UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE MECÂNICA CURSO DE ENGENHARIA MECÂNICA

CASSIO EDUARDO NADAL FERREIRA

ANÁLISE EXPERIMENTAL DO DESEMPENHO DE UM TROCADOR DE CALOR DO TIPO CASCO E TUBOS

TRABALHO DE CONCLUSÃO DE CURSO

PONTA GROSSA 2014

CASSIO EDUARDO NADAL FERREIRA

ANÁLISE EXPERIMENTAL DO DESEMPENHO DE UM TROCADOR DE CALOR DO TIPO CASCO E TUBOS

Trabalho de Conclusão de Curso apresentado como requisito parcial à obtenção do título de Engenheiro Mecânico, do Departamento Acadêmico de Mecânica, da Universidade Tecnológica Federal do Paraná/Campus Ponta Grossa.

Orientador: Prof. Dr. Thiago Antonini Alves

PONTA GROSSA 2014

TERMO DE APROVAÇÃO

ANÁLISE EXPERIMENTAL DO DESEMPENHO DE UM TROCADOR DE CALOR DO TIPO CASCO E TUBOS

por

CASSIO EDUARDO NADAL FERREIRA

Este Trabalho de Conclusão de Curso foi apresentado em 5 de agosto de 2014 como requisito parcial para a obtenção do título de Bacharel em Engenharia Mecânica. O candidato foi arguido pela Banca Examinadora composta pelos professores abaixo assinados. Após deliberação, a Banca Examinadora considerou o trabalho aprovado.

Prof. Dr. Thiago Antonini Alves Orientador

Prof. Dr. Luiz Eduardo Melo Lima Membro Titular

> Prof. Me. Gilberto Zammar Membro Titular

Prof. Dr. Luiz Eduardo Melo Lima Responsável pelos Trabalhos de Conclusão de Curso Prof. Dr. Laercio Javarez Junior Coordenador do Curso de Engenharia Mecânica

- O Termo de Aprovação assinado encontra-se na Coordenação do Curso -

RESUMO

FERREIRA, Cassio. Análise experimental do desempenho de um trocador de calor do tipo casco e tubos. 2014. 95 f. Trabalho de conclusão de curso (Bacharelado em Engenharia Mecânica) – Universidade Tecnológica Federal do Paraná. Ponta Grossa, 2014.

Neste Trabalho de Conclusão de Curso foi realizada uma investigação experimental do desempenho de um trocador de calor do tipo casco e tubos sob diferentes condições de operação em escoamento contracorrente e em escoamento paralelo. A taxa total de transferência de calor nas diferentes configurações foi encontrada por três diferentes métodos: Balanço de Energia, Média Logarítmica das Diferenças de Temperaturas (MLDT) e Efetividade-NUT (E-NUT). Os testes experimentais foram executados em um aparato experimental localizado no Laboratório Didático de Ciências Térmicas do Departamento Acadêmico de Mecânica da Universidade Tecnológica Federal do Paraná/Campus Ponta Grossa. As especificações técnicas do trocador de calor tipo casco e tubos são: casco Tipo E, cabeçote frontal do Tipo A, cabeçote traseiro do Tipo L, feixes de tubos fixados em disposição de 90° e chicanas segmentais. As incertezas experimentais foram calculadas através da Técnica de Amostragem Simples com o auxílio do software Uncertainty Calculator. As propriedades termofísicas dos fluidos e dos tubos foram obtidas da biblioteca do software Engineering Equation SolverTM (EESTM). Os resultados experimentais do desempenho dos trocadores de calor indicaram que as mais altas taxas de transferência de calor ocorrem para as maiores vazões dos fluidos quente e frio e os maiores gradientes de temperatura de entrada entre os fluidos quente e frio. Para as mesmas condições de temperatura de entrada e de vazão dos fluidos quente e frio a configuração em escoamento contracorrente apresentou um melhor desempenho.

Palavras-Chave: Avaliação do desempenho. Trocadores de calor. Tipo casco e tubos. Método MLDT. Método Efetividade-NUT.

ABSTRACT

FERREIRA, Cassio. **Experimental performance analysis of shell and tube heat exchanger**. 2014. 95 f. Trabalho de conclusão de curso (Bacharelado em Engenharia Mecânica) – Federal Technology University - Paraná. Ponta Grossa, 2014.

In this Work Course Conclusion an experimental investigation of shell and tube heat exchanger performance under different operating conditions in counter flow and parallel flow was performed. The heat transfer rate in different settings was found by three different methods: Energy Balance, Average logarithmic differences of temperatures (MLDT) and Effectiveness-NUT (E-NUT). Experimental tests were performed on an experimental apparatus located in Educational Laboratory of Thermal Science of Academic Department of Mechanical, Federal Technological University of Paraná/Ponta Grossa. The technical specifications of Shell and tubes heat exchanger are: Shell Type E, front head Type A, end head Type L, tube bundles in fixed array of 90 ° and single-segmental baffles. The experimental uncertainties were calculated using the Simple Sampling technique with the support of Uncertainty Calculator software. The thermophysical properties of the fluid and the tubes were obtained from the Engineering Equation SolverTM (EESTM) software library. The experimental results of the performance of heat exchangers, indicated that the highest heat transfer rates occur for higher flow rates of hot and cold fluids and larger temperature gradients between the inlet hot and cold fluids. For the same conditions of inlet temperature and flow of hot and cold fluids flow in countercurrent configuration showed higher rates of heat transfer between the fluids.

Keywords: Performance Evaluation. Heat Exchangers. Shell and Tubes type. MLDT method. Effectiveness NUT Method.

LISTA DE FIGURAS

Figura 1 - Cascos e cabeçotes padronizados pela TEMA.	18
Figura 2 - Trocador de calor do tipo casco e tubos, projetado para limpeza interna dos tubo	os.
	20
Figura 3 - Trocador com feixe de tubos em U	20
Figura 4 - Disposição dos tubos	22
Figura 5 - Chicanas	23
Figura 6 - Cilindro oco com condições convectivas nas superfícies	25
Figura 7 - Esboço de uma matriz tubular em escoamento cruzado	28
Figura 8 - Arranjo dos tubos em uma matriz tubular (a) Alinhado. (b) Alternados	29
Figura 9 - Condições de escoamento em tubos (a) Alinhado. (b) Alternados	30
Figura 10 - Desenvolvimento de camada-limite fluidodinâmica laminar em um tubo circula	ar. 32
Figura 11 - Fator de atrito para escoamentos plenamente desenvolvidos em um tubo circula	ar. 33
Figura 12 - Desenvolvimento de camada-limite térmica em um tubo circular aquecido	34
Figura 13 - Balancos de energia globais para os fluidos quente e frio de um trocador de cal	or
com dois fluidos.	38
Figura 14 - Distribuição de temperaturas em um trocador de calor com escoamento paralelo	0.
	40
Figura 15 - Distribuições de temperaturas em um trocador de calor com escoamento	40
contracorrente.	42
Figura 16 - Condições especiais em trocadores de calor	43
qualquer múltiplo de dois (dois, quatro, etc.) passes nos tubos	44
Figura 18 - Fator de correção para um trocador de calor casco e tubos com dois passes no	
casco e qualquer múltiplo de quatro (quatro, oito etc.) passes nos tubos	44
Figura 19 - Efetividade de um trocador de calor casco e tubos com um passe no caso e	
qualquer múltiplo de dois passes no casco	47
Figura 20 - Efetividade de um trocador de calor casco e tubos com dois passes no casco e	
qualquer múltiplo de quatro passes nos tubos	48
Figura 21 - Diagrama esquemático do trocador de calor de casco e tubos utilizado	52
Figura 22 - Câmera Termográfica de alto desempenho.	53
Figura 23 - Interface gráfica do programa EES para o caso #1 com as propriedades	
termofísicas destacadas	56
Figura 24 - Cálculo da propagação de erros na equação do balanço de energia para o caso ‡	¥1.
	56

LISTA DE FOTOGRAFIAS

Fotografia 1 – Trocador de calor do tipo casco e tubos (em corte)	18
Fotografia 2 - Montagem experimental.	49
Fotografia 3 - Unidade básica de abastecimento.	50
Fotografia 4 - Trocador de calor do tipo casco e tubos.	51
Fotografia 5 - Módulo de aquisição de dados SCADA.	52
Fotografia 6 - Perdas de calor do aparato experimental para o ambiente externo	83
Fotografia 7 - Perdas de calor do trocador de calor do tipo casco e tubos para o ambiente	
externo.	84

LISTA DE GRÁFICOS

Gráfico 1 - Taxa total de transferência de calor por diferentes métodos em escoamento	
contracorrente	80
Gráfico 2 - Taxa total de transferência de calor por diferentes métodos em escoamento	
paralelo	81
Gráfico 3 - Média das taxas totais de transferência de calor obtidas nos métodos acima	81
Gráfico 4 - Comparativo entre o escoamento contracorrente e paralelo. Fonte: Autoria pro	ópria.
	83

LISTA DE TABELAS

Tabela 1 - Constantes da Equação (15) para a matriz tubular em escoamento cruzado3	;1
Tabela 2 - Fator de correção C_2 da Equação (16) para $N_L < 20$ ($Re_d \ge 10^3$)	51
Tabela 3 - Fatores de deposição representativos	57
Tabela 4 - Valores representativos do coeficiente global de transferência de calor3	8
Tabela 5 - Relações da efetividade de trocadores de calor4	-6
Tabela 6 - Relações do NUT de trocadores de calor4	7
Tabela 7 - Dimensões do trocador de calor do tipo casco e tubos utilizado5	60
Tabela 8 - Sequência das condições de operação para $Q_f = 1,0$ l/min e escoamento	
contracorrente	57
Tabela 9 - Sequência das condições de operação para $Q_f = 1,5$ l/min e escoamento	
contracorrente	57
Tabela 10 - Sequência das condições de operação para $Q_f = 2,0$ l/min e escoamento	
contracorrente	57
Tabela 11 - Sequência das condições de operação para $Q_f = 3,0$ l/min e escoamento	
contracorrente	57
Tabela 12 - Sequência das condições de operação para $Q_f = 6,0$ l/min e escoamento	
contracorrente	68
Tabela 13 - Sequência das condições de operação para $Q_f = 6,0$ l/min e escoamento paralelo.	
	68
Tabela 14 - Temperaturas obtidas com vazão de 1 l/min do fluido frio e 1 l/min do fluido	
quente	58
Tabela 15 - Temperaturas obtidas com vazão de 1 l/min do fluido frio e 1,5 l/min do fluido	
quente	;9
Tabela 16 - Temperaturas obtidas com vazão de 1 l/min do fluido frio e 2 l/min do fluido	
quente	;9
Tabela 17 - Temperaturas obtidas com vazão de 1 l/min do fluido frio e 3 l/min do fluido	
quente	59
Tabela 18 - Temperaturas obtidas com vazão de 1,5 l/min do fluido frio e 1 l/min do fluido	
quente	;9
Tabela 19 - Temperaturas obtidas com vazão de 1,5 l/min do fluido frio e 1,5 l/min do fluido	
quente	50
Tabela 20 - Temperaturas obtidas com vazão de 1,5 l/min do fluido frio e 2 l/min do fluido	
quente	50
Tabela 21 - Temperaturas obtidas com vazão de 1,5 l/min do fluido frio e 3 l/min do fluido	
quente	50
Tabela 22 - Temperaturas obtidas com vazão de 2 l/min do fluido frio e 1 l/min do fluido	
quente	50
Tabela 23 - Temperaturas obtidas com vazão de 2 l/min do fluido frio e 1,5 l/min do fluido	
quente	51
Tabela 24 - Temperaturas obtidas com vazão de 2 l/min do fluido frio e 2 l/min do fluido	
quente	51
Tabela 25 - Temperaturas obtidas com vazão de 2 l/min do fluido frio e 3 l/min do fluido	
quente	51
Tabela 26 - Temperaturas obtidas com vazão de 3 l/min do fluido frio e 1 l/min do fluido	
quente	51

Tabela 27 - Temperaturas obtidas com vazão de 3 l/min do fluido frio e 1,5 l/min do fluido	
quente	52
Tabela 28 - Temperaturas obtidas com vazão de 3 l/min do fluido frio e 2 l/min do fluido	
quente ϵ	52
Tabela 29 - Temperaturas obtidas com vazão de 3 l/min do fluido frio e 3 l/min do fluido	
quente6	52
Tabela 30 - Temperaturas obtidas com vazão de 6 l/min do fluido frio e 1,5 l/min do fluido	
quente6	52
Tabela 31 - Temperaturas obtidas com vazão de 6 l/min do fluido frio e 2 l/min do fluido	
quente	53
Tabela 32 - Temperaturas obtidas com vazão de 6 l/min do fluido frio e 3 l/min do fluido	
quente	53
Tabela 33 - Temperaturas obtidas com vazão de 6 l/min do fluido frio e 1.5 l/min do fluido	
quente. em escoamento paralelo	54
Tabela 34 - Temperaturas obtidas com vazão de 6 l/min do fluido frio e 2 l/min do fluido	
quente, em escoamento paralelo	54
Tabela 35 - Temperaturas obtidas com vazão de 6 l/min do fluido frio e 3 l/min do fluido	
quente em escoamento paralelo	54
Tabela 36 - Propriedades termofísicas das medições de temperatura em configuração	, ,
contracorrente	55
	55
Tabala 37 - Propriedades termofísicas das medições de temperatura em configuração paralel	9
Tabela 37 - Propriedades termofísicas das medições de temperatura em configuração paralela	a. 56
Tabela 37 - Propriedades termofísicas das medições de temperatura em configuração paralela	a. 56 57
Tabela 37 - Propriedades termofísicas das medições de temperatura em configuração paralela	a. 56 57
Tabela 37 - Propriedades termofísicas das medições de temperatura em configuração paralela	a. 56 57 59
Tabela 37 - Propriedades termofísicas das medições de temperatura em configuração paralela	a. 56 57 59 59
Tabela 37 - Propriedades termofísicas das medições de temperatura em configuração paralela	a. 56 57 59 59 71
Tabela 37 - Propriedades termofísicas das medições de temperatura em configuração paralela Tabela 38 - Balanço de energia em configuração contracorrente. Tabela 39 - Balanço de energia em configuração paralela. Tabela 40 - Coeficiente convectivo interno em configuração paralelo. Tabela 41 - Coeficiente convectivo interno em configuração paralelo. Tabela 42 - Coeficiente convectivo externo em configuração contracorrente.	a. 56 57 59 59 71 71
Tabela 37 - Propriedades termofísicas das medições de temperatura em configuração paralela Tabela 38 - Balanço de energia em configuração contracorrente. Tabela 39 - Balanço de energia em configuração paralela. Tabela 40 - Coeficiente convectivo interno em configuração contracorrente. Tabela 41 - Coeficiente convectivo interno em configuração paralelo. Tabela 42 - Coeficiente convectivo externo em configuração contracorrente. Tabela 43 - Coeficiente convectivo externo em configuração paralelo.	a. 56 57 59 59 71 71 73
Tabela 37 - Propriedades termofísicas das medições de temperatura em configuração paralela Tabela 38 - Balanço de energia em configuração contracorrente. Tabela 39 - Balanço de energia em configuração paralela. Tabela 40 - Coeficiente convectivo interno em configuração contracorrente. Tabela 41 - Coeficiente convectivo interno em configuração paralelo. Tabela 42 - Coeficiente convectivo externo em configuração contracorrente. Tabela 43 - Coeficiente convectivo externo em configuração paralelo. Tabela 43 - Coeficiente convectivo externo em configuração paralelo. Tabela 44 - Taxa total de transferência de calor por meio do cálculo do coeficiente global paralelo.	a. 56 57 59 59 71 71 73 ra
Tabela 37 - Propriedades termofísicas das medições de temperatura em configuração paralela Tabela 38 - Balanço de energia em configuração contracorrente. Tabela 39 - Balanço de energia em configuração paralela. Tabela 40 - Coeficiente convectivo interno em configuração paralelo. Tabela 41 - Coeficiente convectivo interno em configuração paralelo. Tabela 42 - Coeficiente convectivo externo em configuração contracorrente. Tabela 43 - Coeficiente convectivo externo em configuração paralelo. Tabela 44 - Taxa total de transferência de calor por meio do cálculo do coeficiente global par escoamento contracorrente.	a. 56 57 59 59 71 71 73 ra 73
Tabela 37 - Propriedades termofísicas das medições de temperatura em configuração paralela Tabela 38 - Balanço de energia em configuração contracorrente. Tabela 39 - Balanço de energia em configuração paralela. Tabela 40 - Coeficiente convectivo interno em configuração contracorrente. Tabela 41 - Coeficiente convectivo interno em configuração paralelo. Tabela 42 - Coeficiente convectivo externo em configuração contracorrente. Tabela 43 - Coeficiente convectivo externo em configuração paralelo. Tabela 43 - Coeficiente convectivo externo em configuração paralelo. Tabela 43 - Coeficiente convectivo externo em configuração paralelo. Tabela 43 - Coeficiente convectivo externo em configuração paralelo. Tabela 43 - Coeficiente convectivo externo em configuração paralelo. Tabela 43 - Coeficiente convectivo externo em configuração paralelo. Tabela 44 - Taxa total de transferência de calor por meio do cálculo do coeficiente global par escoamento contracorrente. Tabela 45 - Taxa total de transferência de calor por meio do cálculo do coeficiente global par	a. 56 57 59 59 71 71 73 ra 73 ra
Tabela 37 - Propriedades termofísicas das medições de temperatura em configuração paralela Tabela 38 - Balanço de energia em configuração contracorrente. Tabela 39 - Balanço de energia em configuração paralela. Tabela 40 - Coeficiente convectivo interno em configuração contracorrente. Tabela 41 - Coeficiente convectivo interno em configuração paralelo. Tabela 42 - Coeficiente convectivo externo em configuração paralelo. Tabela 43 - Coeficiente convectivo externo em configuração paralelo. Tabela 43 - Coeficiente convectivo externo em configuração paralelo. Tabela 43 - Coeficiente convectivo externo em configuração paralelo. Tabela 43 - Coeficiente convectivo externo em configuração paralelo. Tabela 43 - Coeficiente convectivo externo em configuração paralelo. Tabela 43 - Coeficiente convectivo externo em configuração paralelo. Tabela 44 - Taxa total de transferência de calor por meio do cálculo do coeficiente global par escoamento contracorrente. 7 Tabela 45 - Taxa total de transferência de calor por meio do cálculo do coeficiente global par escoamento paralelo. 7 Tabela 45 - Taxa total de transferência de calor por meio do cálculo do coeficiente global par escoamento paralelo. 7	a. 56 57 59 59 71 71 73 ra 73 ra 75
Tabela 37 - Propriedades termofísicas das medições de temperatura em configuração paralela Tabela 38 - Balanço de energia em configuração contracorrente. Tabela 39 - Balanço de energia em configuração paralela. Tabela 40 - Coeficiente convectivo interno em configuração contracorrente. Tabela 41 - Coeficiente convectivo interno em configuração paralelo. Tabela 42 - Coeficiente convectivo externo em configuração contracorrente. Tabela 43 - Coeficiente convectivo externo em configuração paralelo. Tabela 43 - Coeficiente convectivo externo em configuração paralelo. Tabela 43 - Coeficiente convectivo externo em configuração paralelo. Tabela 44 - Taxa total de transferência de calor por meio do cálculo do coeficiente global par escoamento contracorrente. 7 Tabela 45 - Taxa total de transferência de calor por meio do cálculo do coeficiente global par escoamento paralelo. 7 Tabela 46 - Método da efetividade NUT em configuração contracorrente. 7	a. 56 57 59 59 71 71 73 ra 73 ra 75 76
Tabela 37 - Propriedades termofísicas das medições de temperatura em configuração paralela Tabela 38 - Balanço de energia em configuração contracorrente. Tabela 39 - Balanço de energia em configuração paralela. Tabela 40 - Coeficiente convectivo interno em configuração contracorrente. Tabela 41 - Coeficiente convectivo interno em configuração paralelo. Tabela 42 - Coeficiente convectivo externo em configuração contracorrente. Tabela 43 - Coeficiente convectivo externo em configuração paralelo. Tabela 43 - Coeficiente convectivo externo em configuração paralelo. Tabela 44 - Taxa total de transferência de calor por meio do cálculo do coeficiente global par escoamento contracorrente. 7 Tabela 45 - Taxa total de transferência de calor por meio do cálculo do coeficiente global par escoamento paralelo. 7 Tabela 46 - Método da efetividade NUT em configuração paralela. 7 Tabela 47 - Método da efetividade NUT em configuração paralela.	a. 56 57 59 71 73 ra 73 ra 75 76 77
Tabela 37 - Propriedades termofísicas das medições de temperatura em configuração paralela 6 Tabela 38 - Balanço de energia em configuração contracorrente. 6 Tabela 39 - Balanço de energia em configuração paralela. 6 Tabela 40 - Coeficiente convectivo interno em configuração contracorrente. 6 Tabela 41 - Coeficiente convectivo interno em configuração paralelo. 7 Tabela 42 - Coeficiente convectivo externo em configuração paralelo. 7 Tabela 43 - Coeficiente convectivo externo em configuração paralelo. 7 Tabela 43 - Coeficiente convectivo externo em configuração paralelo. 7 Tabela 43 - Coeficiente convectivo externo em configuração paralelo. 7 Tabela 44 - Taxa total de transferência de calor por meio do cálculo do coeficiente global par 7 escoamento contracorrente. 7 Tabela 45 - Taxa total de transferência de calor por meio do cálculo do coeficiente global par 7 escoamento paralelo. 7 Tabela 46 - Método da efetividade NUT em configuração contracorrente. 7 Tabela 47 - Método da efetividade NUT em configuração paralela. 7 Tabela 48 - Comparação entre os métodos utilizados para o cálculo da taxa total de 7	a. 56 57 59 59 71 73 ra 73 ra 75 76 77
Tabela 37 - Propriedades termofísicas das medições de temperatura em configuração paralela 6 Tabela 38 - Balanço de energia em configuração contracorrente. 6 Tabela 39 - Balanço de energia em configuração paralela. 6 Tabela 40 - Coeficiente convectivo interno em configuração contracorrente. 6 Tabela 41 - Coeficiente convectivo interno em configuração paralelo. 7 Tabela 42 - Coeficiente convectivo externo em configuração paralelo. 7 Tabela 43 - Coeficiente convectivo externo em configuração paralelo. 7 Tabela 43 - Coeficiente convectivo externo em configuração paralelo. 7 Tabela 43 - Coeficiente convectivo externo em configuração paralelo. 7 Tabela 44 - Taxa total de transferência de calor por meio do cálculo do coeficiente global par 7 escoamento contracorrente. 7 Tabela 45 - Taxa total de transferência de calor por meio do cálculo do coeficiente global par 7 escoamento paralelo. 7 Tabela 46 - Método da efetividade NUT em configuração contracorrente. 7 Tabela 47 - Método da efetividade NUT em configuração paralela. 7 Tabela 48 - Comparação entre os métodos utilizados para o cálculo da taxa total de transferência de calor para o escoamento contracorrente. 7	a. 56 57 59 59 71 73 ra 73 ra 75 76 77 78
Tabela 37 - Propriedades termofísicas das medições de temperatura em configuração paralela 6 Tabela 38 - Balanço de energia em configuração contracorrente. 6 Tabela 39 - Balanço de energia em configuração paralela. 6 Tabela 40 - Coeficiente convectivo interno em configuração contracorrente. 6 Tabela 41 - Coeficiente convectivo interno em configuração paralelo. 7 Tabela 42 - Coeficiente convectivo externo em configuração paralelo. 7 Tabela 43 - Coeficiente convectivo externo em configuração paralelo. 7 Tabela 43 - Coeficiente convectivo externo em configuração paralelo. 7 Tabela 43 - Coeficiente convectivo externo em configuração paralelo. 7 Tabela 44 - Taxa total de transferência de calor por meio do cálculo do coeficiente global par 7 escoamento contracorrente. 7 Tabela 45 - Taxa total de transferência de calor por meio do cálculo do coeficiente global par 7 escoamento paralelo. 7 Tabela 46 - Método da efetividade NUT em configuração paralela. 7 Tabela 47 - Método da efetividade NUT em configuração paralela. 7 Tabela 48 - Comparação entre os métodos utilizados para o cálculo da taxa total de 7 Tabela 49 - Comparação entre os métodos utilizados para o cálculo da taxa total de 7 </td <td>a. 56 57 59 71 73 ra 73 ra 75 76 77 78</td>	a. 56 57 59 71 73 ra 73 ra 75 76 77 78
Tabela 37 - Propriedades termofísicas das medições de temperatura em configuração paralela 6 Tabela 38 - Balanço de energia em configuração contracorrente. 6 Tabela 39 - Balanço de energia em configuração paralela. 6 Tabela 40 - Coeficiente convectivo interno em configuração contracorrente. 6 Tabela 41 - Coeficiente convectivo interno em configuração paralelo. 7 Tabela 42 - Coeficiente convectivo externo em configuração paralelo. 7 Tabela 43 - Coeficiente convectivo externo em configuração paralelo. 7 Tabela 43 - Coeficiente convectivo externo em configuração paralelo. 7 Tabela 43 - Coeficiente convectivo externo em configuração paralelo. 7 Tabela 44 - Taxa total de transferência de calor por meio do cálculo do coeficiente global par 7 escoamento contracorrente. 7 Tabela 45 - Taxa total de transferência de calor por meio do cálculo do coeficiente global par 7 escoamento paralelo. 7 Tabela 47 - Método da efetividade NUT em configuração paralela. 7 Tabela 48 - Comparação entre os métodos utilizados para o cálculo da taxa total de transferência de calor para o escoamento contracorrente. 7 Tabela 49 - Comparação entre os métodos utilizados para o cálculo da taxa total de transferência de calor para o escoamento contracorrente. 7 <td>a. 56 57 59 71 73 ra 73 ra 75 76 77 78 30</td>	a. 56 57 59 71 73 ra 73 ra 75 76 77 78 30
Tabela 37 - Propriedades termofísicas das medições de temperatura em configuração paralela Tabela 38 - Balanço de energia em configuração contracorrente. 6 Tabela 39 - Balanço de energia em configuração paralela. 6 Tabela 40 - Coeficiente convectivo interno em configuração contracorrente. 6 Tabela 41 - Coeficiente convectivo interno em configuração paralelo. 7 Tabela 42 - Coeficiente convectivo externo em configuração paralelo. 7 Tabela 43 - Coeficiente convectivo externo em configuração paralelo. 7 Tabela 44 - Taxa total de transferência de calor por meio do cálculo do coeficiente global par 7 rabela 45 - Taxa total de transferência de calor por meio do cálculo do coeficiente global par 7 rabela 46 - Método da efetividade NUT em configuração paralela. 7 Tabela 47 - Método da efetividade NUT em configuração paralela. 7 Tabela 48 - Comparação entre os métodos utilizados para o cálculo da taxa total de transferência de calor para o cálculo da taxa total de transferência de calor para o cálculo da taxa total de transferência de calor para o cálculo da taxa total de transferência de calor para o cálculo da taxa total de transferência de calor para o cálculo da taxa total de transferência de calor para o cálculo da taxa total de transferência de calor para o escoamento paralelo. 7 Tabela 46 - Método da efetividade NUT em configuração paralela. 7 Tabela 49 - Comparação entre o	a. 56 57 59 59 71 73 ra 73 ra 75 76 77 78 30 32

LISTA DE SIGLAS

DAMEC	Departamento Acadêmico de Mecânica
LabDCT	Laboratório Didático de Ciências Térmicas
MLDT	Média Logarítmica das Diferenças de Temperatura
NUT	Número de Unidades de Transferência
PG	Ponta Grossa
TCC	Trabalho de Conclusão de Curso
TEMA	Associação Americana dos Fabricantes de Trocadores Tubulares
UTFPR	Universidade Tecnológica Federal do Paraná

LISTA DE ACRÔNIMOS

BWG	Birmingham Wire Gage
EES	Engineering Equation Solver
TEMA	Associação Americana dos Fabricantes de Trocadores Tubulares (Tubular
	Exchangers Manufactures Association)

LISTA DE SÍMBOLOS

Α	Área de transferência de calor [m ²]
C_p	Capacidade calorífica do fluido [J/kg.K]
Ď	Diâmetro dos tubos [m]
f	Fator de atrito
F	Fator de correção para trocadores de calor com escoamento cruzado
h	Coeficiente de transferência de calor por convecção [W/m ² K]
i	Entalpia [J/kg]
k	Condutividade térmica [W/mK]
L	Comprimento dos tubos [m]
L_e	Comprimento característico [m]
'n	Vazão mássica [kg/s]
N_L	Número de colunas
Nu	Número de Nusselt
Р	Potência requerida [W]
Pr	Número de Prandtl
q	Taxa de transferência de calor [W]
Re	Número de <i>Reynolds</i>
$R^{''}_{d}$	Fator de deposição
R_t	Resistência térmica [K/W]
S_L	Passo longitudinal [m]
S_T	Passo transversal [m]
Т	Temperatura dos fluido [K]
UA	Condutância térmica global [W/K]
U	Coeficiente global de transferência de calor [W/m ² K]
u_m	Velocidade média do fluido [m/s]
V	Velocidade média do fluido na seção transversal do tubo [m/s]
₩	Vazão volumétrica do escoamento [l/min]

*x*_{*fd,h*} Comprimento de entrada hidrodinâmico [m]

Yel	Comprimento	de entrada	a térmico	[m]
$\mathcal{N}_{fd,t}$	Comprimento	uc chinaua		լոոյ

Letras gregas

α	Difusividade térmica [m ² /s]
3	Efetividade
μ	Viscosidade dinâmica do fluido [Pa.s]
v	Viscosidade cinemática do fluido [m²/s]
ρ	Massa específica do fluido [kg/m ³]
ΔP	Variação de pressão [Pa]
ΔT	Variação de temperatura [K]

Subscritos

cond	Condução
conv	Convecção
D	Diâmetro
e	Externo
ent	Entrada
f	Frio
i	Interno
max	Máximo
min	Mínimo
m	Médio
q	Quente
r	Radial
sai	Saída
S	Superfície

Sobrescritas

Trade Mark

SUMÁRIO

1. INTRODUÇÃO	14
1.1. DESCRIÇÃO DO PROBLEMA	15
1.2. OBJETIVOS	15
1.2.1. Objetivo Geral	15
1.2.2. Objetivos Específicos	16
1.3. MOTIVAÇÃO	16
1.4. ORGANIZAÇÃO DO TRABALHO	16
2. FUNDAMENTAÇÃO TEÓRICA	17
2.1. TIPOS DE TROCADORES DE CALOR	17
2.1.1. Casco e Tubos	17
2.1.1.1. Tipos de cascos	18
2.1.1.2. Tipos de feixes de tubos	20
2.1.1.3. Tubos e passes nos tubos	21
2.1.1.4. Disposição dos tubos	21
2.1.1.5. Chicanas	22
2.2. CONCEITOS FUNDAMENTAIS DE TRANSFERÊNCIA DE CALOR	24
2.2.1. Condução	24
2.2.2. Convecção	26
2.2.2.1. Coeficiente de transferência de calor por convecção	27
2.2.2.1.1. Escoamento externo cruzado em matrizes tubulares	28
2.2.2.1.2. Escoamento interno em tubos circulares	32
2.3. COEFICIENTE GLOBAL DE TRANSFERÊNCIA DE CALOR	36
2.4. ANÁLISE DE TROCADORES DE CALOR: BALANÇO DE ENERGIA	38
2.5. MÉTODO MLDT	39
2.5.1. Escoamento Paralelo	40
2.5.2. Escoamento Contracorrente	41
2.5.3. Condições Operacionais Especiais	42
2.5.4. Trocadores de Calor com Múltiplos Passes e Escoamento Cruzado	43
2.6. MÉTODO EFETIVIDADE-NUT	45
3. METODOLOGIA	49
3.1. APARATO EXPERIMENTAL	49
3.1.1. Unidade Básica de Abastecimento	50
3.1.2. Módulo Didático de um Trocador de Calor tipo Casco e Tubos	51
3.1.3. Módulo de Aquisição de Dados	51
3.1.4. Câmera Termográfica de Alto Desempenho	53
3.2. PROCEDIMENTOS EXPERIMENTAIS	53
3.3. PROCEDIMENTOS DOS CÁLCULOS	54
3.3.1. Balanço de Energia	54
3.3.2. Método MLDT	54
3.3.3. Método Efetividade-NUT	55
4. RESULTADOS E DISCUSSÕES	56
4.1. DADOS COLETADOS PARA ESCOAMENTO CONTRACORRENTE	58
4.2. DADOS COLETADOS PARA ESCOAMENTO PARALELO	63
4.3. PROPRIEDADES TERMOFÍSICAS	64
4.4. TAXA TOTAL DE TRANSFERÊNCIA DE CALOR	67
4.4.1. Balanço de Energia	67

4.4.2. Método MLDT	69
4.4.2.1. Coeficiente convectivo interno	69
4.4.2.2. Coeficiente convectivo externo	71
4.4.2.3. Coeficiente global de transferência de calor	73
4.4.3. Método Efetividade-NUT	75
4.5. ANÁLISE DO DESEMPENHO DO TROCADOR DE CALOR	78
5. CONCLUSÃO	85
REFERÊNCIAS	87
APÊNDICE A – DESENHO TÉCNICO DO APARATO EXPERIMENTAL	90
APÊNDICE B – INCERTEZAS EXPERIMENTAIS	91
APÊNDICE C – CÓDIGO COMPUTACIONAL DESENVOLVIDO EM LINGUA	GEM
DE PROGRAMAÇÃO DO EES TM	94

1. INTRODUÇÃO

Os trocadores de calor são dispositivos que facilitam a transferência de calor entre dois fluidos que se encontram em diferentes temperaturas, evitando a mistura de um com o outro através de uma parede sólida e possuem uma grande gama de aplicação na engenharia.

Nos trocadores de calor, a principal forma de transferência de calor é por convecção, porém a condução também se faz presente através da parede que separa os dois fluidos. Por isso, o cálculo do coeficiente global de transferência de calor, *U*, deve ser realizado para obtenção de um valor que englobe todas as transferências de calor envolvidas no trocador. "A taxa de transferência de calor entre os dois fluidos em um local de trocador de calor depende da magnitude da diferença de temperatura no local, que varia ao longo do trocador de calor" (ÇENGEL;GHAJAR, 2012, p. 629).

O coeficiente global de transferência de calor, por exemplo, pode ter uma incerteza de resultado na faixa de 30%, por isso muitos projetos de trocadores de calor são superestimados. Muitos parâmetros devem ser levados em conta em um projeto de trocadores de calor. A taxa de transferência de calor, a potência de bombeamento que depende do sistema que será construído, a dimensão do trocador, o peso do trocador, o tipo, a forma e os materiais que serão utilizados são parâmetros relevantes na seleção de um trocador de calor (ÇENGEL; GHAJAR, 2012, p. 661-663).

Os trocadores de calor do tipo casco e tubos são os mais versáteis dentre os trocadores de calor. Eles são utilizados em processos industriais em usinas termoelétricas (convencionais e nucleares) como condensadores, em usinas de reatores de água pressurizada como geradores de vapor e na alimentação de aquecedores de água. São propostos para muitas aplicações de energia alternativa, tais como: oceano, térmica e geotérmica. São também utilizados em ar condicionado e sistemas de refrigeração. Esse tipo de trocador de calor fornece taxas relativamente grandes de área de transferência de calor por volume e peso. Métodos confiáveis de projetos e de instalações estão disponíveis para que o projeto e a construção do trocador sejam bem sucedidos. Os trocadores de calor do tipo casco e tubos podem ser projetados para altas pressões relativas para o ambiente e elevadas diferenças de pressões entre os fluidos (KAKAÇ; LIU, 2002, p. 283).

1.1. DESCRIÇÃO DO PROBLEMA

Os projetos de trocadores de calor podem envolver duas situações distintas para o engenheiro. Numa primeira hipótese as temperaturas de entrada e de saída são conhecidas, assim como as vazões. Nesse caso o problema é determinar às dimensões do trocador, calculando a área A necessária para a obtenção da taxa de transferência de calor desejada. O Método da Média Logarítmica das Diferenças de Temperatura (MLDT) fornece uma média apropriada entre as temperaturas, de entrada e de saída, dos fluidos quente e frio. Com isso, e com a taxa de transferência de calor do trocador de calor conhecida, através de um balanço de energia, é possível calcular o coeficiente global de transferência de calor no trocador de calor e, finalmente, calcular a área necessária para a ocorrência da troca de calor. Mesmo o Método MLDT sendo o mais indicado, o Método Efetividade-NUT (E-NUT) também pode ser utilizado nesse caso. Quando um trocador de calor existente é analisado, o problema torna-se o cálculo do desempenho do trocador de calor. Com as temperaturas de entrada e vazões especificadas, é calculada a taxa total de transferência de calor e as temperaturas de saída dos fluidos. O Método *ɛ*-NUT é comumente usado para projetos de trocadores de calor, calculando primeiramente a efetividade do trocador. Feito isso, pode ser calculado os outros parâmetros pertinentes a este método. Para o cálculo do desempenho, os valores de NUT e da razão entre o valor mínimo e máximo da capacidade calorífica (C_r), podem ser calculados e o valor de ε pode ser determinado com a equação apropriada para o tipo do trocador de calor. Com isso, é possível determinar a taxa total de transferência de calor e analisar o desempenho do trocador de calor em questão. Este caso também poderia ter sido resolvido pelo Método MLDT, porém isto exigiria um processo iterativo trabalhoso. O cálculo de desempenho está comumente associado ao uso de tipos e tamanhos de trocadores de calor fora dos padrões disponíveis (INCROPERA et al. 2008).

1.2. OBJETIVOS

1.2.1. Objetivo Geral

O objetivo deste Trabalho de Conclusão de Curso é analisar experimentalmente o desempenho de um trocador de calor do tipo casco e tubos, através da obtenção da taxa total de transferência de calor, sob diferentes condições de operação em escoamento contracorrente e em escoamento paralelo, utilizando três métodos de cálculo diferentes.

1.2.2. Objetivos Específicos

- Determinar a taxa total de transferência de calor pelo Balanço de Energia;
- Determinar a taxa total de transferência de calor pelo Método MLDT;
- Determinar a taxa total de transferência de calor pelo Método Efetividade-NUT;
- Comparar os resultados experimentais obtidos sob as condições de operação.

1.3. MOTIVAÇÃO

A principal motivação deste Trabalho de Conclusão de Curso é aplicar a fundamentação teórica, encontrada na literatura sobre trocadores de calor, em uma investigação experimental do desempenho de um trocador de calor do tipo casco e tubos sob diferentes condições de operação.

1.4. ORGANIZAÇÃO DO TRABALHO

O trabalho está dividido em 5 capítulos e 3 apêndices. No Capítulo 1 foi apresentada a introdução, os objetivos e a motivação para a realização do TCC. No Capítulo 2 é apresentado o referencial teórico com os conceitos básicos de transferência de calor, os métodos e as teorias utilizados nos cálculos do desempenho do trocador de calor do tipo casco e tubos. No Capítulo 3 é apresentado o aparato experimental utilizado e suas especificações técnicas. A metodologia para a realização da investigação experimental também é apresentada nesta parte. No Capítulo 4 são mostrados os dados coletados experimentalmente em diferentes condições de temperatura e vazão e os resultados obtidos para a taxa total de transferência de calor utilizando os Métodos do Balanço de Energia, MLDT e ε -NUT. As conclusões do trabalho são apresentadas no Capítulo 5. No Apêndice A são apresentados os desenhos técnicos referentes ao aparato experimental utilizado. No Apêndice B é apresentada a metodologia para o cálculo da propagação de erros. E, finalmente, no Apêndice C, é apresentada a linguagem de programação em EESTM utilizada na realização dos cálculos para a obtenção dos resultados.

2. FUNDAMENTAÇÃO TEÓRICA

No presente capítulo será apresentada a fundamentação teórica referente aos trocadores de calor. Em um primeiro momento, será apresentado os tipos de trocadores de calor e os tipos de classificações possíveis referentes ao trocador de calor do tipo casco e tubos. Em seguida, serão apresentados os conceitos básicos de transferência de calor, comentando de forma geral sobre os principais aspectos da condução e convecção. Por fim, serão apresentados os métodos utilizados em cálculos de trocadores de calor.

2.1. TIPOS DE TROCADORES DE CALOR

Os trocadores de calor têm diferentes aplicações que requerem diversos tipos de configuração. Os trocadores de calor podem ser classificados de acordo com o tipo do escoamento e o tipo de construção. Com relação ao tipo de escoamento os trocadores de calor podem operar em escoamento paralelo ou contracorrente. Quanto ao tipo de construção, os trocadores possuem diferentes configurações: trocador do tipo calor casco e tubos, trocador de calor de tubos concêntricos, trocador de calor compacto, trocador de calor do tipo placa e trocador de calor do tipo jaqueta. Neste Trabalho de Conclusão de Curso será estudado experimentalmente o trocador de calor casco e tubos com escoamento em paralelo e em contracorrente.

2.1.1. Casco e Tubos

Os trocadores de calor tipo casco e tubos são compostos por uma carcaça (casco) e um feixe de tubos dentro do casco. Um fluido escoa dentro dos tubos, enquanto o outro escoa através e ao longo do eixo do trocador. Outros componentes importantes desse tipo de trocador são: o cabeçote estacionário, o cabeçote traseiro e as chicanas. O escoamento nesse tipo de trocador difere em relação ao número de passes no casco e nos tubos. Na Fotografia 1 é apresentado um trocador de calor tipo casco e tubos.

Fotografia 1 – Trocador de calor do tipo casco e tubos (em corte). Fonte: EVACON, 2011.

2.1.1.1. Tipos de cascos

Vários tipos de cascos e de cabeçotes frontais e traseiros são padronizados pela Associação Americana dos Fabricantes de Trocadores Tubulares (TEMA, do inglês Tubular Exchangers Manufactures Association). Eles estão apresentados na Figura 1.

Figura 1 - Cascos e cabeçotes padronizados pela TEMA. Fonte: KAKAÇ; LIU, 2002, p. 363.

Pode ser notado que existem várias configurações para o casco e os cabeçotes. O casco Tipo E é o mais comum devido ao baixo custo e simplicidade. No Tipo E, o fluido entra no casco em uma extremidade e sai na outra extremidade, realizando um passe no casco. Os tubos podem ter um ou múltiplos passes e são sustentados pelas chicanas transversais. Esse casco é o mais comum para aplicações de fluidos com passe simples no casco.

Para aumentar a diferença efetiva de temperaturas e, consequentemente, a efetividade do trocador, o simples arranjo contracorrente é desejável para dois passes nos tubos do trocador. Isso é alcançado usando o casco Tipo F com uma chicana longitudinal e resulta em dois passes no casco. Esse tipo é usado quando unidades em série são requeridas, com cada passe nos cascos representando uma unidade. Entretanto, a queda de pressão é muito alta em comparação com o casco Tipo E.

Outro casco muito utilizado é o casco Tipo J. O fluido entrando é localizado no centro do casco e se divide em duas saídas próximas às extremidades dos tubos. Esse trocador é usado para pequenas quedas de pressão, como em condensadores no vácuo, desde que o casco Tipo J tenha aproximadamente 1/8 da queda de pressão em comparação ao Tipo E.

O casco Tipo X tem a entrada e a saída do fluido localizada no centro, geralmente com um mecanismo de distribuição. Ambos os fluidos estão ao longo do comprimento dos tubos e estão em um arranjo contracorrente. Não são utilizadas chicanas nesse tipo de casco, consequentemente a queda de pressão é extremamente pequena. Esse tipo de casco é utilizado em condensadores a vácuo e gases de baixa pressão.

A divisão do escoamento, como ocorre nos Tipos G e H, são usadas para aplicações específicas. A divisão que ocorre no Tipo G é com chicanas horizontais sem a extremidade. Os bocais do casco estão 180° do ponto média dos tubos. O casco do Tipo G tem a mesma queda de pressão do casco do Tipo E, porém a efetividade do trocador é maior para uma mesma área superficial e vazão.

No casco do Tipo K o líquido cobre o feixe de tubos e o vapor ocupa o espaço superior sem tubos. Esse casco é usado quando a porção de corrente necessita ser vaporizada, tipicamente para coluna de destilação.

2.1.1.2. Tipos de feixes de tubos

O principal objetivo de projetar os feixes de tubos é acomodar a expansão térmica, fornecer facilidade na limpeza e fornecer menores custos de construção. Alguns tipos representativos de feixes tubulares são mostrados nas Figuras 2 e 3.

Figura 2 - Trocador de calor do tipo casco e tubos, projetado para limpeza interna dos tubos. Fonte: KAKAÇ; LIU, 2002, p. 365.

Figura 3 - Trocador com feixe de tubos em U. Fonte: KAKAÇ; LIU, 2002, p. 365.

Uma configuração que permite uma expansão independente dos tubos e cascos é o feixe de tubos em U da Figura 3. Os tubos em U são os mais baratos, pois apenas um tubo é necessário. O lado dos tubos não pode ser limpo mecanicamente devido à curva que os tubos apresentam. Apenas um mesmo número de passes nos tubos poderá ser realizado.

Em uma configuração com tubos fixados o casco é soldado com as extremidades dos tubos e não há acesso para fora do feixe de tubos para limpeza. É uma alternativa de baixo custo, porém com uma expansão térmica limitada. Os tubos individuais são substituíveis tornando a limpeza dos tubos fácil.

2.1.1.3. Tubos e passes nos tubos

Apenas o casco do Tipo E com um passe nos tubos e o casco do Tipo F com dois passes nos tubos resultam em um escoamento contracorrente nominal. Todos os outros resultam em escoamento cruzado de múltiplos passes.

Geralmente um grande número de passes nos tubos é usado para aumentar a velocidade do fluido no lado do tubo e o coeficiente de transferência de calor além de minimizar a incrustação.

Os tubos são usualmente fabricados de aço de baixo carbono, aço de baixa liga, aço inoxidável, cobre, alumínio (na forma de ligas), ou titânio. Outros materiais também são selecionados para aplicações específicas. A espessura da parede dos tubos dos trocadores é padronizada em termos da BWG (Birmingham Wire Gage). Tubos com diâmetros pequenos, de 8 mm a 15 mm, são utilizados com maior frequência, porém são limitados para fins de limpeza no tubo podendo chegar a aproximadamente 20 mm de diâmetro. Tubos com grandes diâmetros são frequentemente usados em condensadores e caldeiras. Em casos onde o fluido do lado de fora dos tubos tem um coeficiente de transferência de calor substancialmente menor que o fluido no interior dos tubos, é usado aletas no lado externo dos tubos para aumentar a transferência de calor.

O comprimento dos tubos afeta o custo e a operação dos trocadores de calor. Basicamente, quanto maior for o comprimento do tubo menor será o número de tubos necessários, resultando num diâmetro menor do casco e um custo menor. Existem limitações para essa regra geral, expressada com maior precisão através da relação entre o diâmetro do casco e o comprimento dos tubos. Essa relação tem seu limite atingido entre 1/5 até 1/15.

2.1.1.4. Disposição dos tubos

A disposição dos tubos é caracterizada pelo ângulo entre eles. Existem quatro tipos de disposição, definidos pelo TEMA como mostrado na Figura 4. A disposição de 30° resulta em um menor custo por unidade de área, já que possibilita um menor diâmetro do casco para uma mesma área de troca térmica. Quando o fator de incrustação nos tubos for elevado (maior que 0,0004) a disposição quadrada (90° ou 45°) é a mais indicada.

Fonte: KAKAÇ & LIU, 2002, p. 370.

2.1.1.5. Chicanas

A principal função das chicanas no trocador de calor casco e tubos é sustentar os tubos evitando problemas de vibrações. Outra função importante das chicanas é garantir o fluxo cruzado do fluido do lado do casco através do feixe tubular. Como são mostradas na Figura 5, as chicanas são classificadas de acordo com o número de segmentos.

As chicanas segmentais e duplamente segmentais são as mais utilizadas. Elas desviam o fluxo de forma mais eficaz através dos tubos. O espaçamento entre as chicanas, entretanto, devem ser selecionados cuidadosamente. Um espaçamento ótimo entre as chicanas está em torno de 0,4 e 0,6 do valor do diâmetro do casco. O corte das chicanas do tipo segmental é definido como a razão entre o tamanho da abertura, h, e o diâmetro interno do casco. Para chicanas segmentais o corte varia entre 20% e 30%, podendo chegar até 48% porém, neste caso, a chicana perde seu objetivo principal que é o de garantir o fluxo cruzado através do feixe tubular e terá somente a função de suporte adicional aos tubos. Para chicanas duplamente segmentais a definição de corte é a mesma, porém neste caso o corte máximo permitido é de 30% ficando, entretanto, entre 20% e 25%.

As chicanas triplamente segmentadas e as chicanas sem tubos na janela do segmento são usadas para baixa queda de pressão, com valores de 0,3 a 0,5 das chicanas segmentadas. As chicanas de disco e anel são compostas de anéis externos e discos internos, que direcionam o escoamento radialmente através do campo de tubos. Outro tipo de chicana é a chicana de orifício, na qual o fluido no lado do casco escoa através da folga entre os tubos e o diâmetro do orifício da chicana.

Figura 5 - Chicanas Fonte: KAKAÇ; LIU, 2002, p. 377.

,

2.2. CONCEITOS FUNDAMENTAIS DE TRANSFERÊNCIA DE CALOR

"Transferência de calor é a energia térmica em trânsito devido a uma diferença de temperaturas no espaço", (INCROPERA *et al.* 2008, p.2). A transferência dessa energia pode ocorrer de três maneiras distintas: condução, convecção e radiação térmica. Neste trabalho a radiação térmica não será considerada.

2.2.1. Condução

A transferência de calor por condução ocorre entre dois meios estacionários, que podem ser fluidos ou sólidos a diferentes temperaturas. A transferência de calor acontece devido às atividades atômicas e moleculares. A condução pode ser definida como a transferência de energia das partículas mais energéticas para as menos energéticas devido às interações entre elas.

A equação que quantifica a taxa de transferência de calor por condução é conhecida como Lei de Fourier. Para um caso em regime permanente e unidimensional, a taxa de transferência de calor por condução pode ser expressa por,

$$q = -kA \frac{(T_2 - T_1)}{L}$$
(1)

sendo que, q é a taxa de transferência de calor [W], A é a área de transferência de calor [m²], k é a condutividade térmica do material [W/(m.K)], L é a espessura da parede [m], T são as temperaturas na superfícies fria e quente, 1 e 2, respectivamente [K].

Um conceito importante dentro da transferência de calor é a resistência térmica, que é definida como, a razão entre o potencial motriz e a correspondente taxa de transferência, ou seja,

$$R_t = \frac{T_1 - T_2}{q}$$
(2)

sendo que, $(T_1 - T_2)$ é a diferença de temperaturas e q é a taxa de transferência de calor.

Substituindo na Equação (1), a resistência térmica para a condução em uma parede plana pode ser definida como,

$$R_{t,cond} = \frac{L}{kA} \tag{3}$$

A Lei de Fourier para sistemas radiais é expressa por:

$$q_r = -kA\frac{dT}{dr} = -k(2\pi rL)\frac{dT}{dr}$$
(4)

A distribuição de temperaturas associada à condução radial através de uma parede cilíndrica é logarítmica, pode ser definida como uma função de *r* por,

$$T(r) = \frac{T_{s,1} - T_{s,2}}{\ln(r_1/r_2)} \ln\left(\frac{r}{r_2}\right) + T_{s,2}$$
(5)

sendo que, r_1 é o raio interno do cilindro [m] e r_2 o raio externo [m] e T_s é a temperatura das superfícies [K] como mostrado na Figura 6.

Figura 6 - Cilindro oco com condições convectivas nas superfícies. Fonte: INCROPERA *et al.* 2008, p. 74.

Substituindo a distribuição de temperaturas na Equação (4), tem-se que a taxa de transferência de calor é expressa por,

$$q_r = \frac{2\pi Lk(T_{s,1} - T_{s,2})}{\ln(r_2/r_1)}$$
(6)

e a resistência térmica, para coordenadas cilíndricas, é dada por,

$$R_{t,cond} = \frac{\ln\left(\frac{r_2}{r_1}\right)}{2\pi kL} \tag{7}$$

Em paredes compostas com convecção nas extremidades, desconsiderando as resistências de contato interfaciais, a taxa de transferência de calor pode ser representada por,

$$q_r = \frac{T_{\infty,1} - T_{\infty,4}}{R_t}$$
(8)

2.2.2. Convecção

A convecção é um modo de transferência de calor composta de dois mecanismos. Além do calor transferido devido o movimento aleatório molecular, a energia também é transferida através do movimento global de um fluido. A convecção ocorre entre um fluido em movimento sobre uma superfície quando ambos se encontram a diferentes temperaturas. Como consequência da presença de um fluido em movimento ocorre a formação simultânea das camadas-limite fluidodinâmica e térmica. O estudo dessas camadas é de extrema importância para a determinação dos parâmetros de transferência de calor por convecção.

A convecção ocorre de quatro maneiras: convecção forçada, convecção natural, ebulição e condensação. A convecção forçada ocorre quando uma força externa causa a corrente de fluido. A convecção natural ocorre quando o fluxo é induzido pelas diferenças de massa específica, causado pela variação de temperatura no fluido em um campo gravitacional.

A taxa de transferência de calor para a convecção é regida pela Lei de Resfriamento de Newton.

$$q = hA(T_s - T_{\infty}) \tag{9}$$

sendo que, q é a taxa de transferência de calor por convecção [W], A é a área de transferência de calor [m²], h é o coeficiente de transferência de calor por convecção [W/(m²K)], T_s é a temperatura da superfície [K] e T_{∞} é a temperatura do fluido [K].

O conceito de resistência térmica pode ser aplicado na convecção também. Rearranjando a Equação (2), obtém-se que a resistência térmica para convecção é expressa por,

$$R_{t,conv} = \frac{1}{hA} \tag{10}$$

2.2.2.1. Coeficiente de transferência de calor por convecção

Um processo importante na convecção é a determinação do coeficiente convectivo (h). Para a determinação do coeficiente convectivo associado a uma determinada situação torna-se necessário o cálculo de outro parâmetro adimensional, o número de Nusselt (*Nu*). O número de Nusselt é uma função de *Re*, *Pr*, e da geometria do trocador, definido como:

$$Re = \frac{\rho V L_c}{\mu} \tag{11}$$

$$Pr = \frac{v}{\alpha} = \frac{\mu C_p}{k_f} \tag{12}$$

sendo que, ρ é a massa específica do fluido [kg/m³], V a velocidade média do fluido na seção transversal do tubo [m/s], L_e o comprimento característico [m], μ a viscosidade dinâmica do fluido [Pa.s], v a viscosidade cinemática do fluido [m²/s], α a difusividade térmica [m²/s], C_p a capacidade calorífica do fluido [J/(kg.K)] e k_f a condutividade térmica do fluido [W/(m.K)].

Devido ao fato que as condições do fluxo variam de um ponto da superfície para outo, o coeficiente convectivo h deve variar ao longo da superfície também. Portanto, um coeficiente convectivo médio deve ser usado, integrando o coeficiente convectivo local por toda a superfície sujeita a transferência de calor por convecção. Esse valor médio pode ser usado para a obtenção do Número de Nusselt médio e a taxa de transferência de calor por convecção média. Contudo, pela Lei de Resfriamento de Newton e a análise dimensional, *Nu* também pode ser relacionado com *h*,

$$\overline{Nu}_{L_c} = \frac{\overline{h}L_c}{k_f} \tag{13}$$

O principal problema é encontrar a função que relaciona o número de *Nusselt* com o número de Reynolds e o número de Prandtl. A maneira mais fácil é usando correlações empíricas obtidas de medições tomadas em testes em laboratório. Essas correlações tem a seguinte forma,

$$Nu_{L_c} = CRe^m Pr^n \tag{14}$$

sendo que, valores de C, m, e n dependem da geometria superficial e do tipo de escoamento.

2.2.2.1.1. Escoamento externo cruzado em matrizes tubulares

A transferência de calor em uma matriz (ou feixe) de tubos em um escoamento cruzado é relevante em inúmeras aplicações industriais. Os trocadores de calor tipo casco e tubos são uma dessas aplicações. O fluido que passa pelo casco escoa em escoamento cruzado na matriz tubular do trocador. Um esboço do fluxo cruzado em uma matriz tubular pode ser visto na Figura 7.

Figura 7 - Esboço de uma matriz tubular em escoamento cruzado. Fonte: INCROPERA *et al.* 2008, p. 272.

As colunas de tubos estão alternadas ou alinhadas na direção da velocidade do fluido, como pode ser visto na Figura 8. A configuração é caracterizada pelo diâmetro dos tubos, D, e pelos passos transversal S_T e longitudinal S_L . O coeficiente de transferência de calor associado a um tubo é determinado pela sua posição na matriz. Um tubo na primeira coluna é aproximadamente igual aquele em um único tubo em escoamento cruzado, enquanto os coeficientes de transferência de calor maiores estão associados aos tubos localizados nas colunas mais internas. Os tubos que estão localizados nas primeiras colunas agem como uma malha geradora de turbulência, como mostrado na Figura 9. Como consequência dessa turbulência, o coeficiente de transferência de calor se estabilizam, de modo que a mudança no coeficiente de transferência de calor é pequena.

Figura 8 - Arranjo dos tubos em uma matriz tubular (*a*) Alinhado. (*b*) Alternados. Fonte: INCROPERA *et al.* 2008, p. 272.

Figura 9 - Condições de escoamento em tubos (*a*) Alinhado. (*b*) Alternados. Fonte: INCROPERA *et al.* 2008, p. 275.

Para matrizes de tubos compostas por 20 ou mais colunas ($N_L \ge 20$), Zukauskas (1972) obteve uma correlação para qualquer tipo de fluido, expressa por,

$$\overline{Nu}_{D} = CRe_{D,max}{}^{m}Pr^{0,36} \left(\frac{Pr}{Pr_{s}}\right)^{1/4}$$
(15)

A relação é válida para, $500 \ge Pr \ge 0.7$ e $1000 \le Re_{D,max} \le 2x10^6$.

Todas as propriedades, com exceção de Pr_s , são avaliadas na temperatura média de entrada e de saída do fluido, e as constantes *C* e *m* estão listadas na Tabela 1. Para matrizes de tubos compostas por menos que 20 colunas, um fator de correção pode ser utilizado de tal modo que,

$$\overline{Nu_D}|_{(N_L < 20)} = C_2 \overline{Nu_D}|_{(N_L \ge 20)}$$
(16)

sendo que, C_2 é fornecido na Tabela 2.

Arranjo	Re _{D,max}	С	М				
Alinhada	$10 - 10^2$	0,80	0,40				
Alternada	$10 - 10^2$	0,90	0,40				
Alinhada	10 ² - 10 ³	Aproximado como único ci	ilindro (isolado)				
Alternada	10 ² - 10 ³	Aproximado como único cilindro (isolado)					
Alinhada	$10^3 - 2x10^5$	0,27	0,63				
$\left(\frac{S_{T}}{S_{L}} > 0, 7\right)^{*}$							
Alternada	$10^3 - 2x10^5$	$0.35 \left(\frac{S_T}{c}\right)^{1/5}$	0,60				
$\left(\frac{S_T}{S_L} < 2\right)$		(γS_L)					
Alternada	$10^3 - 2x10^5$	0,40	0,60				
$\left(\frac{S_T}{S_L} > 2\right)$							
Alinhada	$2x10^5 - 2x10^6$	0,021	0,84				
Alinhada	$2x10^5 - 2x10^6$	0,022	0,84				

Tabela 1 - Constantes da Equação (15) para a matriz tubular em escoamento cruzado.

Fonte: Incropera et al. (2008), p. 274.

* Para $S_T/S_L < 0,7$, a transferência de calor é ineficiente e tubos alinhados não devem ser usados.

N _L	1	2	3	4	5	7	10	13	16	
Alinhada	0,70	0,80	0,86	0,90	0,92	0,95	0,97	0,98	0,99	
Alternada	0,64	0,76	0,84	0,89	0,92	0,95	0,97	0,98	0,99	
Easter Increases et al. (2008) p. 274										

Fonte: Incropera et al. (2008), p. 274.

O número de Reynolds máximo, $Re_{D,max}$, nas correlações anteriores é baseado na velocidade do fluido máxima no interior da matriz. Num arranjo alinhado, como da Figura 8 (*a*), $V_{máx}$ ocorre no plano transversal A_1 e é expressa por,

$$V_{max} = \frac{S_T}{S_T - D} V \tag{17}$$

Para o arranjo alternado, da Figura 8 (*b*), a velocidade máxima pode acontecer tanto no plano transversal A_1 quanto no plano diagonal A_2 . Ela ocorrerá em A_2 desde que,

$$2(S_D - D) < (S_T - D)$$
(18)

se,

$$S_D = \left[S_L^2 + \left(\frac{S_T}{2}\right)^2\right]^{1/2} < \frac{S_T + D}{2}$$
(19)

então a velocidade máxima é expressa por:

$$V_{m\acute{a}x} = \frac{S_T}{2(S_D - D)}V \tag{20}$$

caso a velocidade máxima ocorra em A_1 a Equação (17) deve ser utilizada.

2.2.2.1.2. Escoamento interno em tubos circulares

Em escoamentos internos em tubos circulares a camada-limite aumenta à medida que o fluido escoa ao longo do tubo. Toda seção transversal é ocupada pela camada limite fluidodinâmica, à região de escoamento totalmente desenvolvido é atingido, onde os efeitos viscosos são estendidos ao longo de toda a seção e o perfil de velocidade não se altera à medida que o fluido escoa pelo tubo. A distância entre a entrada para a região totalmente desenvolvida é chamada comprimento de entrada hidrodinâmico $(x_{fd,h})$. A Figura 10 mostra o desenvolvimento da camada-limite fluidodinâmica em um tubo circular.

Figura 10 - Desenvolvimento de camada-limite fluidodinâmica laminar em um tubo circular. Fonte: INCROPERA et al. 2008, p. 308.

Para o cálculo do $x_{fd,h}$, a natureza do escoamento (laminar ou turbulento) deve ser conhecida. O número de Reynolds crítico correspondente para o início da turbulência em um escoamento totalmente desenvolvido é $Re_{D,c} \approx 2300$, embora seja a partir de $Re_D \approx 10000$ que as condições totalmente turbulentas são encontradas. Com isso, tem-se que,

Escoamento laminar:
$$x_{fd,h} \approx 0,05DRe_D$$
 (21)

Escoamento turbulento:
$$10D \le x_{fd,h} \le 60D$$
 (22)

Constantemente, a queda de pressão necessária para manter um escoamento interno é um fator importante a ser estudado. Esse parâmetro determina a exigência de potência na bomba, no ventilador ou no soprador. Para determinar a queda de pressão é necessário conhecer o fator de atrito de Darcy obtido do diagrama de Moody (Figura 11), que fornece o fator de atrito para uma ampla faixa de números de Reynolds. Para o escoamento laminar plenamente desenvolvido temos que, o fator de atrito *f*, pode ser determinado por,

$$f = \frac{64}{Re_D} \tag{23}$$

Para escoamento turbulento plenamente desenvolvido, uma correlação válida em uma ampla faixa de números de Reynolds ($3000 \le Re_D \le 5x10^6$), foi proposta por Petukhov (1970):

$$f = (0,79lnRe_D - 1,64)^{-2}$$
(24)

Figura 11 - Fator de atrito para escoamentos plenamente desenvolvidos em um tubo circular. Fonte: INCROPERA *et al.* 2008, p. 311.

Note que *f* é uma constante na região plenamente desenvolvida. A queda de pressão $\Delta p = p_1 - p_2$ associada ao escoamento plenamente desenvolvido de uma posição axial x_1 até x_2 , pode ser representada como,

$$\Delta p = f \frac{\rho u_m^2}{2D} (x_2 - x_1)$$
(25)

sendo que, f é obtido na Figura 11 ou na Equação (23) ou Equação (24). A potência requerida na bomba para superar a resistência ao escoamento associada a essa queda de pressão pode ser representada por,

$$P = (\Delta p) \dot{\forall} \tag{26}$$

sendo que, a vazão volumétrica do escoamento $\dot{\forall}$ pode ser expressa como $\dot{\forall} = \dot{m}/\rho$ para fluidos incompressíveis.

Uma vez que as condições fluidodinâmicas foram delineadas, a análise dos efeitos térmicos na camada-limite pode ser realizada. Se o escoamento entra a uma temperatura uniforme, inferior à temperatura da superfície do tubo, a camada-limite térmica começará a crescer, eventualmente atingindo a região totalmente desenvolvida. A distância entre a entrada e a zona do tubo termicamente desenvolvida é o comprimento de entrada térmica, $x_{fd,t}$. Na Figura 12 é observado o comportamento da camada-limite térmica.

Figura 12 - Desenvolvimento de camada-limite térmica em um tubo circular aquecido. Fonte: INCROPERA *et al.* 2008, p. 311.

O comprimento de entrada térmica pode ser expresso por,

Escoamento laminar:
$$x_{fd,t} = 0.05DRe_DPr$$
 (27)

Escoamento turbulento:
$$x_{fd,t} \le 10D$$
 (28)

As correlações experimentais para o escoamento interno em dutos circulares são expressas por:

a) Escoamento laminar fluido e termicamente desenvolvido com temperatura constante na superfície (INCROPERA *et al.*, 2008):

$$Nu_D = 3,66$$
 (29)

b) Escoamento laminar fluido e termicamente desenvolvido com fluxo térmico constante na superfície (INCROPERA *et al.*, 2008):

$$Nu_D = 4,36$$
 (30)

c) Escoamento laminar com condições de desenvolvimento da camada-limite térmica na presença do perfil de velocidades desenvolvido, com temperatura na superfície constante e Pr ≥ 5. Kays (1955) apresenta uma correlação atribuída a Hausen (1943):

$$Nu_{D} = 3,66 + \frac{0,0668 \left(\frac{D}{L}\right) Re_{D} Pr}{1 + 0,04 \left[\left(\frac{D}{L}\right) Re_{D} Pr\right]^{\frac{2}{3}}}$$
(31)

d) Escoamento laminar com entrada combinada (os perfis de temperatura e velocidade são desenvolvidos simultaneamente). Uma correlação apropriada proposta por Sieder & Tate (1936) considerando a temperatura na superfície constante, e 0,6 < *Pr* < 5:

$$Nu_D = 1,86 \left(\frac{Re_D Pr}{\frac{L}{D}}\right)^{\frac{1}{3}} \left(\frac{\mu}{\mu_s}\right)^{0,14}$$
(32)
e) Escoamento turbulento fluido e termicamente desenvolvido. Uma equação proposta por Dittus-Boelter (1998) para essa situação, com 0,6 ≤ Pr ≤ 160 e com Re_D ≥ 10000 e com(L/D) ≥ 10:

$$Nu_D = 0.023 Re_D^{0.8} Pr^n ag{33}$$

sendo que, n = 0,4 se $T_s > T_m$ (o fluido está aquecendo) e n = 0,3 se $T_s < T_m$ (o fluido está esfriando).

f) Para escoamento turbulento fluido e termicamente totalmente desenvolvido com 0,5 ≤ Pr ≤ 2000, com 3000 < Re_D < 5000000 e com(L/D) ≥ 10, é proposta por Gnielinski (1976):

$$Nu_{D} = \frac{\left(\frac{f}{8}\right)(Re_{D} - 1000)Pr}{1 + 12.7\left(\frac{f}{8}\right)^{\frac{1}{2}}\left(Pr^{\frac{2}{3}} - 1\right)}$$
(34)

As propriedades do fluido para as correlações anteriores são baseadas na média das temperaturas $T_m = \frac{T_{m,ent} + T_{m,sai}}{2}$.

2.3. COEFICIENTE GLOBAL DE TRANSFERÊNCIA DE CALOR

Com um coeficiente global de transferência de calor é possível atribuir um valor de taxa de transferência de calor do trocador de calor. O coeficiente global de transferência de calor pode ser determinado pelas resistências térmicas associadas ao trocador de calor. As resistências térmicas de condução e convecção, somadas ao fator de deposição formam a resistência total. O fator de deposição (R_d ") é consequência da formação de impurezas dos fluidos que podem causar ferrugem ou outras reações entre o fluido e o material. Com a formação de filmes indesejáveis sobre a superfície a resistência à transferência de calor pode aumentar consideravelmente. Os valores para R_d " estão representados na Tabela 3.

Fluido	R_d "[m ² .K/W]
Água destilada, água marinha, águas fluviais e água de alimentação tratada para	0,0001
caldeira (abaixo de 50°C).	
Água destilada, água marinha, águas fluviais e água de alimentação tratada para	0,0002
caldeira (acima de 50°C)	
Água de rio (abaixo de 50°C)	0,0002-0,0001
Óleo combustível	0,0009
Líquidos de refrigeração	0,0002
Vapor d'água (sem arraste de óleo)	0,0001
Vapor de refrigeração	0,0004
Vapores de álcool	0,0001
Ar	0,0004

Tabela 3 - Fatores de deposição representativos.

Fonte: ÇENGEL; GHAJAR (2012). p. 636.

Considerando todas as resistências, o coeficiente global de transferência de calor para trocadores de calor, pode ser representado por,

$$\frac{1}{UA} = \frac{1}{U_f A_f} = \frac{1}{U_q A_q} = R_t$$
(35)

com,

$$R_t = \frac{1}{(\eta_0 hA)_f} + \frac{R_{d,f}^{"}}{(\eta_0 A)_f} + R_p + \frac{R_{d,q}^{"}}{(\eta_0 A)_q} + \frac{1}{(\eta_0 hA)_q}$$
(36)

sendo que, f e q indicam os fluidos frio e quente, respectivamente. A resistência condutiva R_p é obtida da Equação (7) para o caso de uma parede cilíndrica. Considerando trocadores de calor tubulares não-aletados as Equações (35) e (36) se reduzem a,

$$\frac{1}{UA} = \frac{1}{U_i A_i} = \frac{1}{U_e A_e}$$
(37)

ou ainda,

$$\frac{1}{UA} = \frac{1}{h_i A_i} + \frac{R_{d,i}^{"}}{A_i} + \frac{\ln \left(\frac{D_e}{D_i}\right)}{2\pi kL} + \frac{R_{d,e}^{"}}{A_e} + \frac{1}{h_e A_e}$$
(38)

sendo que,

$$A_i = \pi D_i L \tag{39}$$

$$A_e = \pi D_e L \tag{40}$$

os coeficientes *i* e *e* referem-se às superfícies interna e externa do tubo.

Na Tabela 4 são apresentados valores representativos do coeficiente global de transferência de calor (U).

` ``	
Fluidos Envolvidos	U [W/m².K]
Água-água	850-1700
Água-óleo	100-350
Água-gasolina ou querosene	300-1000
Aquecedores de água de alimentação	1000-8500
Vapor-óleo combustível leve	200-400
Vapor-óleo combustível pesado	50-200
Condensador de vapor	1000-6000
Condensador de freon (resfriado a água)	300-1000
Condensador de amônia (resfriado a água)	800-1400
Condensador de álcool (resfriado a água)	250-700
Gás-gás	10-40
Água-ar em tubos aletados (água nos tubos)	30-60 (lado do ar)
	400-850 (lado da água)
Vapor-ar em tubos aletados (vapor nos tubos)	30-300 (lado do ar)
	400-4000 (lado do vapor)

Tabela 4 - Valores representativos do coeficiente global de transferência de calor.

Fonte: ÇENGEL; GHAJAR, (2012). p. 634.

2.4. ANÁLISE DE TROCADORES DE CALOR: BALANÇO DE ENERGIA

Para projetar um trocador de calor é necessário correlacionar parâmetros importantes. Para relacionar a taxa de transferência de calor com as temperaturas de entrada e saída dos fluidos é necessário realizar um balanço de energia global para os fluidos quente e frio, como mostrado na Figura 13. Para tal, é considerado que a superfície externa do trocador é perfeitamente isolada, de modo que não haja perda de calor para o meio envolvente. Com isso, a taxa de calor perdido pelo fluido quente será igual à taxa de calor recebida pelo fluido frio.

Figura 13 - Balanços de energia globais para os fluidos quente e frio de um trocador de calor com dois fluidos. Fonte: INCROPERA *et al.* 2008, p. 428.

Considerando q como a taxa total de transferência de calor entre os fluidos quente e frio, desprezando a transferência de calor com o ambiente externo bem como considerando as mudanças na energia potencial e cinética nulas para efeitos de cálculo, a equação de energia, se reduz a,

$$q = \dot{m}_q \left(i_{q,ent} - i_{q,sai} \right) = \dot{m}_f \left(i_{f,ent} - i_{f,sai} \right) \tag{41}$$

sendo que, i_{ent} e i_{sai} são as entalpias de entrada e de saída e os subscritos q e f representam o fluido quente e frio, respectivamente. Considerando que o escoamento está em regime permanente e os calores específicos são constantes, a Equação (41) se reduz a,

$$q = \dot{m}_{q} c_{p,q} (T_{q,ent} - T_{q,sai}) = \dot{m}_{f} c_{p,f} (T_{f,sai} - T_{f,ent})$$
(42)

Outra expressão pode ser útil, relacionando-se a taxa de transferência de calor total q à diferença de temperaturas entre os fluidos quente e frio. A diferença de temperaturas é expressa por,

$$\Delta T = T_q - T_f \tag{43}$$

Contudo, como ΔT varia com a posição no trocador de calor, é necessário encontrar uma média apropriada para as diferenças de temperatura ao longo do trocador.

2.5. MÉTODO MLDT

Uma forma análoga da Lei de Resfriamento de Newton pode ser utilizada para calcular a taxa de transferência de calor total em trocadores de calor. Substituindo o coeficiente de transferência de calor convectivo pelo coeficiente global de transferência de calor e a diferença de temperaturas por uma média apropriada na Equação (9), tem-se que,

$$q = UA\Delta T_m \tag{44}$$

sendo que, ΔT_m é a média apropriada das temperaturas de entrada e de saída no trocador.

2.5.1. Escoamento Paralelo

Num trocador de calor submetido a escoamento paralelo a variação de temperatura inicial é grande, mas diminui com o aumento de x aproximando-se de zero. Nesse tipo de trocador a temperatura de saída do fluido frio nunca pode ser superior à do fluido quente na saída. A Figura 14 mostra como se comporta um trocador de calor em escoamento paralelo.

Figura 14 - Distribuição de temperaturas em um trocador de calor com escoamento paralelo. Fonte: INCROPERA *et al.* 2008, p. 429.

A forma específica de ΔT_m pode ser determinada por um balanço de energia em elementos diferenciais nos fluidos quente e frio. Cada elemento possui um comprimento dx e uma área de transferência de calor dA, como é ilustrado na Figura 14. Para realizar o balanço é necessário considerar que o trocador de calor está isolado termicamente da vizinhança, que a condução axial ao longo dos tubos é desprezível, que as mudanças nas energias cinética e potencial são desprezíveis, que os calores específicos dos fluidos são constantes e que o coeficiente global de transferência de calor é constante.

Para realizar o balanço dos elementos diferenciais, foi necessário realizar a integração dos elementos. C_q e C_f são as taxas de capacidade calorífica dos fluidos quente e frio, respectivamente, e são determinadas por,

$$C_q = \dot{m}_q c_{p,q} \tag{45}$$

$$C_f = \dot{m}_f c_{p,f} \tag{46}$$

Concluiu-se, através das integrações, que a média apropriada das diferenças de temperatura nos trocadores possui a forma logarítmica expressa por,

$$\Delta T_{ml} = \frac{\Delta T_2 - \Delta T_1}{ln(\Delta T_2/\Delta T_1)} = \frac{\Delta T_1 - \Delta T_2}{ln(\Delta T_1/\Delta T_2)} = \Delta T_m \tag{47}$$

Com a determinação de ΔT_m , pode-se afirmar que,

$$q = UA\Delta T_{ml} \tag{48}$$

A variação da temperatura de entrada ΔT_1 e de saída ΔT_2 muda conforme a direção do escoamento. Para trocadores de calor em escoamento paralelo, tem-se que as diferenças das temperaturas na entrada e na saída são definidas como,

$$\Delta T_1 = T_{q,1} - T_{f,1} = T_{q,ent} - T_{f,ent}$$
(49)

$$\Delta T_2 = T_{q,2} - T_{f,2} = T_{q,sai} - T_{f,sai}$$
(50)

sendo que, $T_{q,ent}$ e $T_{q,sai}$ são as temperaturas do fluido quente na entrada e na saída do trocador, respectivamente, e $T_{f,ent}$ e $T_{f,sai}$ são as temperaturas do fluido frio na entrada e na saída, respectivamente.

2.5.2. Escoamento Contracorrente

Diferentemente dos trocadores de calor com escoamento paralelo, essa configuração proporciona a transferência de calor entre as parcelas mais quentes dos dois fluidos em uma extremidade, assim como entre as parcelas mais frias na outra extremidade. Com isso a variação na diferença de temperaturas não é tão elevada quanto na entrada de um trocador de calor de escoamento paralelo. Nesse tipo de trocador a temperatura de saída do fluido frio pode ser maior do que a temperatura de saída do fluido quente. A Figura 15 mostra o comportamento de um trocador de calor em escoamento contracorrente.

Figura 15 - Distribuições de temperaturas em um trocador de calor com escoamento contracorrente. Fonte: INCROPERA *et al.* 2008, p. 430.

As diferenças de temperaturas na entrada e na saída para um trocador de calor em escoamento em contracorrente são expressas por:

$$\Delta T_1 = T_{q,1} - T_{f,1} = T_{q,ent} - T_{f,sai}$$
(51)

$$\Delta T_2 = T_{q,2} - T_{f,2} = T_{q,sai} - T_{f,ent}$$
(52)

Note que para as mesmas temperaturas de entrada e de saída, a diferença média das temperaturas é maior no trocador em escoamento contracorrente. Sendo assim, diante de um mesmo valor de U para os dois arranjos, a área necessária para que ocorra a transferência de calor desejada é menor no trocador de calor em escoamento contracorrente.

$$\Delta T_{ml,CC} > \Delta T_{ml,EP} \tag{53}$$

2.5.3. Condições Operacionais Especiais

Existem condições especiais nas quais os trocadores de calor podem operar. Uma condição ocorre quando o fluido quente possui uma taxa de capacidade calorífica, C_q , muito maior do que a do fluido frio, C_f . A temperatura do fluido quente permanecerá aproximadamente constante durante todo o processo, enquanto a temperatura do fluido frio

aumenta como é mostrado no caso (a) da Figura 16. Essa mesma condição é atingida quando o fluido quente é um vapor condensado. Da mesma maneira, em um evaporador, o fluido frio que muda de fase e permanece a temperatura constante. O mesmo efeito é atingido se $C_q \ll C_f$, como é observado no caso (b) da Figura 16. O último caso especial se refere a um trocador de calor contracorrente no qual as taxas de capacidade caloríficas são iguais, ou seja, $C_q = C_f$. A diferença de temperatura, ΔT_{ml} , é constante nesse caso, como é mostrada no caso (c) da Figura 16.

Figura 16 - Condições especiais em trocadores de calor. Fonte: INCROPERA *et al.* 2008, p. 430.

2.5.4. Trocadores de Calor com Múltiplos Passes e Escoamento Cruzado

Em trocadores de calor com múltiplos passes e escoamento cruzado as condições de escoamento são mais complexas. Porém, as correlações apresentadas para escoamento contracorrente ainda podem ser utilizadas. Para utilizá-las foi atribuído um fator de correção, *F*, na diferença média das temperaturas para escoamentos contracorrente,

$$\Delta T_{ml} = F \Delta T_{ml,cc} \tag{54}$$

O fator de correção F depende da geometria e das temperaturas de entrada e saída do trocador de calor. Foram desenvolvidas diversas expressões algébricas para determinar o fator de correção em trocadores de casco e tubos e em trocadores de calor de escoamento cruzado. Alguns resultados para trocadores de calor do tipo casco e tubos são apresentados nas Figuras 17 e 18.

Figura 17. Fator de correção para um trocador de calor casco e tubos com um passe no casco e qualquer múltiplo de dois (dois, quatro, etc.) passes nos tubos. Fonte: INCROPERA *et al.* 2008, CD-34.

Figura 18 - Fator de correção para um trocador de calor casco e tubos com dois passes no casco e qualquer múltiplo de quatro (quatro, oito etc.) passes nos tubos. Fonte: INCROPERA *et al.* 2008, CD-35.

2.6. MÉTODO EFETIVIDADE-NUT

Quando as temperaturas de entrada e de saída são conhecidas o método MLDT tornase um método mais conveniente. Contudo, se não for conhecido às temperaturas de saída, esse método se torna trabalhoso, pois necessita de métodos iterativos para a sua resolução. Nesses casos é preferível utilizar um procedimento alternativo, conhecido por método ε -NUT. (INCROPERA *et al.* 2008, p.434).

A efetividade é definida como a razão entre o calor real trocado e o máximo que deve ser transferido num trocador de calor com comprimento infinito.

$$\varepsilon = \frac{q_{real}}{q_{máx}} \tag{55}$$

Sendo que, $q_{máx} = m_q C_{p,q} (T_{q,ent} - T_{f,ent})$ se $m_q c_{p,q} < m_f c_{p,f}$ quando o fluido quente experimentar a maior mudança de temperatura e $q_{máx} = m_f c_{p,f} (T_{q,ent} - T_{f,ent})$ se $m_q c_{p,q} > m_f c_{p,f}$ quando o fluido frio experimentar a maior mudança de temperatura, sendo $(T_{q,ent} - T_{f,ent})$ a maior diferença possível de temperatura que deve experimentar um dos dois fluidos. Portanto, uma expressão geral para $q_{máx}$ pode ser expresso por,

$$q_{m\acute{a}x} = C_{m\acute{n}} \left(T_{q,ent} - T_{f,ent} \right) \tag{56}$$

sendo que, C_{min} é igual ao menor valor entre C_f e C_q . Portanto, com as temperaturas de entrada conhecidas, a Equação (56) fornece a taxa de transferência de calor máxima que poderia ser alcançada no trocador.

Com isso, a efetividade, ε , pode ser expressa por:

Para $C_q < C_f$:

$$\varepsilon = \frac{C_q(T_{q,ent} - T_{q,sai})}{C_{min}(T_{q,ent} - T_{f,ent})}$$
(57)

Para $C_q > C_f$:

$$\varepsilon = \frac{C_f (T_{f,ent} - T_{f,sai})}{C_{min} (T_{q,ent} - T_{q,ent})}$$
(58)

A efetividade é um parâmetro adimensional e se encontra no intervalo $0 \le \varepsilon \le 1$. Se ε , $T_{q,ent}$ e $T_{f,ent}$ forem conhecidos, a taxa de transferência de calor real pode ser determinada por,

$$q_{real} = \varepsilon C_{min} (T_{q,ent} - T_{f,ent})$$
(59)

Para qualquer trocador de calor, pode-se afirmar que,

$$\varepsilon = f(NUT, C_r) \tag{60}$$

O Número de Unidades de Transferência (NUT) é um parâmetro adimensional amplamente usado para a análise de trocadores de calor sendo definido como,

$$NUT = \frac{UA}{C_{min}} \tag{61}$$

e,

$$NUT = f(\varepsilon, C_r) \tag{62}$$

A razão entre as taxas de capacidades caloríficas pode ser expressa como,

$$C_r = \frac{C_{min}}{C_{max}} \tag{63}$$

Expressões foram desenvolvidas para ε expresso como uma função de C_r e NUT para vários tipos de trocadores de calor. Os resultados estão expressos nas Tabelas 5 e 6 e nas Figuras 19 e 20 para trocadores de calor do tipo casco e tubos.

Tabela 5 - Relações da efetividade de trocadores de calor.			
Configuração do Escoamento	Relação		
Casco e tubos			
Um passe no casco			
(2,4, passes nos tubos)	$\varepsilon_{1} = 2 \left\{ 1 + C_{r} + (1 + C_{r}^{2})^{\frac{1}{2}} \frac{1 + \exp\left[-(NUT)_{1}(1 + C_{r}^{2})^{\frac{1}{2}}\right]}{1 - \exp\left[-(NUT)_{1}(1 + C_{r}^{2})^{\frac{1}{2}}\right]} \right\}^{-1} $ (64)		
n Passes no casco			
(2 <i>n</i> , 4 <i>n</i> , passes nos tubos)	$\varepsilon = \left[\left(\frac{1 - \varepsilon_1 C_r}{1 - \varepsilon_1} \right)^n - 1 \right] \left[\left(\frac{1 - \varepsilon_1 C_r}{1 - \varepsilon_1} \right)^n - C_r \right]^{-1} $ (65)		

Fonte: INCROPERA et al. 2008, p. 435.

Tabela 6 - Relações do NUT de trocadores de calor

Tabela 0 - Relações do IVOT de libeadores de calor.			
Configuração do escoamento	Relação		
Casco e tubos			
Um passe no casco	NUT = $(1 + C^2)^{-\frac{1}{2}} (E - 1)$	$(\epsilon \epsilon)$	
(2,4, passes nos tubos)	$NOT = -(1+C_r) - in(\frac{1}{E+1})$	(00)	
	$\frac{2}{\epsilon_1} - (1 + C_r)$		
	$E = \frac{-c_1 - c_2 + c_1 y}{c_1 - c_2 + c_1 y}$	(67)	
	$(1 + C_r^2)^2$		
<i>n</i> Passes no casco	Utilizar as Equações (67) e (68) com		
$(2n, 4n, \dots$ Passes nos tubos)			

 $\varepsilon_1 = \frac{F-1}{F-C_r} \tag{68}$

$$F = \left(\frac{\varepsilon C_r - 1}{\varepsilon - 1}\right)^{\frac{1}{n}} \tag{69}$$

$$NUT = n(NUT)_1 \tag{70}$$

Figura 19 - Efetividade de um trocador de calor casco e tubos com um passe no caso e qualquer múltiplo de dois passes no casco. Fonte: INCROPERA *et al.* 2008, p. 437.

Figura 20 - Efetividade de um trocador de calor casco e tubos com dois passes no casco e qualquer múltiplo de quatro passes nos tubos. Fonte: INCROPERA *et al.* 2008, p. 437.

3. METODOLOGIA

Os experimentos foram realizados em um módulo experimental que simula um trocador de calor casco e tubos real. O módulo experimental, fabricado pela empresa EDIBON, está instalado no Laboratório Didático de Ciências Térmicas do Departamento Acadêmico de Mecânica da UTFPR/Campus Ponta Grossa. As especificações técnicas do trocador de calor tipo casco e tubos são: casco Tipo E, cabeçote frontal do Tipo A, cabeçote traseiro do Tipo L, feixes de tubos fixados em disposição de 90° e chicanas segmentais. O fluido de trabalho foi, em ambos os lados, a água. Para o fluido frio foi utilizado água, proveniente do sistema municipal de abastecimento de água, à temperatura ambiente. Enquanto que para o fluido quente foi utilizado água destilada no Laboratório de Química da UTFPR/Campus Ponta Grossa.

3.1. APARATO EXPERIMENTAL

O aparato experimental consiste em uma unidade básica de abastecimento, um módulo de aquisição de dados que permite a medição das temperaturas e o controle da temperatura no tanque, um módulo didático de um trocador de calor tipo casco e tubos, mangueiras flexíveis de aço inoxidável para conexão das bancadas com a unidade básica, mangueiras poliméricas para entrada e saída do fluido frio e uma câmera termográfica de alto desempenho. A montagem experimental do trocador de calor, utilizada neste Trabalho de Conclusão de Curso, é mostrada na Fotografia 2.

Fotografia 2 - Montagem experimental. Fonte: Autoria Própria.

3.1.1. Unidade Básica de Abastecimento

A unidade básica de abastecimento (Fotografia 3) consiste em um tanque com uma resistência elétrica de 3000 W para o aquecimento da água destilada, um termopar Tipo J (ST-16) para medição da temperatura do fluido no reservatório, um rotâmetro para a medição de vazão no fluido quente e outro para a medição do fluido frio, uma bomba centrífuga para a água quente, quatro válvulas esfera para alterar a direção do escoamento, duas válvulas de controle de vazão e uma válvula reguladora de pressão.

Fotografia 3 - Unidade básica de abastecimento. Fonte: Autoria Própria.

As dimensões do trocador de calor casco e tubos são especificados na Tabela 7. No Apêndice A, a unidade básica de abastecimento e o trocador de calor do tipo casco e tubos, estão representados em desenhos técnicos.

Tabela 7 - Dimensoes do trocador de calor do tipo casco e tubos utilizado.				
Especificação	Tubos	Casco		
Diâmetro interno [m]	0,008	0,148		
Diâmetro externo [m]	0,010	0,160		
Espessura [m]	0,001	0,006		
Área interna de transferência de calor [m ²]	0,0126	-		
Área externa de transferência de calor [m ²]	0,0157	-		

Tabela 7 - Dimensões do	trocador de calor do ti	ino casco e tubos utilizado
Tabela / - Dimensoes uo	irocador de calor do u	po casco e tudos utilizado.

Fonte: EDIBON (2010).

3.1.2. Módulo Didático de um Trocador de Calor tipo Casco e Tubos

O trocador de calor casco e tubos analisado possui quatro chicanas segmentais localizadas transversalmente aos tubos. Ele é conectado a unidade básica através de mangueiras flexíveis de aço inoxidável. O trocador de calor possui dois termopares Tipo J para medição de temperatura de entrada e saída do fluido quente e cinco termopares Tipo J para medição da temperatura do fluido frio, localizados em pontos estratégicos ao longo do trocador de calor. Existem também, quatro válvulas em pontos estratégicos ao longo do casco para realizar tomadas de pressão e para a limpeza do trocador. Foram realizados experimentos em configuração de escoamento contracorrente e em paralelo. O módulo didático do trocador de calor casco e tubos é mostrado na Fotografia 4.

Fotografia 4 - Trocador de calor do tipo casco e tubos. Fonte: Autoria própria.

3.1.3. Módulo de Aquisição de Dados

Um diagrama esquemático, do posicionamento dos sensores de temperatura e das entradas e saídas dos fluidos, são mostrados na Figura 21. O fluido quente está em vermelho e o fluido frio em azul. Os pontos ST-1 e ST-2 são os termopares para a medição da temperatura do fluido quente na entrada e na saída. A entrada do fluido quente foi em C-1 e a saída em C-4. Os pontos ST-3, ST-4, ST-5, ST-6 e ST-7 são os termopares para a medição da temperatura do fluido frio ao longo do casco. Em configuração contracorrente a entrada do

fluido frio foi em C-3 e a saída em C-2, e em configuração paralela a entrada do fluido frio foi em C-2 e a saída em C-3.

Figura 21 - Diagrama esquemático do trocador de calor de casco e tubos utilizado. Fonte: EDIBON (2010).

No módulo de aquisição de dados, a temperatura do tanque de abastecimento de fluido quente é controlada. Na parte inferior do módulo existem visores digitais, pelos quais será informada a temperatura medida em cada termopar, e a chave seletora para alterar o termopar que será visto nos visores. O módulo de aquisição de dados é mostrado na Fotografia 5.

Fotografia 5 - Módulo de aquisição de dados SCADA. Fonte: Autoria própria.

3.1.4. Câmera Termográfica de Alto Desempenho

Uma câmera termográfica de alto desempenho FLIR T-440, capaz de realizar medições em um intervalo de -20°C a 1200°C foi utilizada para obtenção de imagens termográficas dos testes experimentais. A câmera termográfica é ilustrada na Figura 22.

Figura 22 - Câmera Termográfica de alto desempenho. Fonte: FLIR, 2014.

3.2. PROCEDIMENTOS EXPERIMENTAIS

Para o bom andamento dos testes experimentais foi necessária à execução dos seguintes procedimentos:

- Verificar as conexões entre o trocador de calor casco e tubos e a unidade básica de abastecimento.
- Verificar se as válvulas estão abertas e se a configuração de fluxo desejada para o experimento (contracorrente ou paralela) está correta.
- Verificar se o nível do tanque de aquecimento está correto.
- Ligar a bomba e a resistência térmica.
- Definir a temperatura do tanque (ST16) indicada para o experimento (45°C, 50°C, 55°C ou 60°C).
- Ajustar os fluxos de água quente (SC1) e água fria para os valores desejados no experimento mantendo a temperatura definida no tanque constante.
- Anotar as medições de temperatura e fluxo volumétrico.

3.3. PROCEDIMENTOS DOS CÁLCULOS

Após a coleta dos dados experimentais a taxa total de transferência de calor foi calculada através da aplicação de três métodos: Balanço de Energia, MLDT e Efetividade-NUT. O *software* EES[™] (Engineering Equation Solver[™]) foi utilizado na resolução das equações, devido a sua vasta biblioteca de propriedades termodinâmicas. As incertezas experimentais foram calculadas com o auxílio do *software* Uncertainty Calculator, disponível no site do Colby College¹, utilizando a Técnica de Amostragem Simples. Mais informações sobre o cálculo de incertezas efetuado neste Trabalho de Conclusão de Curso são apresentadas no Apêndice B.

3.3.1. Balanço de Energia

Para o cálculo do balanço de energia foi utilizada a Equação (42). A vazão mássica foi encontrada através da vazão volumétrica utilizada no experimento. O balanço de energia é realizado para o fluido quente e o fluido frio, a partir das temperaturas obtidas nos termopares. Por fim, foi calculada a propagação de erros inerente ao cálculo do balanço de energia através do *software* Uncertainty Calculator.

3.3.2. Método MLDT

Para o cálculo do coeficiente convectivo interno foi necessário avaliar se o escoamento era laminar ou turbulento, e se a região de entrada era plenamente desenvolvida ou em desenvolvimento, e então utilizar adequadamente uma das Equações (29) a (34). Para o cálculo do coeficiente convectivo externo foi necessário avaliar qual método era o mais adequado para cada situação, sabendo que cada método tem suas condições de uso. Em todos os casos, o método proposto por Zukauskas (1972) foi o utilizado. A Equação (15) foi usada para o cálculo do Nusselt e a Equação (17) para o cálculo da velocidade máxima do escoamento em arranjo alinhado. Dos valores obtidos para os coeficientes convectivos de transferência de calor interno e externo, a condutância térmica global foi calculada por meio da Equação (38), considerando um erro teórico de aproximadamente 30% para o coeficiente global de transferência de calor. Para o cálculo foi desconsiderado a existência do fator de deposição, devido ao fato do equipamento nunca ter sido utilizado anteriormente. Com o

¹ http://www.colby.edu/chemistry/PChem/scripts/error.html

cálculo da condutância térmica global, foi calculada a taxa total de transferência de calor através da Equação (48), onde a média das temperaturas é fornecida pela Equação (54).

3.3.3. Método Efetividade-NUT

No Método Efetividade-NUT a taxa total de transferência de calor é calculada através da Equação (44). A média das temperaturas é fornecida pela Equação (47) e a condutância térmica global é encontrada através da Equação (61). É necessário calcular $C_{mín}$, com o auxílio do EESTM, e o NUT, através da Equação (66), para o cálculo da condutância térmica global. Finamente, foi calculada a propagação de erros inerente ao cálculo deste método através do *software* Uncertainty Calculator.

4. RESULTADOS E DISCUSSÕES

No presente capítulo são apresentados os dados experimentais coletados considerando diferentes condições de vazão, temperatura e configuração do escoamento. Além disso, são apresentados os resultados experimentais obtidos com o auxílio do *software* EESTM (Engineering Equation SolverTM). A interface gráfica gerada é mostrada na Figura 23 e a listagem da linguagem de programação desenvolvida na plataforma EESTM é apresentada no Apêndice C. Como mencionado anteriormente, o cálculo da propagação de erros das medidas foi feito utilizando o *software* Uncertainty Calculator – interface gráfica na Figura 24.

Click on this line to see the array variables in the Arrays Table window

Figura 23 - Interface gráfica do programa EES para o caso #1 com as propriedades termofísicas destacadas.

Equation = $(p*Q/60000)*cp*(T2-T1)$			
Variable	Value	Uncertainty	
р	994.7	0	
Q	1	0.1	
cp	4183	0	
T2	38	2.2	
T1	28	2.2	
Calculat	e Reset Constan	ts	
Variable Resultant Uncertainty Uncertainty Q 0.1 +-69.34717 T2 2.2 +-152.56377 T1 2.2 +-152.56377 Result = 690 +- 230 uncorrelated +- 370 correlated			
Press [Ct	rl] P to print. Return		

Figura 24 - Cálculo da propagação de erros na equação do balanço de energia para o caso #1. Fonte: Uncertainty Calculator, 2014.

A incerteza utilizada para a vazão foi estimada como 0,1 l/min, a metade da menor divisão da escala do rotâmetro. A incerteza para os termopares do Tipo J é 2,2°C. Para a discussão dos resultados obtidos foram utilizados gráficos para comparar os diferentes métodos e as configurações do escoamento. Foram verificadas as diferenças entre as configurações contracorrente e paralelo, e qual método possuem a maior taxa total de transferência de calor. Para uma melhor visualização de qual número representa cada caso, é apresentada nas Tabelas 8 a 13 a sequência das condições de operação aplicadas neste TCC.

Tabela 8 - Sequência das condições de operação para $Q_f = 1,0$ l/min e escoamento contracorrente.

Q_q [l/min]	Temperatura do Tanque (ST-16) [°C]			
	45	50	55	60
1,0	#1	#2	#3	#4
1,5	#5	#6	#7	#8
2,0	#9	#10	#11	#12
3,0	#13	#14	#15	#16

Fonte: Autoria própria.

Tabela 9 - Sequência das condições de operação para $Q_f = 1,5$ l/min e escoamento contracorrente.

Q_q [l/min]	Temperatura do Tanque (ST-16) [°C]			
	45	50	55	60
1,0	#17	#18	#19	#20
1,5	#21	#22	#23	#24
2,0	#25	#26	#27	#28
3,0	#29	#30	#31	#32

Fonte: Autoria própria.

Tabela 10 - Sequência das condições de operação para $Q_f = 2,0$ l/min e escoamento contracorrente.

Q_q [l/min]	Temperatura do Tanque (ST-16) [°C]			
	45	50	55	60
1,0	#33	34	#35	#36
1,5	#37	#38	#39	#40
2,0	#41	#42	#43	#44
3,0	#45	#46	#47	#48

Fonte: Autoria própria.

Tabela 11 - Sequência das condições de operação para $Q_f = 3,0$ l/min e escoamento contracorrente.

Q_q [l/min]	Temperatura do Tanque (ST-16) [°C]			
	45	50	55	60
1,0	#49	#50	#51	#52
1,5	#53	#54	#55	#56
2,0	#57	#58	#59	#60
3,0	#61	#62	#63	#64

Q_q [l/min]	Temperatura do Tanque (ST-16) [°C]			
	45	50	55	60
1,5	#65	#66	#67	#68
2,0	#69	#70	#71	#72
3,0	#73	#74	#75	#76
Fonte: Autoria própria.				

Tabela 12 - Sequência das condições de operação para $Q_f = 6,0$ l/min e escoamento contracorrente.

Tabela 13 - Sequência das condições de operação para $Q_f = 6,0$ l/min e escoamento paralelo.

Q_q [l/min]	Temperatura do Tanque (ST-16) [°C]			
	45	50	55	60
1,5	#77	#78	#79	#80
2,0	#81	#82	#83	#84
3,0	#85	#86	#87	#88
	Easter	A tomio muén	ui a	

4.1. DADOS COLETADOS PARA ESCOAMENTO CONTRACORRENTE

Na configuração de escoamento contracorrente, a temperatura do tanque de abastecimento de água quente, foi variada em 45°C, 50°C, 55°C e 60°C. A temperatura de entrada do fluido frio oscilou entre 17°C e 23°C, conforme as condições climáticas durante a realização dos experimentos. A vazão volumétrica do fluido quente variou entre 1 l/min, 1,5 l/min, 2 l/min e 3 l/min, e a vazão do fluido frio variou entre 1 l/min, 1,5 l/min, 2 l/min, 3 l/min e 6 l/min, formando diversas combinações como mostrado nas Tabelas 8 a 13. Nas Tabelas 14 a 32 são apresentados os valores coletados das temperaturas durante a execução dos experimentos considerando o escoamento contracorrente para os diferentes casos.

Tabela 14 - Temp	eraturas obtidas com	vazao de 1 l/min de	o fiuldo frio e 1 l/n	un do fluido quente
CASO	#1	#2	#3	#4
ST-16 [°C]	45	50	55	60
ST-1 [°C]	38	40	47	52
ST-2 [°C]	28	28	34	38
ST-3 [°C]	29	30	35	41
ST-4 [°C]	27	27	32	36
ST-5 [°C]	25	25	29	33
ST-6 [°C]	23	22	26	28
ST-7 [°C]	20	17	20	21

Tabela 14 - Temperaturas obtidas com vazão de 1 l/min do fluido frio e 1 l/min do fluido quente.

CASO	#5	#6	#7	#8
ST-16 [°C]	45	50	55	60
ST-1 [°C]	39	42	48	52
ST-2 [°C]	31	31	38	40
ST-3 [°C]	32	32	39	41
ST-4 [°C]	29	29	36	37
ST-5 [°C]	27	27	34	33
ST-6 [°C]	25	23	28	28
ST-7 [°C]	20	18	20	21

Tabela 15 - Temperaturas obtidas com vazão de 1 l/min do fluido frio e 1,5 l/min do fluido quente.

Tabela 16 - Temperaturas obtidas com vazão de 1 l/min do fluido frio e 2 l/min do fluido quente.

CASO	#9	#10	#11	#12
ST-16 [°C]	45	50	55	60
ST-1 [°C]	40	43	49	53
ST-2 [°C]	34	35	42	43
ST-3 [°C]	33	34	42	42
ST-4 [°C]	31	31	38	39
ST-5 [°C]	29	29	35	37
ST-6 [°C]	26	25	29	32
ST-7 [°C]	20	18	21	21

Fonte: Autoria própria.

Tabela 17 - Tem	peraturas obtidas co	m vazão de 1 l/min	do fluido frio e 3 l/	min do fluido quente
-----------------	----------------------	--------------------	-----------------------	----------------------

CASO	#13	#14	#15	#16
ST-16 [°C]	45	50	55	60
ST-1 [°C]	40	45	50	53
ST-2 [°C]	36	39	46	46
ST-3 [°C]	34	37	42	45
ST-4 [°C]	32	34	38	43
ST-5 [°C]	30	31	35	41
ST-6 [°C]	27	27	30	33
ST-7 [°C]	21	19	21	21

Fonte: Autoria própria.

Tabala 18 - T	amnaraturas abtidas	com vazão do 15	1/min do fluido	fria a 1 l/min do	fluido auonto
1 abeta 10 - 1	emperaturas obtinas	com vazao ue 1,5	I/IIIII uo IIuluo		muluo quente.

CASO	#17	#18	#19	#20
ST-16 [°C]	45	50	55	60
ST-1 [°C]	39	43	47	50
ST-2 [°C]	29	29	33	34
ST-3 [°C]	29	31	32	33
ST-4 [°C]	27	28	30	30
ST-5 [°C]	25	25	27	27
ST-6 [°C]	23	23	24	24
ST-7 [°C]	21	21	21	21

CASO	#21	#22	#23	#24
ST-16 [°C]	45	50	55	60
ST-1 [°C]	39	42	47	51
ST-2 [°C]	31	31	35	38
ST-3 [°C]	30	31	34	37
ST-4 [°C]	28	29	31	34
ST-5 [°C]	26	26	28	31
ST-6 [°C]	24	23	25	27
ST-7 [°C]	21	19	20	21

Tabela 19 - Temperaturas obtidas com vazão de 1,5 l/min do fluido frio e 1,5 l/min do fluido quente.

Tabela 20 - Temperaturas obtidas com vazão de 1,5 l/min do fluido frio e 2 l/min do fluido quente.

CASO	#25	#26	#27	#28
ST-16 [°C]	45	50	55	60
ST-1 [°C]	40	43	48	52
ST-2 [°C]	33	33	38	40
ST-3 [°C]	31	31	35	37
ST-4 [°C]	29	29	32	34
ST-5 [°C]	27	27	30	30
ST-6 [°C]	25	24	26	26
ST-7 [°C]	21	19	20	21

Fonte: Autoria própria.

Tabela 21 - Temperaturas obtidas com vazão de 1,5 l/min do fluido frio e 3 l/min do fluido quent
--

CASO	#29	#30	#31	#32
ST-16 [°C]	45	50	55	60
ST-1 [°C]	40	43	48	52
ST-2 [°C]	35	37	41	44
ST-3 [°C]	32	33	36	38
ST-4 [°C]	30	30	34	35
ST-5 [°C]	28	28	30	32
ST-6 [°C]	26	25	27	27
ST-7 [°C]	21	19	20	21

Fonte: Autoria própria.

Tabela 22 - Temperaturas obtidas com vazão de 2 l/min do fluido frio e 1 l/min do fluido quente.

CASO	#33	#34	#35	#36
ST-16 [°C]	45	50	55	60
ST-1 [°C]	39	43	46	50
ST-2 [°C]	28	29	31	33
ST-3 [°C]	27	28	29	31
ST-4 [°C]	26	25	27	28
ST-5 [°C]	24	23	25	26
ST-6 [°C]	23	22	23	23
ST-7 [°C]	21	19	20	21

CASO	#37	#38	#39	#40
ST-16 [°C]	45	50	55	60
ST-1 [°C]	39	42	46	51
ST-2 [°C]	30	30	32	36
ST-3 [°C]	28	29	30	33
ST-4 [°C]	27	27	28	31
ST-5 [°C]	25	24	25	27
ST-6 [°C]	24	22	23	24
ST-7 [°C]	21	19	19	21

Tabela 23 - Temperaturas obtidas com vazão de 2 l/min do fluido frio e 1,5 l/min do fluido quente.

Tabela 24 - Temperaturas obtidas com vazão de 2 l/min do fluido frio e 2 l/min do fluido quente.

CASO	#41	#42	#43	#44
ST-16 [°C]	45	50	55	60
ST-1 [°C]	39	43	46	51
ST-2 [°C]	32	33	34	40
ST-3 [°C]	29	30	31	35
ST-4 [°C]	27	27	28	32
ST-5 [°C]	25	25	25	28
ST-6 [°C]	24	23	23	26
ST-7 [°C]	21	19	18	20

Fonte: Autoria própria.

|--|

-				-
CASO	#45	#46	#47	#48
ST-16 [°C]	45	50	55	60
ST-1 [°C]	38	44	47	52
ST-2 [°C]	32	37	39	43
ST-3 [°C]	28	31	33	36
ST-4 [°C]	25	29	30	34
ST-5 [°C]	24	27	27	29
ST-6 [°C]	22	24	24	26
ST-7 [°C]	18	19	19	20
			•	

Fonte: Autoria própria.

Tabela 26 - 7	Femperaturas obtida	s com vazão o	de 3 l/min do	fluido frio e 1	l/min do fluido c	uente
	p - a - a - a - o - o - a - a - a - a - a					1

CASO	#49	#50	#51	#52
ST-16 [°C]	45	50	55	60
ST-1 [°C]	38	42	44	50
ST-2 [°C]	25	27	26	30
ST-3 [°C]	23	25	24	28
ST-4 [°C]	22	23	22	26
ST-5 [°C]	22	22	21	24
ST-6 [°C]	21	21	20	22
ST-7 [°C]	21	19	18	20

CASO	#53	#54	#55	#56
ST-16 [°C]	45	50	55	60
ST-1 [°C]	38	43	46	50
ST-2 [°C]	28	30	30	33
ST-3 [°C]	24	26	27	29
ST-4 [°C]	23	24	25	27
ST-5 [°C]	23	23	23	24
ST-6 [°C]	22	21	21	23
ST-7 [°C]	21	19	19	20

Tabela 27 - Temperaturas obtidas com vazão de 3 l/min do fluido frio e 1,5 l/min do fluido quente.

Tabela 28 - Temperaturas obtidas com vazão de 3 l/min do fluido frio e 2 l/min do fluido quente.

CASO	#57	#58	#59	#60
ST-16 [°C]	45	50	55	60
ST-1 [°C]	38	43	46	51
ST-2 [°C]	29	35	34	36
ST-3 [°C]	25	30	29	30
ST-4 [°C]	24	28	27	28
ST-5 [°C]	22	25	25	25
ST-6 [°C]	21	23	23	23
ST-7 [°C]	19	20	19	20

Fonte: Autoria própria.

Tabela 29 - Temperaturas obtidas com vazão de 3 l/min do fluido frio e 3 l/min do fluido quente.

CASO	#61	#62	#63	#64
ST-16 [°C]	45	50	55	60
ST-1 [°C]	38	43	47	52
ST-2 [°C]	31	35	38	41
ST-3 [°C]	26	28	30	32
ST-4 [°C]	24	26	28	29
ST-5 [°C]	23	24	25	27
ST-6 [°C]	22	22	23	24
ST-7 [°C]	20	19	20	20

Fonte: Autoria própria.

Tabela 30 - Temperaturas obtidas com vazão de 6 l/min do fluido frio e 1,5 l/min do fluido quente.

CASO	#65	#66	#67	#68
ST-16 [°C]	45	50	55	60
ST-1 [°C]	37	42	46	50
ST-2 [°C]	25	27	31	32
ST-3 [°C]	25	26	27	28
ST-4 [°C]	24	24	26	26
ST-5 [°C]	23	24	25	25
ST-6 [°C]	23	23	24	24
ST-7 [°C]	22	22	23	23

CASO	#69	#70	#71	#72
ST-16 [°C]	45	50	55	60
ST-1 [°C]	38	43	47	50
ST-2 [°C]	30	31	33	34
ST-3 [°C]	26	27	28	29
ST-4 [°C]	25	26	26	27
ST-5 [°C]	24	25	26	26
ST-6 [°C]	23	25	25	25
ST-7 [°C]	22	22	23	23

Tabela 31 - Temperaturas obtidas com vazão de 6 l/min do fluido frio e 2 l/min do fluido quente.

Tabela 32 - Temperaturas obtidas com vazão de 6 l/min do fluido frio e 3 l/min do fluido quente.

CASO	#73	#74	#75	#76
ST-16 [°C]	45	50	55	60
ST-1 [°C]	40	44	48	52
ST-2 [°C]	32	34	37	41
ST-3 [°C]	28	28	29	31
ST-4 [°C]	25	26	27	28
ST-5 [°C]	24	25	26	27
ST-6 [°C]	23	24	25	25
ST-7 [°C]	22	22	23	23

Fonte: Autoria própria.

4.2. DADOS COLETADOS PARA ESCOAMENTO PARALELO

Na configuração de escoamento paralelo, a temperatura do tanque de abastecimento de água quente, foi variada em 45°C, 50°C, 55°C e 60°C. A temperatura de entrada do fluido frio oscilou entre 19°C e 23°C, conforme as condições climáticas durante a realização dos experimentos. A vazão volumétrica do fluido quente variou entre 1 l/min, 1,5 l/min, 2 l/min e 3 l/min, e a vazão do fluido frio se manteve constante em 6 l/min, formando diversas combinações como mostrado nas Tabelas 8 a 13. A vazão do fluido frio se manteve constante devido à baixa pressão obtida com as vazões abaixo de 6 l/min, impossibilitando assim, a configuração de escoamento paralelo. Nas Tabelas 33 a 35 são apresentados os valores coletados das temperaturas durante a execução dos experimentos considerando o escoamento paralelo para os diferentes casos.

	•	scoumento puratero	•	
CASO	#77	#78	#79	#80
ST-16 [°C]	45	50	55	60
ST-1 [°C]	36	41	46	50
ST-2 [°C]	26	29	31	33
ST-3 [°C]	19	21	22	23
ST-4 [°C]	21	24	25	26
ST-5 [°C]	21	24	25	27
ST-6 [°C]	21	24	26	27
ST-7 [°C]	22	24	26	27

Tabela 33 - Temperaturas obtidas com vazão de 6 l/min do fluido frio e 1,5 l/min do fluido quente, em escoamento paralelo.

Tabela 34 - Temperaturas obtidas com vazão de 6 l/min do fluido frio e 2 l/min do fluido quente, em escoamento naralelo.

	•	seconnente pur urero	•	
CASO	#81	#82	#83	#84
ST-16 [°C]	45	50	55	60
ST-1 [°C]	38	42	47	50
ST-2 [°C]	29	31	34	35
ST-3 [°C]	20	22	22	23
ST-4 [°C]	22	24	25	27
ST-5 [°C]	23	25	26	27
ST-6 [°C]	23	25	27	28
ST-7 [°C]	23	25	27	28

Fonte: Autoria própria.

Tabela 35 - Temperaturas obtidas com vazão de 6 l/min do fluido frio e 3 l/min do fluido quente, em escoamento paralelo.

CASO	#85	#86	#87	#88
ST-16 [°C]	45	50	55	60
ST-1 [°C]	39	43	47	50
ST-2 [°C]	32	34	37	39
ST-3 [°C]	21	22	22	23
ST-4 [°C]	23	25	26	27
ST-5 [°C]	23	25	26	28
ST-6 [°C]	24	26	27	29
ST-7 [°C]	24	26	27	29

Fonte: Autoria própria.

4.3. PROPRIEDADES TERMOFÍSICAS

Para calcular os parâmetros pertinentes da análise do desempenho (taxa total de transferência de calor) é necessário o conhecimento das propriedades termofísicas do fluido em cada caso. As propriedades variam de acordo com a temperatura e o estado físico da substância. Os resultados obtidos pela biblioteca do *software* EESTM são apresentados nas Tabelas 36 e 37, nas configurações contracorrente e paralelo, respectivamente.

	ρ_a	ρ_f	$C_{n,a}$	C _{n.f}	μ_a	μ_f	k _a	k _f	Du	
#	$[kg/m^3]$	[kg/m ³]	[W/K]	[W/K]	$[N.s/m^2]$	[N.s/m ²]	[W/m.K]	, [W/m.K]	Pr_q	Pr _f
1	994.7	997.1	4183	4183	0.0007493	0.0009008	0.6076	0.5939	5.159	6.345
2	994,3	997,4	4183	4183	0,0007342	0,0009218	0,6091	0,5922	5,042	6,512
3	992,0	996,3	4182	4183	0,0006472	0,0008421	0,6185	0,5989	4,377	5,882
4	990,2	995,3	4182	4183	0,0005963	0,0007810	0,6244	0,6045	3,994	5,405
5	994,0	996,8	4183	4183	0,0007196	0,0008706	0,6106	0,5964	4,930	6,107
6	993,5	997,0	4183	4183	0,0006986	0,0008905	0,6128	0,5947	4,768	6,264
7	991,0	995,8	4182	4183	0,0006181	0,0008063	0,6218	0,6021	4,157	5,602
8	989,7	995,3	4182	4183	0,0005859	0,0007810	0,6256	0,6045	3,916	5,405
9	993,3	996,6	4183	4183	0,0006918	0,0008609	0,6136	0,5972	4,716	6,030
10	992,5	996,8	4183	4183	0,0006657	0,0008706	0,6164	0,5964	4,517	6,107
11	990,0	995,1	4182	4183	0,0005911	0,0007729	0,6250	0,6053	3,955	5,342
12	988,9	995,1	4182	4183	0,0005659	0,0007729	0,6281	0,6053	3,768	5,342
13	992,9	996,3	4183	4183	0,0006786	0,0007532	0,6150	0,5989	4,615	5,882
14	991,4	996,2	4182	4183	0,0006295	0,0008329	0,6205	0,5997	4,243	5,810
15	988,9	995,1	4182	4183	0,0005659	0,0007729	0,6281	0,6053	3,768	5,342
16	988,2	994,7	4182	4183	0,0005517	0,0007493	0,6299	0,6076	3,663	5,159
17	994,3	997,0	4183	4183	0,0007342	0,0008905	0,6091	0,5947	5,042	6,264
18	993,6	996,8	4183	4183	0,0007055	0,0008706	0,6121	0,5964	4,821	6,107
19	992,2	996,6	4182	4183	0,0006533	0,0008609	0,6178	0,5972	4,423	6,030
20	991,4	996,5	4182	4183	0,0006295	0,0008514	0,6205	0,5981	4,243	5,955
21	994,0	996,9	4183	4183	0,0007196	0,0008805	0,6106	0,5956	4,930	6,185
22	993,5	997,0	4183	4183	0,0006986	0,0008905	0,6128	0,5947	4,768	6,264
23	991,8	996,5	4182	4183	0,0006412	0,0008514	0,6191	0,5981	4,331	5,955
24	990,4	995,9	4182	4183	0,0006016	0,0008150	0,6237	0,6013	4,034	5,670
25	993,5	996,8	4183	4183	0,0006986	0,0008706	0,6128	0,5964	4,768	6,107
26	992,9	997,0	4183	4183	0,0006786	0,0008905	0,6150	0,5947	4,615	6,264
27	991,0	996,3	4182	4183	0,0006181	0,0008421	0,6218	0,5989	4,157	5,882
28	989,7	995,9	4182	4183	0,0005859	0,0008150	0,6256	0,6013	3,916	5,670
29	993,1	996,6	4183	4183	0,0006851	0,0008609	0,6143	0,5972	4,665	6,030
30	992,2	996,8	4182	4183	0,0006533	0,0008706	0,6178	0,5964	4,423	6,107
31	990,4	996,2	4182	4183	0,0006016	0,0008329	0,6237	0,5997	4,034	5,810
32	988,9	995,8	4182	4183	0,0005659	0,0008063	0,6281	0,6021	3,768	5,602
33	994,5	997,3	4183	4183	0,0007417	0,0009112	0,6084	0,5930	5,100	6,428
34	993,6	997,4	4183	4183	0,0007055	0,0009218	0,6121	0,5922	4,821	6,512
35	992,7	997,1	4183	4183	0,0006721	0,0009008	0,6157	0,5939	4,566	6,345
36	991,6	996,8	4182	4183	0,0006353	0,0008706	0,6198	0,5964	4,287	6,107
37	994,2	997,1	4183	4183	0,0007269	0,0009008	0,6099	0,5939	4,986	6,345
38	993,6	997,3	4183	4183	0,0007055	0,0009112	0,6121	0,5930	4,821	6,428
39	992,5	997,1	4183	4183	0,0006657	0,0009008	0,6164	0,5939	4,517	6,345
40	990,8	996,5	4182	4183	0,0006125	0,0008514	0,6225	0,5981	4,115	5,955
41	993,8	997,0	4183	4183	0,000/125	0,0008905	0,6114	0,5947	4,875	6,264
42	992,9	997,1	4183	4183	0,0006786	0,0009008	0,6150	0,5939	4,615	6,345
43	992,2	997,1	4182	4183	0,0006533	0,0009008	0,0178	0,5939	4,423	0,345
44	990,0	990,3	4182	4185	0,0003911	0,0008421	0,0230	0,3989	3,933	5,082
43	994,0	007.0	4103	4103	0,000/190	0,0009320	0,0100	0,3913	4,930	6.264
40	992,0	997,0	4182	4100	0,0000472	0,0008706	0,0185	0,3947	4,377	6 107
4/	989.1	996.2	4182	4183	0.0005708	0,0008700	0,6216	0,5904	3 80/	5 810
-10	<i>J</i> 0 <i>J</i> ,1	JJ0,2	7102	7105	0,00007000	0,0000022	0,0275	0,5771	5,00-	5,010

Tabela 36 - Propriedades termofísicas das medições de temperatura em configuração contracorrente.

#	$ ho_q$	ρ_f	$c_{p,q}$	<i>c</i> _{<i>p,f</i>}	μ_q	μ_f	k _q	k _f	Pr	Pr.
π	[kg/m ³]	[kg/m ³]	[W/K]	[W/K]	[N.s/m ²]	[N.s/m ²]	[W/m.K]	[W/m.K]	• • q	,
49	995,1	997,7	4183	4183	0,0007729	0,0009549	0,6053	0,5896	5,342	6,776
50	994,2	997,7	4183	4183	0,0007269	0,0009549	0,6099	0,5896	4,986	6,776
51	994,0	998,0	4183	4183	0,0007196	0,0009781	0,6106	0,5878	4,930	6,961
52	992,2	997,3	4182	4183	0,0006533	0,0009112	0,6178	0,5930	4,423	6,428
53	994,7	997,6	4183	4183	0,0007493	0,0009437	0,6076	0,5904	5,159	6,686
54	993,5	997,6	4183	4183	0,0006986	0,0009437	0,6128	0,5904	4,768	6,686
55	992,9	997,5	4183	4183	0,0006786	0,0009326	0,6150	0,5916	4,615	6,598
56	991,6	997,1	4182	4183	0,0006353	0,0009008	0,6198	0,5939	4,287	6,345
57	994,5	997,7	4183	4183	0,0007417	0,0009549	0,6084	0,5896	5,100	6,776
58	992,5	997,0	4183	4183	0,0006657	0,0008905	0,6164	0,5947	4,517	6,264
59	992,2	997,3	4182	4183	0,0006533	0,0009112	0,6178	0,5930	4,423	6,428
60	990,8	997,0	4182	4183	0,0006125	0,0008905	0,6225	0,5947	4,115	6,264
61	994,2	997,5	4183	4183	0,0007269	0,0009326	0,6099	0,5913	4,986	6,598
62	992,5	997,4	4183	4183	0,0006657	0,0009218	0,6164	0,5922	4,517	6,512
63	991,2	997,0	4182	4183	0,0006237	0,0008905	0,6211	0,5947	4,199	6,264
64	989,5	996,8	4182	4183	0,0005808	0,0008706	0,6263	0,5964	3,878	6,107
65	995,3	997,4	4183	4183	0,0007810	0,0009218	0,6045	0,5922	5,405	6,512
66	994,2	997,3	4183	4183	0,0007269	0,0009112	0,6099	0,5930	4,986	6,428
67	992,7	997,0	4183	4183	0,0006721	0,0008905	0,6157	0,5947	4,566	6,264
68	991,8	996,9	4182	4183	0,0006412	0,0008805	0,6191	0,5956	4,331	6,185
69	994,3	997,3	4183	4183	0,0007342	0,0009112	0,6091	0,5930	5,042	6,428
70	993,3	997,1	4183	4183	0,0006918	0,0009008	0,6136	0,5939	4,716	6,345
71	992,2	996,9	4182	4183	0,0006533	0,0008805	0,6178	0,5956	4,423	6,185
72	991,4	996,8	4182	4183	0,0006295	0,0008706	0,6205	0,5964	4,243	6,107
73	993,6	997,0	4183	4183	0,0007055	0,0008905	0,6121	0,5947	4,821	6,264
74	992,5	997,0	4183	4183	0,0006657	0,0008905	0,6164	0,5947	4,517	6,264
75	991,2	996,8	4182	4183	0,0006237	0,0008706	0,6211	0,5964	4,199	6,107
76	989,5	996,5	4182	4183	0,0005808	0,0008514	0,6263	0,5981	3,878	5,955

Fonte: Autoria própria.

Tabela 37 - Propriedades termofísicas das medições de temperatura em configuração paralela.

#	ρ_q	ρ_f	$c_{p,q}$	$c_{p,f}$	μ_q	μ_f	k_q	k _f	Pr.	Pr€
	[kg/m ³]	[kg/m ³]	[W/K]	[W/K]	[N.s/m ²]	[N.s/m ²]	[W/m.K]	[W/m.K]	4	,
77	995,3	998,1	4183	4183	0,0007810	0,0009900	0,6045	0,5869	5,405	7,056
78	994,0	997,6	4183	4183	0,0007196	0,0009437	0,6106	0,5904	4,930	6,686
79	992,7	997,3	4183	4183	0,0006721	0,0007770	0,6157	0,5930	4,566	6,428
80	991,6	997,0	4182	4183	0,0006353	0,0008905	0,6198	0,5947	4,287	6,264
81	994,5	997,9	4183	4183	0,0007417	0,0009664	0,6084	0,5887	5,100	6,867
82	993,5	997,4	4183	4183	0,0006986	0,0009218	0,6128	0,5922	4,768	6,512
83	992,0	997.1	4182	4183	0,0006472	0,0009008	0,6185	0,5939	4,377	6,345
84	991,2	996,9	4182	4183	0,0006237	0,0008805	0,6211	0,5956	4,199	6,185
85	993,8	997,6	4183	4183	0,0007125	0,0009437	0,6114	0,5904	4,875	6,686
86	992,7	997,3	4183	4183	0,0006721	0,0009112	0,6157	0,5930	4,566	6,428
87	991,4	997,1	4182	4183	0,0006295	0,0009008	0,6205	0,5939	4,243	6,345
88	990,4	996,8	4182	4183	0,0006016	0,0008706	0,6237	0,5964	4,034	6,107

4.4. TAXA TOTAL DE TRANSFERÊNCIA DE CALOR

4.4.1. Balanço de Energia

Os resultados dos cálculos utilizando o Método do Balanço de Energia estão apresentados nas Tabelas 38 e 39, nas configurações contracorrente e paralelo, respectivamente.

	<i>m</i> _a	m _f	Du	Incerteza + -	Incerteza		Incerteza +-	Incerteza
#	[kg/s]	, [kg/s]	\mathbf{q}_q [W]	[W]	[%]	q _f [W]	[W]	[%]
1	0,01658	0,01662	694	230	33,33	626	230	36,51
2	0,01657	0,01662	832	220	26,45	904	220	24,34
3	0,01653	0,01661	899	230	25,59	1042	240	23,03
4	0,01650	0,01659	966	240	24,84	1388	260	18,73
5	0,02485	0,01661	832	330	39,68	834	230	27,58
6	0,02484	0,01662	1143	330	28,87	973	240	24,66
7	0,02477	0,01660	1036	330	31,85	1319	250	18,95
8	0,02474	0,01659	1242	330	26,57	1388	260	18,73
9	0,03311	0,01661	831	430	51,75	903	230	25,46
10	0,03308	0,01661	1107	430	38,84	1112	240	21,58
11	0,03300	0,01659	966	430	44,51	1457	260	17,84
12	0,03296	0,01659	1378	430	31,20	1457	260	17,84
13	0,04965	0,01661	831	650	78,26	903	230	25,47
14	0,04957	0,01660	1244	650	52,25	1250	250	20,00
15	0,04944	0,01659	827	640	77,34	1457	260	17,84
16	0,04941	0,01658	1446	640	44,26	1664	270	16,23
17	0,01657	0,02493	693	230	33,18	834	330	39,56
18	0,01656	0,02492	970	240	24,75	1042	330	31,67
19	0,01654	0,02492	968	240	24,79	1147	330	28,77
20	0,01652	0,02491	1106	240	21,70	1251	330	26,38
21	0,02485	0,02492	832	330	39,68	938	330	35,17
22	0,02484	0,02493	1143	330	28,87	1251	330	26,38
23	0,02479	0,02491	1244	330	26,53	1459	340	23,30
24	0,02476	0,02490	1346	330	24,52	1667	340	20,40
25	0,03312	0,02492	970	430	44,35	1042	330	31,67
26	0,03310	0,02493	1384	440	31,79	1251	330	26,38
27	0,03303	0,02491	1381	440	31,86	1563	340	21,75
28	0,03299	0,02490	1656	440	26,57	1667	340	20,39
29	0,04966	0,02492	1038	650	62,62	1147	330	28,77
30	0,04961	0,02492	1245	650	52,21	1459	340	23,30
31	0,04952	0,02491	1450	650	44,83	1667	340	20,40
32	0,04944	0,02489	1654	650	39,30	1770	340	19,21
33	0,01657	0,03324	763	230	30,16	834	430	51,53
34	0,01656	0,03325	970	240	24,75	1252	440	35,14
35	0,01655	0,03324	1038	240	23,12	1251	440	35,17
36	0,01653	0,03323	1175	250	21,28	1390	440	31,65
37	0,02485	0,03324	936	330	35,27	973	440	45,21
38	0,02484	0,03324	1247	330	26,46	1391	440	31,63

Tabela 38 - Balanço de energia em configuração contracorrente.

#	m' _q	m _f	$q_a[W]$	Incerteza + -	Incerteza	q _f [W]	Incerteza +-	Incerteza
• •	[kg/s]	[kg/s]	-1	[W]	[%]	-	[W]	[%]
39	0,02481	0,03324	1453	340	23,40	1530	440	28,76
40	0,02477	0,03322	1554	340	21,88	1667	440	26,39
41	0,03313	0,03323	970	430	44,33	1112	440	39,57
42	0,03310	0,03324	1384	440	31,79	1530	440	28,76
43	0,03307	0,03324	1660	440	26,51	1808	440	24,34
44	0,03300	0,03321	1518	440	28,98	2084	440	21,11
45	0,04970	0,03325	1247	650	52,13	1391	440	31,63
46	0,04960	0,03323	1452	650	44,77	1668	440	26,38
47	0,04955	0,03323	1658	650	39,20	1946	440	22,61
48	0,04945	0,03321	1861	650	34,93	2223	450	20,24
49	0,01659	0,04989	902	230	25,50	417	650	155,73
50	0,01657	0,04989	1040	240	23,08	1252	650	51,92
51	0,01657	0,04990	1247	250	20,05	1252	650	51,92
52	0,01654	0,04986	1383	260	18,80	1669	650	38,95
53	0,02487	0,04988	1040	330	31,73	626	650	103,83
54	0,02484	0,04988	1351	340	25,17	1461	650	44,49
55	0,02482	0,04988	1661	340	20,47	1669	650	38,95
56	0,02479	0,04986	1763	340	19,29	1877	650	34,63
57	0,03315	0,04989	1248	440	35,26	1252	650	51,92
58	0,03308	0,04985	1107	430	38,84	2085	650	31,18
59	0,03307	0,04986	1660	440	26,51	2086	650	31,16
60	0,03303	0,04985	2072	440	21,24	2085	650	31,18
61	0,04971	0,04988	1456	650	44,64	1252	650	51,92
62	0,04963	0,04987	1661	650	39,13	1878	650	34,61
63	0,04956	0,04985	1865	650	34,85	2085	650	31,18
64	0,04948	0,04984	2276	650	28,56	2502	650	25,98
65	0,02488	0,09974	1249	330	26,42	1252	1300	103,83
66	0,02485	0,09973	1559	340	21,81	1669	1300	77,89
67	0,02482	0,09970	1557	340	21,84	1668	1300	77,94
68	0,02479	0,09969	1867	350	18,75	2085	1300	62,35
69	0,03314	0,09973	1109	430	38,77	1669	1300	77,89
70	0,03311	0,09971	1662	440	26,47	2086	1300	62,32
71	0,03307	0,09969	1937	440	22,72	2085	1300	62,35
72	0,03305	0,09968	2211	440	19,90	2502	1300	51,96
73	0,04968	0,09970	1663	650	39,09	2503	1300	51,94
74	0,04963	0,09970	2076	650	31,31	2503	1300	51,94
75	0,04956	0,09968	2280	650	28,51	2502	1300	51,96
76	0,04948	0,09965	2276	650	28,56	3335	1300	38,98

#	т _q	$\dot{m_f}$	\mathbf{q}_q	Incerteza + -	Incerteza	$\mathbf{q}_{\mathbf{f}}$	Incerteza +-	Incerteza
	[kg/s]	[kg/s]	[W]	[W]	[%]	[W]	[W]	[%]
77	0,02488	0,09981	1041	330	31,70	1253	1300	103,75
78	0,02485	0,09976	1247	330	26,46	1252	1300	103,83
79	0,02482	0,09973	1557	340	21,84	1669	1300	77,89
80	0,02479	0,09970	1763	340	19,29	1668	1300	77,94
81	0,03315	0,09979	1248	440	35,26	1252	1300	103,83
82	0,03312	0,09974	1524	440	28,87	1252	1300	103,83
83	0,03307	0,09971	1798	440	24,47	2086	1300	62,32
84	0,03304	0,09969	2073	440	21,23	2085	1300	62,35
85	0,04969	0,09976	1455	650	44,67	1252	1300	103,83
86	0,04964	0,09973	1869	650	34,78	1669	1300	77,89
87	0,04957	0,09971	2073	650	31,36	2086	1300	62,32
88	0,04952	0,09968	2278	650	28,53	2502	1300	51,96
				Eastas Asst	ania muźnuia			

Tabela 39 - Balanço de energia em configuração paralela.

4.4.2. Método MLDT

Nessa seção são apresentados os resultados dos cálculos da taxa total de transferência de calor pelo Método MLDT. Inicialmente, é apresentados os resultados do coeficiente convectivo interno. Na segunda subseção é apresentado os resultados do coeficiente convectivo externo. Por fim, são apresentados os resultados do coeficiente global de transferência de calor e a taxa total de transferência de calor.

4.4.2.1. Coeficiente convectivo interno

Os resultados dos cálculos do coeficiente convectivo interno são apresentados nas Tabelas 40 e 41, nas configurações contracorrente e paralelo, respectivamente.

		Tabela 40 - Coefficiente convec	uvo interno em comiguração	Tabéla 40 - Coefficiente convectivo interno em comiguração contracorrente.										
#	Re	Natureza do escoamento	Região de entrada	Nu_d	$h_i [W/m^2K]$									
1	168	Laminar	Plenamente desenvolvida	4,36	331,2									
2	171	Laminar	Plenamente desenvolvida	4,36	332,0									
3	194	Laminar	Plenamente desenvolvida	4,36	337,1									
4	210	Laminar	Plenamente desenvolvida	4,36	340,3									
5	262	Laminar	Entrada térmica	4,58	349,8									
6	269	Laminar	Entrada térmica	4,58	350,9									
7	304	Laminar	Entrada térmica	4,57	355,2									
8	320	Laminar	Entrada térmica	4,57	357,0									
9	363	Laminar	Entrada térmica	4,78	366,4									
10	377	Laminar	Entrada térmica	4,77	367,7									
11	423	Laminar	Entrada térmica	4,76	371,9									
12	441	Laminar	Entrada térmica	4,76	373,4									
13	555	Laminar	Entrada térmica	5,09	391,5									
14	597	Laminar	Entrada térmica	5,08	394,3									
15	662	Laminar	Entrada térmica	5,07	398,2									
16	679	Laminar	Entrada térmica	5,07	399,1									

Tabela 40 - Coeficiente convectivo interno em configuração contracorrente.

#	Re	Natureza do escoamento	Região de entrada	Nu _d	$h_i [W/m^2 K]$
17	171	Laminar	Plenamente desenvolvida	4,36	332,0
18	178	Laminar	Plenamente desenvolvida	4,36	333,6
19	192	Laminar	Plenamente desenvolvida	4,36	336,7
20	199	Laminar	Plenamente desenvolvida	4,36	338,2
21	262	Laminar	Entrada térmica	4,58	349,8
22	269	Laminar	Entrada térmica	4,58	350,9
23	293	Laminar	Entrada térmica	4,57	353,9
24	312	Laminar	Entrada térmica	4,57	356,1
25	359	Laminar	Entrada térmica	4,78	366,0
26	370	Laminar	Entrada térmica	4,78	367,1
27	405	Laminar	Entrada térmica	4,77	370,4
28	427	Laminar	Entrada térmica	4,76	372,2
29	549	Laminar	Entrada térmica	5,09	391,1
30	576	Laminar	Entrada térmica	5,09	392,9
31	624	Laminar	Entrada térmica	5,08	396,0
32	662	Laminar	Entrada térmica	5,07	398,2
33	169	Laminar	Plenamente desenvolvida	4,36	331,6
34	178	Laminar	Plenamente desenvolvida	4,36	333,6
35	187	Laminar	Plenamente desenvolvida	4,36	335,6
36	197	Laminar	Plenamente desenvolvida	4,36	337,8
37	259	Laminar	Entrada térmica	4,58	349,5
38	267	Laminar	Entrada térmica	4,58	350,5
39	283	Laminar	Entrada térmica	4,58	352,6
40	307	Laminar	Entrada térmica	4,57	355,5
41	352	Laminar	Entrada térmica	4,78	365,3
42	370	Laminar	Entrada térmica	4,78	367,1
43	384	Laminar	Entrada térmica	4,77	368,4
44	423	Laminar	Entrada térmica	4,76	371,9
45	523	Laminar	Entrada térmica	5,10	389,2
46	581	Laminar	Entrada térmica	5,09	393,3
47	608	Laminar	Entrada térmica	5,08	395,0
48	657	Laminar	Entrada térmica	5,07	397,9
49	163	Laminar	Plenamente desenvolvida	4,36	329,9
50	173	Laminar	Plenamente desenvolvida	4,36	332,4
51	175	Laminar	Plenamente desenvolvida	4,36	332,8
52	192	Laminar	Plenamente desenvolvida	4,36	336,7
53	252	Laminar	Entrada térmica	4,59	348,4
54	269	Laminar	Entrada térmica	4,58	350,9
55	277	Laminar	Entrada térmica	4,58	351,9
56	296	Laminar	Entrada térmica	4,57	354,2
57	339	Laminar	Entrada térmica	4,78	363,8
58	377	Laminar	Entrada térmica	4,77	367,7
59	384	Laminar	Entrada térmica	4,77	368,4
60	409	Laminar	Entrada térmica	4,76	370,7
61	518	Laminar	Entrada térmica	5,10	388,9
62	565	Laminar	Entrada térmica	5,09	392,2
63	602	Laminar	Entrada térmica	5,08	394,6
64	646	Laminar	Entrada termica	5,07	397,2
65	241	Laminar	Entrada termica	4,59	346,9
00 ~=	259	Laminar	Entrada termica	4,58	349,5
67	280	Laminar	Entrada termica	4,58	352,2

#	Re	Natureza do escoamento	Região de entrada	Nu _d	$h_i [W/m^2 K]$
68	293	Laminar	Entrada térmica	4,57	353,9
69	342	Laminar	Entrada térmica	4,78	364,2
70	363	Laminar	Entrada térmica	4,78	366,4
71	384	Laminar	Entrada térmica	4,77	368,4
72	398	Laminar	Entrada térmica	4,77	369,7
73	534	Laminar	Entrada térmica	5,10	390,0
74	565	Laminar	Entrada térmica	5,09	392,2
75	602	Laminar	Entrada térmica	5,08	394,6
76	646	Laminar	Entrada térmica	5,07	397,2

Tabela 41 - Coeficiente convectivo interno em configuração paralelo.

#	Re	Natureza do escoamento	Região de entrada	Nu_d	$h_i [W/m^2 K]$
77	241	Laminar	Entrada térmica	4,59	346,9
78	262	Laminar	Entrada térmica	4,58	349,8
79	280	Laminar	Entrada térmica	4,58	352,2
80	296	Laminar	Entrada térmica	4,57	354,2
81	339	Laminar	Entrada térmica	4,78	363,8
82	359	Laminar	Entrada térmica	4,78	366,0
83	387	Laminar	Entrada térmica	4,77	368,8
84	402	Laminar	Entrada térmica	4,77	370,1
85	529	Laminar	Entrada térmica	5,10	389,6
86	560	Laminar	Entrada térmica	5,09	391,9
87	597	Laminar	Entrada térmica	5,08	394,3
88	624	Laminar	Entrada térmica	5,08	396,0

Fonte: Autoria própria.

4.4.2.2. Coeficiente convectivo externo

Os resultados dos cálculos do coeficiente convectivo externo são apresentados nas Tabelas 42 e 43, nas configurações contracorrente e paralelo, respectivamente.

#	$Re_{d,max}$	Prs	Nu _D	h_e [W/m ² K]
1	31	5,70	5,81	344,8
2	30	5,70	5,85	346,1
3	33	5,04	5,87	351,6
4	36	4,62	5,87	355,0
5	32	5,47	5,81	346,5
6	31	5,44	5,86	348,3
7	35	4,80	5,87	353,5
8	36	4,57	5,89	355,9
9	32	5,31	5,83	348,4
10	32	5,22	5,88	350,5
11	36	4,57	5,87	355,3
12	36	4,45	5,91	357,7
13	33	5,19	5,83	349,1
14	33	4,93	5,89	353,0
15	36	4,45	5,91	357,7
#	$Re_{d,max}$	P r _s	Nu _D	h_e [W/m ² K]
----	--------------	-------------------------	-----------------	----------------------------
16	37	4,31	5,90	358,6
17	47	5,60	6,84	406,6
18	48	5,41	6,85	408,7
19	49	5,13	6,92	413,3
20	49	4,99	6,95	415,5
21	48	5,50	6,84	407,6
22	47	5,44	6,89	409,6
23	49	5,04	6,93	414,3
24	51	4,74	6,95	417,6
25	48	5,37	6,86	409,3
26	47	5,34	6,92	411,4
27	50	4,90	6,95	416,5
28	51	4,67	6,97	419,4
29	49	5,28	6,87	410,3
30	48	5,16	6,93	413,5
31	50	4,80	6,97	418,0
32	52	4,54	7,00	421,4
33	61	5,70	7,69	455,8
34	61	5,57	7,76	459,4
35	62	5,34	7,79	462,5
36	64	5,07	7,81	465,9
37	62	5,60	7,70	457,0
38	61	5,54	7,74	459,3
39	62	5,31	7,80	463,1
40	66	4,90	7,83	468,1
41	63	5,50	7,70	458,2
42	62	5,37	7,78	461,8
43	62	5,25	7,82	464,5
44	66	4,77	7,86	470,5
45	60	5,67	7,75	458,3
46	63	5,19	7,82	465,0
47	64	6,11	7,85	467,9
48	67	4,64	7,88	472,8
49	88	5,99	9,05	533,6
50	88	5,77	9,14	538,6
51	86	5,81	9,19	539,9
52	92	5,28	9,22	546,5
53	89	5,85	9,08	535,9
54	89	5,60	9,17	541,6
55	90	5,47	9,20	543,8
56	93	5,16	9,24	548,7
57	88	5,85	9,11	536,9
58	94	5,28	9,16	544,5
59	92	5,28	9,22	546,5
60	94	5,01	9,27	551,5
01	90	5,70	9,10	538,1
62	91	5,57	9,21	545,2
03	94	5,07	9,25	550,0
04	90 190	4,00	7,52	-702 Q
05	102	5.54	11,00	702,2
00	104	5,04	11,90	109,5

#	Re _{d,max}	Pr_s	Nu _D	h_e [W/m ² K]
67	188	5,31	12,06	717,4
68	190	5,13	12,13	722,3
69	184	5,67	11,95	708,4
70	186	5,44	12,03	714,5
71	190	5,19	12,09	720,2
72	192	5,04	12,14	724,0
73	188	5,47	11,97	712,1
74	188	5,28	12,08	718,4
75	192	5,01	12,16	725,0
76	197	4,74	12,25	732,5

Tabela 43 - Coeficiente convectivo externo em configuração paralelo.

#	$Re_{d,max}$	Pr_s	Nu_D	h_e [W/m ² K]
77	169	6,15	11,99	703,9
78	178	5,70	12,05	711,4
79	184	5,37	12,11	718,0
80	188	5,13	12,17	723,6
81	174	5,88	12,04	708,8
82	182	5,54	12,06	714,1
83	186	5,22	12,16	721,9
84	190	5,04	12,18	725,4
85	178	5,67	12,07	712,5
86	184	5,37	12,11	718,0
87	186	5,13	12,21	725,0
88	192	4,90	12,23	729,1

Fonte: Autoria própria.

4.4.2.3. Coeficiente global de transferência de calor

Os resultados dos cálculos do coeficiente global de transferência de calor e a taxa total de transferência de calor são apresentados nas Tabelas 44 e 45, nas configurações contracorrente e paralelo, respectivamente.

 Tabela 44 - Taxa total de transferência de calor por meio do cálculo do coeficiente global para escoamento contracorrente.

#	UA _{coeficiente} global [W/K]	ΔT_{ml} [°C]	F	<i>q</i> [W]	Incerteza +- [W]	Incerteza [%]
1	67,8	8,49	0,80	460	180	39,09
2	68,1	10,49	0,80	571	180	31,50
3	69,1	12,97	0,80	717	183	25,47
4	69,8	13,78	0,75	721	184	25,56
5	69,5	8,85	0,80	492	184	37,30
6	69,8	11,43	0,85	678	184	27,19
7	70,7	12,98	0,80	734	187	25,48
8	71,2	14,64	0,80	834	189	22,64

#	$U\!A_{coeficiente\ global}$	۸ ۳ . [°C]	F	a [W]	Incerteza	Incerteza
π	[W/K]		ľ	9[**]	+ - [W]	[%]
9	70,9	10,10	0,85	609	188	30,88
10	71,3	12,58	0,85	762	189	24,77
11	72,2	12,74	0,80	736	191	26,02
12	72,6	15,87	0,85	979	192	19,64
13	72,7	9,82	0,85	607	192	31,70
14	73,4	13,10	0,90	865	194	22,43
15	74,3	14,92	0,93	1031	197	19,09
16	74,5	14,92	0,85	945	197	20,83
17	74,7	8,96	0,75	502	198	39,37
18	75,1	9,87	0,85	630	199	31,51
19	75,8	13,44	0,85	866	200	23,13
20	76,2	14,91	0,85	966	202	20,92
21	76,5	9,49	0,85	617	202	32,74
22	76,8	11,49	0,85	750	203	27,06
23	77,5	13,98	0,85	921	206	22,32
24	78,1	15,45	0,85	1026	206	20,13
25	78,1	10,43	0,90	733	206	28,16
26	78,4	12,97	0,90	915	207	22,66
27	79,2	15,36	0,90	1095	210	19,18
28	79,7	16,92	0,90	1214	211	17,38
29	80,3	10,72	0,80	689	213	30,88
30	80,8	13,61	0,80	880	214	24,27
31	81,5	16,08	0,80	1048	216	20,62
32	82,1	18,13	0,87	1295	217	16,76
33	79,4	9,28	0,85	626	210	33,53
34	80,0	12,33	0,83	819	212	25,87
35	80,5	13,78	0,85	943	213	22,55
36	81,0	15,23	0,90	1110	214	19,31
37	81,4	9,97	0,86	698	215	30,85
38	81,7	11,97	0,87	851	216	25,41
39	82,3	14,45	0,87	1035	218	21,06
40	83,1	16,45	0,90	1230	220	17,86
41	83,1	10,49	0,90	/85	220	28,00
42	83,7	15,49	0,90	1016	221	21,79
43	84,1	15,49	0,92	1402	222	18,55
44	85,0	11,95	0,92	044	223	10,03
45	85,4	11,09	0,95	1026	220	23,92
40	80,3	15,50	0,95	1250	229	16,49
4/	80,9 87 7	10,82	0,95	1559	230	10,94
40	87,7	8 32	0,93	621	232	36 51
49 50	86.5	11.94	0.88	021	227	25.24
51	86.9	13.10	0.86	909	229	23,24
52	87 7	15,10	0.86	1148	230	20,22
53		10.10	0.94	838	_234	20,22
54	89 1	13 78	0.92	1130	234	20.86
55	89.4	14 64	0.88	1152	236	20,53
56	90.1	16.68	0.92	1383	238	17.23
57	90.2	11.43	0.91	938	239	25.49
58	91,4	13,98	0,94	1201	242	20,13

#	$U\!A_{coeficiente\ global}$		F	a [W]	Incerteza	Incerteza
#	[W/K]	$\Delta I_{ml} [C]$	F	<i>q</i> [••]	+ - [W]	[%]
59	91,6	15,98	0,93	1361	243	17,82
60	92,3	18,39	0,90	1528	244	16,00
61	93,2	11,49	0,94	1007	247	24,54
62	94,2	15,49	0,95	1386	250	18,01
63	94,9	17,50	0,95	1578	251	15,94
64	95,7	20,50	0,95	1864	253	13,59
65	99,9	6,49	0,80	519	265	51,03
66	100,8	9,46	0,85	811	266	32,88
67	101,7	12,72	0,93	1203	269	22,37
68	102,3	14,54	0,91	1354	271	20,01
69	103,0	9,87	0,85	864	273	31,55
70	103,7	12,17	0,91	1148	274	23,89
71	104,4	14,02	0,94	1376	276	20,07
72	104,8	15,46	0,94	1523	277	18,19
73	107,0	10,97	0,93	1092	283	25,95
74	107,8	13,90	0,95	1423	285	20,02
75	108,6	16,37	0,96	1707	288	16,85
76	109,5	19,46	0,96	2046	290	14,19

Tabela 45 - Taxa total de transferência de calor por meio do cálculo do coeficiente global para escoamento paralelo.

# UA _{coeficiente global} [W/K] ΔT _{ml} [°C] F q [W] Incerteza +- [W] Incerteza [%] 77 100,0 8,99 0,8 719 360 40 78 101,0 10,82 0,75 984 438 40 79 101,7 12,11 0,9 1109 493 40 80 102,4 13,96 0,8 1287 572 40 81 103,0 10,92 0,85 956 450 40 82 103,6 11,63 0,83 1060 482 40 83 104,6 14,14 0,8 1346 592 40 84 105,0 14,82 0,85 1338 623 40 85 107,0 12,33 0,86 1134 528 40 86 107,7 13,47 0,7 1306 581 40 87 108,5 16,37 0,75 1563 7				parator			
77100,08,990,87193604078101,010,820,759844384079101,712,110,911094934080102,413,960,812875724081103,010,920,859564504082103,611,630,8310604824083104,614,140,813465924084105,014,820,8513386234085107,012,330,8611345284086107,713,470,713065814087108,516,370,7515637114088109,117,120,8162574840	#	UA _{coeficiente} global [W/K]	ΔT_{ml} [°C]	F	<i>q</i> [W]	Incerteza +- [W]	Incerteza [%]
78 101,0 10,82 0,75 984 438 40 79 101,7 12,11 0,9 1109 493 40 80 102,4 13,96 0,8 1287 572 40 81 103,0 10,92 0,85 956 450 40 82 103,6 11,63 0,83 1060 482 40 83 104,6 14,14 0,8 1346 592 40 84 105,0 14,82 0,85 1338 623 40 85 107,0 12,33 0,86 1134 528 40 86 107,7 13,47 0,7 1306 581 40 87 108,5 16,37 0,75 1563 711 40 88 109,1 17,12 0,8 1625 748 40	77	100,0	8,99	0,8	719	360	40
79101,712,110,911094934080102,413,960,812875724081103,010,920,859564504082103,611,630,8310604824083104,614,140,813465924084105,014,820,8513386234085107,012,330,8611345284086107,713,470,713065814087108,516,370,7515637114088109,117,120,8162574840	78	101,0	10,82	0,75	984	438	40
80102,413,960,812875724081103,010,920,859564504082103,611,630,8310604824083104,614,140,813465924084105,014,820,8513386234085107,012,330,8611345284086107,713,470,713065814087108,516,370,7515637114088109,117,120,8162574840	79	101,7	12,11	0,9	1109	493	40
81103,010,920,859564504082103,611,630,8310604824083104,614,140,813465924084105,014,820,8513386234085107,012,330,8611345284086107,713,470,713065814087108,516,370,7515637114088109,117,120,8162574840	80	102,4	13,96	0,8	1287	572	40
82 103,6 11,63 0,83 1060 482 40 83 104,6 14,14 0,8 1346 592 40 84 105,0 14,82 0,85 1338 623 40 85 107,0 12,33 0,86 1134 528 40 86 107,7 13,47 0,7 1306 581 40 87 108,5 16,37 0,75 1563 711 40 88 109,1 17,12 0,8 1625 748 40	81	103,0	10,92	0,85	956	450	40
83 104,6 14,14 0,8 1346 592 40 84 105,0 14,82 0,85 1338 623 40 85 107,0 12,33 0,86 1134 528 40 86 107,7 13,47 0,7 1306 581 40 87 108,5 16,37 0,75 1563 711 40 88 109,1 17,12 0,8 1625 748 40	82	103,6	11,63	0,83	1060	482	40
84105,014,820,8513386234085107,012,330,8611345284086107,713,470,713065814087108,516,370,7515637114088109,117,120,8162574840	83	104,6	14,14	0,8	1346	592	40
85 107,0 12,33 0,86 1134 528 40 86 107,7 13,47 0,7 1306 581 40 87 108,5 16,37 0,75 1563 711 40 88 109,1 17,12 0,8 1625 748 40	84	105,0	14,82	0,85	1338	623	40
86107,713,470,713065814087108,516,370,7515637114088109,117,120,8162574840	85	107,0	12,33	0,86	1134	528	40
87108,516,370,7515637114088109,117,120,8162574840	86	107,7	13,47	0,7	1306	581	40
88 109,1 17,12 0,8 1625 748 40	87	108,5	16,37	0,75	1563	711	40
	88	109,1	17,12	0,8	1625	748	40

Fonte: Autoria própria.

4.4.3. Método Efetividade-NUT

Os resultados do cálculo da taxa total de transferência de calor, pelo método da Efetividade-NUT, são apresentados nas Tabelas 46 e 47, nas configurações contracorrente e paralelo, respectivamente.

#	۸ ۳	C (W/K)	£	NUT	a[W]	Incerteza	Incerteza
п			Ľ	1101	9[••]	[W]	[%]
1	8,49	69,35	0,5013	1,25	738	580	78,61
2	10,49	69,32	0,5670	2,28	1655	2300	138,97
3	12,97	69,15	0,5581	2,01	1799	1800	100,00
4	13,78	69,01	0,4541	0,95	904	390	43,12
5	8,85	69,50	0,6298	1,82	1118	1400	125,22
6	11,43	69,51	0,6850	3,28	2606	5900	226,40
7	12,98	69,43	0,5330	1,10	988	620	62,76
8	14,64	69,39	0,5772	1,35	1371	850	61,99
9	10,10	69,49	0,5979	1,26	883	860	97,36
10	12,58	69,50	0,6372	1,49	1306	1200	91,88
11	12,74	69,38	0,4972	0,85	754	530	70,25
12	15,87	69,38	0,6208	1,39	1531	1100	71,85
13	9,82	69,47	0,6293	1,23	842	1100	130,67
14	13,10	69,46	0,6888	1,55	1406	1500	106,69
15	14,92	69,38	0,4110	0,58	605	550	90,92
16	14,92	69,35	0,6518	1,34	1387	1200	86,52
17	8,96	69,32	0,6685	2,50	1551	2800	180,53
18	9,87	69,27	0,6840	3,11	2126	4600	216,37
19	13,44	69,16	0,6376	1,90	1768	1600	90,50
20	14,91	69,10	0,6241	1,74	1788	1500	83,89
21	9,49	103,90	0,5015	1,25	1238	1100	88,85
22	11,49	103,90	0,5237	1,46	1744	1400	80,28
23	13,98	103,70	0,5211	1,43	2074	1400	67,50
24	15,45	103,50	0,5365	1,61	2579	1700	65,92
25	10,43	104,20	0,4895	0,96	1041	800	76,85
26	12,97	104,30	0,5532	1,30	1761	1300	73,82
27	15,36	104,20	0,4735	0,89	1429	780	54,58
28	16,92	104,20	0,5127	1,07	1881	990	52,63
29	10,72	104,20	0,5244	0,94	1055	1000	94,79
30	13,61	104,20	0,4976	0,85	1212	950	78,38
31	16,08	104,20	0,4969	0,85	1428	970	67,93
32	18,13	104,10	0,5124	0,90	1705	1100	64,52
33	9,28	69,34	0,6686	1,74	1116	1500	134,41
34	12,33	69,27	0,7529	3,59	3069	7900	257,41
35	13,78	69,20	0,6955	2,02	1928	2100	108,92
36	15,23	69,12	0,6934	1,99	2099	2200	104,81
37	9,97	104,00	0,5201	1,10	1138	950	83,48
38	11,97	103,90	0,5819	1,52	1889	1700	89,99
39	14,45	103,80	0,5458	1,25	1866	1100	58,95
40	16,45	103,60	0,5366	1,19	2023	1100	54,37
41	10,49	138,60	0,4459	0,91	1326	910	68,63
42	13,49	138,40	0,4604	0,98	1838	970	52,77
43	15,49	138,30	0,4667	1,02	2183	1000	45,81
44	17,93	138,00	0,4872	1,14	2829	1500	53,03
45	11,89	139,10	0,4484	0,77	1268	1000	78,86
46	15,36	139,00	0,4178	0,68	1446	940	65,01
47	16,82	139,00	0,4260	0,70	1637	920	56,20
48	19,29	138,90	0,4187	0,68	1821	780	42,83
49	8,32	69,38	0,3539	0,47	273	420	153,90

Tabela 46 - Método da efetividade NUT em configuração contracorrente.

#	$\Delta T_{ml} [^{\circ}C]$	C_{min} [W/K]	ε	NUT	<i>q</i> [W]	Incerteza	Incerteza
50	11.94	69.31	0.7855	2.51	2080	4000	192.31
51	13,10	69,30	0,6951	1,58	1434	1600	111,58
52	15.22	69.16	0.8043	2.92	3077	5700	185.25
53	10,10	104,00	0,3540	0,49	519	590	113,70
54	13,78	103,90	0,5858	1,19	1710	1400	81,87
55	14,64	103,80	0,5954	1,24	1887	1400	74,19
56	16,68	103,70	0,6035	1,28	2219	1600	72,10
57	11,43	138,70	0,4753	0,85	1354	1100	81,24
58	13,98	138,40	0,6552	2,18	4221	5200	123,19
59	15,98	138,30	0,5585	1,22	2705	1800	66,54
60	18,39	138,10	0,4871	0,90	2274	1200	52,77
61	11,49	207,90	0,3345	0,52	1254	850	67,78
62	15,49	207,60	0,3769	0,65	2075	1100	53,01
63	17,50	207,30	0,3727	0,63	2290	1100	48,03
64	20,50	206,90	0,3779	0,65	2746	1100	40,06
65	6,49	104,10	0,8017	2,29	1548	4000	258,40
66	9,46	104,00	0,8026	2,30	2262	4900	216,62
67	12,72	103,80	0,6988	1,47	1937	2800	144,55
68	14,54	103,70	0,7447	1,75	2640	3700	140,15
69	9,87	138,60	0,7523	2,06	2813	5700	202,63
70	12,17	138,50	0,7172	1,74	2925	4100	140,17
71	14,02	138,30	0,6281	1,23	2377	2600	109,38
72	15,46	138,20	0,6705	1,43	3062	3300	107,77
73	10,97	207,80	0,6690	1,74	3963	5300	133,74
74	13,90	207,60	0,5480	1,03	2972	2700	90,85
75	16,37	207,30	0,4828	0,81	2737	2200	80,38
76	19,46	206,90	0,5558	1,06	4268	3000	70,29

Fonte: Autoria própria.

Tabela 47 - Método da efetividade NUT em configuração paralela.

ruben 17 meteur du clearmane non chinguração paraicia.							
#	ΔT_{ml} [°C]	<i>C_{mín}</i> [W/K]	ε	NUT	<i>q</i> [W]	Incerteza [W]	Incerteza [%]
77	8,99	104,1	0,7079	1,52	1419	2600	183,23
78	10,82	103,9	0,6022	1,06	1191	1900	159,53
79	12,11	103,8	0,6698	1,33	1666	2300	138,06
80	13,96	103,7	0,5960	1,04	1502	1700	113,18
81	10,92	138,7	0,5017	0,80	1208	1600	132,45
82	11,63	138,5	0,4518	0,67	1084	1300	119,93
83	14,14	138,3	0,6033	1,12	2196	2200	100,18
84	14,82	138,2	0,5589	0,97	1977	1800	91,05
85	12,33	207,9	0,3346	0,46	1169	1300	111,21
86	13,47	207,6	0,3828	0,55	1548	1400	90,44
87	16,37	207,3	0,4024	0,60	2026	1600	78,97
88	17,12	207,1	0,4475	0,71	2507	1800	71,80

4.5. ANÁLISE DO DESEMPENHO DO TROCADOR DE CALOR

Para analisar o desempenho do trocador de calor e comparar os métodos utilizados, os valores da taxa total de transferência de calor, para os três métodos, são apresentados nas Tabelas 48 e 49, nas configurações contracorrente e paralela, respectivamente. O Gráfico 1 ilustra o desempenho em escoamento contracorrente e o Gráfico 2 em escoamento paralelo. Nestes gráficos os valores apresentados para o Método Balanço de Energia consistem na média entre os valores dos balanços do fluido frio e quente para cada caso. As diferenças encontradas nos valores da taxa total de transferência de calor em cada caso, considerando os diferentes métodos, estão dentro das incertezas dos resultados.

#	q _{balanço,q} [W]	$q_{balanço,f}[W]$	q_{MLDT} [W]	$q_{\epsilon\text{-}NUT}$ [W]	$\overline{q_m}$ [W]
1	694	626	460	738	630
2	832	904	571	1655	991
3	899	1042	717	1799	1114
4	966	1388	721	904	995
5	832	834	492	1118	819
6	1143	973	678	2606	1350
7	1036	1319	734	988	1019
8	1242	1388	834	1371	1209
9	831	903	609	883	807
10	1107	1112	762	1306	1072
11	966	1457	736	754	978
12	1378	1457	979	1531	1336
13	831	903	607	842	796
14	1244	1250	865	1406	1191
15	827	1457	1031	605	980
16	1446	1664	945	1387	1361
17	693	834	502	1551	895
18	970	1042	630	2126	1192
19	968	1147	866	1768	1187
20	1106	1251	966	1788	1278
21	832	938	617	1238	906
22	1143	1251	750	1744	1222
23	1244	1459	921	2074	1425
24	1346	1667	1026	2579	1655
25	970	1042	733	1041	947
26	1384	1251	915	1761	1328
27	1381	1563	1095	1429	1367
28	1656	1667	1214	1881	1605
29	1038	1147	689	1055	982
30	1245	1459	880	1212	1199
31	1450	1667	1048	1428	1398
32	1654	1770	1295	1705	1606

Tabela 48 - Comparação entre os métodos utilizados para o cálculo da taxa total de transferência de calor para o escoamento contracorrente.

#	q _{balanço,q} [W]	$q_{\mathit{balanço,f}}[W]$	q_{MLDT} [W]	$q_{\epsilon\text{-}NUT}$ [W]	q_m [W]
33	763	834	626	1116	835
34	970	1252	819	3069	1528
35	1038	1251	943	1928	1290
36	1175	1390	1110	2099	1444
37	936	973	698	1138	936
38	1247	1391	851	1889	1345
39	1453	1530	1035	1866	1471
40	1554	1667	1230	2023	1619
41	970	1112	785	1326	1048
42	1384	1530	1016	1838	1442
43	1660	1808	1198	2183	1712
44	1518	2084	1402	2829	1958
45	1247	1391	944	1268	1213
46	1452	1668	1236	1446	1451
47	1658	1946	1359	1637	1650
48	1861	2223	1607	1821	1878
49	902	417	621	273	553
50	1040	1252	909	2080	1320
51	1247	1252	979	1434	1228
52	1383	1669	1148	3077	1819
53	1040	626	838	519	756
54	1351	1461	1130	1710	1413
55	1661	1669	1152	1887	1592
56	1763	1877	1383	2219	1811
57	1248	1252	938	1354	1198
58	1107	2085	1201	4221	2154
59	1660	2086	1361	2705	1953
60	2072	2085	1528	2274	1990
61	1456	1252	1007	1254	1242
62	1661	1878	1386	2075	1750
63	1865	2085	1578	2290	1955
64	2276	2502	1864	2746	2347
65	1249	1252	519	1548	1142
66	1559	1669	811	2262	1575
67	1557	1668	1203	1937	1591
68	1867	2085	1354	2640	1987
69	1109	1669	864	2813	1614
70	1662	2086	1148	2925	1955
71	1937	2085	1376	2377	1944
72	2211	2502	1523	3062	2325
73	1663	2503	1092	3963	2305
74	2076	2503	1423	2972	2244
75	2280	2502	1707	2737	2307
76	2276	3335	2046	4268	2981

Gráfico 1 - Taxa total de transferência de calor por diferentes métodos em escoamento contracorrente. Fonte: Autoria própria.

Tabela 49 - Comparação entre os métodos utilizados para o cálculo da taxa total de transferência de calor para o escoamento paralelo.

#	q _{balanço,q} [W]	q _{balanço,f} [W]	q_{MLDT} [W]	$q_{\epsilon\text{-NUT}}\left[\mathrm{W} ight]$	q_m [W]
77	1041	1253	719	1419	1153
78	1247	1252	984	1191	1196
79	1557	1669	1109	1666	1531
80	1763	1668	1287	1502	1591
81	1248	1252	956	1208	1208
82	1524	1252	1060	1084	1266
83	1798	2086	1346	2196	1890
84	2073	2085	1338	1977	1923
85	1455	1252	1134	1169	1299
86	1869	1669	1306	1548	1634
87	2073	2086	1563	2026	1990
88	2278	2502	1625	2507	2289

Gráfico 2 - Taxa total de transferência de calor por diferentes métodos em escoamento paralelo. Fonte: Autoria própria.

Além disso, nas Tabelas 48 e 49 foi apresentada uma média da taxa total de transferência de calor entre todos os métodos para cada caso visando uma análise geral do desempenho do trocador de calor casco e tubos. Estes valores também são apresentados no Gráfico 3.

Gráfico 3 - Média das taxas totais de transferência de calor obtidas nos métodos acima. Fonte: Autoria própria.

Como pode ser observado nas Tabelas 48 e 49 e no Gráfico 3, o caso que apresenta a maior taxa total de transferência de calor no trocador de calor casco e tubos analisado é o Caso #76 (q = 2981W). Este caso corresponde à situação do escoamento em contracorrente de maiores vazões dos fluidos quente (3 l/min) e frio (6 l/min) e de maiores gradientes de temperatura de entrada entre os fluidos quente (60°C) e frio (23°C), sendo os maiores valores presentes nos experimentos. Pode ser notado também que, independentemente da configuração do escoamento, o desempenho do trocador de calor aumenta com o aumento das vazões dos fluidos quente e frio e com o aumento dos gradientes de temperaturas entre os fluidos.

É possível perceber que, após pequenos picos, existem quedas bruscas na taxa total de transferência de calor. Isso ocorre nos momentos em que a configuração de vazão é trocada e inicia um novo ciclo de temperaturas (45°C-60°C), sendo os pequenos picos o final de cada ciclo ($T_{tanque} = 60^{\circ}$ C) onde ocorre a maior taxa total de transferência de calor da configuração de vazão utilizada. Isso mostra que, para uma mesma configuração de vazão, quanto maior for a temperatura de entrada, maior será a taxa total de transferência de calor.

Os experimentos foram realizados em escoamento paralelo e contracorrente, para efeito de comparação. O escoamento contracorrente, teoricamente, tem uma taxa de transferência de calor maior do que o escoamento paralelo. Essa teoria foi comprovada através do Gráfico 4, onde é possível observar que, para uma mesma condição de operação (Tabela 50), o escoamento contracorrente sempre atingirá valores mais elevados que o escoamento paralelo.

 <i>Q</i> _q Temperatura do tanque (ST-16) [°C]									
[l/min]	45 °C	50 °C	55 °C	60 °C					
 1,5	а	b	с	d					
2,0	e	f	g	h					
3,0	i	j	k	1					

Tabela 50 - Casos utilizados para comparação dos escoamentos contracorrente e paralelo.

Fonte: Autoria própria.

Com as imagens térmicas obtidas da câmera termográfica é possível identificar a perda de calor para o ambiente externo do equipamento experimental. As Fotografias 6 e 7 ilustram a perda de calor do trocador de calor e suas conexões para o ambiente externo, o que contribuiu para as incertezas dos resultados A principal perda ocorre nas conexões entre o tanque de abastecimento e o trocador de calor de tipo casco e tubos. As perdas de calor para o ambiente externo causam também, uma diferença entre a temperatura do tanque (ST-16) e a temperatura de entrada no trocador (ST-1).

Fotografia 6 - Perdas de calor do aparato experimental para o ambiente externo. Fonte: Autoria própria.

Fotografia 7 - Perdas de calor do trocador de calor do tipo casco e tubos para o ambiente externo. Fonte: Autoria própria.

5. CONCLUSÃO

Neste Trabalho de Conclusão de Curso foi realizada uma análise experimental do desempenho de um trocador de calor do tipo casco e tubos sob diferentes condições de operação considerando escoamento em contracorrente e em paralelo. A taxa total de transferência de calor nas diferentes configurações foi encontrada por três diferentes métodos: Balanço de Energia, Média Logarítmica das Diferenças de Temperaturas (MLDT) e Efetividade-NUT (ε-NUT). Os testes experimentais foram executados em um aparato experimental localizado no Laboratório Didático de Ciências Térmicas do Departamento Acadêmico de Mecânica da Universidade Tecnológica Federal do Paraná/Campus Ponta Grossa.

O método do balanço de energia foi calculado de duas maneiras: análise do fluido quente e análise do fluido frio. Os métodos, em alguns casos, tiveram uma diferença grande nos resultados, apesar de estarem dentro da faixa de incertezas. Isso ocorreu, principalmente, devido ao fato do cálculo do balanço de energia ser diretamente proporcional à diferença de temperatura em cada fluido. Casos em que, o fluido quente teve uma vazão muito maior que o fluido frio, ocasionou uma diferença de temperaturas final e inicial muito maior no fluido frio do que no quente. Com isso, o balanço de energia do fluido frio atingiu valores mais elevados de transferência de calor que o balanço de energia do fluido quente. Assim como, quando o fluido frio teve uma vazão muito maior que o fluido quente, o balanço de energia do fluido quente, o balanço de energia do fluido quente atingiu valores mais elevados de transferência de calor. Assim sendo, foi utilizado uma média entre os dois valores, para comparação com os outros métodos utilizados.

O Método MLDT consistiu no cálculo dos coeficientes convectivo interno e externo, da resistência térmica da parede e da média logarítmica das diferenças de temperatura. O cálculo de cada coeficiente dependeu da natureza do escoamento (laminar ou turbulento) e dos parâmetros adimensionais requeridos (Re, Pr).

No Método Efetividade-NUT, o cálculo sofreu com uma propagação de erros elevada, ocasionando em resultados diferentes do método do balanço de energia e do método MLDT, na maioria dos casos. A propagação de erros é elevada, devido ao fato de que são realizados cálculos de diversos parâmetros secundários (ε , F, NUT) até chegar ao valor final. Como em cada cálculo existe um erro propagado, o erro no resultado final torna-se maior. Porém, os resultados mantiveram-se dentro da margem de erro aceitável, tornando esse método válido para o trocador de calor utilizado. Os erros ocasionados pela baixa quantidade de casas

decimais em que foi apresentado as temperaturas pelo módulo de aquisição de dados, também tiveram considerável importância nos elevados resultados para os erros.

Como esperado, a maior taxa de transferência de calor ocorreu em escoamento contracorrente na condição com as maiores vazões e com a maior gradiente de temperatura de entrada entre os fluidos quente e frio (Caso #76). A realização do experimento em escoamento contracorrente e paralelo comprovou a teoria, de que o escoamento contracorrente fornece maiores taxas totais de transferência de calor nas mesmas condições de operação. Em geral, os experimentos realizados neste trabalho foram validados com a teoria existente sobre trocadores de calor do tipo casco e tubos.

Finalmente, com a realização deste TCC, o módulo didático existente no LabDCT/ DAMEC/UTFPR/PG foi testado e poderá ser utilizado nas aulas experimentais de Transferência de Calor I (EM36A) e de Transferência de Calor II (EM37A), ou até mesmo em futuros Trabalhos de Conclusão de Curso que possam ser realizados em áreas correlatas. Como sugestão para trabalhos futuros pode-se realizar um estudo mais aprofundado no Método Efetividade-NUT, mostrando que os erros que foram calculados nesse trabalho são válidos e o que ocasionou o escoamento contracorrente ter erros maiores que o escoamento paralelo.

REFERÊNCIAS

ALVES, T. A. **Nota de aula: Transferência de Calor II.** Universidade Tecnológica Federal do Paraná/Campus Ponta Grossa, 2014.

ÇENGEL, YUNUS A & GHAJAR. **Transferência de Calor e Massa: uma abordagem pratica**. 3. ed. São Paulo, SP: McGraw-Hill, 2012. 902 p.

CHENOWETH, J. M., & M. IMPAGLIAZZO, EDS., Fouling in Heat Exchange Equipment, American Society of Mechanical Engineers Symposium Volume HTD-17, ASME, New York, 1981.

DIGIOVANNI, M. A., & R. L. WEBB, Heat Transfer Eng., 1989.

DITTUS, F. W., & L. M. K. BOELTER, **Publications on Engineering.** University of California, Berkeley, 1930.

EVACON. Disponível em: <http://www.evacon.com.br/trocadores_de_calor/produtos_casco_e_tubos.asp> Acesso em: 11/12/2013

FLIR. Disponível em: <http://www.flir.com/thermography/americas/br/responsive/?id=62960> Acesso em: 02/08/2014

GNIELINSKI, V., Int. Chem. Eng., 16, 359, 1976.

GUT, J. A. W. **Configurações ótimas para trocadores de calor a placas.** 2003. 236 p. Tese – Escola Politécnica da Universidade de São Paulo, São Paulo, 2003.

GUTIERREZ, P. F. C. Análise de trocadores de calor compactos para desumidificação de ar. 2006. 112p. Dissertação – Escola Politécnica da Universidade de São Paulo, São Paulo, 2006.

HAUSEN, H., Z. VDI, Beith Verfahrenstech., 4, 91, 1943.

INCROPERA, F.P., DEWITT, D.P., BERGMAN, T.L. & LAVINE, A.S., 2008. **Fundamentos de Transferência de Calor e de Massa**. Rio de Janeiro, RJ: LTC, 643p.

KAKAÇ, S., A. E. BERGLES, & F. MAYINGER, EDS., Heat Exchangers, Hemisphere Publishing, New York, 1981.

KAKAÇ, S., & PAYKOC, E., **Basic relationships for heat exchangers, Two-Phase Flow Heat Exchangers**, NATO Advanced Study Institute, London, 1988.

KAYS, W. M., & A. L. LONDON, **Compact Heat Exchangers**, 3rd ed., McGraw-Hill, New York, 1984.

KAYS, W. M., & M. E. CRAWFORD, **Convective Heat and Mass Transfer**, 3rd. ed. McGraw-Hill, New York, 1993.

MACHADO, Vivian. Análise Numérica e Investigação Experimental da Convecção Natural Laminar em um Canal Vertical com Aquecimento Discreto. 2013. 96 f. Trabalho de Conclusão de Curso (Graduação) – Bacharelado em Engenharia Mecânica. Universidade Tecnológica Federal do Paraná, Ponta Grossa, 2013.

MORGAN, V. T., The Overall Convective Heat Transfer from Smooth Circular Cylinders. New York, 1977.

PETUKHOV, B. S., Advances in Heat Transfer, Vol.6, Academic Press, New York, 1970.

PRACTICAL Exercises Manual. 1 ed. Madrid. EDIBON, 2010.

RAVAGNANI, M. A. S. **Projeto e otimização de redes de trocadores de calor.** 1994. 123 p. Tese – Universidade Estadual de Campinas, Campinas, 1994.

SHAH, R. K., & A. L. LONDON, Laminar Flow Forced Convection in Ducts, Academic Press, New York, 1978.

SIEDER, E. N., & G. E. TATE, Ind. Eng. Chem., 1936.

SKUPINSKI, E. S., J. TORTEL, &L. VAUTREY, Int. J. Heat Mass Transfer, 8, 937, 1965.

SPORKET, F. **Análise teórico experimental dos evaporadores de uma bomba de calor.** 2001. 86 p. Dissertação – Universidade Federal do Rio Grande do Sul, Porto Alegre, 2001.

TOMAZETI, C. A. Análise numérica do desempenho térmico de trocadores de calor de correntes cruzadas. 151p. Universidade Estadual de Campinas, Campinas, 2006.

UNCERTAINTY CALCULATOR. Disponível em: <http://www.colby.edu/chemistry/PChem/scripts/error.html?ModPagespeed=off> Acessado em: 18/12/2013.

WEBB, R. L., Principles of Enhanced Heat Transfer, Wiley, New York, 1993.

ZHUKAUSKAS, A., Heat Transfer from Tubes in Cross Flow. Academic Press, New York, 1972.

APÊNDICE A – Desenho Técnico do Aparato Experimental

_											_
					nto	0,11		6 V	0H		
	REVISÃO		Abastecime								0LHA 1 DE 9
	NÃO MUDAR ESCALA DO DESENHO		щилю:		IInidado Rácion do	Ulluaue Dasica ue		DES. Nº			ESCALA:1:10 FC
	REBARBAR E QUEBRAR	REBARBAR E QUEBRAR ARESTAS AGUDAS									
								:TVR			
								MATEF			PESO:
	E NÃO ESPECIFICADO: MAENSOES EM MILIMETROS ACABAM. SUPERFICIE OLARAM. SUPERFICIE LINEAR: ANGULAR:		DATA								
			ASSINATURA								
			NOME								
				DESEN.	VERIF.	APROV.	MANUF.	QUALID			

_											_
					nto	0,11		6 V	0H		
	REVISÃO		Abastecime								0LHA 1 DE 9
	NÃO MUDAR ESCALA DO DESENHO		щилю:		IInidado Rácion do	Ulluaue Dasica ue		DES. Nº			ESCALA:1:10 FC
	REBARBAR E QUEBRAR	REBARBAR E QUEBRAR ARESTAS AGUDAS									
								:TVR			
								MATER			PESO:
	E NÃO ESPECIFICADO: MAENSOES EM MILIMETROS ACABAM. SUPERFICIE OLARAM. SUPERFICIE LINEAR: ANGULAR:		DATA								
			ASSINATURA								
			NOME								
				DESEN.	VERIF.	APROV.	MANUF.	QUALID			

APÊNDICE B – Incertezas Experimentais

De acordo com Machado (2013), pesquisas experimentais em Mecânica dos Fluidos e Transferência de Calor geralmente são caracterizadas com experimentos de amostragens simples, que são aqueles cujo ponto experimental é testado apenas uma vez. Desta forma, para a realização do cálculo das incertezas associadas aos resultados obtidos experimentalmente foi utilizado a Análise de Incertezas para Amostragem Simples, que será explicada na sequência.

O cômputo das incertezas experimentais apresentadas nas Tabelas foi realizado com o auxílio do *software* Uncertainty Calculator, fornecido pelo Colby College.

Análise de Incertezas para Amostragem Simples

Considerando uma determinada variável X, cuja incerteza acoplada a ela é conhecida como δX_i , a sua representação será expressa por

$$X_i = X_i (medido) \pm \delta X_i$$
(B.1)

sendo que, X_i (medido) representa a medição realizada e δX_i corresponde a duas vezes o desvio padrão da população de possíveis medidas das quais a amostra X_i foi retirada.

O efeito da incerteza de uma única variável sobre o resultado calculado é dada por

$$\delta R_{X_i} = \frac{\delta R}{\delta X_i} \delta X_i \tag{B.2}$$

A derivada parcial de R em relação à X_i é conhecida como coeficiente de sensibilidade do resultado R em relação à variável X_i . As variáveis independentes são utilizadas, sendo combinadas formando a equação básica para análise de incertezas.

$$\delta R = \left[\sum_{i=1}^{N} \left(\frac{\delta R}{\delta X_i} \delta X_i \right)^2 \right]^{1/2}$$
(B.3)

sendo que, cada termo da equação representa a influência da variável δX_i para a incerteza global do resultado δR e possui a mesma forma de derivada parcial de R em relação a X_i , multiplicado pela incerteza da variável correspondente.

Realizando uma representação da incerteza como uma fração do resultado, encontrando diretamente uma incerteza relativa, a Equação (A.4) é uma opção

$$R = X_1^a X_2^b X_3^c \dots X_N^m$$
(B.4)

$$\frac{\delta R}{R} = \left[\left(a \frac{\delta X_1}{X_1} \right)^2 + \left(b \frac{\delta X_2}{X_2} \right)^2 + \left(c \frac{\delta X_3}{X_3} \right)^2 + \dots + \left(m \frac{\delta X_N}{X_N} \right)^2 \right]^{1/2}$$
(B.5)

A determinação das incertezas associadas a cada variável foram obtidas de acordo com a incerteza do equipamento de medição e é mencionada na metodologia.

Por exemplo, para a área de transferência de calor (A), cuja expressão é definida como a multiplicação entre o comprimento (W) e a altura do aquecedor (L), o cálculo da incerteza correspondente é expresso por,

$$\frac{\delta A}{A} = \left[\left(\frac{\delta W}{W} \right)^2 + \left(\frac{\delta L}{L} \right)^2 \right]^{1/2}$$
(B.6)

APÊNDICE C – Código Computacional Desenvolvido em Linguagem de Programação do EES^{TM}

" Calculos TCC Cassio Eduardo Nadal Ferreira" "! Entrada de Dados" Teq = "[°C]"Tsq = "[°C]" Tef = "[°C]" Tsf = "[°C]"Qq = "[1/min]" Qf = "[1/min]""!Calculo das propriedades termofisicas" Tfq = ((Teq+Tsq)/2) "[°C]"Tff = ((Tef+Tsf)/2) "[°C]"X[1] =0 "!Estado liquido" Pq=Pressure(Water;T=Tfq;x=X[1]) "[kPa]" Pf=Pressure(Water;T=Tff;x=X[1]) "[kPa]" rho_q=Density(Water;T=Tfq;x=X[1]) "[kg/m³]" rho_f=Density(Water;T=Tff;x=X[1])"[kg/m³]"
cp_q=1000*Cp(Water;T=Tfq;x=X[1]) "[kJ/kg]" cp_f=1000*Cp(Water;T=Tff;x=X[1])"[kJ/kg]" "!Balanço de Energia" TDML_cc=((Tsq-Tef)-(Teq-Tsf))/ln((Tsq-Tef)/(Teq-Tsf)) Mq=(rho q)*(Qq/60000) "[kg/s]"Mf=(rho_f)*(Qf/60000) "[kg/s]" $q_q=Mq^*(cp_q)^*(Tsq-Teq)$ "[W]" q_f=Mf*(cp_f)*(Tsf-Tef) "[W]" $q_l = (q_f + q_q) "[W]"$ UA_balançoQ=q_q/TDML_cc UA_balançoF=q_f/TDML_cc "!Método Efetividade NUT" Cq=cp_q*Mq "[W/K]" Cf=cp_f*Mf "[W/K]" C_min=min(Cq;Cf) "[W/K]" C_max=max(Cq;Cf) "[W/K]" Cr=(C min/C max) W=if(Cq;Cf;(Tsf-Tef);0;(Teq-Tsq)) eff=W/(Cr*(Teq-Tef)) F=((eff*Cr)-1)/(eff-1) eff 1=(F-1)/(F-Cr) eff 2=(Teq-Tsq) / (Cr*(Teq-Tef)) F_2=((eff_2*Cr)-1)/(eff_2-1) eff_12=(F_2-1)/(F_2-Cr) $E_1=((2/eff_1)-(1+Cr))/((1+(Cr^2))^{(1/2)})$ E=if(((2/eff_1)-(1+Cr))/((1+(Cr^2))^(1/2));1;((2/eff_12)-(1+Cr))/((1+(Cr^2))^(1/2));((2/eff_1)-(1+Cr))/((1+(Cr^2))^(1/2));((2/eff_1)-(1+Cr))/((1+(Cr^2))^(1/2))) $NUT = -((1+(Cr^2))^{(-1/2)}) + ln((E-1)/(E+1))$ UA=NUT*C min "[W/K]" Dtubos e=0,01 "[m]" L=0,25"[m]" N tubos=21 A_trocatermica=pi*Dtubos_e*2*L*N_tubos "[m²]" U_nut=UA/A_trocatermica "[W/m²K]" q_nut=UA*TDML_cc "[W]" "!Calculo Coeficiente Convectivo de Transferência de Calor Interno(Tubos)"

```
Pr_q=Prandtl(Water;T=Tfq;x=X[1])
mu_q=Viscosity(Water;T=Tfq;x=X[1]) "[N.s/m<sup>2</sup>]"
k_q=Conductivity(Water;T=Tfq;x=X[1]) "[W/m.K]"
```

```
mu tubos=Viscosity(Water;T=T tubos;x=X[1]) "[N.s/m<sup>2</sup>]"
Dtubos i=0,008 "[m]"
Re_q=(4*(Mq/21))/(pi*Dtubos_i*mu_q)
x_term=if(Re_q;2300;(0,05*Re_q*Pr_q*Dtubos_i);(0,05*Re_q*Pr_q*Dtubos_i);(10*Dtubos_
i)) "[m]" "!Camada limite térmica"
x_flui=if(Re_q;2300;(0,05*Re_q*Dtubos_i);(0,05*Re_q*Dtubos_i);(10*Dtubos_i)) "[m]"
"!Camada limite fluidodinamica"
Nusselt lam1=if((mu q/mu tubos);0,0044;0;(1,86*((Re q*Pr q/(2*L/Dtubos i))^(1/3))*(
(mu q/mu tubos)^0,14));(1,86*((Re q*Pr q/(2*L/Dtubos i))^(1/3))*((mu q/mu tubos)^0,
14))) "!Sieder e Tate"
Nusselt lam2=(3,66+((0,0668*(Dtubos i/(2*L))*Re q*Pr q)/(1+0,04*((Dtubos i/(2*L))*R
e_q*Pr_q))^(2/3))) "!Kays"
Nusselt_lam=if(x_term;0,5;4,36;Nusselt_lam2;Nusselt_lam2)
f_atrito=(0,79*(ln(Re_q))-1,64)^(-2)
Nusselt gnielinski=((f atrito/8)*(Re q-
1000) *Pr_q)/(1+(12,7*((f_atrito/8)^(1/2))*((Pr_q^(2/3))-1))) "!Gnielinski"
Nusselt_dittus=if(Re_q;10000;0;(0,023*(Re_q^0,8)*(Pr_q^0,3));(0,023*(Re_q^0,8)*(Pr_
q^0,3))) "!Dittus-Boelter"
Nusselt_turb=if(Re_q;10000;Nusselt_gnielinski;Nusselt_gnielinski;Nusselt_dittus)
Nusselt d=if(Re q;2300;Nusselt lam;Nusselt lam;Nusselt turb)
h gnielinski=if(Re q;10000;(Nusselt d*k q/Dtubos i);(Nusselt d*k q/Dtubos i);(Nusse
lt_gnielinski*k_q/Dtubos_i)) "[W/m^2\overline{K}]"
h dittus=if(Re q;10000;1;(Nusselt dittus*k q/Dtubos i);(Nusselt d*k q/Dtubos i))
"[W/m<sup>2</sup>K]"
```

```
"!Calculo Coeficiente Convectivo de Transferência de Calor Externo( Método INCROPERA)"
```

```
Pr f=Prandtl(Water;T=Tff;x=X[1])
mu f=Viscosity(Water;T=Tff;x=X[1]) "[N.s/m<sup>2</sup>]"
k_f=Conductivity(Water;T=Tff;x=X[1]) "[W/m.K]"
T tubos = (Tff+Tfq)/2 "[°C]"
Pr tubos=Prandtl(Water;T=T tubos;x=X[1])
k tubos=14,9 "[W/m.K]" "!aço inoxidável AISI304 a 300K"
St=0,0263 "[m]"
N 1=5 "Número de colunas"
Dcasco i=0,148 "[m]"
B=0,098 "[m]"
A t=(Dcasco i*B)-(5*Dtubos e*B) "[m^2]"
V=Qf/(60000*A t) "[m/s]"
V max= (St*V)/(St-Dtubos e)
                              "[m/s]"
Re_max=rho_f*V_max*Dtubos_e/mu_f
Nusselt incr=0,92*0,8*(Re max^0,4)*(Pr f^0,36)*((Pr f/Pr tubos)^0,25)
h_incr=Nusselt_incr*k_f/Dtubos_e "[W/m<sup>2</sup>K]"
```

"!Calculo Coeficiente Global de Transferência de Calor"

1/U_kerngnielinski=(1/h_kern)+(Dtubos_e/(h_gnielinski*Dtubos_i))+((Dtubos_e*ln(Dtubos_e/Dtubos_i))/(2*k_tubos)) "[W/m²K]" 1/U_kerndittus=(1/h_kern)+(Dtubos_e/(h_dittus*Dtubos_i))+((Dtubos_e*ln(Dtubos_e/Dtu bos_i))/(2*k_tubos)) "[W/m²K]" 1/U_bellgnielinski=(1/h_delaware)+(Dtubos_e/(h_gnielinski*Dtubos_i))+((Dtubos_e*ln(Dtubos_e*ln(Dtubos_e/Dtubos_i))/(2*k_tubos)) "[W/m²K]" 1/U_belldittus=(1/h_delaware)+(Dtubos_e/(h_dittus*Dtubos_i))+((Dtubos_e*ln(Dtubos_e /Dtubos_i))/(2*k_tubos)) "[W/m²K]" 1/UA_incr=(1/(h_incr*pi*Dtubos_e*N_tubos*2*L))+((ln(Dtubos_e/Dtubos_i))/(2*pi*k_tub os*2*L*N_tubos))+(1/(h_gnielinski*pi*Dtubos_i*N_tubos)) "[W/m²K]" q_kerngnielinski=U_kerngnielinski*TDML_cc*A_trocatermica "[W]" q_bellgnielinski=U_bellgnielinski*TDML_cc*A_trocatermica "[W]" q_belldittus=U_belldittus*TDML_cc*A_trocatermica "[W]" q_incr=UA_incr*TDML_cc "[W]"