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Abstract  

 

Phenolic compounds generally act as antioxidant and free radical scavengers, having 

several practical applications in the pharmaceutical, food, oil and chemical industrial processes. 

Among those compounds, phenolic acids represent a group that is widely present in some natural 

products, showing interesting properties, such as preventers of some degenerative diseases, with 

application in the pharmaceutical industry. Furthermore, solubility studies play a key role to 

obtain a significant yield and a representative product, being an important parameter for the 

development of new drugs as well as the optimization of already existent processes. In this 

context, the main objective of this work is to measure the solubility of gallic, protocatechuic, 

gentisic and α-resorcylic acids in water and organic solvents (methanol, ethanol, 1-propanol, 

isopropanol, 2-butanone, ethyl acetate, dimethylformamide and acetonitrile) at 298.15 and 

313.15 K and to employ the NRTL-SAC thermodynamic model coupled to the Reference 

Solvent Approach (RSA) to describe the solubility data. 

The experimental methodology was the shake-flask method coupled to the gravimetric 

method and, in general, the results obtained were satisfactorily consistent with the information 

available in literature for gallic and protocatechuic acids. For gentisic and α-resorcylic acids, no 

solubility studies were found at the analyzed temperatures until now. Melting points and 

enthalpies of fusion of the selected phenolic acids were also measured via Differential Scanning 

Calorimetry (DSC).  

Finally, the NRTL-SAC segment descriptors were obtained by fitting the solubility data 

in seven solvents, obtaining average relative deviations (ARD) between 25 and 34%. The model 

was then applied to predict the solubility in 1-propanol and dimethylformamide and the ARD% 

were 70 and 78%, respectively. Those values are satisfactory for semi-predictive models, using a 

limited set of solvents, showing that the NRTL-SAC is adequate to model binary systems 

containing the selected phenolic acids. 

 

 

Keywords: solubility, phenolic acids, NRTL-SAC. 
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Resumo  

 

 Compostos fenólicos geralmente agem como antioxidantes e sequestradores de radicais 

livres, possuindo diversas aplicações práticas, tais como em processos farmacêuticos, 

alimentícios, na indústria de petróleo e na indústria química. Dentre esses compostos, os ácidos 

fenólicos representam um grupo amplamente presente in alguns produtos naturais, apresentando 

propriedades interessantes, como preventivos de algumas doenças degenerativas, o que os torna 

amplamente utilizados na indústria farmacêutica. Além disso, estudos de solubilidade 

desempenham um papel chave para a obtenção de rendimentos significativos e produtos 

representativos na indústria farmacêutica, sendo a solubilidade um parâmetro primordial no 

desenvolvimento de novos medicamentos bem como na otimização de processos já 

implementados. Nesse contexto, o principal objetivo deste trabalho é a medição de solubilidade 

dos ácidos gálico, protocatechuico, gentísico e α-resorcílico em água e em solventes orgânicos 

(metanol, etanol, 1-propanol, 2-propanol, 2-butanona, acetato de etilo, acetonitrilo e 

dimetilformamida) a 298,15 e 313,15 K e aplicar o modelo termodinâmico NRTL-SAC 

combinado com a abordagem do Solvente Referência para descrever os dados de solubilidade. 

 A metodologia experimental utilizada foi o método do frasco agitado combinado com o 

método gravimétrico e, em geral, os resultados obtidos foram consistentes com a informação 

disponível na literatura para os ácidos gálico e protocatechuico. Em relação aos ácidos gentísico 

e α-resorcílico, nenhum estudo de solubilidade foi encontrado nas temperaturas analisadas até o 

momento. Pontos e entalpias de fusão dos compostos selecionados também foram medidos por 

Calorimetria Diferencial de Varrimento (DSC).  

Finalmente, os descritores de segmentos NRTL-SAC forram obtidos através de ajuste de 

dados de solubilidade em sete solventes, obtendo-se um erro relativo médio (ARD) entre 25 e 

34%.  O modelo foi então aplicado na previsão da solubilidade em 1-propanol e em 

dimetilformamida e os ARD% foram de 70 e 78%, respectivamente. Esses valores são 

satisfatórios para modelos semipreditivos, com base em um pequeno conjunto de solventes, o 

que indica o modelo NRTL-SAC como adequado para modelar sistemas binários contendo os 

ácidos fenólicos selecionados. 

Palavras-chave: solubilidade, ácidos fenólicos, NRTL-SAC. 
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Chapter 1 Introduction 
 

 

 

 

 

1.1 Importance and Objectives 

Solubility is a fundamental physical property for the design of processes to extract, 

separate, concentrate, and purify a given target species. In particular, the solubility of phenolic 

compounds in water and organic solvents plays an important role in the design of separation 

processes such as extraction, precipitation or crystallization in the food, pharmaceutical, and 

cosmetic industries.  

Previous work, carried out in our research group, was focused on the solubility of some 

natural phenolic compounds in water (Mota et al. 2008) and the solubility of flavonoids in pure 

organic solvents (Ferreira & Pinho 2012) or mixed solvents (Ferreira et al. 2013). In this context, 

the main objective of this master thesis is to extend those studies to a group of phenolic acids 

(gallic acid, protocatechuic acid, gentisic acid and α-resorcylic acid) by establishing an 

experimental work plan to measure their solubility in water and organic solvents (methanol, 

ethanol, 1-propanol, 2-propanol, butanone, ethyl acetate, dimethylformamide and acetonitrile) at 

298.15 and 313.15 K and by applying the NRTL-SAC thermodynamic model to describe the 

experimental data.  

1.2 Contents 

 

Chapter 2 starts with a brief description of the chemical and biological properties of the 

phenolic compounds selected in this work, considering also their current scientific and industrial 

applications. The most common experimental methods to measure the solubility of solids in 

liquids are also described. Special attention was given to the traditional shake-flask method, 

which was applied to perform the experimental measurements. Moreover, a literature review 
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focusing on solubility measurements of the four compounds evaluated in this work was also 

performed. This chapter finishes with the presentation of the main thermodynamic models 

generally used to describe the low pressure solid-liquid equilibria, their applications, range and 

limitations with particular emphasis given to the NRTL-SAC model.  

The experimental materials and methods are described in Chapter 3. This chapter also 

contains the experimental solubility results as well as the melting properties measurements. 

Chapter 4 is dedicated to the thermodynamic modeling of the solubility results presented in 

Chapter 3, by applying the NRTL-SAC model. Finally, in Chapter 5, the main conclusions are 

summarized and some suggestions for future work are pointed out.  
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Chapter 2 State of Art  

 

 

 

 

2.1 Phenolic Compounds 

Phenolic compounds are a chemical family whose members have one or more hydroxyl 

groups directly attached to an aromatic ring. They are abundant in fruit, aromatic herbs and 

vegetables and are well known to have the capacity of scavenging free radicals and oxidizing 

compounds, which is related to their hydrogen-bonding ability and aromaticity (De Oliveira & 

Bastos 2011; Vermerris & Nicholson 2009). Those substances have several applications, from 

anti-antioxidants in the food and oil industry, up to antiviral and anti-inflammatory activity that 

can be exploited by the pharmaceutical industry. In another perspective, some are considered 

toxic to a large number of bacteria, indicating that phenolic compounds could also be used in the 

wastewater common treatment (Noubigh et al. 2013; De Oliveira & Bastos 2011). 

Other studies report that some phenolic compounds may be applied in medicine as 

cardioprotective agents and retardants in cancer cell multiplication (Ferguson et al. 2005; Obied 

et al. 2005). In 2004, Kampa et al. studied the inhibitory effect of some phenolic acids, including 

the sinapic acid and the protocatechuic acid, on the human breast cancer T47D cells growth, in 

vitro. In addition, the low incidence of coronary diseases and atherosclerosis presented by people 

who consume olive oil regularly was related to its high content of phenolic compounds (de 

Lorgeril et al. 1999).  

 As mentioned before, four phenolic acids, will be studied here in more detail: gallic acid, 

protocatechuic acid, gentisic acid and α-resorcylic acid. Their chemical structures are presented 

in Figure 2.1. 
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(a) (b) (c) (d) 

Figure 2.1: Chemical Structures of: (a) gallic acid; (b) protocatechuic acid; (c) gentisic acid and (d) α-resorcylic 

acid. 

Gallic acid (GA, 3,4,5-trihydroxybenzoic acid) is widely distributed in fruits and plants 

and has many industrial applications, such as antioxidant in food and oil companies, source 

material for the manufacturing of inks and colors, anti-cancer and antimicrobial agent for the 

drug industry and raw material for the chemical synthesis of propyl gallate and trimetropim (Ow 

& Stupans 2003; Mota et al. 2010).   

Furthermore, Liu et al. (2013) and Wang et al. (2009) reported that gallic acid is a very 

strong inhibitor of kappa-casein (k-CN), a milk protein associated to the formation of amyloid, a 

substance related to the development of several human diseases, such as Alzheimer’s, 

Parkinson’s and Huntington’s diseases. 

 Protocatechuic acid (PCA, 3,4-dihydroxybenzoic acid) is also largely found in some 

fruits and vegetables, such as in acai, mango, grapes, green propolis and yellow and red onions. 

In addition, high quantities of protocatechuic acid were identified in some plants, such as 

Indigofera hirsute, Camelina sativa seeds and Scutellaria barbata, widely used in the Chinese 

medicine (Paula et al. 2016; Vermerris & Nicholson 2009). This compound, due to its strong 

antioxidant activity, has the property of preventing the germination of onion smudge fungus, 

Colletotrichum circinans, which means that the protocatechuic acid may be used as a barrier for 

protecting onion’s crops (Vermerris & Nicholson 2009). It can also bring benefits to the human 

body, such as anti-inflammatory and anti-diabetic effects. Another study shows that PCA 

enhances the activity of superoxide dismutase (SOD), an enzyme that is related to prevention of 

some neurodegenerative diseases (Hatzipanayioti & Petropouleas 2010).  

 Gentisic acid (GEA, 2,5-dihydroxybenzoic acid) is also a phenolic compound that has 

similar  biological characteristics to gallic acid and protocatechuic acid, such as antioxidant, anti-

inflammatory and antimutagenic properties  (Nafees et al. 2012). Other studies indicate 



5 

 

alternative uses for this compound. Vrsalović et al. (2010) published a work concluding that 

gentisic acid acts as a very good inhibitor of the corrosion of aluminum-magnesium alloys 

(Vrsalović et al. 2010).  Also, gentisic acid presents laboratory application as sample matrix for 

laser desorption-ionization (LDI) and has shown acceptable results to detect peptides (Strupat, 

K.; Karas, M.; Hillenkamp 1991). 

 Finally, α-resorcylic acid (RA, 3,5-dihydroxybenzoic acid) is a phenolic acid found in 

human urine. In the few studies encountered about this compound, this acid is considered a good 

inhibitor for lipolysis in adipocyte (Liu et al. 2012). In addition, α-resorcylic acid may be used to 

condense hyperbranched polyesters, substances that are attracting attention as novel optical, 

electronic and magnetic materials (Gao & Yan 2004; Mansour et al. 2005).  

 2.2 Importance of Solubility Measurements 

Solubility may be described as the property that measures the ability of one substance 

(solute) to dissolve within another (solvent) in chemical equilibrium, describing whether they 

mix up easily or not. Therefore, it is a quantitative term that plays an important role in the 

behavior of systems containing chemical substances (Martins et al. 2013). Moreover, solubility 

studies in different solvents provide essential information for the design of separation process, 

such as precipitation, crystallization and superficial fluid extraction in the food, pharmaceutical, 

cosmetic and chemical areas (Letcher et al. 2007; Noubigh et al. 2013). 

The solubility of an organic compound is directly related to its molecular structure and 

the polarity of the molecular bonds of solute and solvent. Usually, polar solutes tend to dissolve 

better in polar solvents, whereas apolar or weakly polar substances are more likely to be 

dissolved in less polar systems. Actually, the solubility of solids or liquids in another liquid will 

only occur if the interaction between the solute and the solvent is sufficiently high to promote the 

rupture of the solute-solute and solvent-solvent interactions. Also, the entropy change, which is 

related to the system’s temperature, is a factor that should be considered to evaluate whether a 

substance dissolves easily or not in a solvent (Martins et al. 2013).   

 The solubility has particular relevance in the pharmaceutical industry for which one of 

the most challenging aims is the discovery of new drugs and formulations that have to be 

routinely tested. To perform those tests and optimize the drugs’ formulation, a large amount of 

water solubility data are required as this property is directly related to a drug’s pharmacokinetic 
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properties, and consequently, its effects in human organism (Mota et al. 2010; Martins et al. 

2013; Baka et al. 2008).  

    The solubility data in organic solvents, among other properties, are also important to the 

process and product design in the pharmaceutical industry. The chemical species responsible for 

the desired activity, usually called active ingredient, is generally isolated via crystallization, 

requiring solubility data to design the process (Mota et al. 2010). 

2.3 Experimental Work  

In this section, a literature review is presented regarding experimental methods to 

measure solubility of solids in liquids, as well as a database containing the solubility of the four 

selected compounds (gallic acid, protocatechuic acid, gentisic acid and α-resorcylic acid) in 

water and organic solvents already reported by other authors.   

2.3.1 Experimental Methods 

The solubility of solids in liquids can be measured by several direct methods, which are 

usually classified as analytical or synthetic methods. While the former requires the chemical 

analysis of the liquid and solid phases in equilibrium to determine the solubility of the solid, in 

the synthetic methods, the solubility is measured by varying a thermodynamic property of the 

system, such as temperature, pressure or composition, avoiding any chemical analysis (Hefter & 

Tomkins 2003).  

2.3.2 Analytical Methods – Shake-Flask Technique  

The analytical methods are considered the most classical approach and are usually based 

in the saturated shake-flask methodology, proposed more than 50 years ago and still offering 

satisfactory reliability to measure the solubility of several systems. The basic idea of this method 

consists on adding an excess amount of solute to the solvent, where a saturated solution should 

be formed, and the solubility is measured under isothermal-isobaric conditions (Hefter & 

Tomkins 2003; Baka et al. 2008; Shefter & Higuchi 1963). A sample prepared at saturated 

conditions is thermostatized and kept under agitation until the system reaches the equilibrium, 

which may vary between 12 hours and 7 days, depending on the solute and the solvent natures, 

agitation employed, the amount of material used and the equilibrium method applied (Apley et 

al. 2015). When the equilibrium is achieved, the remaining solid, also called residue, is removed 
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from the supernatant (mother solution) by filtration or centrifugation, and then the concentration 

of the solute in the solution can be determined. Various analytical techniques may be used to 

identify the solubility of the solid in the mother solution, such as gravimetry, UV-Vis 

spectroscopy, HPLC and X-ray diffraction (Hefter & Tomkins 2003; Mota et al. 2010).  

For poorly soluble systems, the time required to reach the equilibrium is normally higher 

than for systems containing soluble solutes. One way to speed up the process is to increase the 

surface available area for dissolution, which can be achieved by either vortexing or sonicating 

the samples during the process. Other challenges in determining the solubility of poorly soluble 

solids are their tendency to float (Apley et al. 2015). 

In order to achieve reliable measurements, it is essential to ensure that the equilibrium 

state is reached, which can be obtained by studying the solute’s dissolution profile in the system. 

The shortest time required to obtain a constant solute concentration can be considered as a 

suitable equilibrium time, which can be easily obtained by isothermal gravimetry. In this method, 

a super-saturated mother solution is prepared and maintained stirred and under isothermal-

isobaric conditions while several samples are collected at different times. The supernatant is then 

removed from the samples and the remaining solid part is weighted. When there is no 

considerable variation in the solid solubility, the equilibrium is reached (Hefter & Tomkins 

2003). 

Although requiring longer times of experimental work, the gravimetric method of 

analysis can be considered quite accurate and reproducible to perform solubility measurements in 

pure and mixed solvents. It may present some loss issues when applied to systems containing 

lipophilic insoluble compounds, as well as some limitations due to the retention of solvent in the 

solid inner interstices (Mota et al. 2010).   

UV-Vis spectroscopy allows solubility measurements of several systems due to the large 

wavelength range that can be applied and correlated to a calibration curve previously built. They 

also provide satisfactory reproducibility and speed of analysis and impurities can be easily 

identified. However, when the UV absorption decreases, the uncertainty of the solubility results 

considerably increases (Mota et al. 2010). 

High performance liquid chromatography (HPLC) is a powerful analytical technique that 

can be coupled to a saturated solution generation column to measure aqueous solubilities. It can 

reduce colloidal dispersions, solute adsorption in the material walls, minimize sample loss by 
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evaporation and the use of organic solvents (Mota et al. 2010). On the other hand, HPLC is 

considered a time consuming technique because it requires long runs and a calibration curve to 

be correlated to the desired parameter (Lin et al. 2009).   

Even though the shake-flask method is considered one of the simplest procedures to 

determine equilibrium solubilities, it is time consuming and requires lots of manual work. The 

reliability of the results depends on a rigorous control of external variables, such as temperature, 

pressure, sedimentation time, stirring time and technique applied to separate the solid and the 

liquid phases (Baka et al. 2008) 

In order to minimize the experimental error involved in the shake-flask method, Baka et 

al. (2008) recommend some procedures that should be observed while performing the 

experimental work: 

 The measurements must be carried out at controlled, standard temperature; 

 The amount of solid in excess present in the solution should be around 1 - 2 mg/ml of 

solution, to avoid difficulties in sampling; 

 Equilibrium time must be checked for each compound studied. However, a minimum 

time to reach the equilibrium should be around 24 hours, summing 6 hours of stirring and 

18 hours for sedimentation.  

According to these authors, when the procedures above mentioned are strictly followed, 

the experimental error of the solubility measurements can be reduced to about 4 % (Baka et al. 

2008).  

2.3.3 Experimental Database   

For comparison purposes, a literature review of the experimental methodology employed 

by other authors in similar analysis was performed. From the four selected benzoic acids, only 

studies related to gallic acid and protocatechuic acid were found. The experimental methodology 

and its specifications are described in Table 2.1. 
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Table 2.1: Methodologies employed by different authors to measure the solubility of gallic acid and protocatechuic 

acid .  

System  Reference 
Range of 

Temperature (K) 

Experimental 

Methodology 

Shaking 

Time (h) 

Settling 

Time (h) 

Gallic Acid plus 

Water 

(Mota et al. 

2008) 
288 – 323 

Shake-Flask 

coupled to UV-VIS 

Spectroscopy and 

to Gravimetric 

Methods  

64-117 7-26 

Gallic Acid plus 

Methanol, Ethanol, 

Water, and Ethyl 

Acetate 

(Daneshfar et al. 

2008) 
298.2 – 333.2 

Shake-Flask 

coupled to UV-VIS 

Spectroscopy 

4a 1 

Gallic Acid plus 

Water 
(Lu & Lu 2007) 273.2 – 363.2 

Shake-Flask 

Method coupled to 

HPLC 

2b 6 

Gallic Acid plus 

Methanol and 

Water 

(Noubigh et 

al. 2013) 
293.15 – 318.15 

Shake-Flask 

coupled to UV-VIS 

Spectroscopy 

3 NAc 

Gallic Acid plus 

Water 1-Propanol, 

2- Propanol and 

Acetonitrile 

(Dali et al. 

2016) 
293.15 – 318.15 

Shake-Flask 

coupled to UV-VIS 

Spectroscopy 

3 NAc 

Protocatechuic 

Acid plus Water 

(Queimada et 

al. 2009) 
288.2 – 323.2 

Shake-Flask 

coupled to UV-VIS 

Spectroscopy and 

to Gravimetric 

Method 

120 - 140 24 - 40 

Protocatechuic 

Acid plus 

Methanol, Ethanol, 

Methyl Acetate and 

Ethyl Acetate 

(Noubigh et 

al. 2015) 
293.15 – 318.15 

Shake-Flask 

coupled to UV-VIS 

Spectroscopy 

3 NAc 

aSamples were stirred at 400 – 500 rpm. bSamples were agitated at 200 rpm using an electronic stirrer. cInformation 

not available. 

The solubility data compiled in Table 2.1 are graphically presented in Figures 2.2. to 2.5. 

(values obtained from Tables A.1 to A.4 of Appendix A) and Table 2.2.  
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Figure 2.2: Solubility in weight fraction of gallic acid in water available in literature: (Lu & Lu 2007) (), 

(Daneshfar et al. 2008) () and (Mota et al. 2008) (). 

 

Figure 2.3: Solubility in weight fraction  of gallic acid in different organic solvents as a function of temperature: 

methanol (), ethanol () and ethyl acetate () (Daneshfar et al. 2008). 

  

Figure 2.4: Solubility in mole fraction of gallic acid in different solvents as a function of temperature: methanol 

() (Noubigh et al. 2015), 1-propanol (), 2-propanol  () and acetonitrile () (Dali et al. 2016). 
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Figure 2.5 Solubility in mole fraction of protocatechuic acid as a function of temperature in different solvents 

methanol (), ethanol  (), methyl acetate () and ethyl acetate () (Noubigh et al. 2015). 

Table 2.2: Solubility in (g/L) of protocatechuic and gentisic acids in water found in literature 

Solute Temperature range (K) Solubility (g/L) Reference 

Gentisic acid 298.15 22 (Herzog & Swarbrick 1971) 

Protocatechuic acid 287.15 18.2 (Yalkowsky et al. 2010)  

 The wide application of gallic acid and protocatechuic acid in the pharmaceutical, food 

and chemical industries is probably the reason why more information is available for these 

compounds. 

 Although solubility measurements of gallic acid were performed by several authors, the 

values do not totally agree. For instance, the solubility of GA in water provided by Lu and Lu 

(2007) are generally lower than the results reported by Mota et al. (2008) and Daneshfar et al. 

(2008). Those differences may be due to the different experimental methodologies including the 

analytical techniques employed. Lu & Lu (2007) applied the shake-flask methodology coupled 

with HPLC, stirring the samples during 2 hours, what may not be enough time to reach the 

equilibrium state. Daneshfar et al. (2008) employed UV-Vis spectroscopy technique to quantify 

the solubility and 3 hours for the stirring time.  

On the other hand, few solubility data were found for gentisic acid (see Table 2.2.) in line 

with the scarce applications described before. Similarly, no data were found for α-resorcylic 

acid.  
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2.4 Thermodynamic Modeling  

Although solubility data as a function temperature are fundamental to design several 

industrial processes, there is still a lack of information about many solid-liquid and liquid-liquid 

systems, especially involving organic solvents. Even with the constant improvement of the 

analytical equipment, experimental works focused on solubility measurements usually take 

substantial time to be performed and must be carried out very rigorously to achieve reliable 

results (Mota et al. 2010).  

In many cases, solubility data are unavailable due to time restrictions and limited amount 

of samples. In addition, given the complexity of most drug molecules and the large diversity of 

their interactions, solubility may be measured very easily in simple systems, but it can be very 

complex task, for instance, when the system contain multicomponent solvents (Mota et al. 2012)  

In order to model, complement and support the experimental measurements, many 

thermodynamic methods have been proposed. Among those tools, there are some theoretical 

models that rely on information about the molecules under study, and others that are based on 

mathematical correlations of the experimental data. Some semi-empirical models may be applied 

to several non-ideal binary or multicomponent systems and describe their thermodynamic 

behavior. (Chen & Song 2004; Mota et al. 2011) 

2.4.1 Review of Models to Calculate Phase Equilibria 

Some of the most commonly thermodynamic models used to predict the equilibrium of 

drugs in the pharmaceutical industry are the models of Wilson, UNIQUAC, NRTL, Hansen, 

UNIFAC, NRTL-SAC, among others (Letcher et al. 2007; Prausnitz et al. 1999).  

Wilson’s model, one of the first thermodynamic methods proposed to determine a non-

ideal equilibrium, is based on molecular considerations for binary and miscible systems. The 

model has two adjustable parameters, Λ12 and Λ21, which are related to the pure-component molar 

volumes and to the interaction energies, and can be obtained, for binary systems from 

experimental data. Generally, in practical applications, the systems of interest are 

multicomponent or multiphase systems (Farajnezhad et al. 2016). For those cases, the 

multicomponent system may be considered composed by several binary systems, which 

generates more Wilson’s interaction parameters that usually are not available in literature. An 
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alternative way to determine those parameters requires the knowledge of several experimental 

solubility data to be fitted and applicable for further calculations (Farajnezhad et al. 2016). 

Although Wilson’s method was one of the first applied models, it has some restrictions. 

The first disadvantage is that those equations are not useful for systems where the logarithms of 

the activity coefficients reach maxima or minima. Another limitation is that the Wilson’s model 

shou1d only be used to predict solubilities involving completely miscible liquid systems or, else, 

for those limited regions where just one liquid phase is present (Rowlinson 1970). 

To overcome some of the limitations of Wilson’s method, some other models were 

developed boosted by the necessity of measuring solubilities of pharmaceuticals and polymers. 

Hansen model is based on the Hansen solubility parameters, which are obtained from 

mathematical regression of experimental solubility data (Srinivas et al. 2009). It was formulated 

based on the fact that solubility parameters have shown great industrial application to aid in 

solvent selection, being considered a correlative model (Hansen 2013).  

A well-known category of thermodynamic predictive models follows a group 

contribution methodology, which is based on the concept that the properties of a molecule can be 

derived from the functional groups that compose it (Nouar et al. 2016). The most successful 

method based on the functional group concept is the Universal Functional-Group Activity 

Coefficients (UNIFAC) model, which has been constantly applied to predict vapor-liquid, liquid-

liquid and solid-liquid equilibria (Nouar et al. 2016). By using chemical structure information 

from the molecules that compose the studied system and some binary interaction coefficients, the 

model calculates activity coefficients of the components present in solution, and consequently, 

determines the system equilibrium (Chen & Song 2004; Nouar et al. 2016). 

Although both UNIFAC and Hansen models fit well many systems, they have some 

limitations. For instance, they are inadequate to estimate the solubility of either large molar 

weigh molecules (above 200 g/mol) or systems containing electrolyte solutes (Chen & Song 

2004). In spite of the fact that Hansen’s model is based on the simple assumption that relates 

solubility parameters to experimental data, the method has limited practical applications 

regarding drug solubility (Mota et al. 2010). 

The UNIFAC model is not applicable to predict solubilities from systems containing 

isomers or at high pressure, above 10 atmospheres (Pistikopoulos et al. 2010). Furthermore, in 
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some cases, the parameters for certain functional groups and binary interactions are not available 

making the UNIFAC method unsuitable (Pistikopoulos et al. 2010; Valavi et al. 2016). 

Similarly to the Wilson’s model, Renon and Prausnitz (1968) also considered the local 

composition concept to derivate the Non-Random Two-Liquid (NRTL) model, which is one of 

the most successful thermodynamic models in the chemical industry to provide precise 

presentation of nonideal VLE and LLE systems (Chen & Song 2004). The following equation 

describes the NRTL activity for a multicomponent system: 

   𝑙𝑛 𝛾𝐼 =  𝑥𝑗
2 [𝜏𝑗𝑖 (

𝐺𝑗𝑖

𝑥𝑖+𝑥𝑗𝐺𝑗𝑖
)

2

+  
𝜏𝑖𝑗𝐺𝑖𝑗

(𝑥𝑗+𝑥𝑖𝐺𝑖𝑗)
2]                      (1) 

with Gij and τij defined as follows:  

  𝐺𝑖𝑗 = exp(−𝛼𝑖𝑗𝜏𝑖𝑗) 𝜏𝑗𝑖                                  (2) 

The parameter  𝐺𝑖𝑗 also can be calculated through the following expression: 

exp(−𝛼𝑖𝑗𝜏𝑖𝑗) 𝜏𝑗𝑖 =
𝑔𝑖𝑗−𝑔𝑗𝑖

𝑅𝑇
=

𝑎𝑖𝑗

𝑅𝑇
   (3) 

where gij is the energy interaction between i and j molecules, α is the non-randomness factor, T is 

absolute temperature of the system and R is the ideal gas constant (Renon & Prausnitz 1968). 

The model requires three binary interaction parameters that are determined by regression of 

experimental data to a specific system: a12, a21 and α12. The reduction of experimental data 

indicates that α12 varies from 0.2 to 0.47 for a large number of binary systems, which suggests 

that this parameter can be fixed when the experimental data are scarce (Rowlinson 1970). 

For moderate nonideal systems, the NTRL model provides no advantages over the 

simpler Wilson’s models. However, this model predicts more accurately the solubility of very 

nonideal systems, composed by partially immiscible phases (Rowlinson 1970). The model has 

shown to be very precise to determine some equilibrium properties; for instance it has been used 

to correlate the solubility of niflumic acid, flufenamic acid and diclofenac sodium in different 

solvents, reporting a deviation of 2% from the experimental solubility measurements (Valavi et 

al. 2016).   

2.4.2 Non-Random Two-Liquid Segment Activity Coefficient Model (NRTL-SAC) 
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 In 2004, Chen and Song, considering the successful range of the NRTL industrial 

applications, especially in polymer industry, and the mentioned limitations of the group 

contribution models, proposed an innovative variant method to describe liquid-liquid equilibrium 

systems: the NRTL segment activity coefficient (NTRL-SAC) model (Chen & Song 2004; Mota 

et al. 2010). In this method, the liquid non-idealities are defined in terms of three distinct 

conceptual molecules’ segments: hydrophilic, polar and hydrophobic. Those concept segments, 

or molecules descriptors, are represented respectively by hexane, acetonitrile and water, and 

represent the possible surface interactions that a solute and a solvent may have in a binary 

system. (Chen & Song 2004; Letcher et al. 2007) 

By resorting to an extensive VLE and LLE database of 62 common solvents commonly 

used in the pharmaceutical industry and assuming that the non-idealities may be described in 

terms of four molecules descriptors, Chen and Song (2004) estimated the number of segments 

required in each solvent and their values (Letcher et al. 2007). Considering those values and a 

few selected experimental solubility data of the target solute, it’s possible to predict the solute’s 

number of segments readily and, consequently, use them to estimate its solubility in other 

solvents and systems (Chen & Song 2004; Chen & Crafts 2006). 

One advantage of this method is to require less experimental work to predict a solute’s 

solubility in several solvents (Fakhraian et al. 2016). In addition, NRTL-SAC can be a very 

convenient tool to design a crystallization process due its capability of identifying both solvent 

and anti-solvent candidates (Chen & Crafts 2006).       

2.4.2.1 NRTL-SAC Model Equations  

 NTRL-SAC model revealed to be a very consistent thermodynamic tool to qualitatively 

correlate and predict drug solubility of pure and multicomponent systems, based only in a small 

initial set of experimental solubility data (Chen & Crafts 2006). In this model, the activity 

coefficient for a component I present in solution is the sum of a combinatorial term, γ
c
I and a 

residual term, γ
R

I. 

              𝑙𝑛 𝛾𝐼 = ln 𝛾𝐼
𝐶 + ln 𝛾𝐼

𝑅                                    (4) 

 The combinatorial term, γ
c
I, is calculated from the Flory-Huggins equation for the 

combinatorial entropy mixing, as follows: 
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ln 𝛾𝐼
𝐶 = ln

𝜙𝐼

𝑥𝐼
+ 1 − 𝑟𝐼 ∑

𝜙𝐼

𝑟𝐽
𝐽                (5) 

where I and J are component indices, 𝜙𝐼is the segment mole fraction of component I, r1  and rJ 

are the total segment number in components I and J and 𝑥𝐼 is the molar fraction of component I.   

.  Those terms are calculated by the following expressions: 

  𝑟𝐼 =  ∑ 𝑟𝑖,𝐼𝑖               (6) 

  𝜙𝐼 =  
𝑟𝐼𝑥𝐼

∑ 𝑟𝐽𝑥𝐽𝐽
                                   (7) 

where i the segment based-species indices, 𝑥𝐼 and 𝑥𝐽 are the molar fractions of components I and 

J, 𝑟𝑖,𝐼 is the number of segment species i contained in component I. 

The residual term, γ
R

I, is based on the NRTL’s model local composition interaction 

contribution, γ
lc

I,. which is represented by the following equation: 

ln 𝛾𝐼
𝑅 =  ln 𝛾𝐼

𝑙𝑐 = ∑ 𝑟𝑚,𝐼[ln 𝐼𝑚
𝑙𝑐 −  ln 𝐼𝑚

𝑙𝑐,𝐼]𝑚            (8) 

where 𝑟𝑚,𝐼 is the number of segments m contained in species I, 𝐼𝑚
𝑙𝑐 is the activity coefficient of 

segment species m and ln 𝐼𝑚
𝑙𝑐,𝐼 is the activity coefficient of segment species restricted only in 

component I. Those terms can be computed from NRTL model’s equation: 

    ln 𝐼𝑚
𝑙𝑐 =

 ∑ 𝑥𝑗𝐺𝑗𝑚𝜏𝑗𝑚𝑗

∑ 𝑥𝑘𝐺𝑘𝑚𝑘
+ ∑

𝑥
𝑚′𝐺

𝑚𝑚′

∑ 𝑥𝑘𝐺𝑘𝑚′𝑘
𝑚′ (𝜏𝑚𝑚′ −

∑ 𝑥𝑗𝐺
𝑗𝑚′𝜏

𝑗𝑚′𝑗

∑ 𝑥𝑘𝐺𝑘𝑚′𝑘
 )               (9) 

           ln 𝐼𝑚
𝑙𝑐,𝐼 =

 ∑ 𝑥𝑗,𝐼𝐺𝑗𝑚𝜏𝑗𝑚𝑗

∑ 𝑥𝑘,𝐼𝐺𝑘𝑚𝑘
+  ∑

𝑥
𝑚,𝐼′𝐺

𝑚𝑚′

∑ 𝑥𝑘,𝐼𝐺𝑘𝑚′𝑘
𝑚′ (𝜏𝑚𝑚′ −

∑ 𝑥𝑗,𝐼𝐺
𝑗𝑚′𝜏

𝑗𝑚′𝑗

∑ 𝑥𝑘,𝐼𝐺𝑘𝑚′𝑘
 )                       (10) 

where i, j, k, m and 𝑚′ are the segment-based species indices, I and J are the component indices 

and 𝑥𝑗 is the segment-based mole fraction of the species j. As in the NRTL model, the NRTL-

SAC has two parameters, G and τ, which are related to each other by the non-randomness factor 

α:  

       𝐺 =  𝑒−(𝛼.𝜏)          (11) 

In the NRTL-SAC model, the behavior of the mixtures is determined by the segment 

compositions of the molecules and their pairwise segment-segment interactions, which are 
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represented by characteristics of hydrophobicity (X), polarity (Y) and hydrophilicity (Z).  Those 

parameters are obtained not from the molecular structures, but from the interaction 

characteristics of the molecules in solution expressed in terms of their experimental equilibrium 

data (Chen & Song 2004). The local binary quantities and the non-randomness factor were 

determined to be constants and are shown in appendix B.  

As mentioned before, the solvents chosen to represent the hydrophobic, polar and 

hydrophilic behavior are hexane, acetonitrile and water, respectively. The binary parameters for 

hydrophobic (X) and hydrophilic (Z) interactions are obtained from liquid-liquid equilibrium 

(LLE) data of hexane-water mixture. The non-randomness factor α was fixed at 0.2 for these 

interactions because this is the ordinary value for systems that present liquid-liquid separation. 

Likewise, the binary parameters for hydrophobic segment (X) – polar (Y) segment and for polar 

segment (Y) – hydrophilic segment (Z) were obtained from available data of hexane-acetonitrile 

and acetonitrile-water, respectively, which lead the authors to fix α at 0.2 for both cases (Chen & 

Song 2004). On the other hand, the binary parameters for the polar segment (Y) – hydrophilic (Z) 

segment were obtained from vapor-liquid equilibrium (VLE) data, fixing the non-randomness 

factor at 0.3. Furthermore, the polar segment was subdivided in Y- and Y+ and τ12 was 

established to vary between -2 and +2 to reflect the fact that interaction between polar segment 

and the hydrophilic segment may be positive or negative. It’s also assumed in the model that 

there is no interaction among segments of the same nature, i.e, polar-polar segments (Chen & 

Song 2004).  

In addition to the conceptual segment parameters, the NRTL-SAC also requires 

molecular parameters for the solvents present in the systems that will be analyzed. Those 

parameters can be determined from regression of the available LLE and VLE data for binary 

systems of the intended solvent and the reference molecule descriptors (hexane, acetonitrile and 

water). The molecular parameters identified by Chen and Song (2004) for 62 solvents commonly 

used in the pharmaceutical industry are presented in appendix B.  

 Although three conceptual segments were generally defined, in many cases only one or 

two molecular parameters are necessary to describe a solvent`s behavior. Therefore, considering 

the parameters expressed in Appendix B and the NRTL-SAC equations, it is possible to estimate 

the activity coefficient of the solute in a binary system, which is directly related to the solute’s 

solubility. 
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Assuming that the solubility of an organic nonelectrolyte solid can be described by the 

expression:  

 ln 𝑥𝐼
𝑆𝐴𝑇 =  

𝛥𝑓𝑢𝑠𝑆

𝑅
(1 − 

𝑇𝑚

𝑇
) − ln 𝛾𝐼

𝑆𝐴𝑇         (12) 

 for T ≤ Tm 

      𝛥𝑓𝑢𝑠𝑆 =  
𝛥𝑓𝑢𝑠𝐻

𝑇𝑚
          (13) 

where  𝑥𝐼
𝑆𝐴𝑇 is the mole fraction of the solute I dissolved in the solvent phase at saturation, 𝛥𝑓𝑢𝑠𝑆 

is the entropy of fusion of the solute, R is the ideal gas constant, T is the absolute temperature 

(measured in Kelvin), Tm is the melting point of the solute, 𝛥𝑓𝑢𝑠𝐻 is the enthalpy of fusion of the 

solute and 𝛾𝐼
𝑆𝐴𝑇  is the activity coefficient of the solute at saturation (Frank et al. 1999). The 

terms 𝛥𝑓𝑢𝑠𝑆, 𝛥𝑓𝑢𝑠𝐻 and Tm are thermodynamic properties that vary among polymorphic forms of 

solute. Therefore, considering a polymorph at a specific temperature, the solute solubility is only 

function of its activity coefficient, which can be obtained by the NTRL-SAC model (Chen & 

Song 2004; Chen & Crafts 2006).  

2.4.2.2 NRTL-SAC Applications 

In this section, a few applications of the NRTL-SAC model, relevant to this work, will be 

discussed. Very recently the NRTL-SAC model has shown to be very useful of the in the 

description of of a set of pharmaceutical compounds in aqueous solution with a reported average 

error of 38%, which may be considered lower compared to other thermodynamic approaches 

(Valavi et al. 2016). It is also relevant to mention that NRTL-SAC, unlike other thermodynamic 

models, ignores temperature dependence of the activity coefficient, which means the influence of 

temperature is only considered on the activity of the solid (Valavi et al. 2016; Chen & Song 

2004).  

Despite its empirical nature, this model has shown to be relatively advantageous 

compared to other thermodynamic models due its robustness and accuracy (Valavi et al. 2016). 

The simplicity and the wide applicability of the model, either for organic non-electrolytic and 

organic electrolytic molecules, are also points that should be accounted while evaluating the 

NRTL-SAC features (Chen & Crafts 2006). Furthermore, Valavi et al. (2016) concluded that 
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NRTL-SAC, when predicting the solubility of pharmaceutical compounds in organic solvents, 

presents more accurate results than the group contribution UNIFAC model.   

Mota et al. (2010) presented a review of the successful applications of the NRTL-SAC 

model until 2008. The authors identified that the model has been applied to estimate the 

solubility of complex chemicals, such as acetylsalicylic acid, benzoic acid, testosterone, 

theophylline, estriol, hydrocortisone, among others, obtaining acceptable deviations between 

experimental and predicted values.  

In order to better evaluate the performance of the NTRL-SAC model, a literature review 

of the works published between 2006 and 2016 is compiled in Table 2.3., updating the review 

made by Mota et al. (2008).  

Table 2.3: Literature review of the NRTL-SAC successful applications from 2008 to 2016. 

Works Author 

NRTL-SAC presented excellent solubility predictions of paracetamol, sulfadiazine, 

cimetidine and sulfamerazine in mixed solvents at 293, 298 and 303 K 
(Chen & Crafts 2006) 

Prediction of infinite-dilution activity coefficient data of 22 ionic liquids in 35 solvents.  (Chen et al. 2008) 

The symmetric Nonrandom Two-Liquid Segment Activity Model (e-NRTS-AC) was 

proposed for electrolytes and the prediction of salt solubilities in a few representative 

solvents was carried out. They also estimated the solubility of sodium acetate and sodium 

salicylate in water-ethanol mixed solvent. 

(Song & Chen 2009) 

Prediction of the solubility of paracetamol, budesonide, allopurinol and furosemide in water, 

acetone/water, ethanol/water and ethanol/ethyl acetate. 
(Mota et al. 2009) 

The authors designed and compared the crystallization of acetaminophen in ethanol by 

applying the Van Laar equation, Wilson’s model, NRTL, NTRL-SAC and UNIFAC models. 

The most precise method found at predicting the equilibrium solubility and the crystal size 

was NRTL-SAC. 

(Widenski et al. 

2010) 

NRTL-SAC, UNIFAC, MOSCED and Jouyban-Acree methods have been used to model and 

optimize an isothermal anti-solvent crystallization of acetaminophen in acetone/water 

systems. NRTL-SAC and Jouyban-Acree showed to be the most accurate methods in the 

analyzed situation. 

(Widenski et al. 

2011) 

The authors combined an original optimization procedure with NRTL-SAC to screen, 

among 62 solvents, the best option to perform the crystallization of seven pharmaceutical 

molecules (lovastatin, valsartan, paracetamol, budesonide, allopurinol, furosemide and 

sulfadiazine). 

(Sheikholeslamzadeh 

et al. 2012) 

Solubility prediction of drug-like molecules, such as salicylic acid, benzoic acid, (Mota et al. 2012) 
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acetylsalicylic acid, ibuprofen, hydroquinone, estirol and estradiol in systems containing 

ethanol, 1-butanol, 1-pentanol, 1-octanol. 

The solubility of three compounds (3-pentadecylphenol, lovastatin, and valsartan) in 

different solvents and solvent mixtures was studied. The prediction results showed a better 

performance of the NRTL-SAC model compared to the UNIFAC model. 

(Sheikholeslamzadeh 

& Rohani 2012) 

Prediction of partition coefficients and selection of suitable solvents employed in counter-

current chromatography systems. Several solutes were tested in heptane/methanol/water, 

heptane/ethyl acetate/methanol/water (Arizona and hexane/ethyl acetate/methanol/water 

systems to validate the method). 

(Ren et al. 2013) 

Solubility predictions of epicatchin, epigallocatechin, epicatchin gallate and epigallocatechin 

gallate in water/ethanol mixtures at 293 K and 303 K were performed using UNIFAC and 

NRTL-SAC methods. The NRTL-SAC model was found to be the most accurate model. 

(Sevillano et al. 

2013) 

Prediction of androstenedione solubility in binary mixtures of methanol + water and ethanol 

+ water at temperatures from 275 to 325 K. 
(Tang et al. 2014) 

Solubility estimation of phosphoryl chloride and trimethylamine in several solvents, such as 

dichloromethane, acetic acid, ethyl acetate, acetone, n- hexane, 1-butanol, 2-propanol, 

isopropyl ether at temperatures from 283.15 to 323.15 K 

(Feng et al. 2014) 

The authors employed NTRL-SAC model to screen a suitable biphasic liquid system, 

between four possibilities, to be applied on a phenolic extraction process by high speed 

counter-current chromatography. The extracted phenolic compounds were 3,4-

dihydroxyphenylethanol, vanillic acid, orientin, vitexin, veratric acid, 2''-O-(3''', 4''-

dimethoxybenzoyl) orientin, 2''-O-feruloylorientin, 2''-O-feruloylvitexin, 2''-O-(2'' 

methylbutyryl) vitexin, 2''-0-(2'''-methylbutyryl) isoswertiajaponin, 2''-O-(2'''-methylbutyryl) 

isoswertisin and the solvent systems evaluated were composed by different compositions of 

hexane/ethyl/acetate/ethanol/methanol/water 

(Qin et al. 2015) 

By using eleven solvent system families containing 33 biphasic liquid systems, the authors, 

based on NRTL-SAC model, proposed a systematic and practical solvent system selection 

strategy to predict partition coefficients of eleven more solvent families containing partially 

or totally different solvents. 

(Ren et al. 2015) 

Development of a temperature-dependent NTRL-SAC model applied to systems containing 

risperidone, fenofibrat, fenoxycarb, tolbutamide, meglumine, butyl paraben, butamben, 

salicylamide in organic solvents, such as methanol, toluene, ethanol, 1-propanol, 2-propanol, 

1-butanol, acetone and ethyl acetate 

(Valavi et al. 2016) 

NRTL-SAC was applied to model ternary phase diagram for chiral medetomidine salts in 

alcohols. The systems analyzed were composed by medetominide hydrochloride and 2-

propanol, medetominide hydrobromide and 2-propanol, and medetominide oxalate and 

ethanol 

(Fakhraian et al. 

2016) 
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Table 2.3 shows that the NRTL-SAC model has been widely studied since 2006. Some 

studies point the model as a very good tool to assist the design of several separation processes, 

such as cooling crystallization, isothermal anti-solvent crystallization and counter-current 

chromatography. In addition, many works have compared NRTL-SAC with other models, like 

UNIFAC, pointing that the segment methodology usually provided the most reliable results.  

Besides the application pointed in Table 2.3, NTRL-SAC was also included in the 

thermodynamic library of the commercial software Aspen Properties and Aspen Polymers Plus. 

As mentioned by the ASPEN Technology “NRTL-SAC can be used for fast, qualitative 

estimation of the solubility of complex organic compounds in common solvents” (Aspen 

Technology 2010). 

To our knowledge, the NRTL-SAC was not used to predict the solubility of gallic acid, 

protocatechuic acid, gentisic acid and α-resorcylic acid. However, several authors applied it to 

drug molecules, with complex structures, which lead us to believe that NRTL-SAC may be used 

to determine molecule descriptors of the compounds addressed in this work, and consequently 

calculate its solubility in water and organic solvents. 

2.4.3 Reference Solvent Approach (RSA) 

Despite the robustness and accuracy of some thermodynamic models, prediction of the 

solubility of a solid in organic liquids may find some hindrances. Group-contribution 

approaches, such as UNIFAC, require the availability of all the group parameters that compose 

the molecules in the analyzed systems. Although the values can be measured in some cases or be 

obtained from similar structures, in many cases the available database is insufficient to estimate 

the missing parameters (Abildskov & O’Connell 2003).  

The NRTL segment activity coefficient approach, on the contrary, requires only four 

parameters for each component in the analyzed system, what is a considerable advantage over 

the UNIFCAC model when the systems are composed by complex molecules. On the other hand, 

in order to predict reliable solubility values, the knowledge of the solute’s melting point and 

enthalpy of fusion is required. However, those values are not always available and sometimes 

they are not simple to be determined.  

Considering the limitations mentioned above, Abildskov & O’Connell (2003) proposed 

an alternative approach that may be incorporated in the thermodynamic approaches to maximize 
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their realibility and accuracy. The Reference Solvent Approach (RSA) employs one of the 

solected solvents as reference to predict the activity coefficients and solubilities of the same 

solute in different systems. The selection of the reference solvent is related to minimization of 

the errors between the experimental and predicted solubilites, as shown in the next topic.  

2.4.3.1 Thermodynamic Framework 

The solubility of a solid solute in a liquid solvent at equilibrium, when both molecules 

have sufficiently different sizes and shapes that no solid solutions are formed, can be calculated 

by: 

ln 𝑥𝑠
𝐿 =  ln 𝑥𝑠

𝑖𝑑 − ln 𝛾𝑠
𝐿         (14) 

where 𝑥𝑠
𝐿 is the solute mole fraction solubility and 𝛾𝑠

𝐿 is the solute activity coefficient using the 

Lewis/Randall standard state (pure component as a liquid at the system temperature T). For 

nonideal solutions, 𝑥𝑠
𝐿  needs to be calculated iteratively by equation (14) and thermodynamic 

methods such as UNIFAC and NRTL-SAC may be used to determine the activity coefficient 

iteratively. The ideal solubility is obtained approximately from the ratio of standard-state 

fugacities, generally approximated with the use of the melting properties 𝑇𝑚𝑆  and 𝛥𝐻𝑚𝑆 , as 

shown in the following expression: 

                    ln 𝑥𝐼
𝑖𝑑 =  

𝛥𝐻𝑚𝑆 

𝑅𝑇𝑚𝑆
(1 − 

𝑇𝑚𝑆

𝑇
)    (15) 

Therefore, the solubility of the solute can be assumed as function of the melting parameters and 

activity coefficient. However, corrections to equation (14) are very important, especially if the 

system presents solid phase transitions between the system temperatures 𝑇 and 𝑇𝑚𝑆. In several 

cases, the solid form of the solute can vary with the solvent, either by crystalline lattice, solute’ 

solvation or compound formation (Shefter & Higuchi 1963; Abildskov & O’Connell 2003). 

Those aspects cannot be taken in account in the methodology presented above and accurate 

melting data are required to perform reliable predictions of solubility in solid-liquid systems.  

 Considering the discussion pointed above and disregarding any variations of the solid in 

the system, the term represented by equation (15) can be considered constant and the solubility 

of the solid S in a solvent i can be calculated as a function of the reference solvent j as shown 

below: 
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ln 𝑥𝑆𝑖 =  ln 𝑥𝑆𝑗 + ln 𝛾𝑆𝑗(𝑇, {𝑥𝑆}𝑗) − ln 𝛾𝑆𝑖(𝑇, {𝑥𝑆}𝑖)   (16) 

Where the reference terms in equation (15) can be gathered and written as: 

    𝑅𝑒𝑓𝑆𝑗(𝑇, {𝑥𝑆}𝑗) =  ln 𝑥𝑆𝑗 +   ln 𝛾𝑆𝑗(𝑇, {𝑥𝑆}𝑗)              (17) 

Assuming that the solute solubility in the reference solvent j is obtained experimentally, 

the solute activity coefficient and, consequently, the parameter Ref in equation (17) can be 

obtained interactively through robust thermodynamic methods such as UNIFAC, NRTL and 

NRTL-SAC in different temperatures. Then, a set of values for equation (17) in different times 

can be combined to one of the mentioned thermodynamic models to predict iteratively the solute’ 

solubility in solvent i through equation (15). The present methodology is very useful when the 

pure-solute properties are either unknown or very difficult to measure (Abildskov & O’Connell 

2003).    

2.4.3.2 Reference Solvent Approach   

Despite RSA cancels errors of measurements or assumption of pure-solute properties, it 

requires the selection of the reference solvent. In order to choose the best solvent option, 

Abildskov & O’Connell (2003) proposed the evaluation of the residual term represented by the 

following expression: 

δ ln 𝑥𝑆,𝑖𝑗 = ln 𝑥𝑆𝑖 + ln 𝛾𝑆𝑖(𝑇, {𝑥𝑆}𝑖) −  𝑅𝑒𝑓𝑆𝑗(𝑇, {𝑥𝑆}𝑗)  (18) 

The residual term represents the error obtained by assuming the solvent j as reference, in 

other words, it describes how much the approximation assumed by equation (16) diverge from 

reality, especially due to experimental errors or solid phase transitions (Abildskov & O’Connell 

2003). In order to obtain the reference solvent, a minimization of the sum of N available residual 

terms should be performed, as shown in the following equation: 

𝑚𝑖𝑛 |𝑅𝑒𝑓𝑆𝑗(𝑇, {𝑥𝑆}𝑗) −  ∑  
ln 𝑥𝑆𝑖+ln 𝛾𝑆𝑖(𝑇,{𝑥𝑆}𝑖)

𝑁𝑃𝑖=𝑑𝑎𝑡𝑎 |   (19) 

where NP is the total number of data points for the different i solvents in the database (Mota et 

al. 2012; Abildskov & O’Connell 2003). This strategy was developed to aid in the selection of 
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the solvent that adjusts the system better in terms of minimum error. However, it is important to 

evaluate the scattering of the data adjusted by the RSA technique.    
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Chapter 3 Solubility Measurements 
 

 

 

3.1. Experimental Methodology for the Solubility Measurements 

3.1.1. Compounds 

All the solutes and solvents were used as received, without further purification. Ultrapure 

water (resistivity of 18.2 MΩ.cm, free particles ≥ 0.22 μm and total organic carbon (TOC) < 5 

μd
.
dm

-3
) was obtained at the laboratory LQA (at IPB) through a reverse osmosis process using a 

Direct-Q® Water Purification system. The identification, source and purity of the remaining 

components are described in Table 3.1. The normal boiling point of the solvents is also provided. 

 

Table 3.1: CAS, Molar Mass, Assay (Purity %), provider and boiling points at atmospheric pressure of each of the 

components employed in this work. 

Component CAS Molar Mass 

(M) 

Mass Purity 

(%) 

Source Normal Boiling Point 

(ºC)
 

Gallic Acid 149-91-7 170.12 ≥ 98 Merck KGaA --------- 

Protocatechuic Acid 99-50-3 154.12 ≥ 96 Merck KGaA --------- 

Gentisic Acid 490-79-9 154.12 ≥ 99 Merck KGaA --------- 

α-Resorcylic Acid 99-10-5 154.12 ≥ 98 Merck KGaA --------- 

Methanol 67-56-1 32.04 ≥ 99.9 Carlo Erba 64.7a 

Ethanol 64-17-5 46.07 ≥ 99.9 Carlo Erba 78.4a 

Isopropanol 67-63.0 60.10 ≥ 99.8 Honeywell 82.6 a 

1-Propanol 71-23-8 60.10 ≥ 99.5 Carlo Erba 97.0 a 

2-Butanone 78-93-3 72.11 ≥ 99.5 
Sigma 

Aldrich 

79.6 a 

Ethyl Acetate  141-78-6 88.11 ≥ 99.7 Chromaslv® 77.1 a 

Acetonitrile 75-05-8 41.05 ≥ 99.9 
Sigma 

Aldrich 

82.0 a 

Dimethylformamide  68-12-2 73.09 ≥ 99.9 Carlo Erba 153.0 a 

aData obtained from (David R. Lide 2003). 
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3.1.2. Experimental Procedure 

 As summarized in Table 2.1, all the authors employed the well-known shake-flask 

methodology in order to reach the solid-liquid equilibrium. This technique presents very good 

results for systems that aren’t poorly soluble (Apley et al. 2015) and was selected in this work.   

Moreover, different analytical techniques can be employed to evaluate the solubility in 

the solution after the equilibrium state is achieved. Despite the robustness of UV-Vis 

spectroscopy and HPLC approaches, the gravimetric method was selected. Although this 

technique takes longer to achieve the final results, they are quite accurate in systems that don’t 

present insoluble solutes (Mota et al. 2010).  

3.1.2.1. Isothermal Shake-Flask  

 The saturated solutions were prepared by mixing a small amount of solid in excess to the 

Erlenmeyer flasks containing between 70 and 80 ml of solvent and a magnetic stirrer bar. The 

flasks were placed on a plate stirrer inside a thermostatic bath (Lauda Instruments, model E20, 

Ecoline 025) operating with distilled water, as shown in Figure 3.1. 

 

Figure 3.1: Experimental setup of the shake-flask methodology.  

 All the flasks were covered with aluminum foil to protect the solutions from possible 

light degradation.  



27 

 

Considering the wide range of shaking and settling times reported on Table 2.3, previous 

experiments were made to determine those conditions for the systems under study. It was found 

that 24 hours and 8 hours are the minimum times to shake and settle the solutions, respectively. 

The actual shaking and settling times employed for each solubility assay performed in this work 

are described in Table C.1 of Appendix C.  

From the available literature data, the solubility of the solutes in water was expected to be 

lower than the solubility in organic solvents. Therefore, to be sure aqueous systems reached the 

equilibrium state in 24 hours, the flasks were first placed in an ultrasonic bath (Ultrasons-H, JP 

Selecta S.A.), for one hour, at the same temperature employed on the thermostatic bath (298.15 

and 313.15 K). 

 In order to confirm that the solutions in the bath were saturated, the flasks were checked 

periodically and solid was added when necessary during the stirring process. For the systems 

with no data available in literature (systems with 2-butanone and DMF and all the systems 

involving gentisic and α-resorcylic acids), preliminary experiments were performed at ambient 

temperature (around 293 K) by placing the flasks directly over the plate stirrer (Magnetic Stirrer 

MSH-300N, BOECO Germany). After reaching a saturated solution with a small quantity of 

solid in excess, the flasks were placed in the bath. This procedure helped to achieve the 

equilibrium state more easily and minimized experimental errors.  

 After the settling period, three samples with volume varying between 1.5 and 5 ml were 

taken from the supernatant solution, using plastic syringes with metallic needles and placed in a 

previously weighted glass flask (± 10
-4

 g). The third sample was collected and filtered with 

polypropylene filters of 0,45 μm pore diameter. However, for some flasks containing a large 

amount of solid in excess, filters were used in the three samples, to prevent the transfer of any 

suspended particle. Figure 3.2 shows the material mentioned above to collect the samples from 

the solutions. 
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Figure 3.2: Syringes and filters used to collect the samples from the solutions. 

 

 Each week, the set of first experiments was performed at 298.15 K. Immediately after 

collecting three samples of the Erlenmeyer flask, additional solid was added to each system and 

the flasks returned to the thermostatic bath at 313.15 K.   

3.1.2.2. Gravimetric Method 

 After the samples were taken from the solution and placed into small flasks, these 

were immediately covered with a screw cap. This procedure should be particularly fast for 

systems containing volatile solvents. Then, the flasks were weighted and put in a hood until all 

the visible solvent evaporated. Afterwards, the samples were transferred to a drying oven 

operating at 343.15 K, for at least 7 days. Then, the samples were taken from the drying oven 

and placed into a desiccator for 2 hours until their masses were registered again. This procedure 

was repeated for each sample until a constant mass was reached. The average required time to 

obtain completely dried samples was usually 20 days. However, dimethylformamide has a 

significantly higher boiling point than the other solvents and at least 30 days were necessary to 

achieve complete dryness.  

In the gravimetric method, the solubility in weight fraction 𝑆𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛can be calculated by 

the following equation: 

𝑆𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =
𝑚𝐹+𝑆−𝑚𝐹

𝑚𝐹+𝑆𝑜𝑙+𝐶−𝑚𝐹+𝐶
      (20) 
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where 𝑚𝐹+𝑆 is the mass of the flask plus the dry solid, 𝑚𝐹 is the mass of the flask, 𝑚𝐹+𝑆+𝐶 is the 

mass of the flask and cap plus the amount of collected solution and 𝑚𝐹+𝐶 is the mass of the flask 

and cap. The solubility in grams of solute per 100 grams of solvent can be calculated as follows: 

𝑆 =
𝑆𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

1− 𝑆𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
∗ 100     (21) 

3.2. Results and Discussion 

3.2.1. Melting temperature and enthalpy  

 In addition to the solubility studies,  Differential Scanning Calorimetry (DSC) was also 

employed in this work to determine the melting point and the enthalpy of fusion of gallic acid, 

protocatechuic acid, gentisic acid and α- resorcylic acid. The analyses were performed at the 

University of Aveiro and the average results (3 samples per component) are summarized in Table 

3.2 (the original DSC thermograms are shown in Appendix D). 

Those parameters are essential to evaluate the solubility as shown in equation 11.  

  

Table 3.2: Melting temperature and enthalpy determined experimentally via DSC, in this work. 

Substance Tm (K) ΔHfus (kJ/mol) Observations 

Gallic Acid  524.2 74.3 ≤ ΔHfus ≤ 79.44 
Very high value. It seems to be from the enthalpy  of 

sublimation instead of fusion 

Protocatechuic 

Acid 
475.9 33.4 ± 0.7 

It appears to have solid-solid transitions before reaching the 

melting point  

Gentisic Acid  
471.5 2.3 Solid-solid transition 

478.9 28.15 ± 1.3  

α- resorcylic acid 510.5 37.0 ± 1.5  

 

For comparison purposes, a literature review about the melting temperature and enthalpy of the 

selected solids was performed. The results found are shown in Table 3.3.  
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Table 3.3 Meting points, enthalpies of fusion and methodologies employed to obtain those parameters for gallic 

acid, protocatechuic acid, gentisic acid and α-resorcylic acid. 

Compound Tm (K) ΔHfus (kJ/mol) Methodology Reference 

Gallic Acid 

499 38.77 
Marrero and Gani Group 

Contribution Model 
(Mota et al. 2008) 

535 ND** DSC (Mota et al. 2008) 

524.2 62.38 DSC (Jr et al. 2016) 

Protocatechuic 

Acid 

472.3 ± 1.6 31.2 ± 1.6 DSC (Queimada et al. 2009) 

469.3 34.2 
Marrero and Gani Group 

Contribution Model 
(Queimada et al. 2009) 

474.8 33.5 DSC (Vecchio 2013) 

474.9 34.0 DSC (Vecchio & Brunetti 2011) 

474.9 NM* DSC (Price et al. 1999) 

Gentisic Acid 
476.2 ± 0.2 

478.9 

20.8 ± 1.7*** 

NM* 

DSC 

DSC 

(Monte et al. 2010) 

(Price et al. 1999) 

α- Resorcylic Acid 

509.9 29.3 DSC (Sarma et al. 2010) 

508.3 ± 0.2 

508.9 

38.3 ± 0.4 

NM* 

DSC 

DSC 

(Monte et al. 2010) 

(Price et al. 1999) 

*Not measured; ** Not determined due to decomposition upon melting; *** Authors indicate that a phase transition 

seems to occur immediately followed by fusion. 

 

 In general, the measured melting temperatures of protocatechuic, gentisic and α- 

resorcylic acids are in close agreement with those found in literature. For gallic acid, Jr et al. 

(2016) report a similar value to the one found in this work. 

Regarding the enthalpy of fusion, the literature values are more uncertain and less 

consistent with each other. The results found in this work for protocatechuic and α- resorcylic 

acids are close to those found by Vecchio (2013) and Monte et al. (2010), respectively.  

The major divergence occurred with gallic acid, which started to decompose before 

reaching the melting point. Mota et al. (2008) tried to measure the enthalpy of fusion of gallic 

acid via DSC and also observed some degradation in the process. Other authors reported values 

that are considerably divergent from each other, which may indicate that DSC technique is 

unfeasible to measure the enthalpy of fusion of gallic acid.  

Despite some of the measured enthalpies of fusion being close to those found in 

literature, the thermograms shown in Appendix G indicate very high values, which may include 

either enthalpies of sublimation or other parameters related to solid-solid transitions. Also, in 
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some cases, other peaks were detected, making it difficult to identify the enthalpy of fusion for 

the studied compounds. 

3.2.2 Solubility in water and organic solvents 

 The experimental solubilities obtained in this work at 298.15 K and 313.15 K are shown 

in Table 3.4 and Table 3.5, respectively. More detailed information about those data is included 

in Tables E.1 to E.8. of Appendix E, namely, number of collected samples average solubility, 

standard deviation and coefficient of variation. The number of collected samples varied between 

3 and 4 (depending on the amount of solid in excess in the Erlenmeyer flasks).  

 

Table 3.4: Experimental solubilities (g of solute/100 g of solvent) of gallic acid, protocatechuic acid, gentisic acid 

and α-resorcylic acid in water and organic solvents at 298.15 K. 

Solvent Gallic Acid Protocatechuic Acid Gentisic Acid α-Resorcylic Acid 

Water 1.072 ± 0.001 1.293 ± 0.001 2.196 ± 0.001 10.176 ± 0.002 

Methanol 38.623 ± 0.002 79.193 ± 0.007 67.565 ± 0.001 43.376 ± 0.001 

Ethanol 23.732 ± 0.001 55.577 ± 0.002 45.503 ± 0.001 13.068 ± 0.001 

Isopropanol 13.007 ± 0.001 45.146 ± 0.002 33.156 ± 0.002 12.823 ± 0.001 

1-Propanol 10.585 ± 0.001 40.904 ± 0.001 35.277 ± 0.001 34.512 ± 0.001 

2-Butanone 6.196 ± 0.001 49.272 ± 0.001 36.163 ± 0.001 3.621 ± 0.001 

Ethyl Acetate 0.996 ± 0.001 7.894 ± 0.001 11.222 ± 0.001 3.317 ± 0.001 

Acetonitrile 0.492 ± 0.001 5.910 ± 0.001 7.680 ± 0.001 3.271 ± 0.001 

DMF 44.514 ± 0.009  60.728 ± 0.002 73.025 ± 0.007 47.774 ± 0.004 

 

Table 3.5: Experimental solubilities (g of solute/100 g of solvent) of gallic acid, protocatechuic acid, gentisic acid 

and α-resorcylic acid in water and organic solvents at 313.15 K. 

Solvent Gallic Acid  Protocatechuic Acid  Gentisic Acid  α-Resorcylic Acid  

Water 2.417 ± 0.001 3.046 ± 0.001 5.137 ± 0.001 22.452 ± 0.001 

Methanol 41.472 ± 0.001 92.404 ± 0.003 78.613 ± 0.004 52.207 ± 0.001 

Ethanol 24.522 ± 0.001 57.988 ± 0.001 51.607 ± 0.003 16.485 ± 0.001 

Isopropanol 14.422 ± 0.001 50.261 ± 0.001 44.943  ± 0.001 16.083 ± 0.001 

1-Propanol 11.697 ± 0.001 43.987 ± 0.001 40.499 ± 0.001 37.816 ± 0.001 

2-Butanone 6.027 ± 0.001 50.444 ± 0.001 40.252 ± 0.001 4.395 ± 0.001 
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Ethyl Acetate 1.096 ± 0.001 12.991 ± 0.001 18.261 ± 0.001 5.064 ± 0.001 

Acetonitrile 0.699 ± 0.001 10.785 ± 0.001 10.989 ± 0.001 5.344 ± 0.001 

DMF 49.403 ± 0.002 67.401 ± 0.004 78.101 ± 0.010 53.318 ± 0.003 

 

In order to better compare the solubility values shown in Tables 3.4 and 3.5, bubble 

graphics were built and are displayed in Figure 3.3.   

  

Figure 3.3: Experimental solubilities of gallic acid, protocatechuic acid, gentisic acid and α-resorcylic acid in 

different solvents at 278.2 K (a) and 313.2 K (b). 

a b 
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The binary systems containing protocatechuic and gentisic acids usually present the 

highest solubilities in the organic solvents. In the case of water, α-resorcylic acid is the most 

soluble solute, followed by gentisic, protocatechuic and gallic acids.  

As expected, the solubility of these phenolic acids in short-chain alcohols is high, not 

only due the dispersion forces but also to the large number of hydrogen bonds formed between 

solute and solvent (the polarity parameters of all the selected compounds are shown in Tables 

F.1. and F.2. of Appendix F). In general, the solubility decreases with the increase of the alkyl 

chain of the alcohol with one exception: the solubility of α-resorcylic acid in 1-propanol is 

unexpectedly high and much larger than the solubility in isopropanol.  

A peculiar behavior was also observed in the solubilities of the systems containing 2-

butanone, acetonitrile and ethyl acetate. In those cases, solubilities of protocatechuic and gentisic 

acids are much higher than the solubilities of gallic and α-resorcylic acids.  

The coefficients of variation of the experimental data are considerably low, being 1.99% 

and 1.60% the maximum values at 298.15 and 313.15 K, respectively (data shown in Tables E.1. 

and E.2.). This coefficient of variation is a statistical parameter that helps to evaluate the 

precision and the analytical method employed, which means that the results obtained by the 

shake-flask coupled to gravimetric method were quite accurate.  

The percentages of solubility increase between 298.15 K and 313.15 K are shown in 

Table 3.6.  

Table 3.6: Percentage of solubility increase from 298.15 K to 313.15 K for each binary system. 

Solvent Gallic Acid  Protocatechuic Acid  Gentisic Acid  α-Resorcylic Acid  

Water 125.5 135.6 133.4 120.6 

Methanol 7.4 16.7 16.4 20.4 

Ethanol 3.3 4.3 13.4 26.2 

Isopropanol 10.9 11.3 35.6 25.5 

1-Propanol 10.5 7.5 14.8 9.6 

2-Butanone -2.7 2.4 11.3 21.4 

Ethyl Acetate 10.0 64.6 62.7 52.7 

Acetonitrile 42.1 82.5 43.1 63.4 

DMF 0.11 0.11 0.07 0.12 
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In general, as temperature increases the solubility also increases. This variation is much 

stronger in the aqueous systems than in the organic solvents. The exception is the system formed 

by gallic acid and 2-butanone, for which a small decrease of 2.7 % in the solubility was detected, 

which is uncommon, but possible. However, the solubility’s percentages of increase in 2-

butanone systems are not very high (except for α-resorcylic acid), which may have led to 

oversaturation in the system containing gallic acid. Further studies should be performed to check 

the results obtained for this system. 

On the other hand, although solubility values in dimethylformamide were high for the 

four addressed solutes, their percentages of increase from 298.15 K to 313.15 K were very small. 

The highest percentage of increase was obtained for protocatechuic acid in water (135.6 %), and 

the lowest occurred in the system composed by gentisic acid and DMF (0.07 %).  

3.2.3. Comparison of the experimental solubilities to literature data   

 In order to better evaluate the experimental results obtained in this work, a comparison 

between them and the available literature data is made in Figures 3.3 to 3.5. 

 

 

Figure 3.4: Comparison between experimental and literature data of gallic acid solubility in water. 
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 As can be seen in Figure 3.3, the solubility data obtained in this work is lower than the 

average solubility data collected from literature, being close to those obtained by Lu and Lu 

(2007).  

All the other authors but Mota et al. (2008) considered shaking and settling times lower 

than those assumed in this work, as shown in Table 2.1. In addition, the solubility data reported 

by Daneshfar et al. (2008) present a high scattering with temperature, which may indicate 

possible experimental errors.  

Figures 3.4 and 3.5 compare the solubility of gallic acid and protocatechuic acid in 

organic solvents, respectively.  

  

  

 

Figure 3.5: Comparison between experimental and literature data of gallic acid solubility in methanol (a), 1-

propanol (b), ethyl acetate (c) and ethanol (d). 
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Figure 3.6: Comparison between experimental and literature data of protocatechuic acid solubility in water (a), 

methanol (b), ethyl acetate (c) and ethanol (d). 
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certainly reached. On the other hand, the works published by Dali et al. (2016) and Noubigh et 

al. (2015) assumed shaking and settling times much lower than those employed in this work 

(shown in Table 2.1.). In those cases, the equilibrium state may not have been reached, which 

could explain the reason for the solubility values obtained by the authors in the binary systems 

containing protocatechuic acid and methanol, ethyl acetate and ethanol be inferior to the values 

obtained in this work, especially at 298.15 K. In addition, differences in the solid phase may also 

explain the different solubility values.  
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Chapter 4 Solubility Modeling 
 

 

 

 

 

4.1. NRTL-SAC Programming 

4.1.1. Methodology and Simulations Conditions 

  The NRTL-SAC model and the optimization of the parameters for the four selected 

compounds were implemented using the software MATLAB version R2013a. The selected 

optimization algorithm was the MATLAB routine “Isqnonlin”, which is based on nonlinear 

least-squares curve fitting of the objective function (absolute value of the difference between the 

experimental and the calculated solubility data). This algorithm is based on the minimization of 

the following objective function:  

𝑚𝑖𝑛𝑥‖𝑓(𝑥)‖ = 𝑚𝑖𝑛𝑥(𝑓1(𝑥)2  +  𝑓2(𝑥)2. . . +𝑓𝑛(𝑥)2)  (22) 

where 𝑓(𝑥) is the relative difference between the experimental and the calculated solubility at 

each temperature, obtained by: 

𝑓(𝑥) =
𝑥𝑒𝑥𝑝 −𝑥𝑐𝑎𝑙

𝑥𝑒𝑥𝑝 
     (23) 

In order to reduce the number of calculations, bound constraints were considered. The 

minimum and maximum values of the NRTL-SAC parameters for all the simulations were set at 

0.000 and 3.000, respectively. Those values were fixed considering that the NRTL-SAC 

molecular descriptors cannot be negative and are seldomly higher than 3.000.  

 The Reference Solvent Approach (RSA) proposed by Abildskov & O’Connell (2003) 

was also coupled to the NRTL-SAC method, as the available temperature and enthalpy of fusion 

are, in some cases, highly uncertain.  

The main goal of the first set of simulations is to determine the four NRTL-SAC 

conceptual molecules’ segments (X, Y
+
, Y

-
, Z) for gallic acid, protocatechuic acid, gentisic acid 
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and α-resorcylic acid using part of the solubility data measured here. After, those parameters will 

be used to predict the solubility in a different set of solvents.  

 

4.2. Results and Discussion  

4.2.1. Correlation  

In order to evaluate the accuracy of the results obtained, the average relative deviations 

(ARD %) were calculated for each binary system as follows: 

𝐴𝑅𝐷(%) =  
1

𝑁𝑃
∑

|𝑥𝑖
𝑒𝑥𝑝− 𝑥𝑖

𝑐𝑎𝑙𝑐|

𝑥𝑖
𝑒𝑥𝑝𝑖 ∗ 100   (24) 

where NP is the number of data points, and 𝑥𝑖
𝑒𝑥𝑝 and  𝑥𝑖

𝑐𝑎𝑙𝑐 are the experimental and calculated 

solubility in mole fraction, respectively.  

 The first optimization approach involved the application of Equation 15, using the values 

of the melting properties presented in Table 3.2. While performing the simulations, it wasn’t 

possible to converge to a set of parameters that could correlate the data. This is probably due to 

the high values found for the enthalpy of fusion, which may represent other phenomena instead 

of the melting point. Therefore, the Reference Solvent Approach was adopted as a second 

strategy to describe the solid-liquid equilibria. 

For this correlation step, water, methanol, ethanol, isopropanol, 2-butanone, acetonitrile 

and ethyl acetate were selected. After, the parameters found were used to predict the solubility in 

dimethylformamide and isopropanol.  

In the gallic acid simulations, 2-butanone was discarded due to the decrease of the 

solubility between 298.15 K and 313.15 K.  

Table 4.1 shows the optimized segment parameters, the selected reference solvent, the 

number of solvents employed, the general ARD% and the system outlier for each solute studied 

in this work. More detailed information about the ARD% found per binary system as well as 

predicted solubility and activity coefficient data are shown in Table G.1 from Appendix G. 
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Table 4.1: NRTL-SAC parameters, RSA, system Outlier, number of solvents and ARD (%) for each simulation. 

Compound X Y- Y+ Z RSA Outlier NS ARD (%) 

Gallic Acid 0.496 0.430 0.000 2.290 Acetonitrile Ethyl Acetate 6 29 

Protocatechuic Acid 0.579 1.080 0.000 0.726 Acetonitrile 2-Butanone 7 29 

Gentisic Acid 1.525 0.037 0.530 1.838 2-Propanol Water 7 25 

α-Resorcylic Acid 0.188 0.139 0.000 1.044 Acetonitrile Ethyl Acetate 7 34 

 From all the solvents evaluated, acetonitrile was employed as the reference solvent three 

times, for gallic, protocatechuic and α-resorcylic acids. For the simulations performed with 

gentisic acid, 2-propanol was the reference solvent that presented the minimum ARD.  

The correlation results lead to conclusion that NRTL-SAC is an adequate model to 

estimate solubility of the studied compounds, with minimum and maximum ARD values of 25 

and 34 % for gentisic and α-resorcylic acids, respectively. Queimada et al. (2009) and Mota et al. 

(2012) also employed NRTL-SAC to predict solubility of drug molecules, such as salicylic acid, 

benzoic acid, paracetamol and furosemide, and reported ARD values of 67% and 29%, 

respectively, which are similar to those found in this work. 

In general, the models adjusted the solubility data better in systems containing alcohols 

compared to those containing ethyl acetate and 2-butanone. Good correlation results were also 

obtained for the solubility in water of all solutes with the exception of gentisic acid.  

Figures 4.1 to 4.4 compare the experimental and calculated solubility data for each binary 

system as a function of temperature.  

 
Figure 4.1: NRTL-SAC prediction results for gallic acid. 
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Figure 4.2: NRTL-SAC prediction results for protocatechuic acid. 

Figure 4.3: NRTL-SAC prediction results for gentisic acid. 

 
Figure 4.4: NRTL-SAC prediction results for  α-resorcylic acid. 
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For the gallic acid systems, the best fitted solvent was ethanol, with a maximum deviation 

of 9% and all the solvents but ethyl acetate presented ARD lower than 21%. However, the outlier 

presented a very high deviation of 95 %. 

For the simulations performed with protocatechuic acid, 2-butanone was the outlier, with 

71% of maximum deviation. In this case, water and methanol presented the best calculated 

results with 10% of ARD. 

The simulations performed with gentisic acids exhibited peculiar results. In this case, all 

the solubility data were adjusted very well in systems composed by organic solvents (all ARD 

were inferior to 25%). However, the system presented a maximum deviation of 99.99 % for the 

solubility calculated in aqueous system, predicting a value close to zero.  

For α-resorcylic acid, ethyl acetate was the outlier, presenting a deviation of 80% and 

water and 2-propanol were the solvents best fitted in terms of the calculated solubility, showing 

each an ARD of 11%.  

The predicted activity coefficients, shown in Table G.1, are higher than 1 for systems that 

present low solubilities, such as those containing water, ethyl acetate and acetonitrile. For those 

systems, the interactions between the solute and the solvent are weak, causing lower solubilities. 

On the other hand, systems containing alcohols usually presented predicted activity coefficients 

lower than 1, which means in these systems, the solute-solvent interactions are strong provoking 

an increase in the solid solubility.  

4.2.2. Prediction  

Once the NRTL-SAC segment parameters were obtained, the model can be used to 

estimate the solubility of the same solutes in different solvents. Figure 4.5 shows the predicted 

solubility of the four solutes in 1-propanol and dimethylformamide (DMF).   
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Figure 4.5: Predicted solubility data obtained through NRTL-SAC for gallic acid (a), protocatechuic acid (b), 

gentisic acid (c), and α-resorcylic acid (d). 

The ARD% found for 1-propanol and DMF were 70 and 78%, respectively. More 

detailed information is displayed in Table G.2 of Appendix G. Although Figure 4.5 shows that 

the predicted solubility data were not as good as the calculated solubility data obtained in the 

optimizations of the NRTL-SAC parameters, Queimada et al. (2009) and Mota et al. (2010) also 

presented results containing ARD% higher than 70% for the predicted solubilities of binary 

systems containing drug molecules, such as allopurinol, ibuprofen and estradiol. 
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In the case of the systems containing 1-propanol, there might have been some 

oversaturation for gallic acid and α-resorcylic acids (as mentioned before), which may be the 

cause of the high difference observed between the experimental and the estimated solubilities. In 

the future, further experimental assays will be performed with this solvent to verify the 

experimental values pointed in this work.  

The systems containing DMF presented very high experimental solubility values for all 

the analyzed solutes. In addition, the crystals formed during the crystallization processes 

presented different coloration from those observed in other systems, which may indicate either 

that the solutes reacted with the solvents or the formation of distinct solid phases. X-ray analysis 

will be performed in the future in order to characterize the solids. 

Finally, Figure 4.6 shows the big picture by presenting the calculated solubility using the 

NRTL-SAC model as a function of the experimental solubility data (the predicted solubility data 

for the system formed by gentisic acid and water were disregarded due to their low log values). 

All the solubility information used to plot the graphics in Figure 4.6 are displayed in Tables G.1 

and G.2 of Appendix G. 

  

Figure 4.6: Comparison between experimental and predicted solubility for solvents used in the determination of the 

NRTL-SAC segment descriptors (a) and other organic solvents (b). 
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As can be seen in Figure 4.6, in general, the calculated solubilities that presented the 

highest deviations were inferior to the experimental solubility data. From the seven binary 

systems employed to optimize the NRTL-SAC parameters for the studied solutes, those 

containing ethyl acetate and 2-butanone are the more difficult to be correlated. Furthermore, 

predicted solubilities values for binary systems containing 1-propanol usually have lower 

deviations than binary systems containing dimethylformamide.  

As shown in Table G.2 from Appendix G, almost all the systems containing 1-propanol 

and DMF presented estimated activity coefficients lower than 1 (the only exception was for the 

binary system formed by α-resorcylic acid and 1-propanol). Due to the high experimental 

solubility presented by those systems, the interactions between the studied phenolic acids and the 

mentioned solvents are strong, causing the activity coefficients to be lower than 1.  
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Chapter 5 Conclusions and Future Work 
 

 

 

 

 In this work, the solubility of gallic acid, protocatechuic acid, gentisic acid and α-

resorcylic acid was experimentally measured in water and different organic solvents (methanol, 

ethanol, 1-propanol, isopropanol, 2-butanone, ethyl acetate, acetonitrile and 

dimethylformamide), at 298.2 and 313.2 K. The shake-flask methodology was applied using the 

gravimetric method as analysis method with good results. In general, an increase in the 

temperature indicates an increment in the solubility of the binary systems. 

The coefficients of variation of all the experimental assays were lower than 2%, which 

are very acceptable. The solubility data generally exhibited the same pattern for alcohols, 

presenting the highest solubilities for those having the shortest carbon chain. An exception 

occurred for the system composed by α-resorcylic acid and 1-propanol, for which the solubility 

values were much higher than those obtained for binary systems containing ethanol and 

isopropanol. Further experiments should be performed in the future to corroborate the values 

obtained in this work.  

Melting points and enthalpies of fusion were also determined by Differential Scanning 

Calorimetry (DSC) for the phenolic compounds addressed in this work. The results for the 

melting temperature were consistent with literature values. Regarding the melting enthalpy, a 

high uncertainty is associated with the measured values as solid phase transitions or sublimation 

phenomena may interfere with the values obtained. .  

The second part of this work consisted in the thermodynamic modelling of the 

experimental data measured in this work by applying the Non-Random Two Liquid Segment 

Activity Coefficient (NRTL-SAC) model. NRTL-SAC was selected because this framework has 

shown great robustness and accuracy to predict the solid-liquid equilibria of a wide range of 

systems. In this work, the model presented acceptable correlation results with average relative 

deviation (ARD) varying between 25 and 34%. After, the model was used to predict the 

solubility in 1-propanol and dimethylformamide and the ARD% were 70 and 78%, respectively. 
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Those values are satisfactory for semi-predictive models, using a limited set of solvents. From 

the solvents employed in the simulations, the solubility in alcohols and acetonitrile was better 

correlated by the model, presenting the lowest ARD values.  

Considering that no previous simulations were reported until this moment for the studied 

phenolic acids, the NRTL-SAC segment descriptors can contribute for future predictions in 

different systems. For future work, further experimental solubility measurements in different 

binary and multicomponent systems are suggested, in order to provide more robustness to the 

optimized parameters. In addition, other thermodynamic frameworks, such as UNIFAC, 

UNIQUAC and their variations could also be implemented.  

In order to better understand the solubility behavior of those phenolic acids in water and 

organic solvents, measurements of the potential of hydrogen (pH) can be performed in the future, 

as well as solid-phase characterizations. By knowing more detailed about the solid-solid 

transactions, a better understating of the solubility behavior of the studied compounds could be 

accomplished. In addition, studies on the solubility of other phenolic acids can also be performed 

to aid in the understanding of molecular structure’s influence in the solubility of those 

compounds. 
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Appendix 

 

 

 

 

Appendix A: Solubility data collected in literature  

The following tables expose solubility data found in literature for gallic acid and 

protocatechuic acid in water and organic solvents. 

Table A.5: Solubility in g/L of gallic acid in water. 

Solvent Temperature range (K) Solubility (g/L) Reference 

Water 

288 

293 

298 

303 

313 

323 

9.1 ± 0.7 

11.9 

14.7 ± 0.8 

18.6 ± 0.9 

22.5 ± 0.62 

38.9 ± 2.1 

(Mota et al. 2008) 

(Yalkowsky et al. 2010) 

(Mota et al. 2008) 

(Mota et al. 2008) 

(Mota et al. 2008) 

(Mota et al. 2008) 

 

Table A.6: Solubility in weight fraction of gallic acid in water and organic solvents. 

Solvent Temperature range (K) Solubility*100 (g/g) Reference 

Water 

293.15 

298.15 

303.15 

308.15 

313.15 

318.15 

323.15 

328.15 

333.15 

 

298.2 

303.2 

308.2 

313.2 

318.2 

323.2 

328.2 

333.2 

 

0.96  ±  0.01 

0.10 ± 0.02 

1.38 ± 0.01 

1.79 ± 0.01 

2.36 ± 0.02 

3.07± 0.05 

4.02 ± 0.06 

5.15 ± 0.06 

6.86 ± 0.06 

1.516 ± 0.021 

 

1.615 ± 0.021 

2.367 ± 0.021 

2.540 ± 0.023 

3.429 ± 0.026 

3.820 ± 0.026 

4.787 ± 0.026 

7.378 ± 0.027 

 

 

(Lu & Lu 2007) 

 

 

 

 

 

 

 

 

 

(Daneshfar et al. 2008) 

Methanol 

298.2 

303.2 

308.2 

313.2 

318.2 

27.93± 0.29 

28.83 ± 0.29 

29.30 ± 0.30 

29.59 ± 0.30 

30.13 ± 0.30 

 

 

 

(Daneshfar et al. 2008) 
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323.2 

328.2 

333.2 

 

30.48 ± 0.32 

31.07 ± 0.33 

31.74  ± 0.33 

Ethanol 

298.2 

303.2 

308.2 

313.2 

318.2 

323.2 

328.2 

333.2 

 

18.9 ± 0.22 

18.94 ± 0.22 

19.00 ± 0.22 

19.17 ± 0.23 

19.55 ± 0.24 

20.02 ± 0.24 

20.45 ± 0.24 

20.93 ± 0.25 

 

(Daneshfar et al. 2008) 

 

 

 

Ethyl acetate 

298.2 

303.2 

308.2 

313.2 

318.2 

323.2 

328.2 

333.2 

1.276 ± 0.020 

1.29 ± 0.021 

1.303 ± 0.020 

1.335 ± 0.021 

1.438 ± 0.023 

1.544 ± 0.023 

1.598 ± 0.024 

1.6898 ± 0.024 

(Daneshfar et al. 2008) 

Table A.7: Solubility in mole fraction of gallic acid in organic solvents. 

Solvent Temperature range (K) 
Mole  Fraction 

Solubility*1000 
Reference 

Water 

293.15 

298.15 

303.15 

308.15 

313.15 

318.15 

 

293.15 

298.15 

303.15 

308.15 

313.15 

318.15 

 

1.0099 

1.3527 

1.706 

2.2661 

2.8901 

3.7984 

 

1.269 

1.478 

2.04 

2.524 

3.205 

3.797 

 

(Noubigh et al. 2013) 

 

 

 

 

(Dali et al. 2016) 

Methanol 

293.15 

298.15 

303.15 

308.15 

313.15 

318.15 

63.872 

67.163 

70.006 

72.072 

75.466 

76.815 

 

(Noubigh et al. 2013) 

1 – Propanol 

293.15 

298.15 

303.15 

308.15 

313.15 

318.15 

33.169 

41.295 

42.919 

45.788 

47.362 

48.563 

(Dali et al. 2016) 

2 – Propanol 

293.15 

298.15 

303.15 

27.979 

34.834 

36.204 

(Dali et al. 2016) 
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308.15 

313.15 

318.15 

 

38.615 

39.952 

40.947 

 

Acetonitrile 

293.15 

298.15 

303.15 

308.15 

313.15 

318.15 

27.403 

34.117 

35.459 

37.820 

39.130 

40.461 

(Dali et al. 2016) 

Table A.8: Solubility in g/L of protocatechuic acid in water. 

Solvent Temperature range (K) Solubility (g/L) Reference 

Water 

288 

298 

303 

313 

323 

7.6 ± 0.6 

12.7 ± 0.2 

17.4 ± 0.1 

28.1 ± 0.9 

49.3 ± 0.5 

(Queimada et al. 2009) 

Table A.9: Solubility in mole fraction of protocatechuic acid in organic solvents. 

Solvent Temperature range (K) 
Mole Fraction 

Solubility*1000 
Reference 

Methanol 

 

293.15 

298.15 

303.15 

308.15 

313.15 

318.15 

 

33.74 

45.08 

65.38 

92.8 

126.11 

167.21 

 

(Noubigh et al. 2015) 

 

Ethanol 

 

293.15 

298.15 

303.15 

308.15 

313.15 

318.15 

 

30.24 

40.99 

49.55 

66.5 

84.65 

108.12 

 

(Noubigh et al. 2015) 

 

Methyl Acetate 

 

293.15 

298.15 

303.15 

308.15 

313.15 

318.15 

 

5.63 

8.43 

11.5 

16.65 

22.54 

30.03 

 

(Noubigh et al. 2015) 

 

Ethyl Acetate 

 

293.15 

298.15 

303.15 

308.15 

313.15 

318.15 

4.78 

6.71 

9.06 

13 

17.91 

23.29 

(Noubigh et al. 2015) 
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Appendix B: NRTL-SAC conceptual parameters 

Table B.2: NRTL-SAC local binary parameters and non-randomness factors (Chen & Song 2004). 

Segment 1 X X Y- Y+ X 

Segment 2 Y- Z Z Z Y+ 

τ12 1.643 6.547 -2.000 2.000 1.643 

τ21 1.834 10.949 1.787 1.787 1.834 

α12 = α21 0.2 0.2 0.3 0.3 0.2 

 

Table B.2: NRTL-SAC Molecular Parameters for Common Solvents (Chen & Crafts 2006). 
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Appendix C: Shaking and settling times  

Table C.1: Shaking and settling times for each solubility experiment 

System Shaking-Time Settling Time Temperature (K) 

Solutes plus water 
30 10 298.15 

40 8 313.15 

Solutes plus methanol 
27 8 298.15 

33 8 313.15 

Solutes plus ethanol 
38 8 298.15 

39 9 313.15 

Solutes plus isopropanol 
30 9 298.15 

39 8 313.15 

Solutes plus 1-propanol 
32 12 298.15 

46 8 313.15 

Solutes plus 2-butanone 
27 8 298.15 

33 8 313.15 

Solutes plus ethyl acetate 
30 8 298.15 

33 8 313.15 

Solute plus acetonitrile 
47 8 298.15 

33 8 313.15 

Solutes plus DMF 
36 8 298.15 

39 8 313.15 
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Appendix D: DSC Thermograms for the Addressed Substances 

 

 

 
Figure D.1: Thermograms of three DSC analyses performed to gallic acid.
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Figure D.2: Thermograms of three DSC analyses performed to protocatechuic acid. 
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Figure D.3: Thermograms of three DSC analyses performed to gentisic acid. 
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Figure D.4: Thermograms of three DSC analyses performed to α-resorcylic acid. 
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Appendix E: Experimental solubility data and statistical parameters of the analyzed assays 

Table E1: Experimental solubilities of gallic acid at 298.15 K, number of samples analyzed, in the selected pure 

solvents and statistical parameters of the experimental assays. 

Solvent 
Solubility at 298.15 K (g of 

solute/100 g of solvent) 

Standard 

Deviation (s)*10
2 

Coefficient of 

Variation (%) 

Number of 

Analyzed Samples 

Water 1.072 0.1 0.350 3 

Methanol 38.623 0.2 0.508 3 

Ethanol 23.732 0.1 0.037 3 

Isopropanol 13.007 0.1 0.051 3 

1-Propanol 10.585 0.1 0.832 3 

2-Butanone 6.196 0.1 0.116 3 

Ethyl Acetate 0.996 0.1 0.137 3 

Acetonitrile 0.492 0.1 0.829 3 

DMF 44.513 0.8 1.987 4 

 

Table E.2: Experimental solubilities of gallic acid at 313,15 K in the selected pure solvents and statistical 

parameters of the experimental assays. 

Solvent 
Solubility at 313.15 K (g of 

solute/100 g of solvent) 

Standard 

Deviation (s)*10
-2 

Coefficient of 

Variation (%) 

Number of 

Analyzed Samples 

Water 2.417 0.1 1.603 3 

Methanol 41.471 0.1 0.202 3 

Ethanol 24.522 0.1 0.218 3 

Isopropanol 14.422 0.1 0.281 3 

1-Propanol 11.697 0.1 0.183 3 

2-Butanone 6.027 0.1 0.089 3 

Ethyl Acetate 1.096 0.1 0.885 3 

Acetonitrile 0.699 0.1 0.939 3 

DMF 49.403 0.2 0.452 4 

Table E.3: Experimental solubilities of protocatechuic acid at 298.15 K in selected the pure solvents and statistical 

parameters of the experimental assays. 

Solvent 
Solubility at 298.15 K (g of 

solute/100 g of solvent) 

Standard 

Deviation (s)*10
-2 

Coefficient of 

Variation (%) 

Number of 

Analyzes Samples 

Water 1.293 0.1 0.491 3 
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Methanol 79.193 0.7 0.887 3 

Ethanol 55.577 0.2 0.281 3 

Isopropanol 45.146 0.2 0.440 3 

1-Propanol 40.904 0.1 0.0120 3 

2-Butanone 49.272 0.1 0.072 4 

Ethyl Acetate 7.894 0.1 0.089 3 

Acetonitrile 5.910 0.1 0.166 3 

DMF 60.728 0.2 0.403 4 

Table E.4: Experimental solubilities of protocatechuic acid at 313,15 K in the selected pure solvents and statistical 

parameters of the experimental assays. 

Solvent 
Solubility at 313.15 K (g of 

solute/100 g of solvent) 

Standard 

Deviation (s)*10
-2 

Coefficient of 

Variation (%) 

Number of 

Analyzed Samples 

Water 3.046 0.1 0.207 3 

Methanol 92.404 0.3 0.360 3 

Ethanol 57.988 0.1 0.235 3 

Isopropanol 50.261 0.1 0.123 3 

1-Propanol 43.987 0.1 0.0120 3 

2-Butanone 50.444 0.1 0.155 3 

Ethyl Acetate 12.991 0.1 0.147 3 

Acetonitrile 10.785 0.1 0.124 3 

DMF 67.401 0.4 0.580 4 

Table E.5: Experimental solubilities of gentisic acid at 298.15 K in selected the pure solvents and statistical 

parameters of the experimental assays. 

Solvent 
Solubility at 298.15 K (g of 

solute/100 g of solvent ) 

Standard 

Deviation (s)*10
-2 

Coefficient of 

Variation (%) 

Number of 

Analyzed Samples 

Water 2.196 0.1 0.203 3 

Methanol 67.565 0.1 0.051 3 

Ethanol 45.503 0.1 0.171 3 

Isopropanol 33.156 0.2 0.664 3 

1-Propanol 35.277 0.1 0.007 3 

2-Butanone 40.529 0.1 0.004 3 

Ethyl Acetate 11.222 0.1 0.060 3 

Acetonitrile 7.680 0.1 0.081 3 

DMF 73.025 0.7 0.982 4 
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Table E.6: Experimental solubilities of gentisic acid at 313,15 K in the selected pure solvents and statistical 

parameters of the experimental assays. 

Solvent 
Solubility at 313.15 K (g of 

solute/100 g of solvent) 

Standard 

Deviation (s)*10
-2 

Coefficient of 

Variation (%) 

Number of 

Analyzed Samples 

Water 5.137 0.1 0.074 3 

Methanol 78.613 0.4 0.465 3 

Ethanol 51.607 0.3 0.529 3 

Isopropanol 44.943 0.1 0.054 3 

1-Propanol 40.499 0.1 0.328 3 

2-Butanone 40.529 0.1 0.004 3 

Ethyl Acetate 18.261 0.1 0.005 3 

Acetonitrile 10.989 0.1 0.125 3 

DMF 78.101 1.1 1.389 3 

Table E.7: Experimental solubilities of α-resorcylic acid at 298.15 K in selected the pure solvents and statistical 

parameters of the experimental assays. 

Solvent 
Solubility at 298.15 K (g of 

solute/100 g of solvent) 

Standard 

Deviation (s)*10
-2 

Coefficient of 

Variation (%) 

Number of 

Analyzed Samples 

Water 10.176 0.1 0.251 3 

Methanol 43.376 0.1 0.193 3 

Ethanol 13.068 0.1 0.046 3 

Isopropanol 12.823 0.1 0.368 3 

1-Propanol 34.512 0.1 0.056 3 

2-Butanone 14.469 0.1 0.009 3 

Ethyl Acetate 3.317 0.1 0.108 3 

Acetonitrile 3.271 0.1 0.226 3 

DMF 47.774 0.4 0.772 4 

Table E.8: Experimental solubilities of α-resorcylic acid at 313,15 K in the selected pure solvents and statistical 

parameters of the experimental assays. 

Solvent 
Solubility at 313.15 K (g of 

solute/100 g of solvent) 

Standard 

Deviation (s)*10
-2 

Coefficient of 

Variation (%) 

Number of 

Analyzed 

Samples 

Water 22.452 0.1 0.065 3 

Methanol 52.207 0.1 0.243 3 

Ethanol 16.485 0.1 0.131 3 
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Isopropanol 16.088 0.1 0.205 3 

1-Propanol 37.816 0.1 0.110 3 

2-Butanone 4.395 0.1 0.173 3 

Ethyl Acetate 5.064 0.1 0.074 3 

Acetonitrile 5.343 0.1 0.158 3 

DMF 53.318 0.3 0.526 4 
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Appendix F: Polarity parameters of the compounds employed in this work 

Table F.1: Predicted polar properties data of the analyzed solutes. 

Compound 
Topological Polar 

Surface Area (A
2
) 

Hydrogen Bond 

Donor Count 

Hydrogen Bond 

Acceptor Count 
LogP Polarizability (cm

3
) 

Gallic Acid 98 4 5 0.91 15.4 ± 0.5 10-24 

Protocatechuic 

Acid 
77.8 3 4 1.16 14.6 ± 0.5 10-24 

Gentisic Acid 77.8 3 4 1.56 14.6 ± 0.5 10-24 

Α-Resorcylic 

Acid 
77.8 3 4 1.12 14.6 ± 0.5 10-24 

Data obtained from ChemSpider and PubChem. 

Table F.2: Polar properties data of the selected solvents. 

Compound 

Topological 

Polar Surface 

Area (A
2
)

c 

Hydrogen 

Bond 

Donor 

Count
a 

Hydrogen 

Bond 

Acceptor 

Count
a 

LogP
a 

Polarizability*

10
-24

 (cm
3
)

 

Dipole 

Moment 

(D)
b 

Dielectric 

Constant
b
 

 

Water 0 2 1 -1.38 1.45 b 1.86 80.20  

Methanol 20.2 1 1 -0.78 3.29 b 1.70 33.00*  

Ethanol 20.2 1 1 -0.19 5.1 b 1.69 25.3*  

1-Propanol 20.2 1 1 0.34 6.7 b 1.55 20.8*  

Isopropanol 20.2 1 1 0.16 6.97 b 1.56 20.18*  

Acetonitrile 23.8 0 1 -0.45 4.40 b 3.92 36.64*  

Ethyl Acetate 26.3 0 2 0.71 9.7 b 1.78 6.08*  

2-Butanone 17.1 0 1 0.37 8.13 b 2.78 18.56*  

DMF 20.3 0 2 -1.01 7.81 b 3.82 38.25*  

aData obtained from  (Advanced Chemistry Development 2017). bData obtained from (David R. Lide 2003). cData 

obtained from (Kim et al. 2016).  *Data obtained at 292.15 K. **Data obtained at 298.15 K.  ***Data obtained at 

303.15 K. 
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Appendix G: Average Relative Deviation (ARD) of each binary system obtained through 

NRTL-SAC simulations    

Table G.1: ARD (%) obtained from the simulations performed to determine the NRTL-SAC segment parameters 

for gallic, protocatechuic, gentisic and α-resorcylic acids.   

Solute 
Reference 

Solvent 
Solvent 

Temperature 

(K) 

Experimental 

Mole 

Fraction 

Solubility 

Predicted 

Mole 

Fraction 

Solubility 

Predicted 

Activity 

Coefficient 

 

ARD 

(%) 

Gallic Acid Acetonitrile 

Water 
298.2 

313.2 

0.001 

0.003 

0.001 

0.002 

14.576 

14.021 

 
20 

Methanol 
298.2 

313.2 

0.068 

0.073 

0.059 

0.074 

0.329 

0.359 

 
9 

Ethanol 
298.2 

313.2 

0.060 

0.062 

0.049 

0.064 

0.388 

0.417 

 
11 

Isopropanol 
298.2 

313.2 

0.044 

0.049 

0.043 

0.057 

0.445 

0.474 

 
10 

Ethyl 

Acetate 

298.2 

313.2 

0.005 

0.006 

0.000 

0.000 

85.199 

84.644 

 
95 

Acetonitrile 
298.2 

313.2 

0.001 

0.002 

0.001 

0.002 

16.124 

15.950 

 
0 

Protocatechuic 

Acid 
Acetonitrile 

Water 
298.2 

313.2 

0.002 

0.003 

0.002 

0.003 

38.695 

32.891 

 
10 

Methanol 
298.2 

313.2 

0.141 

0.161 

0.115 

0.163 

0.510 

0.579 

 
10 

Ethanol 
298.2 

313.2 

0.143 

0.148 

0.155 

0.201 

0.378 

0.470 

 
22 

Isopropanol 
298.2 

313.2 

0.150 

0.164 

0.161 

0.206 

0.363 

0.458 

 
17 

2-Butanone 
298.2 

313.2 

0.187 

0.191 

0.036 

0.075 

1.641 

1.269 

 
71 

Ethyl 

Acetate 

298.2 

313.2 

0.043 

0.069 

0.020 

0.047 

2.954 

2.003 

 
43 

Acetonitrile 
298.2 

313.2 

0.016 

0.028 

0.016 

0.028 

3.783 

3.388 

 
0 

Gentisic Acid Isopropanol Water 
298.2 

313.2 

0.003 

0.006 

0.000 

0.000 

1426527.394 

1425926.160 

 
99.9 
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Methanol 
298.2 

313.2 

0.123 

0.141 

0.116 

0.154 

0.453 

0.500 

 
8 

Ethanol 
298.2 

313.2 

0.120 

0.134 

0.118 

0.152 

0.445 

0.504 

 
8 

Isopropanol 
298.2 

313.2 

0.115 

0.149 

0.115 

0.149 

0.458 

0.516 

 
0 

2-Butanone 
298.2 

313.2 

0.145 

0.159 

0.096 

0.130 

0.544 

0.592 

 
25 

Ethyl 

Acetate 

298.2 

313.2 

0.060 

0.095 

0.066 

0.101 

0.798 

0.761 

 
8 

Acetonitrile 
298.2 

313.2 

0.020 

0.028 

0.020 

0.030 

2.684 

2.571 

 
4 

α-Resorcylic 

Acid 
Acetonitrile 

Water 
298.2 

313.2 

0.012 

0.026 

0.012 

0.021 

3.344 

3.112 

 
11 

Methanol 
298.2 

313.2 

0.083 

0.098 

0.048 

0.074 

0.857 

0.867 

 
33 

Ethanol 
298.2 

313.2 

0.038 

0.047 

0.040 

0.064 

1.008 

1.009 

 
22 

Isopropanol 
298.2 

313.2 

0.048 

0.059 

0.038 

0.059 

1.085 

1.085 

 
11 

2-Butanone 
298.2 

313.2 

0.017 

0.020 

0.007 

0.012 

5.563 

5.353 

 
48 

Ethyl 

Acetate 

298.2 

313.2 

0.019 

0.028 

0.003 

0.006 

11.887 

11.537 

 
81 

Acetonitrile 
298.2 

313.2 

0.009 

0.014 

0.009 

0.014 

4.708 

4.595 

 
0 

 

Table G.2: ARD (%) obtained from solubility estimations for binary systems containing gallic acid, protocatechuic 

acid, gentisic acid and α-resorcylic acid as solutes and 1-propanol and DMF as solvents.  

Solute Solvent 
Temperature 

(K) 

Experimental 

Mole Fraction 

Solubility 

Predicted Mole 

Fraction 

Solubility 

Predicted 

Activity 

Coefficient 

 
ARD 

(%) 

Gallic Acid 

1-

Propanol 

298.2 

313.2 

0.036 

0.040 

0.005 

0.007 

0.445 

0.450 

 
85 

DMF 
298.2 

313.2 

0.161 

0.175 

0.016 

0.021 

0.140 

0.146 

 
89 
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Protocatechuic 

Acid 

1-

Propanol 

298.2 

313.2 

0.138 

0.146 

0.080 

0.106 

0.229 

0.290 

 
35 

DMF 
298.2 

313.2 

0.224 

0.242 

0.023 

0.039 

0.786 

0.796 

 
87 

Gentisic Acid 

1-

Propanol 

298.2 

313.2 

0.121 

0.136 

0.024 

0.034 

0.241 

0.260 

 
77 

DMF 
298.2 

313.2 

0.257 

0.270 

0.091 

0.115 

0.064 

0.078 

 
61 

α-Resorcylic 

Acid 

1-

Propanol 

298.2 

313.2 

0.119 

0.129 

0.017 

0.027 

1.219 

1.216 

 
82 

DMF 
298.2 

313.2 

0.185 

0.202 

0.040 

0.062 

0.518 

0.531 

 
74 

 

 

 

 


