experimentos mais precisos na UFRAF.

Apresenta-se, na sequência, uma lista de sugestões para estudos futuros que podem complementar ou aprimorar os resultados obtidos neste trabalho:

- Automatizar o sistema de coleta de dados, a fim de melhorar a confiabilidade das leituras;
- Realizar um estudo mais aprofundado com relação às parcelas que compõem a queda de pressão no *riser*, a fim de verificar qual a contribuição de cada parcela.
- Realizar estudos variando a configuração geométrica dos tuyeres.
- Realizar experimentos utilizando mistura de areia com carvão e biomassa, agora com distribuidor de ar.
- Realizar experimentos com partículas maiores e/ou velocidades de fluidização mais próximas da velocidade de transporte da partícula, a fim de quantificar o novo efeito.

REFERÊNCIAS

BALTAZAR, A. W. S.; CASTRO, J. A.; SILVA, A. J. **Simulação transiente de um reator de leito fluidizado em 3D.** REM: R. Esc. Minas, Ouro Preto, 62(1): 59-64, jan. mar. 2009.

BADER, R.; FINDLAY, J.; KNOWLTON, T.M. Gas /solids flow patterns in a 30.5-cmdiameter circulating fluidized bed. In: **Proceedings of the Second International Conference on Circulating Fluidized Beds.** Compiègne, France, 14-18 March, 1988.

BASU, P; CHENG, L.An Analysis of Loop Seal Operations in a Circulating Fluidized Bed.Institution of Chemical Engineers.**Trans IChemE**, v. 78, Part A, out. 2000.

BASU, P. **Combustion and Gasification in Fluidized Beds**. Ed. Taylor & Francis, Boca Raton-U.S.A, 2006, 473 p.

BITTANTI, S. et al. A model of a bubbling fluidized bed combustor oriented to char mass estimation. IEEE Transactions on control systems technology, v. 8, n. 2, p. 247-256, 2000.

CARDENAS. F.; OSCAR L. Estudo preliminar da fluidodinâmica do escoamento gás-sólido de um leito fluidizado circulante através da análise dos sinais dinâmicos de pressão.2009.120 p. Dissertação (Mestrado) - Faculdade de Engenharia Mecânica, Universidade Estadual de Campinas, 2009.

CORTEZ, L. A. B.; LORA, E. E. S.; GÓMEZ, E. O. Caracterização da Biomassa. In: _____ (Orgs.). **Biomassa para Energia**. Campinas: Unicamp, 2008. p. 32-62.

DE BARROS NETO, B.; SCARMINIO, I. S.; BRUNS, R. E. **Como fazer experimentos: pesquisa e desenvolvimento na ciência e na indústria**. Editora da UNICAMP, 2003.

FONSECA, O.; LEONARDO, C. Estudo Preliminar da Fluidodinâmica do Escoamento Gás-Sólido de um Leito Fluidizado Circulante Através da Análise dos Sinais Dinâmicos de Pressão. 2009. 157 f. Dissertação (Mestrado) -Universidade Estadual de Campinas, Campinas, 2009.

GELDART, D. Gas Fluidization Technology. Ed. John Wiley & Sons: New York, 1986. 468 p.

GELDART, D.; BAEYENS, J. The Design of Distributors for Gas-Fluidized Beds. **Powder Technology**, v. 42, p. 67-78, 1985.

ISSANGYA, A. S.; BAI, D., BI, H. T.; LIM, K. S.; ZHU, J.; GRACE, J. R. Suspension densities in a high-density circulating fluidized bed riser. **Chemical Engineering Science**, v. 54, n. 22, p. 5451-5460, 1999.

KIM, S. W.; KIM, S. D. Effects of particle properties on solids recycle in loop-seal of a circulating fluidized bed. **Powder Technology**, v. 124, n. 1, p. 76-84, 2002.

KIM, S. W.; KIM, S. D.; LEE, D. H. Pressure balance model for circulating fluidized beds with a loop-seal. **Industrial & engineering chemistry research**, v. 41, n. 20, p. 4949-4956, 2002.

KUNII, D.; LEVENSPIEL, O. Fluidization Engineering.2. ed. USA: Butterworth-Heinemann, 1991. 491 p.

LOUGE, M.; CHANG, H. Pressure and voidage gradients in vertical gas-solid risers. **Powder Technology**, v. 60, n. 2, p. 197-201, 1990.

MINISTÉRIO DE MINAS E ENERGIA. **Balanço Energético Nacional 2014 - Ano Base 2013**: Relatório Síntese. Departamento Nacional de Desenvolvimento. Rio de Janeiro: EPE, 2014, 54 p.

MORITA, E. S. Estudo Experimental das Emissões de NOx na Combustão de Carvão Mineral Brasileiro em Leito Fluidizado Rápido. 2009. 186 f. Dissertação (Mestrado em Engenharia Mecânica) – Universidade Estadual de Campinas. Campinas, 2009.

PEÇANFA, R.P.; MASSARANI, G., **Dimensão característica e forma de partículas**, XIV Encontro Nacional de Escoamento em Meios Porosos, ENEMP, 1986.

QUERESHI, A. E.; CREASY, D. E. Fluidised Bed Gas Distributors. **Powder Technology**, v. 22, p. 113-119, 1979.

RAMIREZ-BEHAINNE, J.J. **Estudo das Emissões de Mercúrio na Combustão de Carvão Mineral Brasileiro em Leito Fluidizado Rápido.** 2007. 234 p. Tese (Doutorado) – Faculdade de Engenharia Mecânica, Universidade Estadual de Campinas. Campinas, 2007. RAUTIAINEN, A.; STEWART, G; POIKOLAINEN, V; SARKOMAA, P. An experimental study of vertical pneumatic conveying. **Powder Technology**, v. 104, n. 2, p. 139-150, 1999.

SANTOS, F. J. Fluidodinâmica do Leito Fluidizado, Aplicada à Gaseificação. In: SÁNCHEZ, C. G. (Org.). **Tecnologia da Gaseificação de Biomassa**. Campinas: Átomo, 2010. p. 263-279.

RHODES, M. J. (1998) - **Introduction to Particle Technology** (Wiley, Chichester, England).

VALASZEK, A.; MARIN, B. Estudo experimental da queda de pressão em sistema de leito fluidizado circulante a frio alimentado com misturas de areia, carvão mineral e serragem de madeira. 2013. 144f. Trabalho de Conclusão de Curso (Bacharelado Engenharia Mecânica) - Universidade Tecnológica Federal do Paraná. Ponta Grossa, 2013.

YANG, W. C. Handbook of Fluidization and Fluid-Particle Systems. Marcel Dekker: New York, 2003.

YERUSHALMI, J., TURNER, D. H., SQUIRES, A. M. **The fast fluidized bed.** Industr. Eng. Chem., Process Design and Development, v. 15, p. 47-73, 1976.

WEINSTEIN, H.;GRAFF, R.A.;MELLER, M.; SHAO, M.J. **The influence of the imposed pressure drop across a fast fluidized bed**. Proceedings of the IV International Fluidization Conference, Japan, May 1983.

WEINSTEIN, H.;SHAO, M.;WASSERZUG, L. **Radial solid density variation in a** fast fluidized bed. AIChE Symposium Series, v. 80, n. 241, 1984a. pp. 117-121.

APÊNDICE A1 – Testes experimentais feitos sem distribuidor de ar OBS: O * indica a repetição do experimento.

TESTES EPERIMENTAIS EM UNIDADE DE FLUIDIZAÇÃO RÁPIDA A FRIO - UFRAF															
Testein': 1	Data: 24/01	1/2014		Hora iníci	o: 16:00	Hora fim:	17:00	Operador	es: Andrel	. Breno, Gu	ustavo, Jea	an e Prof. J	hon		
	Material inerte	: Areia						1	VARIÁVE	IS CONT	ROLADA	S			
p,: 2523 kg/m ³		ø ": 0,69		Massa de	areia: 5kg		Tamanho	da partícu	ıla (d _p): 25	6µm	Vel. de flu	udização: 4	1,5m/s	Taxa de aer : 0,74kg/h	ação na válvula L
				•		VARIÁ	VEIS EXP	PERIMEN	TAIS:						
Medida	Hora	RS-01	RS-02	RS-03	RS-04	RS-05	RS-06	SP-01	SP-02	VAL-L	PO-M	PO-D	ть	Ta	Vazão lida (Nm³/h)
1	16:31	370	345	275	230	190	170	100	110	710	900	273	50	30	0,5868
2	16:41	375	340	295	250	195	160	105	120	700	910	260	50,3	30	
3	16:47	375	350	305	245	200	165	110	120	695	915	255	50,4	30	
4	16:52	380	365	290	245	205	165	115	123	725	925	265	50,4	30	
Média		375	350	291,25	242,5	197,5	165	107,5	118,25	707,5	912,5	263,25	50,275	30	
Massa do filtro n	o início do test	e: 349,65g				Massa do	o filtro no fin	n do teste:	465,28g						
		TES	TES EPE	RIMEN	TAIS EN		ADE DE	FLUID	IZAÇÃO	RÁPID	A A FR	10 - UFI	RAF		
Testein': 1*	Data: 24701	172014		Hora iníci	ra início: 17:15 Hora fim: 18:03 Operadores: Andrel, Breno, Gustavo, Jean e Prof. Jhon										
	Material inerte	: Areia			VARIÁVEIS CONTROLADAS										
p,: 2523 kg/m3		ø ": 0,69		Massa de	areia: 5kg		Tamanho	da partícu	ıla (d _p): 25	6µm	Vel. de flu	iidização: 4	4,5 m/s	Taxa de aer : 0,74 kg/h	ação na válvula L
						VARIÁ	VEIS EXF	PERIMEN	TAIS:						
Medida	Hora	RS-01	RS-02	RS-03	RS-04	RS-05	RS-06	SP-01	SP-02	VAL-L	PO-M	PO-D	ть	Ta	Vazão lida (Nm³/h)
1	17:45	370	345	285	225	195	155	100	110	725	910	270	50,7	30	0,5882
2	17:50	370	350	315	245	205	165	105	120	725	930	278	51	30	
3	17:55	375	355	295	250	200	165	110	120	720	925	273	51,7	30	
4	17:58	380	365	290	230	200	170	115	120	730	930	268	51,9	30	
Média		373,75	353,75	296,25	237,5	200	163,75	107,5	117,5	725	923,75	272,25	51,325	30	
Massa do filtro n	Itro no início do teste: 346,48g Massa do filtro no fim do teste: 374,60g														

	TESTES EPERIMENTAIS EM UNIDADE DE FLUIDIZAÇÃO RÁPIDA A FRIO - UFRAF														
Testen': 2	Data: 28	/ 01/ 2014		Hora iníci	o: 16:35	Hora fim: 1	17:13	Operador	es: Andrel	, Breno e C	Gustavo				
M	Iaterial iner	te: Areia							VAR	IÁVEIS C	ONTROL	ADAS			
p,: 2523 kg/m ³	3	ø ,: 0,69		Massa de	areia: 5kg		Tamanho	da partícu	ila (d _p): 25i	6µm	Vel. de flu	idização: 🤅	3,5m/s	Taxa de a	aeração na válvula L : 0,624 kg/h
							VARIÁ	VEIS EXP	ERIMENT	FAIS:					
Medida	Hora	RS-01	RS-02	RS-03	RS-04	RS-05	RS-06	SP-01	SP-02	VAL-L	PO-M	PO-D	ТЬ	Та	Vazão lida (Nm³/h)
1	16:55	310	250	190	155	130	105	80	85	560	810	165	50,9	30	0,48
2	17:00	315	240	190	165	140	110	80	85	565	800	160	51,1	30	
3	17:04	300	225	200	160	150	110	80	90	570	810	160	51,1	30	
4	17:08	310	235	190	160	130	110	85	90	580	815	165	51	30	
Média		308,75	237,5	192,5	160	137,5	108,75	81,25	87,5	568,75	808,75	162,5	51,025	30	
Massa do filtro	o no início o	do teste: 35	52,60g			Massa do	filtro no firr	do teste: 3	374,72g						
			TEST	ES EPE	RIMEN	TAIS EN		ADE DE	FLUID	ZAÇÃO	RÁPID	A A FRI	IO - UFF	RAF	
Testein∵ 2*	Data: 28/	01/2014		Hora iníci	o: 17:38	Hora fim: 1	18:05	Operador	es: Andrel,	, Breno, Gu	ustavo				
[M	laterial iner	te: Areia							VAR	IÁVEIS C	ONTROL	ADAS			
ρ, : 2523 kg/m	3	ø ": 0,69		Massa de	areia: 5kg		Tamanho	da partícu	ila (d _p): 25i	6µm	Vel. de flu	idização: 🤅	3,5 m/s	Taxa de a	aeração na válvula L : 0,63 kg/h
							VARIÁ	VEIS EXP	ERIMENT	FAIS:					
Medida	Hora	RS-01	RS-02	RS-03	RS-04	RS-05	RS-06	SP-01	SP-02	VAL-L	PO-M	PO-D	ТЬ	Ta	Vazão lida (Nm³/h)
1	17:48	295	235	185	150	115	100	75	80	570	800	160	49,5	30	0,48
2	17:52	290	220	175	150	120	100	75	80	590	790	160	49,6	30	
3	17:55	300	225	180	155	5 125 105 80 85 580 800 160 49,5 30									
4	17:58	295	235	170	155	125	105	80	85	580	790	160	49,3	30	
Média		295	228,75	177,5	152,5	121,25 102,5 77,5 82,5 580 795 160 49,475 30									
Massa do filtro no início do teste: 347,30g						Massa do	filtro no firr	ndo teste: 4	409,60g						

	TESTES EPERIMENTAIS EM UNIDADE DE FLUIDIZAÇÃO RÁPIDA A FRIO - UFRAF														
Teste n': 3	Data: 28	/ 01/ 2014		Hora iníci	o: 19:03	Hora fim: 1	19:40	Operador	es: Andrel	, Breno e C	Gustavo				
Ma	terial inerte	e: Areia							VAF	RIÁVEIS (CONTROL	ADAS			
p,: 2523 kg/m³		ø ": 0,69		Massa de	areia: 3,5k	g	Tamanho	da partícu	ila (d _p): 250	Յµՠ	Vel. de flu	idização: 4	1,5m/s	Taxa de a	ieração na válvula L : 0,725 kg/h
							VARIÁV	EIS EXP	ERIMENT	AIS:					
Medida	Hora	RS-01	RS-02	RS-03	RS-04	RS-05	RS-06	SP-01	SP-02	VAL-L	PO-M	PO-D	ТЬ	Ta	Vazão lida (Nm³/h)
1	19:14	190	185	175	150	130	115	70	80	540	570	263	46,9	29	0,556
2	19:19	195	185	175	155	140	120	80	85	555	570	263	47,2	29	
3	19:23	195	190	175	160	140	115	80	90	545	565	265	47	29	
4	19:28	195	190	180	165	145	125	85	90	555	570	264	47,4	29	
Média		193,75	187,5	176,25	157,5	138,75	118,75	78,75	86,25	548,75	568,75	263,75	47,125	29	
Massa do filtro no) início do t	este: 345,6	65g			Massa do	filtro no fim	do teste: 4	403,02g						
			TEST	ES EPEI	PERIMENTAIS EM UNIDADE DE FLUIDIZAÇÃO RAPIDA A FRIO - UFRAF										
Testein': 3*	Data: 287	01/2014		Hora iníci	a início: 20:29 Hora fim: 21:02 Operadores: Andrel, Breno, Gustavo										
Ma	terial inerte	e: Areia							VAF	RIÁVEIS (CONTROL	ADAS			
p,: 2523 kg/m3		ø ": 0,69		Massa de	areia: 3,5k	g	Tamanho	da partícu	ila (d _p): 256	Յμπ	Vel. de flu	idização: 4	1,5 m/s	Taxa de a	eração na válvula L : 073 kg/h
							VARIÁV	EIS EXP	ERIMENT	AIS:					
Medida	Hora	RS-01	RS-02	RS-03	RS-04	RS-05	RS-06	SP-01	SP-02	VAL-L	PO-M	PO-D	ТЬ	Ta	Vazão lida (Nm³/h)
1	20:39	200	195	185	160	140	125	80	90	550	580	267	45,2	27	0,56
2	20:44	205	200	185	170	150	125	85	90	550	580	267	45,5	27	
3	20:49	205	200	185	170	150	130	90	95	555	585	268	45,5	27	
4	20:54	210	205	190	170	150	135	90	100	550	585	267	45,6	27	
Média		205	200	186,25	86,25 167,5 147,5 128,75 86,25 93,75 551,25 582,5 267,25 45,45 27										
Massa do filtro no	assa do filtro no início do teste: 347,78g						filtro no fim	do teste: 0	372,86g						

	TESTES EPERIMENTAIS EM UNIDADE DE FLUIDIZAÇÃO RÁPIDA A FRIO - UFRAF														
Testen': 4	Data: 29	/ 01/ 2014		Hora iníci	o: 18:02	Hora fim: "	18:36	Operador	es: Andrel	, Breno e J	ean				
l. N	laterial iner	te: Areia							VAF	RIÁVEIS C	ONTROL	ADAS			
ρ, : 2523 kg/m ³		0,69 :, 🗢		Massa de	areia: 3,5l	g	Tamanho	da partícu	ila (d _p): 250	Յμπ	Vel. de flu	idização: :	3,5m/s	Taxa de a	aeração na válvula L : 0,6237 kg/h
							VARIÁ	VEIS EXP	ERIMENT	FAIS:					
Medida	Hora	RS-01	RS-02	RS-03	RS-04	RS-05	RS-06	SP-01	SP-02	VAL-L	PO-M	PO-D	ТЬ	Та	Vazão lida (Nm³/h)
1	18:17	140	135	120	100	94	77	51	56	470	450	155	48,9	32,2	0,4803
2	18:21	150	140	123	105	95	77	55	60	470	455	156	48,9	32,2	
3	18:25	155	139	130	112	100	83	60	64	485	450	156	48,6	32,2	
4	18:30	150	146	132	116	100	87	60	64	480	460	157	48,5	32,2	
Média		148,75	140	126,25	108,25	97,25	81	56,5	61	476,25	453,75	156	48,725	32,2	
Massa do filtro	no início d	o teste: 34	5,5g			Massa do	filtro no firr	n do teste: 3	351,5g						
			TEST	ES EPE	RIMEN	TAIS EN		ADE DE	FLUIDI	ZAÇÃO	RÁPID	A A FR	IO - UFF	RAF	
Testein': 4*	Data: 297	/ 01 / 2014		Hora iníci	o: 19:00	Hora fim: *	19:27	Operador	es: Andrel,	Breno e J	ean				
[v	laterial iner	te: Areia							VAF	RIÁVEIS C	ONTROL	ADAS			
p,: 2523 kg/m3	3	0,69 :, 🗢		Massa de	areia: 3,5l	g	Tamanho	da partícu	ıla (d _p): 250	Յμπ	Vel. de flu	idização:∶	3,5 m/s	Taxa de a	aeração na válvula L : 0,6204 kg/h
							VARIÁ	VEIS EXP	ERIMENT	FAIS:					
Medida	Hora	RS-01	RS-02	RS-03	RS-04	RS-05	RS-06	SP-01	SP-02	VAL-L	PO-M	PO-D	ТЬ	Та	Vazão lida (Nm³/h)
1	19:08	150	145	125	105	98	79	56	60	480	470	154	49,4	31,5	0,477
2	19:13	155	147	132	114	100	82	59	64	480	470	156	49,5	31,5	
3	19:17	157	150	137	120	100	87	61	66	485	470	155	49,5	31,5	
4	19:21	160	152	139	119	100	86	64	69	550	470	157	49,5	31,5	
Média		155,5	148,5	133,25	114,5	99,5	83,5	60	64,75	498,75	470	155,5	49,475	31,5	
Massa do filtro	issa do filtro no início do teste: 347,78g					Massa do	filtro no firr	n do teste: 3	372,86g						

	TESTES EPERIMENTAIS EM UNIDADE DE FLUIDIZAÇÃO RÁPIDA A FRIO - UFRAF														
Teste n': 5	Data: 31/	01/2014		Hora iníci	o: 14:21	Hora fim: 1	15:04	Operador	es: Andrel	, Gustavo	e Jhon				
7	Material ine	rte: Areia							VAR	IÁVEIS C	ONTROL	ADAS			
ρ, : 2523 kg/r	n ³	ø ": 0,69		Massa de	areia: 5kg		Tamanho	da partícu	la (d _p): 181	μm	Vel. de flu	idização: 4	4,5 m/s	Taxa de a	ieração na válvula L : 0,4447 kg/h
							VARIÁ	VEIS EX	PERIMEN	ITAIS:					
Medida	Hora	RS-01	RS-02	RS-03	RS-04	RS-05	RS-06	SP-01	SP-02	VAL-L	PO-M	PO-D	ТЬ	Ta	Vazão lida (Nm³/h)
1	14:34	215	215	200	180	155	140	100	214	590	595	266	49,4	33,1	0,3442
2	14:39	220	217	205	187	164	146	100	216	584	595	257	49,5	33,1	
3	14:44	225	220	210	180	165	153	103	222	597	604	268	49,6	33,1	
4	14:50	231	225	213	191	168	155	108	210	595	615	263	49,9	33,1	
Média		222,75	219,25	207	184,5	163	148,5	102,75	215,5	591,5	602,25	263,5	49,6	33,1	
Massa do filt	ro no início	o do teste: 3	346,54g			Massa do	filtro no fim	i do teste: 3	362,04g						
			TES	TES EPE	RIMEN	ITAIS E		ADE DE	E FLUID	IZAÇÃO	D RÁPIE	DA A FR	lo - UF	RAF	
Testein': 5*	Data: 317	01/2014		Hora iníci	o: 15:25	Hora fim: 1	Hora fim: 16:03 Operadores: Andrel, Breno e Gustavo								
ſ	Material ine	erte: Areia							VAR	IÁVEIS C	ONTROL	ADAS			
ρ,: 2523 kg/r	n3	ø ": 0,69		Massa de	areia: 5kg		Tamanho	da partícu	la (d _p): 181	μm	Vel. de flu	idização: 4	4,5 m/s	Taxa de a	eração na válvula L : 0,4381 kg/h
							VARIÁ	VEIS EX	PERIMEN	ITAIS:					
Medida	Hora	RS-01	RS-02	RS-03	RS-04	RS-05	RS-06	SP-01	SP-02	VAL-L	PO-M	PO-D	ТЬ	Ta	Vazão lida (Nm³/h)
1	15:39	227	219	207	185	164	149	102	204	587	598	259	50,4	33	0,34
2	15:44	227	219	215	185	173	153	105	217	590	605	267	50,4	33	
3	15:48	233	227	200	188	88 173 157 109 214 595 620 263 50,7 33						33			
4	15:54	235	232	190	180	170	157	111	198	595	625	250	51	33	
Média		230,5	224,25	203	184,5	5 170 154 106,75 208,25 591,75 612 259,75 50,625 33									
Massa do filt	assa do filtro no início do teste: 349,10g						filtro no fim	i do teste: 3	375,20g						

	TESTES EPERIMENTAIS EM UNIDADE DE FLUIDIZAÇÃO RÁPIDA A FRIO - UFRAF														
Teste n': 6	Data: 31/	01/2014		Hora iníci	o: 16:31	Hora fim: "	17:00	Operador	es: Andrel	, Beno e G	ustavo				
N	Aaterial iner	te: Areia							VAR	RIÁVEIS C	ONTROL	ADAS			
p,: 2523 kg/m ³	3	ø ": 0,69		Massa de	areia: 5kg		Tamanho	da partícu	ıla (d _p): 181	μm	Vel. de flu	idização: 🤇	3,5 m/s	Taxa de a	eração na válvula L : 0,3467 kg/h
							VARIÁ	VEIS EXF	PERIMEN	TAIS:					
Medida	Hora	RS-01	RS-02	RS-03	RS-04	RS-05	RS-06	SP-01	SP-02	VAL-L	PO-M	PO-D	ТЬ	Ta	Vazão lida (Nm³/h)
1	16:37	110	108	105	98	87	78	56	155	440	325	151	52,5	33	0,267
2	16:42	116	116	105	98	89	80	58	155	438	326	153	52,9	33	
3	16:46	119	117	112	100	91	80	60	157	427	324	152	53,5	33	
4	16:50	124	124	118	105	93	81	61	154	433	328	151	53,7	33	
Média		117,25	116,25	110	100,25	90	79,75	58,75	155,25	434,5	325,75	151,75	53,15	33	
Massa do filtro	o no início d	lo teste: 34	9,73g			Massa do	filtro no fim	n do teste: 3	386,7g						
			TEST	ES EPE	RIMEN	TAIS EN		ADE DE	FLUID	IZAÇÃO) RÁPID	A A FR	IO - UF	RAF	
Teste n': 6*	Data: 31/	0172014		Hora iníci	o: 17:23	Hora fim: 17:46 Operadores: Andrel, Breno e Gustavo									
N	Aaterial iner	te: Areia							VAR	RIÁVEIS C	ONTROL	ADAS			
p,: 2523 kg/m	3	ø ": 0,69		Massa de	areia: 5kg		Tamanho	da partícu	ıla (d _p): 181	μm	Vel. de flu	idização: 🤅	3,5 m/s	Taxa de a	eração na válvula L : 0,3469 kg/h
							VARIÁ	VEIS EXF	PERIMEN	TAIS:					
Medida	Hora	RS-01	RS-02	RS-03	RS-04	RS-05	RS-06	SP-01	SP-02	VAL-L	PO-M	PO-D	ТЬ	Та	Vazão lida (Nm³/h)
1	15:39	103	103	97	91	82	74	54	150	418	314	153	53	34,4	0,2676
2	15:44	101	100	97	91	84	76	56	154	412	311	153	53,4	34,4	
3	15:48	101	101	100	94	4 85 77 57 157 420 315 151 53,4 34,4									
4	15:54	102	103	100	94	87	78	58	155	421	311	152	53,5	34,4	
Média		101,75	101,75	98,5	92,5	84,5	76,25	56,25	154	417,75	312,75	152,25	53,325	34,4	
Massa do filtro	o no início d	lo teste: 34	9,31g			Massa do	filtro no fim	n do teste: 3	382,1g						

	TESTES EPERIMENTAIS EM UNIDADE DE FLUIDIZAÇÃO RÁPIDA A FRIO - UFRAF														
Testen': 7	Data: 01/	02/2014		Hora iníci	o: 10:12	Hora fim: "	10:41	Operador	es: Andrel	, Beno e G	iustavo				
N	Aaterial ine	rte: Areia							VA	RIÁVEIS (CONTRO	LADAS			
p,: 2523 kg/m	1 ³	0,69 :, 🗢		Massa de	areia: 3,5l	g	Tamanho	da partícu	ila (d _p): 181	μm	Vel. de flu	iidização: 4	1,5 m/s	Taxa de a	ieração na válvula L : 0,4125 kg/h
							VARIÁ	ÁVEIS EX	PERIMEN	ITAIS:					
Medida	Hora	RS-01	RS-02	RS-03	RS-04	RS-05	RS-06	SP-01	SP-02	VAL-L	PO-M	PO-D	ТЬ	Ta	Vazão lida (Nm³/h)
1	10:22	124	129	126	123	120	116	83	86	440	498	265	46,8	28	0,3167
2	10:26	129	132	130	128	124	126	87	88	449	501	264	47,4	28	
3	10:30	129	134	133	131	127	120	90	93	455	503	262	47,8	28	
4	10:35	132	134	136	135	130	122	92	95	452	503	261	48	28	
Média		128,5	132,25	131,25	129,25	125,25	121	88	90,5	449	501,25	263	47,5	28	
Massa do filtr	o no início	do teste: 3	147g			Massa do	filtro no firr	n do teste: 🤅	385,07g						
			TES	TES EPI	ERIMEN	NTAIS E		ADE DE	E FLUID)IZAÇÃ (D RÁPII	DA A FR	10 - UF	RAF	
Teste n': 7*	Data: 01/	02/2014		Hora iníci	o: 10:59	Hora fim: "	Hora fim: 11:29 Operadores: Andrel, Breno e Gustavo								
N	laterial ine	rte: Areia							VA	RIÁVEIS (CONTRO	LADAS			
ρ,: 2523 kg/m	13	ø ": 0,69		Massa de	areia: 3,5l	<g< td=""><td>Tamanho</td><td>da partícu</td><td>ila (d_p): 181</td><td>μm</td><td>Vel. de flu</td><td>iidização: 4</td><td>1,5 m/s</td><td>Taxa de a</td><td>eração na válvula L : 0,4074 kg/h</td></g<>	Tamanho	da partícu	ila (d _p): 181	μm	Vel. de flu	iidização: 4	1,5 m/s	Taxa de a	eração na válvula L : 0,4074 kg/h
							VARIÁ	ÁVEIS EX	PERIMEN	ITAIS:					
Medida	Hora	RS-01	RS-02	RS-03	RS-04	RS-05	RS-06	SP-01	SP-02	VAL-L	PO-M	PO-D	ТЬ	Ta	Vazão lida (Nm³/h)
1	11:08	109	112	113	111	107	101	72	74	436	480	261	48,6	30,7	0,3126
2	11:12	113	114	114	113	110	103	75	78	434	482	260	48,8	30,7	
3	11:17	116	118	116	114	14 115 109 83 84 434 488 261 48,9 30,7									
4	11:22	117	123	123	120	117	110	81	83	438	488	262	48,9	30,7	
Média		113,75	116,75	116,5	114,5	112,25 105,75 77,75 79,75 435,5 484,5 261 48,8 30,7									
Massa do filtr	assa do filtro no início do teste: 343,1g						filtro no firr	n do teste: 4	440,46g						

			TEST	ES EPE	RIMEN [.]	TAIS EN		DE DE	FLUIDI	ZAÇÃO	RÁPID	A A FRI	O - UFF	RAF	
Teste n': 8	Data: 01/	02/2014		Hora iníci	o: 13:20	Hora fim: "	13:54	Operador	es: Andrel	, Gustavo (e Jean				
M	laterial iner	te: Areia							VAR	IÁVEIS C	ONTROL	ADAS			
p,: 2523 kg/m ³		ø ": 0,69		Massa de	areia: 3,5l	(g	Tamanho	da partícu	ıla (d _e): 181	μm	Vel. de flu	idização: 3	3,5 m/s	Taxa de a	aeração na válvula L : 0,337 kg/h
							VARIÁ	VEIS EXP	ERIMENT	AIS:					
Medida	Hora	RS-01	RS-02	RS-03	RS-04	RS-05	RS-06	SP-01	SP-02	VAL-L	PO-M	PO-D	ТЬ	Ta	Vazão lida (Nm³/h)
1	13:33	59	62	61	54	57	57	38	40	340	274	152	51,8	34,3	0,2587
2	13:38	63	66	62	67	65	63	42	46	333	273	151	52,7	34,3	
3	13:43	65	64	61	61	60	57	40	42	328	272	154	53,3	34,3	
4	13:47	63	63	62	61	60	58	40	42	341	273	151	53,3	34,3	
Média		62,5	63,75	61,5	60,75	60,5	58,75	40	42,5	335,5	273	152	52,775	34,3	
Massa do filtro	Massa do filtro no início do teste: 338,2g							n do teste: 3	391,8g						
			TEST	ES EPE	RIMEN [.]	TAIS EN		DE DE	FLUIDI	ZAÇÃO	RÁPID	A A FRI	O - UFF	RAF	
Teste n': 8*	Data: 01/	02/2014		Hora iníci	o: 14:16	Hora fim: 14:41 Operadores: Andrel, Gustavo Jean									
M	laterial iner	te: Areia							VAR	IÁVEIS C	ONTROL	ADAS			
p,: 2523 kg/m3	}	ø ": 0,69		Massa de	areia: 3,5l	<g< td=""><td>Tamanho</td><td>da partícu</td><td>ıla (d_e): 181</td><td>μm</td><td>Vel. de flu</td><td>idização: 3</td><td>3,5 m/s</td><td>Taxa de a</td><td>eração na válvula L : 0,333 kg/h</td></g<>	Tamanho	da partícu	ıla (d _e): 181	μm	Vel. de flu	idização: 3	3,5 m/s	Taxa de a	eração na válvula L : 0,333 kg/h
							VARIÁ	VEIS EXP	ERIMENT	AIS:					
Medida	Hora	RS-01	RS-02	RS-03	RS-04	RS-05	RS-06	SP-01	SP-02	VAL-L	PO-M	PO-D	ТЬ	Ta	Vazão lida (Nm³/h)
1	14:23	61	62	62	61	62	60	42	44	316	270	150	53,1	33,7	0,2558
2	14:28	61	63	62	63	61	62	44	44	315	271	150	53,5	33.7	
3	14:32	61	64	63	62	61	61	43	44	323	271	149	53,5	33,7	
4	14:37	62	66	64	64 63 61 44 44 329 271 150 53,4 33,7										
Média		61,25	63,75	62,75	32,75 62,5 61,75 61 43,25 44 320,75 270,75 149,75 53,375 33,7										
Massa do filtro	no início d	o teste: 33	7,84g		Massa do filtro no fim do teste: 477,5g										

APÊNDICE A2 – Testes experimentais feitos com distribuidor de ar OBS: O * indica a repetição do experimento.

			TESTE	S EPER		AIS EM	UNIDA	DE DE I	FLUIDIZ	AÇÃO I	RÁPIDA) - UFR	AF	
Testein': 1	Data: 14/04	1/2014		Hora iníci	o: 16:46	Hora fim: 1	17:32	Operador	es: Andrel,	, Breno e G	justavo.				
	Material ine	rte: Areia							VA	RIÁVEIS (CONTRO	ADAS			
p,: 2523 kg/m	3	ø ": 0,69		Massa de	areia: 5kg		Tamanho	da partícu	ıla (d _e): 25	6µm	Vel. de flu	idização: (4,5m/s	Taxa de aer	ação na válvula L : 0,7598kg/h
							VARIÁV	EIS EXPE	RIMENT	AIS:					
Medida	Hora	RS-01	RS-02	RS-03	RS-04	RS-05	RS-06	SP-01	SP-02	VAL-L	PO-M	PO-D	ТЬ	Ta	Vazão lida (Nm³/h)
1	17:07	410	370	325	260	190	150	100	102	750	1314	32	50	22	0,585
2	17:13	405	370	320	260	195	150	96	104	745	1315	32	50	22	
3	17:18	412	374	315	271	195	155	97	108	760	1315	33	50,2	22	
4	17:23	410	375	315	260	195	160	101	109	760	1315	32	50,1	22	
Média		409,25	372,25	318,75	262,75	193,8	153,75	98,5	105,75	753,75	1314,8	32,25	50,075	22	
Massa do filtre	o no início do	teste: 340,8	33g			Massa do	filtro no firr	n do teste:	362,24g						
			TESTE	S EPER	RIMENT	AIS EM	UNIDA	DE DE I	FLUIDIZ	AÇÃO	RÁPIDA	A FRIC	D - UFR	AF	
Testein': 1*	Data: 14/04	1/2014		Hora iníci	o: 18:00	Hora fim: 1	18:48	Operador	es: Andrel,	, Breno, Gu	istavo.				
	Material ine	rte: Areia							VA	RIÁVEIS (CONTROL	LADAS			
p,: 2523 kg/m	3	ø ": 0,69		Massa de	areia: 5kg		Tamanho	da partícu	ıla (d _e): 25	6µm	Vel. de flu	idização: (4,5 m/s	Taxa de aer	ação na válvula L : 0,759 kg/h
							VARIÁV	EIS EXPE	RIMENT	AIS:					
Medida	Hora	RS-01	RS-02	RS-03	RS-04	RS-05	RS-06	SP-01	SP-02	VAL-L	PO-M	PO-D	ТЬ	Ta	Vazão lida (Nm³/h)
1	18:13	390	350	290	230	190	140	82	89	750	1314	32	48,9	21	0,5853
2	18:19	390	350	290	225	185	150	89	95	750	1312	32	49	21	
3	18:24	390	365	5 295 245 180 150 91 100 760 1312 32 49 21											
4	18:29	400	365	305	265	190	155	92	104	770	1314	32	49	21	
Média		392,5	357,5	295	241,25	186,3	148,75	88,5	97	757,5	1313	32	48,975	21	
Massa do filtre	o no início do	teste: 341,3	2g			Massa do	filtro no firr	n do teste:	371g						

TESTES EPERIMENTAIS EM UNIDADE DE FLUIDIZAÇÃO RÁPIDA A FRIO - UFRAF															
Teste n': 2	Data: 24	/ 04 / 2014		Hora iníci	o: 18:23	Hora fim: 1	19:06	Operador	es: Andrel	e Breno.					
1	Material ine	rte: Areia							VAF	RIÁVEIS (CONTROL	ADAS			
р.: 2523 kg/п	n ³	ø ": 0,69		Massa de	areia: 5kg		Tamanho	da partícu	ila (d _p): 250	Յμπ	Vel. de flu	idização: 3),5m/s	Taxa de a	eração na válvula L : 0,6631 kg/h
							VARIÁ	ÁVEIS EX	PERIMEN	ITAIS:					
Medida	Hora	RS-01	RS-02	RS-03	RS-04	RS-05	RS-06	SP-01	SP-02	VAL-L	PO-M	PO-D	ТЬ	Ta	Vazão lida (Nm³/h)
1	18:40	375	235	175	132	103	83	49	55	620	896	19,5	41,3	22,5	0,506
2	18:45	370	245	180	140	100	79	51	58	610	906	19	41,3	22,5	
3	18:50	370	250	180	140	100	82	54	61	620	906	19,5	41,4	22,5	
4	18:55	375	240	185	137	105	88	56	64	620	906	19,5	41,3	22,4	
Média		372,5	242,5	180	137,25	102	83	52,5	59,5	617,5	903,5	19,375	41,325	22,475	
Massa do filtro no início do teste: 342,83g						Massa do	filtro no fim	i do teste: 3	344,48g						
			TES	TES EPI	ERIMEN	ITAIS E		ADE DE	E FLUID	IZAÇÃ	D RÁPII	DA A FR	10 - UF	RAF	
Testein': 2*	Data: 247	04/2014		Hora iníci	o: 20:02	Hora fim: 20:26 Operadores: Andrel e Breno.									
P	Material ine	rte: Areia				VARIÁVEIS CONTROLADAS									
р,: 2523 kg/n	n3	ø ": 0,69		Massa de	areia: 5kg		Tamanho	da partícu	ila (d _p): 256	Յμπ	Vel. de flu	idização: 3),5 m/s	Taxa de a	eração na válvula L : 0,6672 kg/h
							VARIÁ	ÁVEIS EX	PERIMEN	ITAIS:					
Medida	Hora	RS-01	RS-02	RS-03	RS-04	RS-05	RS-06	SP-01	SP-02	VAL-L	PO-M	PO-D	ТЬ	Ta	Vazão lida (Nm³/h)
1	20:09	370	240	190	150	102	77	57	52	630	936	19,6	40	20,3	0,5077
2	20:13	365	250	190	138	105	80	49	55	630	936	19,5	40,5	20,3	
3	3 20:18 375 260 190 14						82	51	57	635	934	19,7	40,7	20,3	
4	20:23	370	250	190	150	105	85	52	60	640	934	19,7	40,6	20,3	
Média	a 370 250 190 145,75 103,5 81 52,25 56 633,75 935 19,625 40,45 20,3														
Massa do filt	ro no início	do teste: 3	343,1g			Massa do filtro no fim do teste: 364,72g									

	TESTES EPERIMENTAIS EM UNIDADE DE FLUIDIZAÇÃO RÁPIDA A FRIO - UFRAF														
Testein': 3	Data: 30	/ 04 / 2014		Hora iníci	o: 18:01	Hora fim: 1	18:32	Operador	es: Andrel	e Breno.					
Ma	iterial inerte	e: Areia							VAF	RIÁVEIS (CONTROL	ADAS			
ρ, : 2523 kg/m³		ø ": 0,69		Massa de	areia: 3,5k	g	Tamanho	da partícu	ıla (d _e): 25	6µm	Vel. de flu	idização: 4	1,5m/s	Taxa de a	eração na válvula L : 0,7386 kg/h
							VARIÁV	EIS EXP	ERIMENT	AIS:					
Medida	Hora	RS-01	RS-02	RS-03	RS-04	RS-05	RS-06	SP-01	SP-02	VAL-L	PO-M	PO-D	ТЬ	Ta	Vazão lida (Nm ³ /h)
1	18:11	180	178	160	138	122	100	61	67	530	1058	32	42	20,7	0,5596
2	18:16	180	175	160	140	122	100	64	69	530	1056	32	43	20,7	
3	18:20	182	180	163	142	125	103	66	74	535	1058	32	43,5	20,7	
4	18:25	185	180	166	148	125	106	69	77	536	1060	31,8	44	20,7	
Média		181,75	178,25	162,25	142	123,5	102,25	65	71,75	532,75	1058	31,95	43,125	20,7	
Massa do filtro no	o início do t	este: 341,2	22g			Massa do	filtro no fim	do teste: 3	365,74g				-		
			TEST	ES EPEI	RIMENT	TAIS EN	I UNIDA	DE DE	FLUIDI	ZAÇÃO	RÁPID/	A A FRI	0 - UFR	RAF	
Testein': 3*	Data: 30/	04/2014		Hora iníci	io: 19:32 Hora fim: 20:01 Operadores: Andrel e Breno.										
Ma	iterial inerte	e: Areia							VAF	RIÁVEIS (CONTROL	ADAS			
p,: 2523 kg/m3		ø ": 0,69		Massa de	areia: 3,5k	g	Tamanho	da partícu	ıla (d _e): 25	6µm	Vel. de flu	idização: 4	1,5 m/s	Taxa de a	eração na válvula L : 07408 kg/h
							VARIÁV	EIS EXP	ERIMENT	AIS:					
Medida	Hora	RS-01	RS-02	RS-03	RS-04	RS-05	RS-06	SP-01	SP-02	VAL-L	PO-M	PO-D	ТЬ	Ta	Vazão lida (Nm³/h)
1	19:40	180	174	160	142	123	100	63	69	530	1060	31,5	42,3	19,9	0,5606
2	19:45	182	180	165	144	124	101	66	73	532	1060	31,8	42,9	19,9	
3	19:50	182	180	168	145	128	105	69	76	532	1060	32	43,5	19,9	
4	19:54	184	181	169	148	131	108	72	79	535	1060	32	43,6	19,9	
Média		182	178,75	165,5	144,75	126,5	103,5	67,5	74,25	532,25	1060	31,825	43,075	19,9	
Massa do filtro no	assa do filtro no início do teste: 340,8g						Massa do filtro no fim do teste: 382,15g								

	TESTES EPERIMENTAIS EM UNIDADE DE FLUIDIZAÇÃO RÁPIDA A FRIO - UFRAF														
Teste n': 4	Data: 07	/ 05 / 2014		Hora iníci	o: 18:40	Hora fim: "	19:20	Operador	es: Andrel	le Gustavo					
M	laterial iner	te: Areia							VAF	RIÁVEIS (ONTROL	ADAS			
p,: 2523 kg/m ³		ø ": 0,69		Massa de	areia: 3,5l	g	Tamanho	da partícu	la (d _p): 250	6µm	Vel. de flu	idização: :	3,5m/s	Taxa de a	eração na válvula L : 0,6511 kg/h
							VARIÁ	VEIS EXP	ERIMENT	TAIS:					
Medida	Hora	RS-01	RS-02	RS-03	RS-04	RS-05	RS-06	SP-01	SP-02	VAL-L	PO-M	PO-D	ТЬ	Ta	Vazão lida (Nm³/h)
1	18:41	160	155	133	113	92	77	49	55	500	750	20	41,5	23,8	0,4954
2	18:45	160	150	133	113	95	78	53	57	500	750	19	41,7	23,8	
3	18:50	164	149	130	113	95	78	53	58	505	750	20	41,6	23,8	
4	18:53	160	150	135	113	95	82	54	59	520	750	19	41,5	23,8	
Média		161	151	132,75	113	94,25	78,75	52,25	57,25	506,25	750	19,5	41,575	23,8	
Massa do filtro	no início d	o teste: 341	1,15g			Massa do	filtro no fim	ndo teste: (366,73g						
			TEST	ES EPE	RIMEN	TAIS EN		ADE DE	FLUIDI	ZAÇÃO	RÁPID	A A FR	O - UFF	RAF	
Teste n': 4*	Data: 07/	0572014		Hora iníci	o: 20:01	Hora fim: 20:30 Operadores: Andrel e Gustavo.									
M	laterial iner	te: Areia					VARIÁVEIS CONTROLADAS								
ρ,: 2523 kg/m3	}	ø ": 0,69		Massa de	areia: 3,5l	g	Tamanho	da partícu	la (d _p): 250	6µm	Vel. de flu	idização: 🖯	3,5 m/s	Taxa de a	eração na válvula L : 0,6562 kg/h
							VARIÁ	VEIS EXP	ERIMENT	TAIS:					
Medida	Hora	RS-01	RS-02	RS-03	RS-04	RS-05	RS-06	SP-01	SP-02	VAL-L	PO-M	PO-D	ТЬ	Ta	Vazão lida (Nm³/h)
1	20:09	155	142	139	108	91	74	46	54	495	750	19	40,4	21,9	0,4976
2	20:12	159	145	138	105	92	77	48	56	505	750	20	40,5	21,9	
3	20:16	159	150	129	113	95	78	50	57	510	750	20	40,5	21,9	
4	20:19	158	147	128	112	95	78	52	58	515	750	20	40,5	21,9	
Média		157,75	146	133,5	3,5 109,5 93 76,75 49 56,25 506,25 750 19,75 40,475 21,9										
Massa do filtro	no início d	o teste: 341	1,70g			Massa do filtro no fim do teste: 392,69g									

	TESTES EPERIMENTAIS EM UNIDADE DE FLUIDIZAÇÃO RÁPIDA A FRIO - UFRAF														
Testen': 5	Data: 30	/ 05 / 2014		Hora iníci	o: 14:23	Hora fim: 1	15:12	Operador	es: Andrel	, Giulia Tra	montin e M	aria Regin	а		
Ma	aterial inert	e: Areia							VAF	RIÁVEIS (CONTROL	ADAS			
p,: 2523 kg/m ³		ø ": 0,69		Massa de	areia: 5kg		Tamanho	da partícu	la (d _p): 181	μm	Vel. de flu	idização: 4	1,5 m/s	Taxa de a	eração na válvula L : 0,4574 kg/h
							VARIÁ	VEIS EXP	ERIMENT	TAIS:					
Medida	Hora	RS-01	RS-02	RS-03	RS-04	RS-05	RS-06	SP-01	SP-02	VAL-L	PO-M	PO-D	ТЬ	Ta	Vazão lida (Nm³/h)
1	14:47	190	190	175	160	143	123	82	190	550	1064	32	46	20	0,3464
2	14:52	215	200	190	170	147	130	83	190	545	1060	32	46,5	20	
3	14:59	235	220	205	172	157	138	95	204	576	1150	33	46,5	20	
4	15:04	217	218	200	173	157	138	98	208	578	1156	33	46,4	20	
Média		214,25	207	192,5	168,75	151	132,25	89,5	198	562,25	1107,5	32,5	46,35	20	
Massa do filtro n	o início do	teste: 342,	,8g			Massa do	filtro no fim	i do teste: (358,72g						
			TEST	ES EPE	RIMEN	TAIS EN		DE DE	FLUIDI	ZAÇÃO	RÁPID	A A FRI	O - UFF	RAF	
Testein': 5*	Data: 31/	0572014		Hora iníci	o: 14:15	Hora fim: 14:48 Operadores: Andrel e Jhon.									
Ma	aterial inert	e: Areia							VAF	RIÁVEIS (CONTROL	ADAS			
ρ, : 2523 kg/m ³		ø ": 0,69		Massa de	areia: 5kg		Tamanho	da partícu	la (d _p): 181	μm	Vel. de flu	idização: 4	1,5 m/s	Taxa de a	eração na válvula L : 0,4515 kg/h
							VARIÁ	VEIS EXP	ERIMENT	TAIS:					
Medida	Hora	RS-01	RS-02	RS-03	RS-04	RS-05	RS-06	SP-01	SP-02	VAL-L	PO-M	PO-D	ТЬ	Ta	Vazão lida (Nm³/h)
1	14:23	207	210	203	160	148	135	87	197	575	1140	33	46,5	17,3	0,3406
2	14:28	215	218	195	185	150	138	91	192	570	1144	33	46,6	17,3	
3	14:32	215	210	185	170	155	135	93	195	570	1140	33	46,7	17,3	
4	14:36	220	215	195	170	160	135	94	193	575	1146	33	46,6	17,3	
Média	Média 214,25 213,25 194,5 171,25 153,25 135,75 91,25 194,25 572,5 1142,5 33 46,6 17,3														
Massa do filtro n	Aassa do filtro no início do teste: 344,5g						filtro no fim	i do teste: (360,3g						

	TESTES EPERIMENTAIS EM UNIDADE DE FLUIDIZAÇÃO RÁPIDA A FRIO - UFRAF ten: 6 Deta: 31/05/2014 Hora tin: 15:48 Operadores: Andrele Joop														
Teste n': 6	Data: 31/	05/2014		Hora iníci	o: 14:56	Hora fim: 1	15:48	Operador	es: Andrel	e Jhon.					
N	Aaterial inei	rte: Areia							VA	RIÁVEIS	CONTRO	LADAS			
p,: 2523 kg/m	3	ø ": 0,69		Massa de	areia: 5kg		Tamanho	da partícu	ila (d _p): 181	μm	Vel. de flu	idização: 3),5 m/s	Taxa de a	eração na válvula L : 0,385 kg/h
							VARI	ÁVEIS EX	PERIMEN	ITAIS:					
Medida	Hora	RS-01	RS-02	RS-03	RS-04	RS-05	RS-06	SP-01	SP-02	VAL-L	PO-M	PO-D	ТЬ	Ta	Vazão lida (Nm³/h)
1	15:20	105	106	108	93	89	79	61	161	445	620	19	36,6	17,6	0,2887
2	15:25	106	105	100	92	89	81	60	160	441	620	19	36,4	17,6	
3	15:30	109	106	103	98	90	81	61	160	437	618	19	36,4	17,6	
4	15:35	108	104	106	93	90	82	60	162	445	620	19	36,4	17,6	
Média		107	105,25	104,25	94	89,5	80,75	60,5	160,75	442	619,5	19	36,45	17,6	
Massa do filtro	o no início o	do teste: 36	60,3g			Massa do	filtro no fim	ndo teste: 3	386,9g						
			TES	TES EP	ERIMEN	ITAIS E		DADE DI	E FLUID	DIZAÇÃ	O RÁPII	DA A FR	lo - UF	RAF	
Teste n': 6*	Data: 31/	0572014		Hora iníci	o: 16:00	Hora fim: 16:32 Operadores: Andrel e Jhon.									
N	Aaterial iner	rte: Areia							VA	RIÁVEIS	CONTRO	LADAS			
p,: 2523 kg/m	3	ø ": 0,69		Massa de	areia: 5kg		Tamanho	da partícu	ila (d _p): 181	μm	Vel. de flu	idização: 3),5 m/s	Taxa de a	eração na válvula L : 0,3838 kg/h
							VARI	ÁVEIS EX	PERIMEN	NTAIS:					
Medida	Hora	RS-01	RS-02	RS-03	RS-04	RS-05	RS-06	SP-01	SP-02	VAL-L	PO-M	PO-D	ТЬ	Ta	Vazão lida (Nm³/h)
1	16:05	115	108	107	91	80	69	48	148	415	616	19	36,8	17,2	0,2875
2	16:10	112	106	93	91	84	73	50	149	423	644	19	36,8	17,2	
3	16:15	107	107	95	90	82	73	53	149	417	642	19	36,9	17,2	
4	16:20	111	105	98	93	84	74	52	150	425	644	19	36,9	17,2	
Média		111,25	106,5	98,25	91,25	82,5	72,25	50,75	149	420	636,5	19	36,85	17,2	
Massa do filtro	o no início o	do teste: 38	36,9g			Massa do	filtro no fim	do teste: 3	394,9g						

TESTES EPERIMENTAIS EM UNIDADE DE FLUIDIZAÇÃO RÁPIDA A FRIO - UFRAF															
Teste n': 7	Data: 177	0572014		Hora iníci	o: 10:20	Hora fim: 1	10:50	Operador	es: Andrel	e Breno.					
1	Material ine	erte: Areia							VAF	RIÁVEIS (CONTRO	LADAS			
ρ,: 2523 kg/r	π³	ø ": 0,69		Massa de	areia: 3,5k	g	Tamanho	da partícu	la (d _p): 181	μm	Vel, de flu	uidização: 4	1,5 m/s	Taxa de a	eração na válvula L : 0,4203 kg/h
							VARI	ÁVEIS EX	PERIME	NTAIS:					
Medida	Hora	RS-01	RS-02	RS-03	RS-04	RS-05	RS-06	SP-01	SP-02	VAL-L	PO-M	PO-D	ТЬ	Ta	Vazão lida (Nm³/h)
1	10:32	123	125	123	125	118	110	78	80	436	1030	32,3	44	20,5	0,3169
2	10:36	129	128	128	127	117	109	78	82	436	1028	32,5	44,4	20,5	
3	10:40	124	129	127	125	117	112	80	83	440	1028	32,2	44,5	20,5	
4	10:45	124	128	127	125	123	114	80	84	440	1030	32,5	44,6	20,5	
Média		125	127,5	126,25	125,5	118,75	111,25	79	82,25	438	1029	32,375	44,375	20,5	
Massa do filt	ro no início	o do teste: 3	343,49g			Massa do	filtro no fim	ndo teste: 3	363,06g						
			TES	TES EP	ERIME	NTAIS E		DADE D	E FLUID	DIZAÇÃ	O RÁPI	DA A FF	RIO - UF	RAF	
Teste n': 7*	Data: 177	0572014		Hora iníci	lora início: 11:21 Hora fim: 11:46 Operadores: Andrel e Breno.										
1	Material ine	erte: Areia							VAF	RIÁVEIS (CONTRO	LADAS			
ρ, : 2523 kg/r	п3	ø ": 0,69		Massa de	areia: 3,5k	g	Tamanho	da partícu	la (d _p): 181	μm	Vel, de flu	uidização: 4	1,5 m/s	Taxa de a	eração na válvula L : 0,425 kg/h
							VARI	ÁVEIS EX	PERIME	NTAIS:					
Medida	Hora	RS-01	RS-02	RS-03	RS-04	RS-05	RS-06	SP-01	SP-02	VAL-L	PO-M	PO-D	ТЬ	Ta	Vazão lida (Nm³/h)
1	11:29	120	121	117	118	113	103	72	75	433	1036	31,8	44,5	21,1	0,3207
2	11:33	125	127	126	123	117	111	78	80	437	1070	33	45,4	21,1	
3	11:37	125	128	128	127	122	112	79	83	441	1086	33	45,9	21,1	
4	11:41	131	132	129	129	129	121	79	82	443	1084	33	46,2	21,1	
Média 125,25 127 125 124,25 120,25 111,75 77 80 438,5 1069 32,7 45,5 21,1															
Massa do filt	ro no início	o do teste: 3	343,1g			Massa do	filtro no fim	do teste: 4	440,46g						

	TESTES EPERIMENTAIS EM UNIDADE DE FLUIDIZAÇÃO RÁPIDA A FRIO - UFRAF														
Testein': 8	Data: 23	/ 05 / 2014		Hora iníci	o: 13:30	Hora fim: 1	14:56	Operador	es: Andrel	, Breno e G	Gustavo.				
P	Material ine	rte: Areia							VA	RIÁVEIS (CONTRO	ADAS			
р,: 2523 kg/m	1 ³	ø ": 0,69		Massa de	areia: 3,5	g	Tamanho	da partícu	ila (d _p): 181	μm	Vel. de flu	idização: 3	3,5 m/s	Taxa de a	eração na válvula L : 0,2888 kg/h
							VARIÁ	VEIS EX	PERIMEN	ITAIS:					
Medida	Hora	RS-01	RS-02	RS-03	RS-04	RS-05	RS-06	SP-01	SP-02	VAL-L	PO-M	PO-D	ТЬ	Ta	Vazão lida (Nm³/h)
1	13:39	84	85	85	83	77	72	52	53	374	646	20	37,6	19,4	0,2805
2	13:42	86	85	84	83	81	73	53	55	375	640	20	38	19,4	
3	13:47	88	87	85	86	80	73	53	55	383	640	20	38,1	19,4	
4	13:51	88	87	86	86	82	74	54	57	377	642	21	38,1	19,4	
Média		86,5	86	85	84,5	80	73	53	55	377,25	642	20,25	37,95	19,4	
Massa do filtr	Massa do filtro no início do teste: 344,2g						filtro no fim	ndo teste: 3	394,07g						
			TES	TES EPI	ERIMEN	ITAIS E		ADE DE	E FLUID	IZAÇÃO	D RÁPIE	DA A FR	10 - UF	RAF	
Teste n': 8*	Data: 237	05/2014		Hora iníci	o: 14:25	Hora fim: 14:51 Operadores: Andrel e Gustavo.									
P	Material ine	rte: Areia							VA	RIÁVEIS (CONTROL	LADAS			
ρ,: 2523 kg/m	13	ø ": 0,69		Massa de	areia: 3,5k	g	Tamanho	da partícu	ila (d _p): 181	μm	Vel. de flu	idização: 3	3,5 m/s	Taxa de a	eração na válvula L : 0,3669 kg/h
							VARIÁ	VEIS EX	PERIMEN	ITAIS:					
Medida	Hora	RS-01	RS-02	RS-03	RS-04	RS-05	RS-06	SP-01	SP-02	VAL-L	PO-M	PO-D	ТЬ	Ta	Vazão lida (Nm³/h)
1	14:31	83	86	84	84	79	71	49	52	365	644	19	38,4	19,5	0,2751
2	14:34	85	86	86	85	80	72	50	54	374	644	20	38,5	19,5	
3 14:37 86 86 85 84 79 72							50	54	366	644	19,5	38,5	19,5		
4	14:40	86	87	85	85 85 79 72 53 54 370 645 19,5 38,6 19,5										
Média		85	86,25	85	84,5	79,25	71,75	50,5	53,5	368,75	644,25	19,5	38,5	19,5	
Massa do filtr	o no início	do teste: 3	43,6g			Massa do filtro no fim do teste: 368,2g									

APÊNDICE B – Gráficos de perfil de pressão axial, para experimentos feitos com distribuidor de ar

Gráfico 9 - Perfis axial de pressão para os experimentos com diâmetro de partícula (d_p) de 256 µm, com distribuidor de ar. Fonte: Autoria própria.

Gráfico 10 - Perfis axial de pressão para os experimentos com diâmetro de partícula (d_p) de 256 µm, com distribuidor de ar. Fonte: Autoria própria.

Gráfico 11 - Perfis axial de pressão para os experimentos com Inventário (*Inv*) de 5 kg, com distribuidor de ar. Fonte: Autoria própria.

Gráfico 12 - Perfis axial de pressão para os experimentos com Inventário (*Inv*) de 3,5 kg, com distribuidor de ar. Fonte: Autoria própria.

Gráfico 13 - Perfis axial de pressão para os experimentos com velocidade de fluidização (u_f) de 4,5 m/s, com distribuidor de ar. Fonte: Autoria própria.

Gráfico 14 - Perfis axial de pressão para os experimentos com velocidade de fluidização (u_f) de 3,5 m/s, com distribuidor de ar. Fonte: Autoria própria.