UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTEO DE ENGENHARIA MECÂNICA ENGENHARIA MECÂNICA

THIAGO HIROSHI FUJIMOTO

PROJETO DE REDUTOR PARA RETROFITTING DE UMA FRESADORA

TRABALHO DE CONCLUSÃO DE CURSO

PONTA GROSSA

2018

THIAGO HIROSHI FUJIMOTO

REDUTOR PARA RETROFITTING CNC DE UMA FRESADORA MANUAL

Trabalho de Conclusão de Curso apresentada como requisito parcial à obtenção do título de Bacharel em engenhara mecânica, do Departamento de Engenharia Mecânica, da Universidade Tecnológica Federal do Paraná.

Orientador: Prof. Dr. Marcelo Vasconcelos de Carvalho

PONTA GROSSA

Ministério da Educação Universidade Tecnológica Federal do Paraná Câmpus Ponta Grossa Diretoria de Graduação e Educação Profissional Departamento Acadêmico de Mecânica Bacharelado em Engenharia Mecânica

TERMO DE APROVAÇÃO

PROJETO DE REDUTOR PARA RETROFITTING DE UMA FRESADORA

por

THIAGO HIROSHI FUJIMOTO

Este Trabalho de Conclusão de Curso foi apresentado em 28 de junho de 2018 como requisito parcial para a obtenção do título de Bacharel em Engenharia Mecânica. O candidato foi arguido pela Banca Examinadora composta pelos professores abaixo assinados. Após deliberação, a Banca Examinadora considerou o trabalho aprovado.

Prof. Dr.Marcelo Vasconcelos de Carvalho Orientador

Prof. Dr.Davi Fusão Membro Titular

Prof. Me.Ruimar Rubens de Gouveia Membro Titular

Prof.Dr. Marcos Eduardo Soares

Prof. Dr. Marcelo Vasconcelos de Carvalho Coordenador do Curso

Responsável pelos TCC

- O Termo de Aprovação assinado encontra-se na Coordenação do Curso -

AGRADECIMENTO

Agradeço a todos que contribuíram no decorrer desta jornada, em especialmente: A minha família esposa que sempre me apoiou financeiramente e psicologicamente. Ao meu orientador Prof. Doutor Marcelo Vasconcelos de Carvalho que teve papel fundamental na elaboração deste trabalho. Aos meus amigos pelo companheirismo e disponibilidade para me auxiliar em vários momentos.

RESUMO

FUJIMOTO, Thiago Hiroshi Fujimoto. **Projeto de Redutor para** *Retrofitting* **de uma Fresadora**. 2018. 76 f. Trabalho de Conclusão de Curso em Bacharelado em Engenharia Mecânica - Universidade Tecnológica Federal do Paraná. Ponta Grossa, 2018.

Uma máquina furadeira-fresadora antiga pertencente a Universidade Tecnológica Federal do Paraná - campus Ponta Grossa estava em desuso. Um grupo de alunos orientado pelo professor Doutor Marcelo Vasconcelos de Carvalho resolveu realizar um *retrofitting* nesta máquina com intuito de torna-la uma fresadora do tipo CNC com um motor de passo já existente. Após conectar o motor de passo diretamente aos eixos da máquina percebeu-se que o motor não possuía torque suficiente para movimentar as mesas. Para dar continuidade ao projeto de *retrofitting*, um redutor foi dimensionado apresentando um trem de engrenagens constituído por um par de parafusos sem fim/coroa e por um par de engrenagens cilíndricas de dentes retos. Para o dimensionamento do redutor de velocidades foi necessário dimensionar o trem de engrenagens, os eixos, as chavetas e os mancais. Ao final do projeto foi observado que o motor de passo escolhido não era potente o suficiente para esta atividade.

Palavras chave: Redutor de Velocidades; *Retrofitting*; Engrenagens Cilíndricas; Engrenagens Sem-Fim.

ABSTRACT

FUJIMOTO, Thiago Hiroshi Fujimoto. **Project of speed reducer to CNC retrofitting of a manual machine milling.** 2018. 76 p. Work of Conclusion Course Graduation in Mechanical Engineering - Federal Technology University - Paraná. Ponta Grossa, 2018.

A machine of milling belong of Federal Technology University – campus Ponta Grossa was been parked. A student group mentored by professor Doctor Marcelo Vasconcelos de Carvalho determined to carry out a retrofitting in this machine with purpose of become a CNC milling with a step engine already existent. After to connect the step engine directly to axis of machine, was realize that the step engine there did not have the torque to move the table. To continue the project of retrofitting, a speed reducer was design by presenting a train of worm gear and spur gear. To design of speed reducer was necessary to design the trains of gears, the axis, the key and bearing. On the final of the project was realized that step engine chosen wasn't powerful enough to this activity.

Keywords: Speed Reducer; Retrofitting; Spur Gears; Worm Gears.

LISTA DE ILUSTRAÇÕES

2
3
3
ļ
5
3
7
3
3
)
)
I
5
7
)
)
)
2
3
3
ł
5
3
7
)
)
l
l
3
3
ł
5
5
3
7
7
3
3

Figura 39 - Fluxograma dimensionamento parafuso sem-fim	
Figura 40 - Fluxograma dimensionamento cilíndricas de dentes retos	50
Figura 41 - Fluxograma dimensionamento de árvores	51
Figura 42 - Fluxograma dimensionamento de chavetas	
Figura 43 - Fluxograma dimensionamento de rolamentos	53
Figura 44 - Velocidade linear da mesa	54
Figura 45 - Torque Motor de passo x Velocidade de rotação	55
Figura 46 - Vista isométrica do esquema de redução	61
Figura 47 - Diagrama do corpo livre eixo α plano vertical	61
Figura 48 - Diagrama do corpo livre eixo α plano horizontal	62
Figura 49 - Diagrama do corpo livre eixo b plano vertical	63
Figura 50 - Diagrama do corpo livre eixo b plano horizontal	63
Figura 51 - Diagrama corpo livre eixo γ plano vertical	65
Figura 52 - Diagrama corpo livre eixo γ plano horizontal	65

LISTA DE TABELAS

Tabela 2 - Dados de Saída55Tabela 3 - Dimensionamento parafuso sem fim e coroa56Tabela 4 - Dimensionamento engrenagens cilíndricas dentes retos58Tabela 5 - Dimensionamento do eixo α62Tabela 6 - Dimensionamento do eixo β64Tabela 7 - Dimensionamento do eixo γ66Tabela 8 - Dimensionamento da chaveta 367Tabela 9 - Dimensionamento chaveta 467
Tabela 3 - Dimensionamento parafuso sem fim e coroa56Tabela 4 - Dimensionamento engrenagens cilíndricas dentes retos58Tabela 5 - Dimensionamento do eixo α 62Tabela 6 - Dimensionamento do eixo β 64Tabela 7 - Dimensionamento do eixo γ 66Tabela 8 - Dimensionamento da chaveta 367Tabela 9 - Dimensionamento chaveta 467Tabela 10 - Dimensionamento chaveta 268
Tabela 4 - Dimensionamento engrenagens cilíndricas dentes retos58Tabela 5 - Dimensionamento do eixo α 62Tabela 6 - Dimensionamento do eixo β 64Tabela 7 - Dimensionamento do eixo γ 66Tabela 8 - Dimensionamento da chaveta 367Tabela 9 - Dimensionamento chaveta 467Tabela 10 - Dimensionamento chaveta 268
Tabela 5 - Dimensionamento do eixo α62Tabela 6 - Dimensionamento do eixo β64Tabela 7 - Dimensionamento do eixo γ66Tabela 8 - Dimensionamento da chaveta 367Tabela 9 - Dimensionamento chaveta 467Tabela 10 - Dimensionamento chaveta 268
Tabela 6 - Dimensionamento do eixo β
Tabela 7 - Dimensionamento do eixo γ66Tabela 8 - Dimensionamento da chaveta 367Tabela 9 - Dimensionamento chaveta 467Tabela 10 - Dimensionamento chaveta 268
Tabela 8 - Dimensionamento da chaveta 3
Tabela 9 - Dimensionamento chaveta 4
Tabala 10 Dimonsionamento chaveta 2
Tabela 11 - Dimensionamento mancal 169
Tabela 12 - Dimensionamento mancal 2/370
Tabela 13 - Dimensionamento mancal 4/571

SUMÁRIO

1 INTRODUÇÃO	9
1.1 JUSTIFICATIVA	9
1.2 OBJETIVO GERAL	10
1.3 OBJETIVO ESPECÍFICO	10
2 REFERENCIAL TEÓRICO	11
2.1 RETROFITING	11
2.1.1 Histórico	11
2.2 USINAGEM	12
2.2.1 Fresadora e Fresa	13
2.2.2 Movimento, Direções e Velocidade	14
2.2.3 Forças e Potências	15
2.3 TRANSMISSÃO DE POTÊNCIA	17
2.3.1 Eficiência de Transmissão	19
2.3.2 Engrenagens	20
2.3.3 Árvores de transmissão	37
2.3.4 Rolamento	38
2.3.5 Chaveta	41
2.3.6 Motor de Passo	42
2.3.7 Parafuso de Potência	43
2.3.8 Acoplamentos	45
3 MATERIAIS	46
4 MÉTODOS	48
4.1 LEVANTAMENTO DE DADOS	48
4.2 DIMENSIONAMENTO DE ENGRENAGENS	49
4.2.1 Dimensionamento do parafuso sem fim e coroa	49
4.2.2 Dimensionamento de engrenagem cilíndricas de dentes retos	50
4.3 DIMENSIONAMENTO DE ÁRVORE	51
4.4 DIMENSIONAMENTO DE CHAVETAS	52
4.5 DIMENSIONAMENTO DE ROLAMENTOS	53
5 RESULTADOS	54
5.1 LEVANTAMENTO DE DADOS	54
5.2 DIMENSIONAMENTO DAS ENGRENAGENS	56
5.2.1 Dimensionamento parafuso sem fim	56
5.2.2 Dimensionamento de engrenagem cilíndrica de dentes retos	57
5.3 DIMENSIONAMENTO EIXO	60
5.4 DIMENSIONAMENTO CHAVETA	66
5.5 DIMENSIONAMENTO DOS MANCAIS	69
6 CONCLUSÃO	72

1 INTRODUÇÃO

Pelos altos custo de obter máquinas modernas, a partir da década de 90 se popularizou o chamado processo de *retrofitting*, este processo se baseia na atualização ou melhoramento de máquinas antigas, tornando-as com características e competividade semelhantes as máquinas atualizadas e possuindo menores valores de investimento.

Com o intuito de obter uma máquina de comando numérico computadorizado, CNC, para didática, o professor Doutor Marcelo Vasconcelos de Carvalho orientou um grupo de a alunos afim de revitalizar através do processo de *retrofitting* uma antiga máquina furadeira-fresadora do tipo manual da marca ROCCO do modelo FFR-30 pertencente a Universidade Tecnológica Federal do Paraná campus Ponta Grossa a tornar uma máquina do tipo comando numérico computadorizado através da utilização de um motor de passo da marca AKIYAMA modelo AK8H8 também pertencente a universidade.

Para o processo de *retrofitting*, em um primeiro momento a máquina foi desmontada e verificou-se que um dos fusos estava com empenamento. Após alguns reparos tanto do fuso quanto em outras pequenas peças a máquina foi lubrificada e remontada.

Em continuidade ao projeto o motor de passo, foi conectado diretamente ao eixo do fuso da mesa, contudo foi verificado que este não possuía torque o suficiente para movimentar a mesa. Sendo necessário a troca do motor de passo, no qual era inviável no momento, ou um redutor de velocidade para multiplicar o torque de entrada e assim movimentar a mesa.

1.1 JUSTIFICATIVA

Para dar continuidade ao projeto de *retrofitting* e solucionar o problema da falta de torque de acionamento, este trabalho tem o intuito de utilizar o mesmo motor de passo sem que comprometa a capacidade de usinagem da máquina através de uma caixa de redução.

1.2 OBJETIVO GERAL

Este trabalho tem como objetivo projetar uma caixa redução para multiplicar o torque de acionamento de um motor de passo da marca AKIYAMA de modelo AK85H/8/3.36-1.8 para a movimentação da mesa da máquina fresadora sem que esta perca características de emprego original.

1.3 OBJETIVO ESPECÍFICO

Para o projeto do redutor se deve alcançar os seguintes objetivos específicos:

- Levantar dados de entrada e saída do sistema
- Dimensionar engrenagens
- Dimensionar eixos
- Dimensionar mancais
- Dimensionar chavetas

2 REFERENCIAL TEÓRICO

Este capítulo do trabalho mostrará ao leitor um embasamento teórico que capacitará ao entendimento do projeto. Será disposto de uma maneira evolutiva começando com uma explicação e um breve histórico de *retrofitting*, evoluindo para um conciso histórico sobre usinagem com esclarecimentos de algumas grandezas de interesse ao projeto e por fim definições de elementos de uma caixa de redução e de máquinas ferramentas.

2.1 RETROFITING

Palavra muito usual no meio das engenharias na atualidade, tem como entendimento mais especificamente para engenharia mecânica de atualizar um equipamento preexistente tornando-a mais tecnológica. Segundo Cassiano e Enrique (2014) a etimologia da palavra retrofit vem da conjunção do termo do latim "*retro*", no qual significa "movimentar-se para trás" e a palavra do inglês "*fit*", em que expressa "ajuste, adaptação", ou seja, *retrofitting* é a ação que faz um objeto voltar a possuir característica originais ou a ação de tornar a máquina melhor.

2.1.1 Histórico

Segundo Barrientos e Qualharini (2004) o termo surgiu nos Estados Unidos e na Europa, no final da década de 90, pelas indústrias da aeronáutica que utilizavam este termo para se referir a atualização de aeronaves antigas aos novos e modernos equipamentos do mercado da época.

2.2 USINAGEM

As máquinas que fazem o processo de usinagem são alguns tipos de máquinas ferramentas. Segundo a Associação Brasileira da Indústria de Máquinas e Equipamentos, 2006, máquinas ferramentas são máquinas movidas por energia externa, não animal e não humana, que dão forma a um material sólido por deformação plástica ou por remoção de material. No presente trabalho será abordado uma máquina de usinagem conhecida como furadeira-fresadora.

Já o processo de usinagem, segundo Ferraresi (1970) é o método que retira uma porção de material, porção esta denominada cavaco, de uma peça através de uma ferramenta afim de dar forma, dimensão ou acabamento a peça, ou ainda qualquer combinação destas três. Na Figura 1, demonstra a evolução de um processo de usinagem.

Remoção de cavaco

Fonte: Stoeterau (2003)

A usinagem, segundo Stoeterau (2004), é classificada em três grupos, sendo eles o de ferramenta com geometria definida, o de ferramenta de geometria não definida e por fim os de processos não convencionais.

O primeiro grupo da classificação, ferramentas com geometria definida, englobam os processos de tornear, fresar, serrar, plainar, rosquear entre outras.

O segundo grupo da classificação, ferramentas de geometria não definida, compreende os processos de polir, lixar, lapidar, brunir, retificar entre outras.

O terceiro grupo da classificação, processos não convencionais, incluem os processos de eletroerosão, remoção térmica, remoção química, eletroquímica entre outras.

2.2.1 Fresadora e Fresa

Segundo Stemmer (1995) uma fresadora é uma máquina ferramenta de usinagem com intuito de prover movimento relativo entre peça a ser usinada e a ferramenta de corte chamada de fresa. Geralmente a fresadora através da sua árvore principal fornece altas rotações a fresa enquanto árvores secundárias fazem a peça avançar sobre a ferramenta. A **Erro! Fonte de referência não encontrada.** mostra uma furadeira-fresadora.

Fonte: Autoria Própria

Segundo Stemmer (1995) uma fresa é uma ferramenta de corte, geralmente possuindo vários gumes distribuído de forma simétrica ao redor de um eixo removendo material usinado de forma intermitente. A **Erro! Fonte de referência não encontrada.** mostra uma fresa da marca.

Figura 3 - Fresa SANDVIK Coromill 331

Fonte: SANDVIK

2.2.2 Movimento, Direções e Velocidade

Na usinagem, todo movimento é relativo entre a peça e o gume de corte da ferramenta, considerando a peça parada e a ferramenta em movimento. (FERRARESI, 1970 e STEMMER 1995).

Possuindo dois tipos de movimentos: os movimentos que acarretam diretamente a saída do cavaco e aqueles que não causam diretamente a saída do cavaco. (FERRARESI, 1970).

2.2.2.1Corte

O movimento de corte está ligado diretamente na extração de cavaco da peça com o objetivo de forçar a face do material sobre a aresta cortante da ferramenta. Este movimento deve estar relacionado com o movimento de avanço, pois sem ele a extração de material da peça se dará em apenas um curso ou uma volta. Já a direção de corte é a direção instantânea do movimento de corte. A velocidade corte é a velocidade instantânea do ponto de referência do gume com direção e sentido de corte. (FERRARESI, 1970 e STEMMER 1995). A **Erro! Fonte de referência não encontrada.** mostra o movimento de corte em processo de fresamento.

Fonte: Ferraresi (1970)

2.2.2.2 Avanço

O movimento de avanço segundo Ferraresi, 1970 e Stemmer 1995 é o que provoca o deslocamento relativo da ferramenta sobre a peça, podendo ser avanço principal, avanço lateral ou a resultante destas.

Igualmente a direção de corte, a direção de avanço é a direção instantânea do movimento de avanço. A velocidade de avanço é a velocidade instantânea da ferramenta do ponto de referência do gume na direção de avanço. Na **Erro! Fonte de referência não encontrada.** é mostra a velocidade de corte, velocidade avanço bem como as respectivas direções em um fresa.

Fonte: Ferraresi (1970)

2.2.3 Forças e Potências

A força de usinagem é a força resultante sobre um ponto no gume de uma ferramenta. (FERRARESI, 1970 e WITTE 1998).

Já potência de usinagem é potência disponível no gume para que a operação de usinagem aconteça; matematicamente a potência é o produto da força pela velocidade na mesma direção. (FERRARESI, 1970 e STEMMER, 1995).

2.2.3.1Força de corte

Em uma fresa, a força de corte é devido principalmente pela rotação da ferramenta, sendo esta uma projeção da força de usinagem na direção de corte. (FERRARESI, 1970 e WITTE 1998).

2.2.3.2 Força de avanço

A força de avanço surge no gume da ferramenta devido a translação da peça sobre a ferramenta, esta força de avanço é uma projeção da força de usinagem na direção do avanço. A **Erro! Fonte de referência não encontrada.**, mostra as direções das forças e velocidades no processo de usinagem em fresa. (FERRARESI, 1970 e WITTE 1998)

Fonte: Ferraresi (1970)

2.2.3.3Potência de corte

A potência de corte é o produto da força de corte pela velocidade de corte e ela representa a potência necessária para a remoção de cavacos. (FERRARESI, 1970 e STEMMER, 1995).

2.2.3.4Potência de avanço

A potência de avanço é de grande interesse neste trabalho, já que esta é a potência necessária para executar o avanço da peça sobre a ferramenta. Como a potência de corte, a potência de avanço é o produto da força de avanço pela velocidade de avanço. Existe uma relação de entre potência de corte e potência de avanço, contudo segundo Ferraresi (1970) a potência de avanço pode chegar a ser 170 vezes menor no processo de fresamento. A **Erro! Fonte de referência não encontrada.**, mostra a representação das forças, velocidades e potências.

Fonte: FERRARESI, 1970

2.3 TRANSMISSÃO DE POTÊNCIA

Nesta seção do trabalho será introduzido alguns conceitos sobre os transmissores de potência bem como elementos necessários para construção desta como engrenagens, árvores de transmissões, chavetas e mancais.

Em um processo de usinagem com ferramentas de geometria definida é necessário a transmissão de potência e movimento gerado por um motor elétrico à ferramenta ou à peça para que estes possam cortar e/ou deslocar. Contudo em muitas ocasiões o motor não possui torque ou velocidade angular adequado para suprir as demandas do processo sendo necessário um redutor para obtenção de um maior torque ou velocidade. A Erro! Fonte de referência não encontrada., mostra o esquema de uma configuração máquina ferramenta com câmbio.

Existem dois tipos de transmissores de potência sendo eles os rígidos e os flexíveis. No grupo dos rígidos entram os trens de engrenagens, engrenagens sem-fim,

parafuso de potência, engrenagens e cremalheiras e rodas de atrito. Já no grupo dos flexíveis entram as correias e seus subtipos bem como as correntes e seus subtipos.

A **Erro! Fonte de referência não encontrada.**, mostra a classificação nos quesitos custo, vibrações, sincronismo de movimento, capacidade de transmissão de força/torque, facilidade de manutenção e vida útil segundo Stoeterau (2004) para transmissores rígidos.

Тіро	Trens de engrenagens	Engrenagens / Sem-fim	Engrenagens / Cremalheiras	Rodas de atrito
Requisitos				
Custo	Médio	médio	baixo	alto
Vibrações	alto	médio	alto	baixo
Sincronismo do movimento	alto	alto	médio	alto
Trans.forças/torque	alta	alta	alta	baixa
Facilidade de manutenção	média	média	média	baixa
Vida útil	alta	alta	alta	alta

Figura 9- Classificação de transmissores de potência rígida.

Fonte: Stoeterau (2004)

A Erro! Fonte de referência não encontrada. mostra a classificação nos quesitos custo, vibrações, sincronismo de movimento, capacidade de transmissão de força/torque, facilidade de manutenção e vida útil segundo Stoeterau (2004) para transmissores flexíveis.

Тіро		Correntes		
	Planas	Em "V"	Sincronizadoras	
Requisitos				
Custo	baixo	baixo	baixo	baixo
Vibrações	baixo	médio	médio	alto
Sincronismo do movimento	médio	médio	alto	médio
Capacidade de transmissão de forças/torque	média	média	média	alta
Facilidade de manutenção	alta	média	média	alta
Vida útil	alta	alta	média	média

Figura 10 - Classificação de transmissores de potência rígida.

Fonte: Stoetereau (2004)

2.3.1 Eficiência de Transmissão

O motor, fonte do acionamento, deve possuir potência necessária para a realização do processo de corte e/ou do avanço da mesa. Contudo na transmissão de potência entre motor e ferramenta ou motor e mesa existem perdas devido ao atrito nos mancais, nos engrenamentos, nas guias lineares, nos fusos e porcas entre outros. Esta perda de transmissão é relacionada por eficiência chamada de eficiência mecânica. Sendo assim a relação entre a potência necessária para usinar, chamada de potência útil, e a potência fornecida pelo motor, chamada de potência de acionamento é mostrada pela equação 1. (WITTE, 1998).

$$\eta_{mec} = \frac{\Phi \acute{u}til}{\Phi an} \tag{1}$$

 η_{mec} - Denota eficiência de transmissão mecânica $\Phi titil$ - Denota potência de usinagem Φan - Denota potência na saída do motor elétrico Analogamente a eficiência mecânica, existe uma eficiência entre a potência fornecida pela rede elétrica e a potência de acionamento conhecida por eficiência elétrica. A eficiência mecânica (η_{mec}) pode variar entre 60 a 80 por cento, já a eficiência elétrica (η_{el}) fica em uma constante de 90 por cento. (WITTE, 1998).

E a relação entre a potência na saída do motor elétrico e a potência consumida da rede elétrica é dada pela equação 2.

$$\eta_{el} = \frac{\Phi a n}{\Phi z u} \tag{2}$$

 η_{mec} - Denota eficiência no motor elétrico Φan - Denota potência na saída do motor elétrico Φzu - Denota potência consumida da rede elétrica

A **Erro! Fonte de referência não encontrada.** mostra, a relação entre as potências da transmissão elétrica, a potência de acionamento do motor e a potência de usinagem (potência útil).

Fonte: Witte (1998)

2.3.2 Engrenagens

São elementos de máquinas que possui o objetivo de transmitir potência sem deslizamento através do encaixe de dentes, estes dentes podem ser retos ou helicoidais e seus engajamentos podem ser internos ou externos. (MELCONIAN, 2012).

De acordo com Budynas e Nisbett, 2011 existem 4 tipos básicos de engrenagens sendo eles: as cilíndricas de dentes retos, as cilíndricas de dentes helicoidais, cônicas e

sem-fim. Contudo neste trabalho dará mais atenção ao par sem-fim e coroa e as cilíndricas de dentes retos.

2.3.2.1 Sem-fim e Coroa

O par parafuso sem-fim e coroa são utilizado quando a redução exige grande razões de reduções, estas razões podem ser de 1:1 até 360:1 enquanto outros tipos de engrenagens usualmente utilizam razões 10:1, entretanto o par sem-fim e coroa possui eficiência baixa. São transmissores de potência de eixo perpendiculares e comumente usados guindastes, máquinas têxteis, pórticos, furadeira radiais, plaina limadora, mesa de fresadora, comando de leme de navios, pontes rolantes etc. A **Erro! Fonte de referência não encontrada.** mostra um exemplo para sem-fim.

Figura 12 - Par coroa e sem fim.

Fonte: Frigo Mec

O sem-fim é uma engrenagem helicoidal de normalmente um dente ao redor de sua circunferência, quando o sem-fim rotacional uma volta completa, um ponto de contato na coroa move sentido axial a uma distância chamada de avanço L. Dado pela equação 3. (MELCONIAN, 2012; NORTON, 2013).

$$L = \tan(\lambda) \pi d \tag{3}$$

Onde L é o avanço linear do sem-fim dado em polegadas (in), λ o ângulo avanço dado em graus (°) e d é o diâmetro primitivo do sem-fim dado em polegadas (in).

O diâmetro primitivo é o círculo de contanto no engrenamento e onde os cálculos são baseados. O diâmetro primitivo do sem-fim segundo a NORTON (2013) é dada pela equação 4.

$$d \cong \frac{C^{0,875}}{2,2}$$
(4)

Onde d denota diâmetro primitivo do sem-fim dado em polegadas (in) e C é a distância entre o centro do diâmetro primitivo do sem-fim com centro do diâmetro primitivo da coroa dado em polegadas (in).

O diâmetro primitivo da coroa é definido pela equação 5.

$$d_g = 2C - d \tag{5}$$

Onde d_g denota o diâmetro primitivo da coroa em polegadas (in), C a distância entre centros em polegadas (in) e d o diâmetro primitivo do sem-fim dado em polegadas (in).

A relação de transmissão m_g, adimensional, é dada pela razão entre o número de dentes da coroa N_g e o número de dentes do sem-fim N_w, como mostra a equação 6.

$$N_g = m_g N_w \tag{6}$$

A velocidade de rotação da coroa ng dado em rotação por minuto (rot/min) é em função da velocidade de rotação do sem-fim n dado em rotação por minuto (rot/min) e da relação de transmissão, como mostra a equação 7.

$$n_g = \frac{n}{m_g} \tag{7}$$

A largura da face da coroa F em polegadas (in) é definida pela equação 8.

$$F = 0,67d \tag{8}$$

Segundo AGMA (American Gear Manufacturers Association) o dimensionamento do par sem-fim e coroa é dado através da potência máxima resistente a falha de superfície dado pela equação 9.

$$\Phi = \Phi_o + \Phi_l \tag{9}$$

Onde Φ é a potência de entrada máxima resistente a falha de superfície dado em hp, Φ_0 potência de saída dado em hp e Φ_1 é a potência perdida por atrito no engrenamento dado em hp.

A potência de saída Φ_0 é definida pela equação 10.

$$\Phi_o = \frac{nW_{tg}d_g}{126000m_g} \tag{10}$$

Onde Wtg denota a força tangencial na coroa dado em libras força (lbf), dg denota diâmetro primitivo da coroa em polegadas (in) e mg é a relação de transmissão adimensional.

A potência perdida Φ_1 dado em hp é definida pela equação 11.

$$\Phi_l = \frac{V_t dW_f}{33000} \tag{11}$$

Onde Vt denota a velocidade tangencial no diâmetro primitivo do sem-fim dado em pés por minuto (fpm), d é o diâmetro primitivo do sem-fim dado em polegadas (in) e Wf é a força de atrito dado em libras força (lbf).

A força tangencial W_{tg} na coroa é definida pela equação 12, no qual é igual a carga axial no sem-fim W_{aw} .

$$W_{tg} = C_s C_m C_v d_g^{0,8} F = W_{aw}$$
(12)

Onde C_s denota o fator de materiais, C_m denota o fator de correção de razão, C_v denota o fator de velocidade, d_g denota o diâmetro primitivo da coroa e F a espessura da coroa.

O fator de materiais C_s é definido pela equação 13 ou equação 14.

• Se C < 8 in

$$C_s = 1000 \tag{13}$$

• Se C
$$\geq$$
 8 in

$$C_s = 1411,6518 - 455,825\log_{10}^{d_g} \tag{14}$$

(15)

O fator de correção de razão C_m é definido pela equação 15, equação 16 ou equação 17.

• Se 3 < m_g \leq 20 $C_m = 0.0200 \sqrt{-m_g^2 + 40m_g - 76} + 0.46$

• Se
$$20 < m_g \le 76$$

20.

$$C_m = 0.0107 \sqrt{-m_g^2 + 56m_g - 5145} \tag{16}$$

Se 76 < m_g $C_m = 1,1483 - 0,00658m_g \tag{17}$

O fator de velocidade C_v é definido pela equação 18, equação 19 ou equação

- Se 0 < V_t \leq 700 fpm $C_v = 0.659 e^{-0.011 V_t}$ (18)
- Se $700 < V_t \le 3000 \text{ fpm}$

$$C_{\nu} = 13,31 V_t^{-0,571} \tag{19}$$

• Se 3000 < Vt fpm

$$C_{\nu} = 65,52V_t^{-0,774} \tag{20}$$

Onde Vt denota a velocidade tangencial no diâmetro primitivo do sem-fim é definido pela equação 21.

$$V_t = \frac{\pi nd}{12cos\lambda} \tag{21}$$

A carga de atrito Wf demonstrada é definida pela equação 22.

$$W_f = \frac{\mu W_{tg}}{\cos \lambda \cos \phi} \tag{22}$$

Onde W_{tg} denota força tangencial em lbf, λ denota ângulo de avanço e μ denota o coeficiente de atrito definido pela equação 23, equação 24 ou equação 25.

• Se $0 = V_t$ fpm

$$\mu = 0.15$$
 (23)

• Se $0 < V_t \le 10$ fpm

$$\mu = 0,124e^{(-0,074V_t^{0.645})} \tag{24}$$

• Se 10 < Vt fpm

$$\mu = 0,103e^{(-0,110V_t^{0,450})} + 0,012$$
⁽²⁵⁾

Na equação 22 ¢ denota o ângulo de pressão, segundo a AGMA este ângulo pode ser definido de acordo com o número de dentes da coroa como mostra a

dentes para engrenagens sem-fim Fonte: Referência 6						
φ	N _{min}					
14,5	40					
17,5	27					
20	21					
22,5	17					
25	14					
27,5	12					
30	10					

Figura 13 - Relação número de dentes e ângulo de pressão.

A AGMA sugeriu números mínimos de

Fonte: Norton (2013)

A força radial é comum ao parafuso sem fim e a coroa, no qual é determinada através da equação 26.

$$W_r = \frac{W_{tg} \tan \phi}{\cos \lambda} \tag{26}$$

Onde W_r denota força radial em libras-força (lbf), W_{tg} denota força tangencial em em libras-força (lbf), ϕ ângulo de pressão em graus e λ ângulo de avanço em graus (°).

A força axial na coroa W_{ag}, no qual é igual a força tangencial no sem-fim é determinado através da equação 27.

$$W_{ag} = \frac{2T_W}{d} = W_{tw} \tag{27}$$

Onde W_{ag} denota força axial na coroa dado em libra-força (lbf), d denota diâmetro primitivo do sem-fim em polegadas (in) e T_w denota torque no sem-fim em lbf.in, no qual pode ser definido pela equação 28.

$$T_w = \frac{198000\Phi}{n\pi} \tag{28}$$

Onde T_w denota torque no sem fim em libra-força polegadas (lbf.in), Φ denota potência de entrada em hp, n denota velocidade de rotação de entradas em rotações por minuto (rot/min).

Já o torque na coroa pode ser definido pela equação 29.

$$T_g = W_{tg} \frac{d_g}{2} \tag{29}$$

Onde T_g denota torque na coroa em libra-força polegada (lbf.in), W_{tg} denota força tangencial na coroa em libra-força, d_g denota diâmetro primitivo da coroa em polegadas (in).

2.3.2.2 Cilíndricas de dentes retos

As engrenagens cilíndricas de dentes retos são os mais simples dos tipos de engrenagens, possuem dentes paralelos ao eixo de rotação e são utilizados para a transmissão entre eixos paralelos. Na **Erro! Fonte de referência não encontrada.** demonstrando um exemplo de engrenagem cilíndrica de dentes retos. (BUDYNAS e NISBETT, 2011)

Figura 14- Engrenagem cilíndrica de dentes retos

Fonte: SOLUÇÕES INDUSTRIAIS

O dimensionamento de uma engrenagem cilíndrica de dentes retos segundo a AGMA é determinado na tensão de flexão nos dentes e na tensão de superfície dos dentes, nos quais as tensões aplicadas nos dentes devem ser menores que as respectivas tensões a fadiga.

Para o dimensionamento das engrenagens cilíndricas de dentes retos algumas dimensões e grandezas devem ser determinado anteriormente. O projetista deve determinar número de dentes do pinhão N_p, relação de engrenamento m_g, velocidade de rotação do pinhão n_p em rotações por minuto (rot/min) e torque no pinhão T_p em libra-força polegada (lbf.in).

Segundo Norton (2013) para se determinar o número de dentes em uma coroa N_g, deve-se utilizar a equação 30.

$$N_g = N_p m_g \tag{30}$$

Onde N_g é o número de dentes na coroa, N_p denota o número de dentes no pinhão e m_g a relação de transmissão do par de engrenagemento.

Para determinar o diâmetro primitivo do pinhão d_p em polegadas (in), utiliza-se a equação 31.

$$d_p = \frac{N_p}{p_d} \tag{31}$$

Já para determinar o diâmetro primitivo da coroa d_g em polegadas (in) do par de engrenagens cilíndricas de dentes retos, utiliza-se a equação 32.

$$d_g = \frac{N_g}{p_d} \tag{32}$$

A distância entre os centros do pinhão e da coroa em polegadas (in) é determina pela equação 33.

$$C = \frac{(d_p + d_g)}{2} \tag{33}$$

O torque da coroa T_g em libra-força polegada (lbf.in) é definido pela equação 34.

$$T_g = T_p m_g \tag{34}$$

A força transmitida, força tangencial, dado em libra-força polegada, comum ao pinhão e a coroa é definido pela equação 35.

$$W_t = \frac{2T_p}{d_p} = \frac{2T_g}{d_g} \tag{35}$$

A largura da face F, em polegadas (in), deve ser escolhida pelos limites dados pela inequação 36.

$$\frac{8}{p_d} < F < \frac{16}{p_d} \tag{36}$$

A tensão de flexão nos dentes das engrenagens é dada pela equação 37.

$$\sigma_b = \frac{W_t p_d K_a K_m K_s K_B K_I}{FJ K_v} \tag{37}$$

Onde σ_b denota a tensão de flexão no dente da engrenagem em psi, Wt força tangencial dado em libra-força (lbf), pd denota passo diametral dado em polegas⁻¹ (in⁻¹), F denota largura da engrenagem em polegadas (in), Ka, Km, Ks, KB, KI, J, Kv são fatores de correção dado pela AGMA.

O fator de aplicação Ka, este fator leva em consideração o tipo da máquina motriz de acionamento da potência e também o tipo de trabalho, dada pela **Erro! Fonte de referência não encontrada.**

Figura 15 - Fator de aplicação Ka.									
	Máquina movida								
Máquina motora	Uniforme	Choque moderado	Choque severo						
Uniforme (motor elétrico, turbina)	1,00	1,25	1,75 ou mais						
Choque leve (motor multi- cilindros)	1,25	1,50	2,00 ou mais						
Choque médio (motor de um único cilindro)	1,50	1,75	2,25 ou mais						

Fonte: Norton (2013)

O fator de distribuição de carga K_m, este valor leva em consideração a distribuição desigual pelo desalinhamento ou desvio na forma do dente, este desalinhamento será maior pronunciado em faces mais largas, valores de K_m para diferentes larguras de face é dada na **Erro! Fonte de referência não encontrada.**.

Fatores de distribuição de carga K _m							
Largura da face in (mm)							
							(50)
(150)	1,7						
(250)	1,8						
(500)	2,0						
	uição de ca face (mm) (50) (150) (250) (500)						

Figura 16 - Fator de distribuição de carga Km.

Fonte: Norton (2013)

O fator de tamanho K_s, fator devido ao carregamento de fadiga, recomenda-se utilizar a 1, pois a AGMA ainda não estabeleceu normas para fator de tamanho, em caso, para situações de dentes alongados utilizar 1,25 ou 1,5.

O fator de espessura de borda K_B, este valor leva em consideração anéis ou catracas introduzidas na engrenagem, para engrenagens sólidas este valor é igual 1. Em outros casos utilizar a equação 39 ou equação 40.

$$m_B = \frac{t_R}{h_t} \tag{38}$$

Sendo m_B razão de recuo, t_R espessura de borda medida do diâmetro da raiz até o diâmetro interno e h_t profundidade total do dente.

- Se $0.5 \le m_B \le 1.2$ $K_B = -2m_B + 3.4$ (39)
- Se $m_B > 1,2$

$$K_B = 1 \tag{40}$$

O fator de ciclo de carga K_I, este valor leva em consideração a exposição de tensão por unidade de tempo em engrenagem intermediária, para engrenagens não intermediária este valor é igual a 1 e para intermediária este valor é igual a 1,42.

O fator geométrico de flexão J, ocorre de acordo com o número de dentes do pinhão e da coroa. A **Erro! Fonte de referência não encontrada.** mostra valores de fator geométrico para engrenagens com ângulo de pressão de 20º.

	carre	egamei	nto na	ponta⁵				entes d	lo pinhã	0						
Dontos do	1	2	1	4	1	7	2	1	2	6	3	5	5	5	1	35
engrenagem	Р	G	Р	G	Р	G	Р	G	Р	G	Р	G	Р	G	Р	G
12	υ	U														
14	υ	U	υ	U												
17	υ	U	υ	U	υ	υ										
21	υ	U	υ	U	υ	υ	0,24	0,24								
26	υ	U	υ	U	υ	υ	0,24	0,25	0,25	0,25						
35	υ	U	υ	U	υ	υ	0,24	0,26	0,25	0,26	0,26	0,26				
55	υ	U	υ	U	υ	υ	0,24	0,28	0,25	0,28	0,26	0,28	0,28	0,28		
135	υ	U	υ	U	υ	υ	0,24	0,29	0,25	0,29	0,26	0,29	0,28	0,29	0,29	0,2

Figura 17 - Fator geométrico de flexão J para ângulo de pressão 20º.

Fonte: Norton (2013)

O fator dinâmico K_v, este valor leva em consideração a vibração do impacto gerada no engrenamento dos dentes e é dada pela equação 41.

$$K_{\nu} = \frac{50}{50 + \sqrt{200V_t}} \tag{41}$$

Segundo Norton (2013) para determinar a tensão de superfície nos dentes é definida a equação 42.

$$\sigma_c = C_p \sqrt{\frac{W_t C_a C_m C_s C_f}{F I d_p C_v}}$$
(42)

Onde Ca, Cm, Cv, Cs são fatores respectivamente iguais a Ka, Km, Kv, Ks.

I denota o fator geométrico dada pela equação 43. Este fator leva em conta a curvatura e o ângulo dos dentes da engrenagem

$$I = \frac{\cos\phi}{\frac{1}{\rho_p} + \frac{1}{\rho_g}} \tag{43}$$

Onde ρ_p é o raio de curvatura do dente do pinhão e ρ_g é o raio de curvatura do dente da coroa dado pelas equações 44 e 45 respectivamente:

$$\rho_p = \sqrt{(r_{pc} + \frac{1}{p_{dc}})^2 - (r_{pc} \cos \phi)^2} - \frac{\pi}{p_{dc}} \cos \phi$$
(44)

$$\rho_g = C_c \sin \phi + \rho_p \tag{45}$$

O acabamento superficial grosseiro é levando em conta pelo coeficiente C_f, contudo a AGMA não estabeleceu uma norma quanto a isto, sendo recomendado por Norton (2013) o valor de 1.

O coeficiente elástico, C_p é determinado através da **Erro! Fonte de referência não encontrada.Erro! Fonte de referência não encontrada.** Este coeficiente leva em consideração a diferenças entre os materiais dos dentes

*** *	O coeficiente elástico <i>C_p</i> da AGMA em unidades de (psi) 0,5 ([MPa]0,5)* [†]								
				Material d	a engrenage	em			
Material	<i>E_p</i> psi	Aço	Ferro	Ferro	Ferro	Alumínio	Estanho		
pinhão	(MPa)		maleável	nodular	fundido	bronze	bronze		
Aço	30E6	2300	2180	2160	2100	1950	1900		
	(2E5)	(191)	(181)	(179)	(174)	(162)	(158)		
Ferro	25E6	2180	2090	2070	2020	1900	1850		
maleável	(1,7E5)	(181)	(174)	(172)	(168)	(158)	(154)		
Ferro	24E6	2160	2070	2050	2000	1880	1830		
nodular	(1,7E5)	(179)	(172)	(170)	(166)	(156)	(152)		
Ferro	22E6	2100	2020	2000	1960	1850	1800		
fundido	(1,5E5)	(174)	(168)	(166)	(163)	(154)	(149)		
Alumínio	17,5 <i>E</i> 6	1950	1900	1880	1850	1750	1700		
bronze	(1,2 <i>E</i> 5)	(162)	(158)	(156)	(154)	(145)	(141)		
Estanho	16E6	1900	1850	1830	1800	1700	1650		
bronze	(1,1E5)	(158)	(154)	(152)	(149)	(141)	(137)		

Figura 18- Coeficiente elástico Cp

Fonte: Norton (2013)

Segundo Norton (2013) para determinar a correção de resistência a fadiga de flexão das engrenagens S_{fb} dada em psi, utiliza-se a equação 46.

$$S_{fb} = \frac{K_L S_{fb'}}{K_T K_R} \tag{46}$$

Onde K_L é o fator de vida, este fator é baseado na resistência a flexão do material mostrada pela **Erro! Fonte de referência não encontrada.**.

Fonte: Norton (2013)

 K_T é o fator de temperatura e dada pela equação 47, dada em função da temperatura do óleo em Fahrenheit, contudo temperatura de óleo até 250 °F (121 °C) o valor de K_T pode ser considerado igual a 1.

$$K_T = \frac{460 + T_F}{620} \tag{47}$$

 K_R , é o fator que leva em consideração a confiabilidade, a **Erro! Fonte de referência não encontrada.** demonstra os principais valores de confiabilidade em percentagem e valores de K_R .
Figura 20 - Fator de confiabilidade K	R
---------------------------------------	---

Fator K _R da AGMA				
Confiabilidade %	K _R			
90	0,85			
99	1,00			
99,9	1,25			
99,99	1,50			

Fonte: Norton (2013)

S_{fb}, resistência à fadiga AGMA é dado pela Erro! Fonte de referência não encontrada.

Class		Decimação			Resistência à fadiga de flexão	
Material	AGMA	do material	Tratamento térmico	Dureza superficial mínima	psi x 10 ³	MPa
Aço	A1-A5		Endurecimento completo	≤ 180 HB	25-33	170-230
			Endurecimento completo	240 HB	31-41	210-280
			Endurecimento completo	300 HB	36-47	250-325
			Endurecimento completo	360 HB	40-52	280-360
			Endurecimento completo	400 HB	42-56	290-390
			Endurecimento por chama ou indução	Tipo A padronizado 50-55 HRC	45-55	310-380
			Endurecimento por chama ou indução	Tipo B padronizado	22	150
			Cementação por carbono e endurecimento superficial	55-64 HRC	55-75	380-520
		AISI 4140	Nitretado	84,6 HR15N [†]	34-45	230-310
		AISI 4340	Nitretado	83,5 HR15N	36-47	250-325
		Nitroliga 135M	Nitretado	90,0 HR15N	38-48	260-330
		Nitroliga	Nitretado	90,0 HR15N	40-50	280-345
		2,5% Cromo	Nitretado	87,5-90,0 15N	55-65	380-450
Ferro	20	Classe 20	Como fundido		5	35
recozido	30	Classe 30	Como fundido	175 HB	8	69
	40	Classe 40	Como fundido	200 HB	13	90
Ferro	A-7-a	60-40-18	Recozido	140 HB	22-33	150-230
nodular	A-7-c	80-55-06	Revenido e temperado	180 HB	22-33	150-230
(ductil)	A-7-d	100-70-03	Revenido e temperado	230 HB	27-40	180-280
	A-7-e	120-90-02	Revenido e temperado	230 HB	27-40	180-280
Ferro	A-8-c	45007		165 HB	10	70
maleável	A-8-e	50005		180 HB	13	90
(periitico)	A-8-f	53007		195 HB	16	110
	A-8-i	80002		240 HB	21	145
Bronze	Bronze 2	AGMA 2C	Molde de areia	40 ksi resistência de tração mínima	5,7	40
	Al/Br 3	ASTM B-148 78 liga 954	Tratado termicamente	90 ksi resistência de tração mínima	23,6	160

Figura 21 - Resistênc	cia à fadiga	de flexão S	6fb' AGMA
-----------------------	--------------	-------------	-----------

Fonte: Norton (2013)

Segundo Norton (2013) para determinar a resistência a fadiga de superfície, S_{fc}, dada em psi, utiliza-se a equação 48.

$$S_{fc} = \frac{C_L C_H S_{fc\prime}}{C_T C_R} \tag{48}$$

No qual o coeficiente $C_T \in C_R$ são os mesmos coeficientes de $K_T \in K_R$ respectivamente. Já C_L tem o mesmo princípio que K_L , contudo obedece ao gráfico da **Erro! Fonte de referência não encontrada.**

Figura 22 - Coeficiente de vida de superfície CL

Сн é o fator de dureza do material, e é dado pela equação 49.

$$C_H = 1 + A(m_{Gc} - 1) \tag{49}$$

Onde o coeficiente A leva em consideração a razão de dureza do pinhão pela dureza da coroa.

• Se
$$\frac{HB_p}{HB_g} < 1,2$$

 $A = 0$ (50)

• Se
$$1,2 \le \frac{HB_p}{HB_g} \le 1,7$$

 $A = 0,00898 \frac{HB_p}{HB_g} - 0,00829$
(51)

• Se
$$\frac{HB_p}{HB_g} > 1,7$$

 $A = 0,00698$ (52)

 $S_{fc'}$, resistência à fadiga de superfície AGMA é dada pela Erro! Fonte de referência não encontrada.

Resistências à fadiga de superfície S _{fe} ' da AGMA para seleção de materiais para engrenagem*						
	Classe	Designação			Resistên de t	cia à fadiga flexão
Material	AGMA	do material	Tratamento térmico	Dureza superficial mínima	psi x 10 ³	MPa
Aço	A1-A5		Endurecimento completo	≤ 180 HB	85-95	590-660
			Endurecimento completo	240 HB	105–115	720-790
			Endurecimento completo	300 HB	120-135	830-930
			Endurecimento completo	360 HB	145–160	1000-1100
			Endurecimento completo	400 HB	155–170	1100-1200
			Endurecimento por chama ou indução	50 HRC	170–190	1200-1300
			Endurecimento por chama ou indução	54 HRC	175–195	1200-1300
			Cementação por carbono e endurecimento superficial	5564 HRC	180–225	1250–1300
		AISI 4140	Nitretado	84,6 HR15N [†]	155–180	1100-1250
		AISI 4340	Nitretado	83,5 HR15N	150–175	1050-1200
		Nitroliza 135M	Nitretado	90,0 HR15N	170–195	1170-1350
		Nitroliza	Nitretado	90,0 HR15N	195–205	1340-1410
		Cromo 2,5%	Nitretado	87,5 HR15N	155–172	1100-1200
		Cromo 2,5%	Nitretado	90,0 HR15N	192–216	1300-1500
Ferro	20	Classe 20	Como fundido		50-60	340-410
fundido	30	Classe 30	Como fundido	175 HB	65-70	450-520
	40	Classe 40	Como fundido	200 HB	75-85	520-590
Ferro	A-7-a	60-40-18	Recozido	140 HB	77–92	530-630
nodular	A-7-c	80-55-06	Revenido e temperado	180 HB	77–92	530-630
(ducui)	A-7-d	100-70-03	Revenido e temperado	230 HB	92-112	630-770
	А-7-е	120-90-02	Revenido e temperado	230 HB	103–126	710-870
Ferro	A-8-c	45007		165 HB	72	500
maleável (perlítico)	А-8-е	50005		180 HB	78	540
(perituco)	A-8-f	53007		195 HB	83	570
	A-8-i	80002		240 HB	94	650
Bronze	Bronze 2	AGMA 2C	Molde de areia	40 ksi resistência de tração mínima	30	450
	Al/Br 3	ASTM B-148 78 liga 954	Tratado termicamente	90 ksi resistência de tração mínima	65	450

Figura 23 - Resistência a fadiga de superfície Sfc' AGMA

Fonte: Norton (2013)

O coeficiente de segurança contra falha de falha de flexão é dado pela equação

53:

$$FS_b = \frac{S_{fb}}{\sigma_b} \tag{53}$$

O coeficiente de segurança contra falha de falha de superfície é dado pela equação 54:

$$FS_c = \frac{S_{fc}}{\sigma_c} \tag{54}$$

Os coeficientes de seguranças dada pelas equações 59 e 60 devem obrigatoriamente ser maior que um.

2.3.3 Árvores de transmissão

Eixos transmissores de potência e movimento rotacional, também conhecidos como eixo-árvore, são elementos de transmissão combinados de engrenagens, polias, catracas entre outros que servem para transmitir torque e movimento circular de um ponto a outro. Pode possuir vários tipos de seção transversal, contudo a seção transversal circular é a mais utilizada. (BUDYNAS, NISBETT 2011; NORTON, 2013; STOETERAU, 2004).

Segundo Stoeterau (2004) em um projeto de máquina ferramenta, a árvore deve possuir um dimensionamento bem apurado pois a maior parte dos esforços gerado são absorvidos pelos mancais. A **Erro! Fonte de referência não encontrada.** mostra um exemplo de árvore de transmissão.

Segundo Melconian (2012) para dimensionar uma árvore de transmissão deve se determinar as forças radiais, tangenciais e axiais causadas pelos engrenamentos, tanto no plano horizontal quanto no plano vertical como mostrados na seção anterior.

Após determinadas as forças atuantes no eixo, determinar as reações de apoio nos mancais e na sequência o momento fletor máximo no eixo dimensionado, tanto plano vertical Mvmáx quanto no plano horizontal MHmáx.

Na sequência, determinar o momento fletor resultante dado pela equação 55.

$$M_r = \sqrt{M_{Vmáx}^2 + M_{Hmáx}^2}$$
(55)

Após determinado o momento resultante, Mr, determinar momento ideal, Mi, dada pela equação 56:

$$M_i = \sqrt{M_r^2 + \left(\frac{a}{2}T\right)^2} \tag{56}$$

Onde a denota coeficiente de Bach, dada pela equação 57.

$$a = \frac{\sigma_{fadm}}{\tau_{fadm}} \tag{57}$$

Por fim determinar o diâmetro mínimo dado pela inequação 58.

$$d \ge 2.17 \sqrt[3]{\frac{b.M_i}{\sigma_{fadm}}}$$
(58)

Onde b é o fator de forma dado pelas equações 59 ou equação 60.

• Se o eixo for maciço

$$b = 1 \tag{59}$$

• Se o eixo for vazado

$$b = \frac{1}{1 - \left(\frac{d}{D}\right)^4} \tag{60}$$

2.3.4 Rolamento

Segundo Stoeterau (2004) mancais de rolamento são elementos de máquinas nos quais permitem apenas um grau de liberdade, rotação em determinado eixo, que estão envolvidos em transmissão ou absorção de forças axiais e/ou radiais. Para este trabalho o mancal servirá de apoio à árvore disponibilizando a liberdade de rotação diminuindo perdas por atritos. A Erro! Fonte de referência não encontrada. mostra um exemplo de rolamento do tipo de esferas.

Figura 25 – Rolamento de esfera NSK.

Fonte: NSK (2018)

Existem basicamente duas categorias de mancais de elementos rolantes, contudo dentro destas categorias existem diversos subtipos.

Os mancais de esferas possuem várias esferas confinadas entre duas pistas como mostrado na **Erro! Fonte de referência não encontrada.**, este tipo de mancal suporta cargas tanto radiais quanto axiais e combinações destas. (NORTON, 2013)

Os mancais de rolos, **Erro! Fonte de referência não encontrada.**, possuem rolos ao invés de esferas confinadas nas pistas, segundo Norton (2013) este tipo de mancal pode suporta cargas estática e dinâmica maiores que o tipo de esfera, por possuírem uma linha contato ao invés de pontos de contato como os mancais esféricos, contudo este tipo de mancal pode suportar carga apenas radiais ou apenas axiais, a depender do tipo de mancal de rolamento.

Figura 26 - Mancal de rolo esférico NSK

Fonte: NSK (2018)

Os rolamentos são dimensionados através seu tempo de vida à fadiga, segundo Norton (2013), determina-se o tempo de vida à fadiga através da equação 61 para rolamentos esféricos e equação 62 para rolamentos de rolo.

Mancais de esferas

$$L_{10} = \left(\frac{C}{P}\right)^3 \tag{61}$$

• Mancais de rolos

$$L_{10} = \left(\frac{C}{P}\right)^{\frac{10}{3}}$$
(62)

Onde L₁₀ denota o número de ciclos até a falha a fadiga, C denota a carga dinâmica dado em libras força e P a carga aplicada sobre o rolamento dado em libras força.

Quando existir cargas axiais uma carga efetiva corrigida deve ser determinada, esta correção é dada pela equação 63.

$$P = XVF_r + YF_a \tag{63}$$

Onde F_r denota a carga radial estática atuante no mancal dada em libra-força (lbf) e F_a a carga axial estática atuante no mancal dada em libra-força (lbf), X denota um fator radial, V denota fator de rotação e Y denota fator axial.

V será 1 quando o anel interno do mancal está rodando e 1,2 para anel interno estacionário.

Quando a razão dada pela inequação 64 for verdadeira

$$\frac{F_a}{VF_r} \le e \tag{64}$$

Então a força axial pode ser ignorada, ou seja, X=1 e Y=0.

Para outros casos deve ser utilizar a Erro! Fonte de referência não encontrada.

Figura 27 - Fatores V,X,Y para mancais radiais

Fonte: Norton (2013) apud SKF

As cargas dinâmica e estática são encontradas através de catálogos de fabricantes de rolamentos.

2.3.5 Chaveta

Chavetas são uma parte de maquinaria desmontável com intuito evitar rotação relativa entre uma árvore e elementos a ele acoplados como engrenagens e polias transmitindo potência da árvore ao componente ou do componente à árvore. Existem vários tipos de chavetas, dentre elas estão as quadradas, as cônicas, as paralelas e as de Woodruff, cada qual possuindo perfis diferentes. na **Erro! Fonte de referência não encontrada.** diversos tipos de perfis são mostrados.

Fonte: RS ASSOCIAÇÃO (2018)

Segundo Melconian (2012) o dimensionamento de uma chaveta se dá pela área necessária para resistir a esforços de cisalhamento e flexão. As tensões de cisalhamento e de flexão devem ser obrigatoriamente menores que as tensões admissíveis.

A tensão de cisalhamento em uma chaveta é dada pela equação 65

$$\tau = \frac{W_t}{A_{cis}} = \frac{W_t}{b.l} \tag{65}$$

Onde Wt indica força tangencial no eixo, Acis é a área que sofre o cisalhamento, b é a largura da chaveta e I é comprimento da chaveta.

Determinar a tensão de esmagamento (flexão) em uma chaveta, no qual é dada pela equação 66.

$$\sigma = \frac{W_t}{A_{esm}} = \frac{W_t}{l.(h - t_1)} \tag{66}$$

Onde W_t indica força tangencial no eixo, A_{esm} é a área que sofre a flexão, h é a altura total da chaveta, t_1 é a altura em que a chaveta fica alojada no eixo e I é comprimento da chaveta.

2.3.6 Motor de Passo

Segundo Brites e Santos (2008) um motor de passo é um dispositivo eletromecânico capaz de transformar pulsos elétricos em rotações. Estas rotações são precisos e pequenos incrementos de ângulo na árvore, estes incrementos são chamados

de passos. A sequência dos pulsos elétrico refletem diretamente na velocidade da rotação bem como na direção da rotação. São amplamente usados em impressoras, scanners, robôs, câmera de vídeos, brinquedos, automação industrial entre outros. O seu funcionamento é a partir de pares de solenoides que quando energizados faz a árvore rotacionar pequenas variações de ângulo. A **Erro! Fonte de referência não encontrada.** mostra um exemplo de motor de passo.

Figura 29 - Motor de passo NEOMOTION

Fonte: NEOMOTION (2018)

2.3.7 Parafuso de Potência

Os parafusos de potência, também conhecidos como parafusos de avanço ou fusos, são os responsáveis em transformar o movimento circular provinda de um motor ou caixa de redução em movimentos lineares. Muito utilizado em macacos, morsas e avanço em máquinas ferramentas. Basicamente são eixos de secção circular roscado em conjunto com uma porca. Geralmente seu funcionamento se dá pela locomoção da porca em sentido axial a medida que eixo rotacional. (BUDYNAS e NISBETT, 2011. NORTON, 2013, COLLINS, 2012). A Erro! Fonte de referência não encontrada. mostra um exemplo de um parafuso de potência.

Fonte: AVA LINEAR SYSTEM (2017)

O parafuso de potência pode apresentar vários tipos de rocas sendo elas

TIPOS D	DE ROSCAS (PERFIL DE FILETE)	APLICAÇÃO
Triangular		Parafusos e porcas de fixação na união de peças. Ex.: Fixação de roda de carro.
Trapezoidal		Parafusos que transmitem movimento suave e uniforme. Ex.: Fusos de máquinas.
Quadrado		Parafusos que sofrem grandes esforços e choques na transmissão. Ex.: Prensas e morsas.
Redondo		Parafusos de grandes diâmetros sujeitos a grandes esforços. Ex.: Equipamentos Ferroviários
Dente de Serra		Parafusos que exercem grande esforço num só sentido. Ex.: Macacos de catraca.

Figura 31 - Tipo de roscas de parafuso de potência.

Fonte: Galdino (2014)

Segundo Galdino (2004) a velocidade de rotação de um fuso é determinada de acordo com a equação 67.

$$n = v. A^{-1}$$
 (67)

Sendo n denotando rotação em rot/min, v denotando velocidade de avanço em mm.min⁻¹ e A avanço em mm.

Segundo Norton (2013) o torque fornecido no fuso é dado pela equação 68.

$$T = \frac{198000\Phi}{n\pi} \tag{68}$$

Onde T denota torque no sem fim em libra-força polegadas (lbf.in), Φ denota potência de entrada em hp, n denota velocidade de rotação do fusoem rotações por minuto (rot/min).

2.3.8 Acoplamentos

Acoplamentos são dispositivos mecânico para conectar eixos rotativos para transmissão de torque. Os acoplamentos podem ser divididos basicamente em duas categorias: os rígidos e os flexíveis. (COLLINS, 2012; NORTON, 2013).

Os acoplamentos rígidos travam os dois eixos conjuntamente, isto suprimi movimentos relativos. São utilizados quando necessário precisão e fidelidade da transmissão do torque e são simples, baratos e relativamente fácil de projetar, contudo requerem alinhamento colineares precisos em sua montagem. No mercado existem três tipos em geral, sendo os acoplamentos parafusado, acoplamentos com chavetas e acoplamentos engastados. (COLLINS 2012; NORTON 2013).

Figura 32 - Acoplamentos rígido

Fonte: Norton (2013)

Os acoplamentos flexíveis são utilizados para acomodar pequenos desalinhamentos, sendo estes desalinhamentos os axiais, os angulares, os de paralelismo e os torcionais. Os acoplamentos de mandíbula, de disco flexível, de

engrenagem de espiral, de elo são alguns exemplos dos diversos tipos de acoplamento flexíveis existente no mercado. A **Erro! Fonte de referência não encontrada.** de um acoplamento espiral. (COLLINS, 2012; NORTON, 2013).

Figura 33 - Acoplamento de espiral

Fonte: Norton (2013)

3 MATERIAIS

Os materiais utilizados neste trabalho foram:

 Uma furadeira-fresadora do tipo manual da marca ROCCO do modelo FFR-30, Erro! Fonte de referência não encontrada., pertencente a Universidade Tecnológica Federal do Paraná – Campus Ponta Grossa.

Fonte: Autoria Própria

 A furadeira-fresadora ROCCO FFR-30 possui um motor de indução na árvore de avanço para força motriz, da marca EBERLE de modelo SD 71B de acordo com a Erro! Fonte de referência não encontrada..

Fonte: Autoria Própria

Um motor de passo da marca AKIYAMA e modelo AK85H8, Erro! Fonte de referência não encontrada.:

- Fonte: Autoria Própria

- Software Microsoft Excel 2016
- Software SolidWorks Student Edition.

4 MÉTODOS

Este capítulo demonstra como deve ser executado o dimensionamento da caixa de redução para o *retrofitting* da fresa, para o dimensionamento a **Erro! Fonte de referência não encontrada.** mostra um fluxograma das etapas que um dimensionamento de redutor de velocidade requer.

Fonte: Autoria Própria

4.1 LEVANTAMENTO DE DADOS

Os dados de entrada e saída como potências, torques e velocidades de rotações são de fundamental importância para o dimensionamento do projeto. Para tal a **Erro! Fonte de referência não encontrada.** mostra os seguintes passos que foram executados:

Figura 38 - Fluxograma Levantamento de Dados

Fonte: Autoria Própria

4.2 DIMENSIONAMENTO DE ENGRENAGENS

Com valores de velocidade do eixo, torque fornecimento pelo manual do motor de passo e com o torque útil, é possível dimensionar as engrenagens da caixa de redução. Para este projeto foi escolhido redução parafuso sem fim com coroa e um par de engrenagem cilíndricas de dentes retos. A metodologia seguida para o dimensionamento das engrenagens adotadas foram as que a AGMA (American Gear Manufacturers Association) recomenda.

4.2.1 Dimensionamento do parafuso sem fim e coroa

Segundo AGMA o dimensionamento do par sem-fim e coroa é dado através da potência máxima resistente a falha de superfície.

Para encontrar tal potência máxima alguns passos foram seguidos como demonstrado na Erro! Fonte de referência não encontrada.

Figura 39 - Fluxograma dimensionamento parafuso sem-fim

4.2.2 Dimensionamento de engrenagem cilíndricas de dentes retos

O dimensionamento de engrenagem cilíndrica de dentes retos segundo a AGMA pode falhar de duas maneiras, sendo a primeira se a tensão flexão atuante for maior que a tensão de flexão a fadiga e a segunda falha se dá quando a tensão de contato for maior que a tensão de fadiga por contato. Para encontrar a tensão de flexão e a tensão de contato os passos são adotados.

Figura 40 - Fluxograma dimensionamento cilíndricas de dentes retos

Fonte: Autoria Própria

4.3 DIMENSIONAMENTO DE ÁRVORE

O método para dimensionamento de árvore adotado foi segundo Melconian (2012), no qual o dimensionamento se dá através de um diâmetro mínimo de árvore que resista a tensão admissível de flexão e cisalhamento. O fluxograma mostrado pela **Erro! Fonte de referência não encontrada.** mostra os passos adotadas para todas as árvores do trabalho.

Figura 41 - Fluxograma dimensionamento de árvores

Fonte: Autoria Própria

4.4 DIMENSIONAMENTO DE CHAVETAS

O método de dimensionamento das chavetas foi adotado segundo Melconian (2012). O dimensionamento de uma chaveta se dá pela área necessária para resistir a esforços de cisalhamento e flexão. As tensões de cisalhamento e de flexão devem ser obrigatoriamente menores que as tensões admissíveis. A **Erro! Fonte de referência não encontrada.**mostra um fluxograma para o dimensionamento destes elementos.

Figura 42 - Fluxograma dimensionamento de chavetas

Fonte: Autoria Própria

4.5 DIMENSIONAMENTO DE ROLAMENTOS

O método de dimensionamento de rolamentos foi adotado segundo Norton (2013). Um rolamento é dimensionado através das cargas por este recebida, no tipo de rolamento e na estimativa de vida até a falha a fadiga. A sequência para um dimensionamento é mostrada através de um fluxograma pela Erro! Fonte de referência não encontrada.

Figura 43 - Fluxograma dimensionamento de rolamentos

Fonte: Autoria Própria

5 RESULTADOS

5.1 LEVANTAMENTO DE DADOS

Através da etiqueta do motor encontrado na carcaça foi possível determinar a potência nominal e a rotação no eixo do motor. Sendo estes dados pela Tabela 1.

Ligação	Potência [cv]	Rotação [rot/min]
Estrela	0,7	3340
Triângulo	0,46	1705

Tabela	1 - Potência	e velocidade	de rotação	do motor	de avanço
_	Ligação	Potência	[cv]	Rotação	1

Fonte: Autoria Própria

Com o manual da furadeira-fresadora ROCCO FFR-30 foi verificado que o passo do fuso tem a dimensão de 4 milímetros.

Na caixa de redução original foi retirado através da etiqueta Erro! Fonte de referência não encontrada., dados de velocidade linear, estas variando entre 25 milímetros por minuto até 610 milímetros por minutos.

ALAV.	BAIXA	ALTA	ALAV.	BAIXA	ALTA
A - 11	25	50	B - II	70.	`140
А-Ш	65	130	B - III	180	360
$\mathbf{A} - \mathbf{I}^{A}$	115	230	B-I	-305	610

Figura 44 - Velocidade linear da mesa

Fonte: Autoria Própria

Através da equação 67 encontrou os resultados de velocidade de rotação do fuso. Através da equação 68, determina-se o torque entregue no fuso. É sabido pela pela equação 9 que existes perdas por atrito e engrenamento, contudo por falta instrumentação não é possível determinar esta perda, então foi considerado o pior cenário possível, ou seja, o caso ideal, $\Phi = 0$, sem perdas por atrito. A Tabela 2 - Dados de Saída, demonstra os possíveis torque entre ao fuso com a caixa de redução original da máquina.

Tabela 2 - Da	idos de Saída				
Potência	Potência IW1	Velocidade Linear	Velocidade de rotação do fuso	Torque útil [N m]	Torque útil
[01]	[]	[mm/min]	[rot/min]		[]
0,46	338,33	25,00	6,25	516,93	4575,21
0,70	514,85	50,00	12,50	393,32	3481,14
0,46	338,33	65,00	16,25	198,82	1759,70
0,70	514,85	130,00	32,50	151,28	1338,90
0,46	338,33	115,00	28,75	112,38	994,61
0,70	514,85	230,00	57,50	85,50	756,77
0,46	338,33	70,00	17,50	184,62	1634,00

0,70	514,85	140,00	35,00	140,47	1243,26	
0,46	338,33	180,00	45,00	71,80	635,45	
0,70	514,85	360,00	90,00	54,63	483,49	
0,46	338,33	305,00	76,25	42,37	375,02	
0,70	514,85	610,00	152,50	32,24	285,34	

Fonte: Autoria Própria

Como um dos requisitos do projeto é manter as características de usinagem da máquina então foi escolhido o torque de 516,93 N.m (4574,21 lbf.in) como referência, pois é o maior torque fornecido ao fuso, o que entregará a maior força de avanço.

Através do manual do motor de passo escolhido para o projeto, AKIYAMA AK85H8, foi encontrado uma curva de toque em kgf.cm x velocidade de rotação dados em passo por segundo, sendo cada passo possuindo 1,8°. Para encontrar velocidades em rotações por minuto, deve-se multiplicar o número de passo por 0,3.

5.2 DIMENSIONAMENTO DAS ENGRENAGENS

As engrenagens dimensionadas neste trabalho receberam o subscrito numérico para referência. O subscrito 1 será para o sem-fim, o subscrito 2 será para a coroa do sem-fim, o subscrito 3 será para o pinhão do par de engrenagens cilíndricas de dentes retos e o subscrito 4 será para a coroa do para de engrenagens cilíndricas de dentes retos. Foi determinado a notação 1 para o parafuso sem fim, a notação 2 para a coroa do parafuso sem fim e 1-2 para relação conjunta entre o parafuso sem fim e a coroa do sem fim.

Após processos interativos, determinou-se uma relação de engrenamento de 133:1, por ser uma relação alta, segundo Norton (2013) o número de entradas no sem fim, N_w, deve ser igual a 1. A distância entre centro, C, escolhida foi igual a 5 polegadas (127 mm). A velocidade de entrada foi igual 60 rotações por minutos e o ângulo de pressão Φ de 14,5. No dimensionamento foi levado em consideração apenas o material da coroa, bronze fundido em molde metálico, pois se a coroa resistir a falha de superfície (crateração) consequentemente o parafuso sem-fim feito de aço também resistirá. Os dados resultados de acordo com estas determinações e de acordo com as relações dadas na seção 2.3.2.1 estão mostradas na Tabela 3 - Dimensionamento parafuso sem fim e coroa.

				С	ontinuação
Número de entrada do sem	N _{w1}	1	dentes		
fim					
Relação de transmissão	M g1-2	133,00	-		
Número de dentes coroa	N _{g2}	133	dentes		
Rotação sem fim	n ₁	60,00	rot/min		
Rotação coroa	n ₂	0,45			
Distância entre centro	C ₁₋₂	5,00	in	0,13	m
Diâmetro de referência do	d1	1,86	in	0,47	m
sem fim					
Diâmetro de referência da	d _{g2}	8,14	in	0,21	m
coroa					
Raio da coroa	r g2	4,07	in	0,10	m
Tabela 4 - Dimensionamento par	afuso se	em fim e cor	oa		• • ~
			_		Conclusão
Passo circular	p _{c2}	0,19	ln^	0,005	m
Passo axial	p _{x1}	0,19	in	0,005	m
Avanço	L1	0,19	in	0,005	m
Ângulo de avanço	Λ_1	1,89	graus		
Ângulo de pressão	Ф1-2	14,50	graus		
Largura da engrenagem	F2	1,25	in	0,03	m
Adendo	A1-2	0,04	in	0,001	m
Dedendo	B1-2	0,07	in	0,002	m

Fator dos materiais	C s1-2	996,53	-		
Fator de correção de razão	C m1-2	0,27	-		
Velocidade tangencial	V _{t1}	29,21	ft/min	0,15	m/s
Fator de velocidade	Cv1-2	0,64	-		
Coeficiente de atrito	µ 1-2	0,08	-		
Força tangencial na coroa	W _{tg2}	1157,85	lbf	5146,59	Ν
Força axial no sem fim	W _{aw1}	1157,85	lbf	5146,59	Ν
Força axial na coroa	W_{ag2}	129,57	lbf	576,35	Ν
Força tangencial no sem fim	W _{tw1}	129,57	lbf	576,35	Ν
Força radial	Wr1-2	299,60	lbf	1332,69	Ν
Torque na coroa	T_{g2}	4713,27	lbf.in	532,53	N.m
Força de atrito	Wf1-2	91,37	lbf	406,43	N.m
Potência na coroa	Φ_{o2}	0,03	hp	22,37	W
Potência perdida	Φ I1-2	0,08	hp	59,66	W
Potência sem-fim	Φ1	0,11	hp	82,03	W
Rendimento	ŋ 1-2	0,29	-		
Torque no pinhão	Tw1	120,41	lbf.in	13,6	N.m

Fonte: Autoria própria

É possível notar que o torque na coroa T_{g2} é de 4713,27 lbf.in (532,53 N.m), no qual é maior que o torque de referência para a saída 4574,21 lbf.in (516,93 N.m) encontrado na seção anterior. Isto demonstra que para este quesito o dimensionamento atende a especificação. Contudo o torque encontrado no sem-fim T_{w1} é de 120,1 lbf.in (138,72 kgf.cm) é maior que o torque máximo do motor de passo de 42 kfg.cm, dado a 200 PPS (60 RPM).

Então foi decidido para alcançar o torque sem-fim, T_{w1} (torque máximo para evitar falha de superfície) um sistema de engrenagem cilíndricas de dentes retos entre o motor de passo e o redutor sem-fim e coroa.

5.2.2 Dimensionamento de engrenagem cilíndrica de dentes retos

Foi determinado a notação 3 para o pinhão do par de engrenagem cilíndrica de dentes retos e a notação 4 para a coroa do par de engrenagem cilíndrica de dentes retos para a coroa 3-4 para relação conjunta entre o pinhão e a coroa de engrenagem cilíndrica de dentes. Foi determinado para operação do dimensionamento o torque de 24,30 lbf.in (28 kgf.cm) dado a 1000 PPS (300 rot/min) pela Figura 45 - Torque Motor de passo x Velocidade de rotação

, pois a partir desta velocidade o torque decresce muito. A relação entre o torque no pinhão 3 e o torque no sem-fim 1 de aproximadamente igual a 5, então determinou que a relação de engrenamento entre o par de engrenagem cilíndricas de dentes retos será 5:1. Também foi determinado o ângulo de pressão φ₃₋₄ igual a 20^o, o número de dentes do pinhão igual 21 e material como aço AGMA classe AI tratado termicamente endurecido por completo com dureza de 180 HB. O que resultou no dimensionamento da tabela 4.

Tabela 5 - Dimensionamento	engrenagens cilíndricas dentes ret	os
----------------------------	------------------------------------	----

				Contin	uação
Número de dentes do pinhão	N _{p3}	21	dente s		
Número de dentes da coroa	N _{g4}	105	dente s		
Velocidade de rotação do pinhão	N3	300,00	rot/mi n		
Ângulo de pressão	Φ 3-4	20,00	graus		
Relação de transmissão	т _{g3-} 4	5,00	-		
Passo diametral	p d3-4	22,00	in^-1		
Passo circular	р с3-4	0,14	in		
Passo de base	p b3-4	0,13	in		
Diâmetro primitivo pinhão	d_{p3}	0,95	in	0,02	m
Diâmetro primitivo coroa	d_{g4}	4,77	in	0,12	m
Raio primitivo pinhão	r p3	0,48	in	0,01	m
Raio primitivo coroa	r g4	2,39	in	0,06	m
Distância entre centros	C ₃₋₄	2,86	in	0,07	m
Torque no coroa	T_{g4}	121,80	lbf.in	13,40	N.m

Torque no pinhão	T _{p3}	24.36	lbf.in	2,68	N.m
Força tangencial no pinhão	W _{t3}	51.04	lbf	227,04	N
Força radial no pinhão	Wr3	18.58	lbf	82,63	Ν
Força tangencial na coroa	W _{t4}	51.04	lbf	227,04	Ν
Tabela 6 - Dimensionamento engrenagens cilíndrica	s dente	es retos		Contin	
Força radial na coroa	W _{r4}	18.58	lbf	82,63	N N
Força resultante	W3-4	54.32	lbf	241,61	Ν
Largura	F ₃₋₄	0.55	in		
Velocidade tangencial	Vt3-4	74.97	ft/min		
Fator dinâmico	Kv	0.85	-		
Fator de distribuição	Km	1,60	-		
Fator de aplicação	Ka	1.25	-		
Fator de tamanho	Ks	1,00	-		
Fator de espessura de borda	KΒ	1,00	-		
Fator de ciclo de carga	K∟	1,00	-		
Fator de flexão	J	0,24	-		
Tensão de flexão	σ_{b}	20125,8 7	psi	1,3E+08	Pa
Fator geométrico de superfície	I	0,11	-		
Raio do dente do pinhão	ρ	0,13	in		
Raio do dente da coroa	ρg	0,85	in		
Coeficiente elástico	C_{p}	2300,00	psi ^{0,5}	1,6E+07	Pa ^{0,}
Fator de acabamento superficial	Cf	1,00	-		0
Fator de aplicação	Ca	1,25	-		
Fator de distribuição	Cm	1,60	-		
Fator dinâmico	Cv	0,85	-		
Fator de tamanho	Cs	1,00	-		
Tensão de superfície	σ_{c}	9586,99	psi	6,9E+03	Ра
Fator de temperatura	Kτ	1,00	-		
Fator de confiabilidade	Kr	1,00	-		
Fator de vida	Kı	1,00	-		
Resistência à fadiga de flexão da AGMA	S _{fb'}	29000,0 0	psi	2,0E+08	Pa

Resistência à fadiga de flexão corrigida	S _{fb}	29000,0 0	psi	2,0E+08 Pa	à
Fator de superfície	Cı	1,00	-		
Fator de razão de dureza	Сн	1,00	-		
Coeficiente do fator de razão de dureza	А	0,00	-		
Fator de temperatura	Ст	1,00	-		
Tabela 7 - Dimensionamento engrenagens cilíndrica	s dente	es retos		Conclus	ão
Fator de confiabilidade	CR	1,00	-		
Resistência à fadiga de superfície da AGMA	S _{fc'}	90000,0 0	psi	6,2E+08 Pa	à
Resistência à fadiga de superfície corrigida	S _{fc}	90000,0 0	psi	6,2E+08 Pa	à
Coeficiente de segurança contra de flexão	F_{Sb}	1,44	-		
Coeficiente de segurança contra de superfície	F_{sc}	9,39	-		
Fonte: Autoria própria					

É possível perceber que o torque da coroa, T_{g4} , 121,8 lbf.in (13,4 N.m) atende o torque máximo para evitar falha de superfície, T_{w1} 120,1 lbf.in (13,6 N.m), com especificações de engrenagem com fatores de segurança maior que 1, sendo mais especificamente um coeficiente de 1,44 para falhas de flexão e o 9,39 para falhas de superfície.

Contudo é possível perceber que com a velocidade acionamento de 1000 PPS (300 RPM), a qual é aproximadamente 1/3 da velocidade máxima segundo a Figura 45 - Torque Motor de passo x Velocidade de rotação

; a rotação de acionamento será de 0,45 RPM, o qual resulta em um avanço de 1,8 mm/min.

5.3 DIMENSIONAMENTO EIXO

Foi determinado a notação R para as reações de apoio no mancal, foi determinado o subscrito M1 para o mancal primeiro mancal, M2 para mancal o segundo mancal e assim sucessivamente. Foi determinado o subscrito V para planos verticais, e o subscrito) para o plano horizontal. Foi determinado α para o eixo que contém o pinhão do par de engrenagem cilíndricas de dentes retos, β para o eixo que compõe a coroa do par de engrenagem cilíndricas de dentes retos e parafuso sem-fim, γ para o eixo que compõe a coroa do par de engrenagem cilíndricas de dentes retos e parafuso sem-fim, γ para o eixo que compõe a coroa do par de engrenagem cilíndricas de dentes retos e parafuso sem-fim, γ para o eixo que compõe a coroa do par de engrenagem cilíndricas de dentes retos e parafuso sem-fim, γ para o eixo que compõe a coroa do par de engrenagem cilíndricas de dentes retos e parafuso sem-fim, γ para o eixo que compõe a coroa do par de engrenagem cilíndricas de dentes retos e parafuso sem-fim, γ para o eixo que compõe a coroa do par de engrenagem cilíndricas de dentes retos e parafuso sem-fim, γ para o eixo que compõe a coroa do par de engrenagem cilíndricas de dentes retos e parafuso sem-fim, γ para o eixo que compõe a coroa do par parafuso sem-fim e coroa.

Foi determinado a notação 1 para as forças referentes ao parafuso sem-fim, 2 para a coroa do parafuso sem-fim, 3 para o pinhão e 4 para o par de engrenagens cilíndricas de dentes retos.

O material escolhido para dimensionamento de todos os eixos foi o aço ABNT 1035, utilizando tensões admissíveis segundo Melconian, (2012).

Um esquema da disposição do conjunto do redutor na vista isométrica é mostrado na Erro! Fonte de referência não encontrada.

Fonte: Autoria própria

Um diagrama do corpo livre do eixo α é demonstrado pela figura no plano horizontal dado pela Figura 47.

Um diagrama do corpo livre do eixo α é demonstrado pela figura no plano horizontal dado pela Erro! Fonte de referência não encontrada.

Figura 48 - Diagrama do corpo livre eixo α plano horizontal

Fonte: Autoria própria

Determinando os comprimentos dos eixos bem como as distâncias das forças aplicadas ao eixo resultantes das engrenagens momentos resultantes máximos e através das equações dadas na seção 2.3.3 é obtido a seguinte Tabela 8:

Tabela 8 - Dimensionamento do eixo α					
eixo α					
Distância do mancal até a	а	0,40	in	0,01	m
engrenagem					
Distancia meia largura engrenagem	b	0,27	in	0,01	m
cilíndricas					
Distância até a força	X 1	0,67	in	0,02	m
Comprimento total até o mancal	Lα	0,95	in	0,02	m
Força tangencial do pinhão	W _{t3}	51,04	lbf	1,30	Ν
Reação de apoio no mancal M1 no	R _{VM1}	51,04	lbf	1,30	Ν
plano vertical					
Momento máximo plano vertical	M∨máx	34,20	lbf.in	3,76	N.m
Força radial no pinhão	Wr3	18,58	lbf	82,63	Ν
Reação de apoio no mancal M1 no	Rhm1	18,58	lbf	82,63	Ν
plano horizontal					
Momento máximo plano horizontal	M _{Hmáx}	12,54	lbf.in	1,38	N.m
Torque no eixo	T _{p3}	24,36	lbf.in	2,68	N.m
Material aço ABNT 1035	σ_{fad}	7251,89	psi	5E+07	Ра
	Tfad	5801,51	psi	4E+07	Ра
Coeficiente de Bach	а	1,25	-		
Fator de forma	b	1,00	-		
Momento fletor resultante	Mr	36,43	lbf	162,03	Ν
Momento ideal	Mi	39,48	lbf	175,62	Ν
Diâmetro mínimo do eixo	dα	0,38	in	0,0097	Μ

Tabela 8 -	Dimensionamento	do	eixo	0
------------	-----------------	----	------	---

Fonte: Autoria própria

O diâmetro mínimo para eixo α é de 0,38 (9,65 mm) polegadas para que resistam todos os esforços de flexão e torção.

Um diagrama do corpo livre do eixo β é demonstrado pela figura no plano horizontal dado pela Erro! Fonte de referência não encontrada..

Figura 49 - Diagrama do corpo livre eixo b plano vertical

m diagrama do corpo livre do eixo β é demonstrado pela figura no plano horizontal dado pela Erro! Fonte de referência não encontrada..

Figura 50 - Diagrama do corpo livre eixo b plano horizontal

Fonte: Autoria própria

Determinando os comprimentos dos eixos bem como as distâncias das forças aplicadas ao eixo resultantes das engrenagens e encontrados os momentos resultantes máximos, através das equações dadas na seção 4.2.3 obtido a para o eixo β que compreende a coroa 4 e parafuso sem-fim na Tabela 9.

Fonte: Autoria própria

eixo ß					
Distância do mancal até a engrenagem	а	0,40	in	0.01	m
Distancia meia largura engrenagem	b	0,27	in	0,007	m
cilíndricas					
Raio da coroa 2	rg2	4,07	in	0,103	m
Distância até a força W4	x2	0,67	in	0,017	m
Distância até a força W1	xЗ	5,02	in	0,127	m
Comprimento total	Lβ	9,49	in	0,241	m
Força tangencial Coroa 4	Wtg4	51,04	lbf	227,04	Ν
Força radial parafuso sem fim	Wr1	299,60	lbf	1332,7	Ν
	14/- 4			0	
Força axial no paratuso sem fim	Wa1	1157,8 5	IDT	5150,3 5	N
Reação de apoio M2V	Rvm2	189,36	lbf	842,31	Ν
Reação de apoio M3V	Rvm2	161,28	lbf	717,41	Ν
Momento máximo plano vertical	Mmáx	725,78	lbf.i	79,83	N.
			n		m
Força radial Coroa 4	Wr4	18,58	lbf	82,64	Ν
Força tangencial parafuso sem fim	Wtw1	129,57	lbf	576,36	Ν
Reação de apoio	M2H	78,64	lbf	349,81	Ν
Reação de apoio	МЗН	69,51	lbf	309,16	Ν
Reação de apoio m2y		578,92	lbf	2575,1 8	Ν
Reação de apoio m3y		578,92	lbf	2575,1 8	Ν
Momento máximo plano horizontal	MHmá	312,77	lbf.i	34,41	N.
	х		n		m
Torque no eixo	Tc4	121,80	lbf.i n	13,40	Ν
Material aço AISI 1035	σfad	7251,8 9	psi	5E+07	Ра
	⊤tad	5801,5 1	psi	4E+07	Ра
Coeficiente de Bach	а	1,25	-		
Fator de forma	b	1.00	-		
Momento fletor resultante	Mr	790,30	lbf	3515,4	Ν
		,		5	
Momento ideal	Mi	793,96	lbf	3531,7	Ν
Diâmetro mínimo do eixo β	dβ	1,04	in	∠ 0,026	m
Fonte: Autoria própria					

O diâmetro mínimo para eixo β é de 1,04 (26,36 mm) polegadas para que resistam todos os esforços de flexão e torção.

Tabela 9 - Dimensionamento do eixo β

Para o dimensionamento do eixo γ será determinado plano vertical compreendendo os eixos X-Z e plano horizontal compreendendo dos eixos X-Y.

Um diagrama do corpo livre do eixo γ é demonstrado pela Erro! Fonte de referência não encontrada. no plano vertical

Figura 51 - Diagrama corpo livre eixo y plano vertical

Um diagrama do corpo livre do eixo γ é demonstrado pela figura no plano horizontal dado Erro! Fonte de referência não encontrada.

Figura 52 - Diagrama corpo livre eixo γ plano horizontal

Determinando os comprimentos dos eixos bem como as distâncias das forças aplicadas ao eixo γ resultantes das engrenagens, foram encontrados os momentos
resultantes máximos e através das equações dadas na seção 2.3.3 é obtido a tabela Tabela 10 para o eixo γ que compreende a coroa 4 e parafuso sem-fim.

Tabela 10 - Dimensionamento do eixo γ						
eixo γ						
Distância do mancal até a engrenagem	а	0,40	in	0,010	m	
Distancia meia largura engrenagem	С	0,62	in	0,015	m	
cilíndricas						
Comprimento até a força	X_4	1,02	in	0,026	m	
Comprimento total do eixo	Lγ	2,045234	in	0,052	m	
Força radial	Wr1-2	299,60	lbs	1332,69	Ν	
Força axial na coroa	W _{ag2}	129,57	lbs	576,36	Ν	
Reações de apoio vertical mancal 3	Я∨мз	149,8	lbs	666,34	Ν	
Reações de apoio vertical mancal 4	R _{VM4}	149,8	lbs	666,34	Ν	
Reação de apoio axial mancal 3	Rмзх	64,78	lbs	288,18	Ν	
Reação de apoio axial mancal 4	R _{M4x}	64,78	lbs	288,18	Ν	
Momento máximo plano vertical	Wtg2	152,796	lbf.in	16,81	N.m	
Força tangencial coroa 2	Wtg2	1157,85	lbf.in	127,36	N.m	
Reação de apoio horizontal mancal 3	Rмнз	578,925	lbf.in	63,68	N.m	
Reação de apoio horizontal mancal 4	R _{MH4}	578,925	lbf.in	63,68	N.m	
Momento máximo plano horizontal	Mrh	590,5035	lbf.in	64,96	N.m	
Torque no eixo	T _{c2}	4713,27	lbf.in	518,46	N.m	
Material aço ABNT 1035	σ_{fad}	7251,89	psi	5,0E+07	Ра	
	Tfad	5801,51	psi	4,0E+07	Ра	
Coeficiente de Bach	а	1,25	-			
Fator de forma	b	1,00	-			
Momento fletor resultante	M r3-4	609,95	lbf	2713,20	Ν	
Momento ideal	M i3-4	3008,28	lbf	13381,48	Ν	
Diâmetro mínimo do eixo γ	dy	1,62	in	0,041	m	

Fonte: Autoria própria

O diâmetro mínimo para eixo γ é de 1,62 polegadas (41,107 mm) para que resistam todos os esforços de flexão e torção.

5.4 DIMENSIONAMENTO CHAVETA

As chavetas foram denominadas: 2 para a coroa do par sem-fim e 3 para pinhão da engrenagem cilíndricas de dentes retos e 4 para a chaveta da coroa do par de engrenagens cilíndricas de dentes retos.

Para todas as chavetas dimensionadas neste trabalho se utilizou como material aço ABNT 1050 com tensão admissível a flexão de 14503 psi (100 Mpa) e tensão admissível a cisalhamento de 8702 psi (60 Mpa) como referência. Para a chaveta 3 do pinhão do par de engrenagem cilíndrica de dentes retos resultou dimensionamento de acordo com a Tabela 11.

Tabela 11 - Dimensiona	mento d	la chaveta 3			
	С	haveta 3			
Diâmetro do eixo α	dα	0,38	in	9,70	mm
Torque eixo α	T _{p3}	24,36	lbf.in	2752,31	N.mm
Força tangente a chaveta 3	W _{tc3}	127,63	lbf	567,71	Ν
Comprimento da chaveta 3	13	0,55	in	13,85	mm
Largura da chaveta escolhida	b ₃	0,12	in	3,00	mm
Altura total da chaveta	h₃	0,12	in	3,00	mm
Profundidade no eixo	t1	0,07	in	1,70	mm
Tensão de cisalhamento	T 3	1981,04	psi	13,66	Мра
Tensão de flexão	σ 3	4571,62	psi	31,52	Мра
Tensão admissível de cisalhamento aco 1050	Tadm	8702,28	psi	60,00	Мра
Tensão admissível de flexão aço 1050	σ_{adm}	14503,80	psi	100,00	Мра
Fonte: Autoria própria					

É possível perceber que as tensões de flexão e cisalhamento são menores que as admissíveis, sendo assim uma chaveta atende as especificações.

Para a chaveta 4 da coroa do par de engrenagem cilíndrica de dentes retos resultou dimensionamento de acordo com a Tabela 12.

	avela	+		Cont	inuccão
				Com	linuaçao
	cha	veta 4			
Diâmetro do eixo β	dβ	1,04	in	26,37	mm
Torque eixo β	T_{c4}	121,80	lbf.in	13761,55	N.mm
Força tangente a chaveta 4	W_{tc4}	234,66	lbf	1043,81	Ν
Comprimento da chaveta 4	4	0,55	in	13,85	mm

Tabela 12 -	Dimensionamento	chaveta	4
	Billionolonamonto	onavota	

Tabela 13 -	Dimensionamento	chaveta 4

							Conclusão
Largura	da	chaveta	b4	0,31	in	8,00	mm
escolhida	4						

Altura total da chaveta 4	h4	0,28	in	7,00	mm
Profundidade no eixo 4	t4	0,21	in	5,40	mm
Tensão de cisalhamento 4	T4	1365,90	psi	9,42	Мра
Tensão de flexão 4	σ4	6829,52	psi	47,09	Мра
Tensão admissível de	Tadm	8702,28	psi	60,00	Мра
cisalhamento aço 1050					
Tensão admissível de	$\sigma_{\sf adm}$	14503,80	psi	100,00	Мра
flexão aço 1050					
Fonte: Autoria própria					

É possível perceber que as tensões de flexão e cisalhamento são menores que as admissíveis, sendo assim uma chaveta atende as especificações.

Para a chaveta 2 da coroa par de engrenagem parafuso sem-fim e coroa resultou dimensionamento de acordo com a Tabela 14.

Tabela 14 - Dimensionamento chaveta 2								
	cha	veta 2						
Diâmetro do eixo γ	dγ	1,62	in	41,11	mm			
Torque eixo γ	Tc1	4713,27	lbf.in	532527,57	N.mm			
Força tangente a chaveta	Wtc1	5824,65	lbf	25909,34	Ν			
Comprimento da chaveta 1	11	1,25	in	31,63	mm			
Largura da chaveta	b1	0,47	in	12,00	mm			
Altura total da chaveta 1	h1	0,35	in	9,00	mm			
Profundidade no eixo 1	t1	0,24	in	6,00	mm			
Tensão de cisalhamento 1	т1	9900,85	psi	68,26	Мра			
Tensão de flexão 1	σ1	39603,39	psi	273,06	Мра			
Tensão admissível de	тadm	8702,28	psi	60,00	Мра			
Tensão admissível de flexão aço 1050	σadm	14503,80	psi	100,00	Мра			

Fonte: Autoria própria

É possível notar que as tensões de cisalhamento e flexão sobre a chaveta são maiores que as tensões admissíveis para ambas as solicitações. Uma alternativa dada por Melconian (2012) é aumentar o número de chavetas, sendo assim este trabalho adotará três chavetas de 1,25 polegada (31,36 mm) de comprimento, 0,35 polegadas (9 mm) de altura e largura 0,47 polegadas (12 mm) retiradas do anexo 1, disposta a 120º uma da outra.

5.5 DIMENSIONAMENTO DOS MANCAIS

O mancal 1, que contém o eixo α, foi escolhido o 6300 ZZ por apresentar o diâmetro superior mais próximo calculado na seção 5.4 e tempo de vida satisfatório. Os resultados de cargas, fatores e tempo de vida é dado na Tabela 15.

Mancal 1			
Mancal escolhido	6300		
Diâmetro do mínimo do eixo α	dα	0,38	in
Diâmetro do furo do mancal 1	d _{M1}	0,39	in
Diâmetro externo do mancal 1	D	1,38	in
Espessura do mancal 1	В	0,43	in
Carga dinâmica básica	С	1400,00	lbf
Carga estática básica	C ₀	850,00	lbf
Reação de apio no mancal M1 no plano vertical	R∨м1	51,04	lbf
Reação de apio no mancal M1 no plano horizontal	Rhm1	18,58	lbf
Força axial	F _{a1}	0,00	lbf
Resultante das reações de apoio M1	Fr1		
Carga aplicada	Ρ	54,32	lbf
Vida a fadiga	L ₁₀	4,28E+11	ciclos

oola 15 - Dimonsionamonto mancal 1

Fonte: Autoria própria

O mancal 2 e 3, que contém o eixo β , foi escolhido o 6306 ZZ por apresentar o diâmetro superior mais próximo calculado na seção 5.4 e tempo de vida satisfatório. As forças analisadas foram no mancal 2 por estas apresentarem magnitudes maiores, pois se o mancal obter vida satisfatória o mancal 3 por ser o mesmo mancal também obterá vida satisfatória. Os resultados de cargas, fatores e tempo de vida é dado na Tabela 16.

Fabela 16 -	Dimensionamento	mancal	2/3
-------------	-----------------	--------	-----

Mancal 2/3						
Mancal escolhido	6	6306				
Diâmetro do mínimo do eixo β	dβ	1,04	in			
Diâmetro do furo do mancal 2/3	d м1/3	1,18	in			
Diâmetro externo do mancal 2/3	D	2,83	in			
Espessura do mancal	В	0,74	in			
Carga dinâmica básica	С	5000,00	lbf			
Carga estática básica	C ₀	3400,00	lbf			
Reação de apoio no mancal M2 no plano vertical	R∨m2	189,36	lbf			
Reação de apoio no mancal M2 no plano horizontal	Rнм2	78,64	lbf			
Resultante das reações de apoio M2	Fr2-3	205,04	lbf			
Reação de apoio no mancal M2 no plano vertical	R∨мз	161,28	lbf			
Reação de apoio no mancal M2 no plano horizontal	Rнмз	69,51	lbf			
Resultante das reações de apoio M3	F _{r2-3'}	175,62	lbf			
Força axial	F _{a2-3}	578,92	lbf			
Razão Fa/C0	F_a/C_0	0,17	-			
Fator razão mínima axial radial	е	0,34	-			
Fator de rotação	V	1,00	-			
Fator razão axial radial	F _a /VF _r	2,82	-			
Fator radial	Х	0,56	-			
Fator axial	Y	1,31	-			
Carga aplicada	Р	873,21	lbf			
Vida em fadiga	L ₁₀	1,88E+08	ciclos			

Fonte: Autoria própria

O mancal 4 e 5, que contém o eixo γ, foi escolhido o 6309 ZZ por apresentar o diâmetro superior mais próximo calculado na seção 5.4 e tempo de vida satisfatório. As forças analisadas foram no mancal em apenas um dos mancais, por se tratarem de magnitudes iguais. Os resultados de cargas, fatores e tempo de vida é dado na Tabela 17.

Tabela 17 - Dimensionamento mancal 4/5						
mancal 4/5						
Mancal escolhido		6309		"		
Diâmetro do mínimo do eixo y	dγ		1,62	in		

Diâmetro do furo do mancal 4/5	d _{M4/5}	1.77	in
Diâmetro externo do mancal 4/5	D	3.93	in
Espessura do mancal 4/5	В	0,98	in
Carga dinâmica básica	С	9150,00	lbf
Carga estática básica	Co	6700,00	lbf
Reação de apoio no mancal M4/5 no	Rvm4/5	149,80	lbf
plano vertical			
Reação de apoio no mancal M4/5 no	Rhm4/5	578,93	lbf
plano horizontal			
Força axial	F a4/5	64,79	lbf
Resultante das reações de apoio M1	F r4/5	597,99	lbf
Razão Fa/C0	F_a/C_0	0,01	-
Fator razão mínima axial radial	е	0,19	-
Fator de rotação	V	1,00	-
Fator razão axial radial	Fa/VFr	0,11	-
Fator radial	Х	1,00	-
Fator axial	Y	0,00	-
Carga aplicada	Р	597,99	-
Vida em fadiga	L10	3,58E+09	ciclos

Fonte: Autoria própria

6 CONCLUSÃO

Todos os objetivos específicos foram alcançados, consequentemente o objetivo geral também. Contudo ao decorrer do projeto foi verificado que o motor selecionado não é o ideal para a fresa, pois existe uma grande diferença entre o torque de acionamento e o torque útil, o redutor foi projetado para que este torque seja alcançado, mas pela grande redução a velocidade de avanço foi suntuosamente reduzida sendo inviável a prática de usinagem CNC com este motor.

Para a continuação do projeto de *retrofitting* o ideal seria um motor do tipo servo motor pois estes possuem maior potência, ou seja, entregam maiores torque com maior velocidade de rotação, porém é fortemente recomendado fazer um estudo econômico para tal, pois estes motores são relativamente caros e a fresa necessita grandes alterações para o *retrofitting* CNC de qualidade, como a troca de fuso original por um modelo do tipo esférico que apresenta melhor precisão e exatidão e adequação a norma NR-12 para segurança do operário.

REFERÊNCIAS

AKIYAMA (Curitiba) (Org.). **AK8H8/3.36-1.8.** Manual de especificações técnicas. Disponível em: https://www.guiacnc.com.br/akiyama-244/suporte-produtos-akiyama/?action=dlattach;attach=40717. Acesso em: 24 jun. 2018.

ASSOCIAÇÃO BRASILEIRA DA INDÚSTRIA DE MÁQUINAS E EQUIPAMENTOS (São Paulo) (Org.). **A História das Máquinas**: ABIMAQ 70 anos. São Paulo: Magma Cultural e Editora, 2006. 168 p.

AVA LINEAR SYSTEM. **Fuso trapezoidal.** Disponível em: http://www.avasistema.com.br/fuso-trapezoidal.php>. Acesso em: 29 out. 2017.

BARRIENTOS, M. I. G. G.; QUALHARINI, E. L. RETROFIT DE CONSTRUÇÕES : METODOLOGIA DE AVALIAÇÃO. I CONFERÊNCIA LATINO-AMERICANA DE CONSTRUÇÃO SUSTENTÁVEL X ENCONTRO NACIONAL DE TECNOLOGIA DO AMBIENTE CONSTRUÍDO, p. 11, 2004.

BRITES, Felipe Gonçalves; SANTOS, Vinicius Puga de Almeida. **Motor de Passo.** 2008. Disponível em: <https://www.telecom.uff.br/pet/petws/downloads/tutoriais/stepmotor/stepmotor2k81119 .pdf>. Acesso em: 02 jul. 2018.

BUDYNAS, Richard G.; NISBETT, J. Keith. Elementos de Máquinas de Shigley: Projeto de Engenharia Mecânica. 8. ed. Porto Alegre: Amgh, 2011.

CASSIANO, G.; ENRIQUE, C. **RETROFIT EM MÁQUINAS INDUSTRIAIS : estudo de caso**. [s.l.] Universidade Tecnológica Federal do Paraná, 2014.

CHAVETAS E CIA. **Chavetas paralelas.** Disponível em: ">http://www.chavetasecia.com.br/?chavetas=paralelas>. Acesso em: 30 out. 2017.

COLLINS, Jack A.. **Projeto mecânico de elementos de máquinas:** uma perspectiva de prevenção de falha. Rio de Janeiro: Ltc, 2012.

FERRARESI, Dino. Fundamentos da Usinagem dos Metais. São Paulo: Edgar Blücher, 1970.

FRIGO MEC. Sem Fim e Coroa de Redutores. Disponível em:

<http://frigomec.com.br/index.php?route=product/product&filter_name=pinh%C3%A3o %20coroa%20sem%20fim&product_id=111>. Acesso em: 30 out. 2017.

MELCONIAN, Sarkis. Elementos de Máquinas. 10. ed. São Paulo: Érica, 2012.

NEOMOTION. **Motor de Passo.** Disponível em: <https://neomotion.com.br/motor-de-passo/>. Acesso em: 02 jul. 2018.

NORTON, Robert L.. **Projeto de máquinas:** uma abordagem integrada. 4. ed. Porto Alegre: Bookman, 2013.

NSK. **Rolamentos.** Disponível em: http://www.nsk.com.br/busca-de-produtos.htm. Acesso em: 02 jul. 2018.

RS ASSOCIAÇÃO. **Chavetas.** Disponível em: ">http://www.rsoleoegas.com.br/produtos_servicos/detalhes.php?ID=120>. Acesso em: 02 jul. 2018.

SANDVICK COROMANT. **CoroMill 331.** Disponível em: https://www.sandvik.coromant.com/pt-pt/products/coromill_331/pages/default.aspx. Acesso em: 30 jun. 2018.

SOLUÇÕES INDUSTRIAIS. **Engrenagem cilíndrica de dente reto.** Disponível em: http://www.solucoesindustriais.com.br/empresa/metais-e-artefatos/engrenagens-pozelli/produtos/acessorios/engrenagem-cilindrica-de-dentes-retos-1>. Acesso em: 30 out. 2017.

SOLUÇÕES INDUSTRIAIS. **Engrenagens de dentes helicoidais.** Disponível em: ">http://www.solucoesindustriais.com.br/empresa/metais-e-artefatos/engrenagens-pozelli/produtos/acessorios/engrenagem-de-dentes-helicoidais>">http://www.solucoesindustriais.com.br/empresa/metais-e-artefatos/engrenagens-pozelli/produtos/acessorios/engrenagem-de-dentes-helicoidais>">http://www.solucoesindustriais.com.br/empresa/metais-e-artefatos/engrenagens-pozelli/produtos/acessorios/engrenagem-de-dentes-helicoidais>">http://www.solucoesindustriais.com.br/empresa/metais-e-artefatos/engrenagens-pozelli/produtos/acessorios/engrenagem-de-dentes-helicoidais>">http://www.solucoesindustriais.com.br/empresa/metais-e-artefatos/engrenagens-pozelli/produtos/acessorios/engrenagem-de-dentes-helicoidais>">http://www.solucoesindustriais.com.br/empresa/metais-e-artefatos/engrenagens-pozelli/produtos/acessorios/engrenagem-de-dentes-helicoidais>">http://www.solucoesindustriais.com.br/empresa/metais-e-artefatos/engrenagens-pozelli/produtos/acessorios/engrenagem-de-dentes-helicoidais>">http://www.solucoesindustriais.com.br/empresa/metais-e-artefatos/engrenagens-pozelli/produtos/acessorios/engrenagens-de-dentes-helicoidais>">http://www.solucoesindustriais.com.br/empresa/metais-e-artefatos/engrenagens-de-dentes-helicoidais>">http://www.solucoesindustriais.com.br/empresa/metais-e-artefatos/engrenagens-de-dentes-helicoidais>">http://www.solucoesindustriais.com.br/empresa/metais-e-artefatos/engrenagens-de-dentes-helicoidais>">http://www.solucoesindustriais.com.br/empresa/metais-e-artefatos/engrenagens-de-dentes-helicoidais>">http://www.solucoesindustriais/emgrenagens-de-dentes-helicoidais>">http://www.solucoesindustriais/emgrenagens-de-dentes-helicoidais>">http://www.solucoesindustriais/emgrenagens-de-dentes-helicoidais>">http://www.solucoesindustriais/emgrenagens-de-dentes-helicoidais>">http://www.solucoesindustriais

STEMMER, Caspar Erich. Ferramentas de corte I. 4. ed. Florianópolis: Editora da Ufsc, 1995.

STOETERAU, Rodrigo Lima. **Fundamentos dos Processos de Usinagem.** 2003. Disponível em: http://sites.poli.usp.br/d/pmr2202/arquivos/aulas/PMR2202-AULARS1.pdf>. Acesso em: 04 out. 2017.

STOETERAU, Rodrigo Lima. Introdução ao Projeto de Máquinas-Ferramentas Modernas. Florianópolis: Universidade Federal de Santa Catarina, 2004.