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RESUMO

MICHELS, Adalberto Sato. Industrial Assembly Lines with Multi-operated Workstations:
Applications and Methods. 2020. 151 f. Tese (Doutorado em Engenharia Elétrica e
Informática Industrial) – Universidade Tecnológica Federal do Paraná. Curitiba, 2020.

As linhas de montagem estão amplamente presentes na indústria de fabricação automotiva. O
procedimento de construção de veículos emprega vários trabalhadores ou robôs equipados com
um conjunto diversificado de ferramentas. Instalações, salários, robôs e ferramentas possuem
altos custos, fazendo surgir a necessidade de se projetar uma linha eficiente cuidadosamente. É
crucial que a demanda do produto seja atendida e que as despesas sejam reduzidas ao mesmo
tempo. Devido aos produtos encontrados nas indústrias automotivas serem de grande porte,
vários funcionários podem ser designados à mesma estação de trabalho para executar diferentes
operações simultaneamente no mesmo produto. Nesta tese de doutorado, três estudos propostos
são apresentados e discutidos: o problema do Projeto de Linha de Montagem Robótica (PLMR) e
duas variantes do Problema de Balanceamento de Linha de Montagem Multi-operada (PBLMM).
Formulações de Programação Linear Inteira Mista (PLIM) são desenvolvidas para todos os
problemas, visando a minimização dos custos totais na taxa de produção desejada ou do tempo
de ciclo dado recursos limitados. Para o problema de PLMR, várias características práticas
são levadas em consideração, testes computacionais são conduzidos, e um estudo de caso
prático é resolvido com parâmetros reais coletados de uma linha de montagem robotizada para
soldagem, chegando à otimalidade. Em segundo lugar, ambos os modelos das variantes do
PBLMM incorporam restrições fortes de quebra de simetria (inequações válidas) e decompõem o
problema original em novos Algoritmos de Decomposição de Benders (ADB). Estes algoritmos
são capazes de resolver instâncias grandes de forma otimizada e superar os métodos anteriores
em termos de qualidade da solução. Finalmente, as contribuições destes trabalhos desenvolvidos
são resumidas e direções de novas frentes de pesquisa são sugeridas para todos os problemas.

Palavras-chave: Pesquisa operacional. Otimização. Balanceamento de linhas de montagem.
Programação linear inteira mista. Métodos de decomposição.



ABSTRACT

MICHELS, Adalberto Sato. Industrial Assembly Lines with Multi-operated Workstations:
Applications and Methods. 2020. 151 p. Thesis (PhD in Electrical and Computer Engineering)
– Universidade Tecnológica Federal do Paraná. Curitiba, 2020.

Assembly lines are widely present in the automotive manufacturing industry. The procedure
of building vehicles employs several workers or robots equipped with a diverse pool of tools.
Facilities, wages, robots, and tools are quite costly, giving rise to the necessity of consciously
designing an efficient line. It is crucial to meet product demand and reduce expenses at the
same time. Due to large-size products found in automotive industries, multiple workers can
be assigned to the same workstation in order to simultaneously perform different operations
on the same product. In this PhD thesis, three proposed studies are presented and discussed:
the Robotic Assembly Line Design (RALD) problem and two variants of the Multi-manned
Assembly Line Balancing Problem (MALBP). Mixed-Integer Linear Programming (MILP)
formulations are developed for all three problems. They either aim at minimising total costs at
the desired production rate or the cycle time given limited resources. For the RALD problem,
several practical characteristics are taken into consideration, computational tests are conducted,
and a practical case study is solved with parameters collected from a real-world robotic welding
assembly line, reaching optimality. Secondly, both variants of MALBP models incorporate
strong symmetry break constraints (valid inequalities) and decompose the original problem into
innovative Benders’ Decomposition Algorithms (BDA). These algorithms are able to optimally
solve large-size instances and outperform previous methods in terms of solution quality. Finally,
contributions of developed works are summarised and further research directions are suggested
for all problems.

Keywords: Operational research. Optimisation. Assembly line balancing. Mixed integer linear
programming. Decomposition methods.
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1 INTRODUCTION

The automotive industry is a segment in which both manual and robotic assembly

lines are widely applied. Such lines are designed and implemented with months of planning in

advance; however, the line’s configuration is rarely guided by modelling and solution approaches

provided by the Operational Research (OR) techniques. The optimisation conducted by OR seeks,

for instance, to abstract as faithfully as possible real-world problems using mathematical models.

Then, in order to obtain the best answer for several configurations of systems or operations, OR

methods attempt to solve these problems by employing computational approaches.

For “best answer", one can take into account several factors: the greatest efficiency or

productivity of a system or operation, the lowest cost or time to carry out a project, among others.

All of that depends on what criteria are being considered at the time the problem will be solved.

Currently, the vast majority of industrial systems operate under sub-optimal conditions. For a

long-term application proposal, therefore, one should formally represent the available resources

a company has to reach a given goal in a mathematical model. Once this model is solved, its

solution has to be interpreted, resulting in insights that make one capable of responding which is

the best system design to be configured in order to meet the desired requirements. The optimised

design is a fundamental issue to allow an industrial system to operate in an optimal condition,

according to the adopted criterion.

The process of designing and balancing production lines is present at a strategic level

of global decisions in industries. Before the implementation of a new line, several studies are

carried out and a large amount of data is collected, including the probable installation costs by

consulting suppliers’ prices, the available physical space to build this new line, market demand

surveys are conducted for the new product, among other factors. After this step, the design of the

line actually begins, which could be guided by an optimisation process that uses the previously

collected data. This optimisation process consists in modelling the industrial characteristics and

solving the model by computational methods. The obtained solution finds the best manner to

allocate resources: capital, time, etc. Thus, the optimal answer in this scenario would be the one

that allows the minimisation of costs for the line design, while providing the aimed productivity.

Alternatively, it is also possible to pursue productivity maximisation for a given limited budget

or finite resources. Furthermore, the size of products to be assembled can be crucial to decide if

multiple workers or robots are able to simultaneously perform the necessary activities on the
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same product, whilst sharing a predetermined area.

This PhD thesis focuses on presenting developed research works applied to the automo-

tive industry, where there is already a research effort for possible applications of optimisation

methods for the production line reconfiguration (Chapter 2). Nonetheless, the studies carried out

herein apply more specifically to the design of robotic welding assembly lines and balancing

multi-manned assembly lines, due to the fact that these are fields that still lacked studies, which

leads to a gap between literature and practical problems, as detailed in Chapter 2. These features

might be combined and are commonly found together in real-world applications, as illustrated in

Figure 1, in which multiple welding robots perform tasks simultaneously on the same work-piece.

Figure 1 – Example of a multi-operated robotic welding assembly line: robots holding spot welding tools (1)
and a vehicle’s body (2) are illustrated.

2
1

Source: Michels (2017).

Some factors contribute to this gap. The several welding tasks is one them, which

imply both in the possibility of leaner arrangements in the line and physical limitations in the

assembly order. The use of different robots and tools for each assembly stage, the movement of

the work-pieces to be produced, and the difficulties in measuring the trade-off between costs and

productive efficiency in the robotic assembly line are also practical characteristics that make the

problem hard to be modelled. These extensions are further discussed in Chapter 3.
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Conversely, the use of multi-manned assembly lines also implies in balancing difficulties:

since tasks cannot be performed in an arbitrary order, one needs to cope with task scheduling

problems for workers that perform activities in the same workstation. Therefore, the goal must

consider the number of workers and stations used in the final configuration, as well as satisfying

minimal production rate requirements and technological constraints. This additional flexibility is

further presented and analysed in Chapter 4. Alternatively, striving for the maximal efficiency

in the production rate can also be a goal. In that case, the resource limitation is given by the

available workforce. Such alternate scenario is further explored in Chapter 5.

Thus, two classes of problems are studied throughout this PhD thesis: the Robotic

Assembly Line Design (RALD) problem and the Multi-manned Assembly Line Balancing

Problem (MALBP). The first problem’s main idea consists in designing a fully automated

assembly line at the lowest cost, taking into account cost parameters and practical features found

in the automotive industry, so that the model generates answers that guide the implementation of

new configurations. The second one contemplates two problem variants of assembly systems in

which products are relatively large in relation to the manual or robotic workers, hence allowing

multiple tasks to be concomitantly performed by different workers. For the former variant of this

problem, the objective is to find the configuration that requests the least number of workers and

stations, whilst respecting demand rates. The latter variant attempts to achieve maximal output

rate, while considering a limited number of workers. Task scheduling must be considered in each

station for both variants.

1.1 OBJECTIVES

The main objective of this PhD thesis is to propose practical extensions regarding the

RALD (Robotic Assembly Line Design) problem and the MALBP (Multi-manned Assembly

Line Balancing Problem) to bridge gaps found in the literature. The specific objectives are

detailed as follows in Section 1.1.1.

1.1.1 Specific Objectives

• Assess the scientific and industrial value of tackling RALD and MALBP, identifying

possible literature gaps;

• Present the RALD problem: propose a mathematical model with practical extensions and
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solve real-world problems;

• Present the type-1 MALBP: propose a mathematical model with symmetry break con-

straints and a solution method based on Benders’ decomposition algorithm;

• Present the type-2 MALBP: extend the mathematical model for the type-2 problem and

propose an exact algorithm approach based on initial solution procedures and combinatorial

Benders’ cuts; and

• Identify limitations of the proposed models and solution strategies for RALD and MALBP

in order to provide directions for future research.

1.2 RESEARCH JUSTIFICATION AND LIMITATIONS

Assembly lines applied to industries that build large products are quite capital-intensive

(e.g. car manufacturing companies). Optimisation techniques may help alleviate the burden

of some costs or get the most out of a system in operation. In that regard, this work aims to

contribute with strategies to tackle problems found in automotive industries, which naturally

arise from practical applications.

More specifically, the approaches herein proposed attempt to (i) minimise designing

costs of robotic lines, (ii) minimise operating resources in multi-operated manual lines to meet

a given demand, or (iii) maximise the productivity of multi-operated manual lines given a

workforce restriction.

Since all proposed solution methods are exact algorithms, limitations are expected. Due

to the combinatorial nature of the problems herein addressed, shortcomings may arise regarding

the time required to obtain optimal solutions in sizable or pathological cases.

1.3 PUBLICATIONS

This PhD thesis and the following references are the results of the author’s PhD studies

and research. The content of journal articles from Section 1.3.1 are the basis for Chapters 3, 4,

and 5 of this thesis.
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1.3.1 Journal articles

• MICHELS, Adalberto Sato; LOPES, Thiago Cantos; SIKORA, Celso Gustavo Stall;

MAGATÃO, Leandro. The Robotic Assembly Line Design (RALD) problem: Model and

case studies with practical extensions. Computers & Industrial Engineering, v. 120, p.

320–333, 2018.

• MICHELS, Adalberto Sato; LOPES, Thiago Cantos; SIKORA, Celso Gustavo Stall;

MAGATÃO, Leandro. A Benders’ decomposition algorithm with combinatorial cuts for

the multi-manned assembly line balancing problem. European Journal of Operational

Research, v. 278, n. 3, p. 796–808, 2019.

• MICHELS, Adalberto Sato; LOPES, Thiago Cantos; MAGATÃO, Leandro. An exact

method with decomposition techniques and combinatorial Benders’ cuts for the type-2

multi-manned assembly line balancing problem. Operations Research Perspectives, v.

7, p. 100163, 2020.

1.3.2 Co-authored journal articles

• LOPES, Thiago Cantos; MICHELS, Adalberto Sato; SIKORA, Celso Gustavo Stall;

MOLINA, Rafael Gobbi; MAGATÃO, Leandro. Balancing and cyclically sequencing

synchronous, asynchronous, and hybrid unpaced assembly lines. International Journal

of Production Economics, v. 203, p. 216–224, 2018.

• LOPES, Thiago Cantos; MICHELS, Adalberto Sato; MAGATÃO, Leandro. A note to:

A hybrid algorithm for allocating tasks, operators, and workstations in multi-manned

assembly lines. Journal of Manufacturing Systems, v. 52, p. 205–208, 2019.

• LOPES, Thiago Cantos; MICHELS, Adalberto Sato; SIKORA, Celso Gustavo Stall; MAG-

ATÃO, Leandro. Balancing and cyclical scheduling of asynchronous mixed-model assem-

bly lines with parallel stations. Journal of Manufacturing Systems, v. 50, p. 193–200,

2019.

• LOPES, Thiago Cantos; SIKORA, Celso Gustavo Stall; MICHELS, Adalberto Sato;

MAGATÃO, Leandro. Mixed-model assembly lines balancing with given buffers and
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product sequence: model, formulation comparisons, and case study. Annals of Operations

Research, v. 286, p. 475–500, 2020.

• LOPES, Thiago Cantos; SIKORA, Celso Gustavo Stall; MICHELS, Adalberto Sato;

MAGATÃO, Leandro. An iterative decomposition for asynchronous mixed-model assembly

lines: combining balancing, sequencing, and buffer allocation. International Journal of

Production Research, v. 58, n. 2, p. 615–630, 2020.

• LOPES, Thiago Cantos; PASTRE, Giuliano Vidal; MICHELS, Adalberto Sato; MA-

GATÃO, Leandro. Flexible Multi-Manned Assembly Line Balancing Problem: Model,

Heuristic Procedure, and Lower Bounds for Line Length Minimization. Omega, v. 95, p.

102063, 2020.

• LOPES, Thiago Cantos; MICHELS, Adalberto Sato; LÜDERS, Ricardo; MAGATÃO,

Leandro. A simheuristic approach for throughput maximization of asynchronous buffered

stochastic mixed-model assembly lines. Computers and Operations Research, v. 115,

p. 104863, 2020.

1.3.3 Conference proceedings

• LOPES, Thiago Cantos; SIKORA, Celso Gustavo Stall; MICHELS, Adalberto Sato; MA-

GATÃO, Leandro. A New Model for Simultaneous Balancing and Cyclical Sequencing of

Asynchronous Mixed-Model Assembly Lines with Parallel Stations. In: XLIX Simpósio

Brasileiro de Pesquisa Operacional. Blumenau - SC: SBPO, 2017. p. 1–12.

• SIKORA, Celso Gustavo Stall; MICHELS, Adalberto Sato; LOPES, Thiago Cantos;

MAGATÃO, Leandro. Combining k-Opt Improvement Procedure and Tabu-Search to

Solve the Symmetric TSP via MILP Formulation. In: XLIX Simpósio Brasileiro de

Pesquisa Operacional. Blumenau - SC: SBPO, 2017. p. 3533.

• MICHELS, Adalberto Sato; LOPES, Thiago Cantos; SIKORA, Celso Gustavo Stall;

MAGATÃO, Leandro. A new mathematical formulation with search-space reduction

techniques for the multi-manned assembly line balancing problem. In: 29th European

Conference on Operational Research. Valencia: EURO, 2018. p. 135.
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• LOPES, Thiago Cantos; MICHELS, Adalberto Sato; SIKORA, Celso Gustavo Stall;

SILVA, Arinei Carlos Lindbeck; MAGATÃO, Leandro. Modeling the Stochastic Steady-

State of Mixed-Model Asynchronous Assembly Lines with Markov Chains. In: XIX

Latin-Iberoamerican Conference on Operations Research. Lima - Peru: CLAIO, 2018.

p. 183–190.

• LOPES, Thiago Cantos; SIKORA, Celso Gustavo Stall; MICHELS, Adalberto Sato; MAG-

ATÃO, Leandro. A Matheuristic for Makespan Minimization of Asynchronous Stochastic

Mixed-Model Assembly Lines. In: L Simpósio Brasileiro de Pesquisa Operacional. Rio

deJaneiro - RJ: SBPO, 2018. p. 1–12.

• MICHELS, Adalberto Sato; SIKORA, Celso Gustavo Stall; LOPES, Thiago Cantos; MAG-

ATÃO, Leandro. An MILP Formulation for Local Search k-Opt Improvement Procedures.

In: L Simpósio Brasileiro de Pesquisa Operacional. Rio de Janeiro - RJ: SBPO, 2018.

p. 1–12.

1.4 DOCUMENT OUTLINE

This chapter introduced the readers to assembly lines commonly found in automotive

industries and the problems that were researched during the author’s PhD studies. Chapter 2

presents the main terminology and operational aspects existing in the assembly line balancing

problem, focusing on the differences found in its variants and possible practical extensions. The

goal is to initially present the main singularities involved in the studied balancing problems to

readers. Further operational aspects are exploited in detail throughout Chapters 3 to 5.

Chapter 3 investigates the Robotic Assembly Line Design (RALD). This problem

had initially been proposed by the author in Michels (2017). Since then, this work has gone

through a peer-review process, with the inclusion of several improvements and the extension

of its results. The problem’s definition, model, and results are herein presented. The elements

considered in the problem are illustrated and explained, advantages of parallel stations are

discussed and the specificity of body-in-white stage tasks are also described. These practical

characteristics are further included in the modelling formulation and applied to computational

and industrial case studies. This chapter’s content includes in full, with slight adaptations, the

published paper Michels et al. (2018b): The Robotic Assembly Line Design (RALD) problem:

Model and case studies with practical extensions, which was published in the Computers &
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Industrial Engineering.

Chapter 4 presents the type-1 Multi-manned Assembly Line Balancing Problem

(MALBP-1). Definitions, monolithic model, developed Benders’ decomposition algorithm

(BDA), and results for both approaches are explored. These results are compared in terms

of solution quality and time to the best-known mathematical model and method for the same

problem. The content of this chapter derives from the published paper Michels et al. (2019): A

Benders’ decomposition algorithm with combinatorial cuts for the multi-manned assembly line

balancing problem, which was published in the European Journal of Operational Research.

Chapter 5 extends the Multi-manned Assembly Line Balancing Problem to contemplate

the type-2 variant (MALBP-2). Moreover, it adapts and improves the BDA developed in the

previous paper. It does so by proposing an initial solution procedure and incorporating new

cuts. This chapter includes the content of the paper Michels et al. (2020): An exact method

with decomposition techniques and combinatorial Benders’ cuts for the type-2 multi-manned

assembly line balancing problem, which was published in the Operations Research Perspectives.

Finally, Chapter 6 presents concluding remarks. Final considerations and main contribu-

tions of this PhD thesis are discussed. Furthermore, future research directions and possibilities

are suggested for readers who may be interested in continuing the developed work.
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2 THE ASSEMBLY LINE BALANCING PROBLEM

This chapter introduces the main concepts associated with assembly line balancing

problems, which will serve as a basis for the comprehension of the remaining chapters. It presents

a bibliography review for production layouts, the (Simple and General) Assembly Line Balancing

Problem, the Assembly Line Design Problem, robotic lines, and multi-operated workstations.

It goes through crucial simplification hypotheses, solution methods, and problems’ variations

with practical extensions. Besides, stations paralleling, equipment selection, and resistance spot

welding procedures are further exhibited in order to specifically define the proposed RALD

problem. The feature of multiple workers sharing the same station and simultaneously performing

tasks on the same product piece is also further explored to define the MALBP.

2.1 BASIC CONCEPTS FOR PRODUCTION LINES

According to Krajewski et al. (2013), the most usual forms of layout design used in

production systems are: flow-shop, job-shop, fixed position and hybrid. Their organisations

depend on the product variety, volume, and complexity, and the layout pattern is chosen for a

better system efficiency. As production systems used in the automotive industry are frequently

based on flow-shop layouts (PINEDO, 2016), only this design is further explored (Figure 2).

Figure 2 – Example of flow-shop.

Machine 1 Machine 2 Machine m...

Product to be processed

Processed product

Source: Michels (2017).

Flow-shops are considered to have a product-oriented design, i.e. the machinery and the

operations are organised for the product flow (see Figure 2). This flow can either be continuous,

synchronous, or asynchronous (LOPES et al., 2018a; LOPES et al., 2020b). Assembly lines

in a flow-shop configuration are generally dedicated to produce homogeneous goods, enabling

their mass production. The advantages of this production layout for regular operation are, among
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others, the high system utilisation, constant and simple material flowing and handling, low setup

times, and high throughput. However, unavoidable drawbacks comes along with the flow-shop

configuration. Costly capital investments and line stoppages are among them. As each stage is

dependent on the integral system’s operation for the proper production flow (KRAJEWSKI et

al., 2013), the entire system has to be temporarily shut down whenever maintenance is required

of a failure occurs.

Precisely because of the high costs and utilisation of the line, designing and balancing a

flow-shop assembly line is a long-term decision. This fact makes it an important problem, whose

solution can be aided by optimisation methods in order to achieve potential economy and better

efficiency. Sequencing and scheduling problems may arise if this layout is employed to a family

of similar products (LOPES et al., 2019; LOPES et al., 2020; LOPES et al., 2020a) or if parallel

work is used within workstations (MICHELS et al., 2019; LOPES et al., 2020; MICHELS et al.,

2020).

It follows that this kind of flow-shop configuration has given rise to the traditional

Assembly Line Balancing Problem (ALBP). The ALBP is vastly approached in the literature, as

indicated in, for instance, Scholl (1999), Scholl and Becker (2006), Becker and Scholl (2006),

Boysen et al. (2007), and Battaïa and Dolgui (2013).

An assembly line is composed of a set of minimum rational work element (hereafter

referred to as task) for the product assemblage. Tasks are allocated into a set of workstations

(stations, hereafter). In order to assure the product flow from one station to another; these stations

are linked together by a transport system (BAYBARS, 1986).

Tasks are the smallest indivisible work element. They require an amount of processing

time to be performed, which are known as parameters. These tasks must be performed at stations

by human or robot operators using specific equipment (machinery or tools).

In serial lines, the line’s cycle time is defined by the most loaded station. The production

rate is determined by calculating how much time one unit of the finished product takes to emerge

from the last station along the line (SCHOLL, 1999).

Another characteristic of assembly lines is that tasks cannot be performed in an arbitrary

order. They might have technological sequencing requirements, namely precedence relations.

When all precedence relations are known, they can be schematically represented by a directed

acyclic graph, namely precedence diagram. Figure 3 (SCHOLL; BECKER, 2006) shows a

precedence diagram with 10 tasks (number inside the circle) with task processing times between
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2 and 9 time units (top-right corner). Task 5 is chosen to exemplify how precedence constraints

work: in order to process task 5, tasks 1, 4 (direct predecessors), and 3 (indirect predecessor)

are required to be completed. On the other hand, task 5 must be finished before its direct and

indirect successors (6, 8, 9, and 10) are started.

Figure 3 – Example of a precedence diagram: the number inside the circle represents the task number and
at the top-right corner the task process time.

Source: Scholl and Becker (2006).

Even though the line’s cycle time is defined by the most loaded station (bottleneck),

it can be stated that each station has its own cycle time, which is defined by the sum of task

processing times assigned to such station. This individual cycle time might be lower than the

global cycle time. This time slack between each individual station cycle time and the bottleneck’s

cycle time is considered unproductive. This unproductive period is called idle time. Figure 4

presents three stations: the first one is the bottleneck and defines the line’s cycle time (12 time

units), whereas the second and third stations have idle times of 4 and 5 time units, respectively.

The line is said balanced if the sum of idle times of all stations along the line is as low

as possible (BAYBARS, 1986). Theoretically, it is possible to achieve perfect balancing, which

occurs when tasks can be gathered so that all station total processing times are identical. Figure 5

is an example of a perfectly balanced line of the previous sub-optimal task distribution presented

in Figure 4. Nevertheless, perfect balancing is unattainable in most practical cases.

According to Baybars (1986), the assumptions that can be applied to any deterministic

model of an Assembly Line Balancing Problem (ALBP) are stated in the following simplification

hypotheses (SH):

• (SH-1): all input parameters are deterministic and known;

• (SH-2): tasks are indivisible and cannot be split into two or more stations;



24

Figure 4 – Example of an unbalanced production system: the cycle time is defined by the bottleneck station
(12 time units), whereas stations 2 and 3 have idle time. Each task is represented by a different
colour.
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Source: Michels (2017).

Figure 5 – Example of a perfect balancing: all three stations have the same total process time, which defines
the cycle time (9 time units) and guarantees a perfectly balanced system. Each task is represented
by a different colour, notice the reallocation of tasks with respect to Figure 4.
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• (SH-3): tasks cannot be processed arbitrary due to technological precedence restrictions;

and
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• (SH-4): all tasks must be processed.

A recent survey regarding ALBPs is conducted by Battaïa and Dolgui (2013).

2.2 SIMPLE ASSEMBLY LINE BALANCING PROBLEM

The ALBP has been studied by Salveson (1955) for the first time, introducing the

problem. However, only after Jackson (1956) task indivisibility and precedence constraints were

solved along with the problem. Bowman (1960) proposed a consistent mixed-integer linear

programming (MILP) formulation, which was further enhanced by White (1961).

Along with the mathematical programming models’ development, SH (5-10) were

added to the previous SH (1-4) to define a new class of problem. More precisely, there is an

addition of six SH in order to strictly define the Simple Assembly Line Balancing Problem

(SALBP), as follow:

• (SH-5): all stations are equipped and manned to process any task;

• (SH-6): task processing times are not sequence dependent;

• (SH-7): any task can be processed at any station;

• (SH-8): the assembly line is strictly serial;

• (SH-9): the assembly line is designed for a single product; and

• (SH-10): the parameters are deterministic.

With this set of assumptions (SH-1)–(SH-10), most of the literature papers focus on

achieving the best assignment of tasks among several stations arranged in a serial line, considering

many of these restricting assumptions. Nonetheless, the developed research on SALBPs do not

always describe and solve more realistic problems (BATTAÏA; DOLGUI, 2013).

According to Baybars (1986), these differences in describing realistic features divide

the classification in two categories, making proposed problems to fall into one of the them: the

Simple Assembly Line Balancing Problem (SALBP), and the General Assembly Line Balancing

Problem (GALBP). The latter is further discussed in Section 2.3.

Furthermore, an extensive review on the SALBP is conducted by Scholl and Becker

(2006), in which four versions of the problem are described as they arise in the literature. Table 1

divides SALBP versions according to their optimisation objective and given parameters.
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Table 1 – SALBP versions based on their optimisation objective and given parameters.

Cycle time (𝐶𝑇 )
Given Minimise

Number of stations (𝑁𝑆)
Given SALBP-F SALBP-2

Minimise SALBP-1 SALBP-E

Source: Scholl and Becker (2006).

The simplest problem is SALBP-F, which only establishes whether or not a feasible

distribution can be achieved in a given combination of 𝑁𝑆 and 𝐶𝑇 .

In addition to (SH-1)–(SH-10), the optimisation problem in SALBP-1 receives another

assumption regarding the line’s 𝐶𝑇 (SH-11):

• (SH-11): the cycle time (𝐶𝑇 ) is given and fixed.

Therefore, the goal of the SALBP-1 variation is to minimise the number of stations along

the line. Analogously, SALBP-2 considers (SH-1)–(SH-10) and has an additional assumption to

fix 𝑁𝑆 as a parameter:

• (SH-12): the number of stations (𝑁𝑆) is given and fixed.

This SALBP-2 variation’s goal is to minimise the cycle time or, in other words, maximise

the production rate.

Lastly, SALBP-E is the most general problem version, in which the line’s efficiency is

maximised by simultaneously minimising 𝐶𝑇 and 𝑁𝑆, generally considering their interrelation-

ship in a non-linear approach (𝐶𝑇 ·𝑁𝑆).

2.3 GENERAL ASSEMBLY LINE BALANCING PROBLEM

As mentioned in Section 2.2, SALBPs do not describe as many practical features as those

found in the General Assembly Line Balancing Problem (GALBP). In SALBPs, the system is

basically restricted by precedence relations, task distribution, cycle time and/or number of stations

constraints, as indicated in (SH-1)–(SH-12). Whereas, GALBPs regard further specifications,

such as task incompatibility, space constraints, parallel lines or station, multiple and capable

workers, equipment selection, unproductive times, among others. These specifications imply in

the relaxation of one or any combination of the previously stated simplification hypotheses. A

particularly focused review on the GALBP is conducted by Becker and Scholl (2006).
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This section is intended to present a concise review on some applications of GALBPs.

The problem variants that are mostly related to the proposed problems in this PhD thesis are

highlighted. These included features are thereby summarised in Section 2.7. Since many of these

ALBP extensions are explored individually, this section also lists and discusses which SHs are

being relaxed by the reviewed work. By all means, (SH-1)–(SH-4) are kept in GALBPs and so is

(SH-5) for now. This last exception is later discussed in Section 2.4.

Task processing times are not sequence dependent (SH-6), i.e. they are independent of

the station at which they are performed and of preceding or following tasks. The most common

example of a practical extension that requires the relaxation of this hypothesis is the presence of

set-up times. This can be seen as a preparation time needed between tasks (SCHOLL et al., 2008;

SCHOLL et al., 2013), which is generally related to tool changing or task properties. Another

possibility is the presence of fixed unproductive times, namely dead time. It can occur before

products start processing in each station (BARD, 1989), between tasks (LOPES et al., 2017),

and/or after products are done processing in each station. Dead times are generally related to the

robots, workers or conveyors movement time.

Any task can be processed at any station (SH-7), which means that there are no posi-

tional, layout or zoning constraints. In practical scenarios, this hardly is the case: tasks cannot

always be assigned to any station (DECKRO, 1989), some set of specific tasks frequently must

be allocated either at the same station (inclusion constraints), or are incompatible and must be

placed at different stations (exclusion constraints). Incompatibility or zoning restriction problems

might happen due to positioning or accessibility problems (ESSAFI et al., 2010), fixed machinery

and minimal/maximal distance between assignments (SCHOLL et al., 2010), among other issues

concerning task assignment restrictions (SCHOLL et al., 2010; SIKORA et al., 2017a).

The assembly line is strictly serial (SH-8). Therefore, processing times are additive at

any station, since there are no feeder or parallel sub-assembly lines. Any possible interaction

of this type is neglected. The balancing of U-shaped lines is frequently approached in the

literature as an alternative to extend the SALBP. U-lines allow a different grouping of tasks in

the precedence diagram, since workers may cross the line to perform tasks at the beginning

and at the end of the line, providing better, or at least equal, results when compared to serial

lines (MILTENBURG; WIJNGAARD, 1994). Nevertheless, the U-line formulation still keeps

simplifications on movement times between the line’s sides. By considering any given layout

with deterministic operator’s movement times, an extension was lately developed by Sikora et al.
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(2017a). Parallel lines and station paralleling variations also demand the relaxation of SH-8, and

they are further discussed in Section 2.4.1.

The assembly line is designed for a single product (SH-9). To extend this assumption,

mixed-model and multi-model features must be considered. This gives rise to sequencing

and scheduling problems within the balancing one. Thomopoulos (1967) firstly presented a

formulation for serial lines in which multiple products were taken into account. Later, Miltenburg

(2002) relaxed SH-9 and applied multi-products concepts on U-shaped lines. More recent studies

approached the balancing problem together with the sequencing one (SAWIK, 2012; ÖZTÜRK et

al., 2015; LOPES et al., 2017; LOPES et al., 2019; LOPES et al., 2020b). A further extension of

the combined problem is allowing the model to decide task assignments for balancing decisions

and sequencing patters. Lopes et al. (2018a) integrated the problems in a cyclical formulation for

unpaced lines and later included buffer allocation decisions (LOPES et al., 2020a).

Lastly, parameters are deterministic (SH-10) and known, no stochastic considerations

are made. It means that task processing times are determined parameters and do not vary at a

probabilistic distribution. Relaxing this hypothesis implies on a line balancing that does not

guarantee a fixed optimal cycle time, but just secure it with a certain probability (KOTTAS;

LAU, 1973). A cost-oriented approach can be adopted in the said case. In mixed-model lines, the

sequencing order can also be considered a stochastic factor (LOPES et al., 2018; LOPES et al.,

2018b; LOPES et al., 2020). When no sequencing order can be fixed but the probability of each

product model is known, each product to enter the line can be seen as a random variable.

2.4 ASSEMBLY LINE DESIGN PROBLEM

Thus far, it has been declared that GALBPs are generalisations of SALBPs, since they

consider relaxing one or any combination of the SALBP stated assumptions. Notwithstanding,

GALBPs still omit some designing sub-problems, such as (i) selecting the equipment depending

on the set of candidate solutions for each manufacturing operation, (ii) costs of dimensioning

the production area, (iii) assigning heterogeneous workers or robots, and (iv) the layout option

itself. Whenever these fixed and variable costs associated with the production system (facilities,

technology, operation) are taken into account, SH-5 (all stations are equipped and manned to

process any task) is relaxed and we have a further generalisation of the GALBP (BAYBARS,

1986), namely Assembly Line Design Problem (ALDP).

Although the literature on ALBPs is quite extensive, a gap between practical and
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theoretical cases still exists, as may be noticed in the following surveys (BECKER; SCHOLL,

2006; BOYSEN et al., 2008; BATTAÏA; DOLGUI, 2013). In real-world lines, flexible assembly

systems are adopted and must be designed properly in order to reach the desired production rate

at the minimum cost. These costs include facilities, programmable robots, workforce wages, and

equipment selection. Therefore, global decisions made by companies necessitate and depend

on the optimal solution for the line layout. These decisions come along with the objective of

balancing assembly lines.

For industrial robotic lines, if managers desire to determine production system layouts

beforehand, these designing decisions ought to be combined with cost minimisation procedures.

Amen (2000), Amen (2006) provide a survey on heuristic procedures, model formulation and

methods to solve cost-oriented ALBPs. Moreover, such designing decisions must take into

account the possibility of parallel stations (Section 2.4.1), selecting equipment (Section 2.4.2),

assigning multiple workers or robots to the same station (Section 2.4.3), and specific charac-

teristics of resistance spot welding tasks (Section 2.5.1). These possibilities are studied in the

Robotic Assembly Line Design (RALD) problem, which is proposed in Chapter 3 as part of this

PhD thesis (MICHELS et al., 2018b).

Rekiek et al. (2002) provide a comprehensive review for exact methods, heuristics, and

meta-heuristics that cope with the ALDP.

2.4.1 Parallel Lines and Stations

Improving productivity in assembly lines is very important. It increases capacity and

reduces cost. If the capacity of the line is insufficient, possible ways to increase it is to build

parallel lines or stations. When an additional line is constructed or an identical station is placed

in parallel with the original station in a serial line, the concept of parallel lines and stations is

introduced in the assembly line. In this situation, each station has its cycle time doubled for its

operations. Therefore, another particularity applied on line design problem is the inclusion of

parallelism as an option for better balancing solutions. Tasks with longer processing times than

the desirable cycle time or the requirement to improve system’s efficiency are two circumstances

in which these layouts are most useful.

Parallel lines and station paralleling extensions are approached by several authors. They

research some potential advantages and drawbacks in paralleling, including equipment selection

features, labour costs, positional constraints, and task assignment restrictions. Parallel lines and
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stations also require more physical space, hence additional constraints should be considered.

Lusa (2008) supplies a survey on parallelism applications in ALBPs, summarising the state of

the art for the combined problem.

Regrading parallel lines, Gokçen et al. (2006) introduced the concept into ALBPs,

generating the Parallel Assembly Line Balancing Problem (PALBP). Modern applications

combine this layout with mixed-model lines (ÖZTÜRK et al., 2015; LOPES et al., 2017; LOPES

et al., 2019), giving rise to sequencing and scheduling problems within the PALBP.

When it comes to parallel stations, Bard (1989) firstly included the possibility of

paralleling stations in order to diminish negative effects caused by dead times. Askin and Zhou

(1997) used a heuristic procedure for the parallel station problem combined with a mixed-model

line, Ege et al. (2009) promoted an extensive computational study regarding the effects of parallel

station on ALBPs, and Tuncel and Topaloglu (2013) presented a real-world electronic product

assembly line, in which the line’s rebalancing is a constant problem and parallel stations are

largely applied.

2.4.2 Equipment Selection

Tasks often require specialised equipment to be performed. Depending on the machinery,

tool, or operator, task processing times may vary or, in extreme cases, be incompatible. If this

type of situation occurs, an equipment selection problem comes along with it. In order to perform

tasks faster, more efficient equipment is required, but it usually comes associated with higher

costs. It follows that trade-offs are possible when deciding which is the most cost-effective group

of equipment to be selected (BUKCHIN; TZUR, 2000). Additionally, a subset of tasks might

need specific equipment to be performed.

The equipment selection problem is strongly related to the station paralleling one.

Whenever a station is paralleled, so is its equipment (labour, tools, machinery), since both

stations must be equally manned and equipped. A weighted approach was conducted by Bukchin

and Rubinovitz (2003) in order to integrate station paralleling and equipment selection into an

ALDP.
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2.4.3 Worker Assignment

The inclusion of any worker assignment formulation normally requires the relaxation

of SH-5 and, therefore, such problems are greatly related to ALDPs. The integration of worker

assignment problems, however, have a separate category, which is known as the Assembly Line

Worker Assignment and Balancing Problem (ALWABP). The ALWABP has been introduced

by Miralles et al. (2008) and widely applied to sheltered centres for the disabled. Each worker

has specific limitations and depending on the worker assigned to a station, task processing times

might be higher or even infeasible there.

This idea can be expanded to any type of resources. The first generalisation of assign-

ment restrictions is proposed by (SCHOLL et al., 2010). A generic resource is constrained and

must be balanced, either processing time, space, or operators should be summed as a finite

resource.

Another variation of the worker assignment problem is presented by Sikora et al.

(2017a). They approach travelling workers that might be able to perform tasks in more than one

station, their movement times are measured and integrated into the worker’s cycle time.

2.5 ROBOTIC ASSEMBLY LINES

Modern assembly lines rely on robotic workers performing automated tasks. For in-

stance, several resistance spot welding (RSW) tasks (explained in Section 2.5.1) are commonly

assigned to robots in automotive industries.

Early works on this field were introduced by Rubinovitz and Bukchin (1991), Rubinovitz

and Bukchin (1993). They developed a method based on a branch-and-bound (B&B) algorithm

that aimed to allocate robots into a (balanced) robotic assembly line. Moreover, the RALB

problem introduced by Rubinovitz and Bukchin (1993) assumes different robots allocated in

each station, creating a station dependence for task processing times. This model, however, does

not analyse how workers (or robots, in the said case) behave in the production system when

multi-manned stations, equipment selection, or parallel stations are considered.

Applicable variations of the GALBP might also be incorporated into the robotic models.

This problem had its solution methods further studied in the past years (KIM; PARK, 1995;

LEVITIN et al., 2006; DAOUD et al., 2014).
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2.5.1 Resistance Spot Welding Tasks

The ALBP literature is tightened to the automotive industry, mainly to the final stage

assembly. Figure 1, on page 14, illustrates how an automated welding line looks like. The

arrangement of body-shop stages also consist of assembly lines that can be treated by ALBP

formulations. The body-in-white stage transforms sheets of metal into the vehicle’s body by

using RSW procedures. This stage is composed of welding assembly lines that usually are highly

automated (MICHALOS et al., 2010).

Resistance spot welding tasks generally do not present precedence relations between

welding spots. Nonetheless, some accessibility issues may occur when assembling new metal

sheets together. These characteristics and their practical consequences are further explored in

Chapter 3.

In a robotic welding assembly line, station paralleling possibilities might be included in

the system in order to increase the line’s efficiency, whereas equipment selection is primordial. In

fact, some tasks can be performed with identical tools, but specific tools are required in order to

execute a sub group of tasks. Multiple robots working in the same station can be used to shorten

the line’s length. Exceptionally due to the RSW tasks nature of not having precedence relations

(LOPES et al., 2017), robot task scheduling into each station can be neglected.

2.6 MULTI-OPERATED WORKSTATIONS

In industrial environments, the use of multi-operated workstations is intense. As afore-

mentioned, assembly lines applied to automotive industry often produce large-size vehicles, such

as cars and buses. In these lines, the SALBP’s hypothesis of allowing only one worker in each

station is not a practical limitation. As product size grows, it becomes possible to assign more

than one worker to each station. These workers can simultaneously perform tasks in different

sectors of the same product. This gives rise to natural extensions and more generalised versions of

the SALBP: the Multi-manned Assembly Line Balancing Problem (MALBP) and the Two-sided

Assembly Line Balancing Problem (TALBP), which are surveyed by Becker and Scholl (2006)

along with a variety of practical extensions. The Assembly Line Balancing Problem with Variable

Workplaces (VWALBP), introduced by Becker and Scholl (2009), can also be seen as a problem

with multi-operated workstations.

For problems addressed in this PhD thesis, the most related concept is the use of
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multi-manned stations, in which stations are occupied by multiple workers assigned to the

same workstation (FATTAHI; ROSHANI, 2011; KELLEGÖZ, 2017; MICHELS et al., 2019;

MICHELS et al., 2020). In Chapters 4 and 5, the development of this particular field of study

is further discoursed in detail. This feature is commonly applied in the assemblage of large

products, such as vehicles. The interference between workers and task scheduling in each station

should be considered (BOYSEN et al., 2008). The second and third parts of this PhD thesis

focuses on the MALBP variant, this time taking into account task scheduling problems for each

station; advantages of using the multi-manned configuration are associated to workforce and line

length reduction or productivity gains, which are further exemplified in Chapter 4 and 5.

Two-sided assembly lines were firstly explored by Bartholdi (1993). The main difference

between MALBPs and TALBPs is the flexibility on the quantity of workers and their positioning.

TALBPs allow at most two operators, each of them on either the right or the left side, whereas

in MALBPs the number of maximum workers depends on product’s attributes, such as size,

structure, and tasks’ precedence relations. Another divergence is that TALBPs might have to

deal with tasks that can be performed exclusively on the right or left side. Kim et al. (2000a)

used a genetic algorithms to deal with the TALBP, while variants concerning mixed-model lines

(ÖZCAN; TOKLU, 2009) and stochastic task times (ÖZCAN, 2010) were further developed.

Finally, Guney and Ahiska (2014) decided the optimal automation level on an automotive

industry operating with two-sided lines.

The last class of problems that cope with multi-operated workstations is the VWALBP

(BECKER; SCHOLL, 2009). In this problem, working areas are minimised given a cycle time,

while work-pieces are divided into mounting positions. Only one worker is able to assemble

products in each position of a multi-manned station. A Mixed-Integer Linear Programming

(MILP) model is generated including lower bounding techniques and a branch-and-bound

algorithm is implemented to solve large-size instances. Naderi et al. (2019) recently used the

idea of mounting positions to model and solve a realistic five-sided assembly line.

2.7 DEVELOPED WORK AND PROPOSED PROBLEMS

In this PhD thesis, the author firstly presents in Chapter 3 a mathematical model that

minimises the designing cost of a robotic assembly line considering several realistic aspects

found in the automotive industry: (i) different robots, (ii) their space and accessibility constraints,

(iii) equipment selection for each of them, (iv) task assignment restrictions (incompatibility
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and special precedence), (v) parallel stations, and (vi) unproductive time due to work-pieces

movement between stations (dead time). The combination of these realistic aspects have the

(SH-5)–(SH-8) relaxed and are not present in previous ALDP models, thus a new MILP model

was proposed and solved. This work has been firstly introduced in Lopes et al. (2016) and later

published in the Computers & Industrial Engineering under the title of “The Robotic Assembly

Line Design (RALD) problem: Model and case studies with practical extensions” (MICHELS et

al., 2018b).

The following parts of this PhD thesis specifically copes with the MALBP aspects

(Chapters 4 and 5). As RALD would simplify the multi-manned characteristic that arises when

more than one worker is assigned to the same station, it may yield sub-estimated costs for the

line design depending on problem parameters.

Chapter 4 gives a deeper definition of the MALBP in order to explain the problem,

as well as a description of the presented MILP model and additional constraints to reduce the

problem’s search-space. Partial results of this work up to this point had been briefly presented in

an abstract version Michels et al. (2018a). Moreover, this PhD thesis reviews the development

and applications of Benders’ decomposition and combinatorial cuts, used within the proposed

solving framework. It also describes in detail the proposed algorithm. Computational results

retrieved from this study are presented, discussed and concluding remarks are summarised. This

complete work is published in the European Journal of Operational Research under the title of

“A Benders’ decomposition algorithm with combinatorial cuts for the multi-manned assembly

line balancing problem” (MICHELS et al., 2019).

Chapter 5 explores the type-2 MALBP. It lays out the main differences from the previous

type-1 MALBP in order to explain the problem. A new MILP model with valid inequalities is

presented. The development and applications of an enhanced Benders’ decomposition algorithm

with combinatorial cuts is also discussed. Experiments are conducted on a benchmark dataset

(computational study) and a real-life assembly plant (case study). Results retrieved from these

tests are presented, discussed and concluding remarks are summarised. This work is published in

the Operations Research Perspectives, under the title of “An exact method with decomposition

techniques and combinatorial Benders’ cuts for the type-2 multi-manned assembly line balancing

problem” (MICHELS et al., 2020).
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2.8 CONSIDERATIONS

This chapter presented the main features of the studied problems, namely RALD

and MALBP. It described the common terminology, physical characteristics, and constraints

of assembly lines. Additionally, balancing and scheduling problems found in the automotive

industry were detailed alongside its operational constraints. The following Chapters 3, 4, and 5

are based on the content of full papers; hence, introduction, literature review, and problem

statement sections of each one of these papers have been maintained to minimise changes in

regards to original manuscripts.
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3 THE ROBOTIC ASSEMBLY LINE DESIGN PROBLEM

This chapter contains a slightly modified version of the paper Michels et al. (2018b),

which is entitled “The Robotic Assembly Line Design (RALD) problem: Model and case studies

with practical extensions” and was published in the Computers & Industrial Engineering.

Section 3.1 presents a brief introduction and an extended version of the literature review

on assembly line design problems and robotic workers. Section 3.2 defines the studied problem

and the assumptions derived from spot welding tasks performed by robots. Naturally, there are

some similarities with the general description of assembly lines given in Chapter 2; however,

some definitions and assumptions will be explored in the specific context of a RALD problem.

Section 3.3 describes the proposed MILP formulation for solving the general case of the problem

and the practical case study. Section 3.4 contains the results and discussions of the developed

approach, with computational and case studies. Final considerations of this chapter are presented

in Section 3.5.

Abstract from Michels et al. (2018b): “Spot welding assembly lines are widely present

in the automotive manufacturing industry. The procedure of building the vehicle’s body employs

several robots equipped with spot welding tools. These robots and tools are a quite costly initial

investment, requiring an efficient and conscious line design that meets product demands and

minimises implementation expense at the same time. In this paper, the Robotic Assembly Line

Design (RALD) problem is proposed and studied based on practical characteristics from an

automotive company located in Brazil. A Mixed-Integer Liner Programming (MILP) formulation

is developed allowing: (i) station paralleling, (ii) equipment selection, and (iii) multiples robots

per workstation. The mathematical model aims at minimising the total cost at the desired

production rate, which involves robots, tools and facilities. The proposed model considers dead

time during a cycle, space constraints, task assignment restrictions, and parallelism possibilities.

Dead time is an unproductive and fixed work-piece handling time included in the capacitated

transporter robots’ movement time. Computational experiments were performed in order to

evidence the parameters’ influence over the optimal line design solution. In addition, practical

case studies were conducted with parameters collected from a real-world robotic welding

assembly line located on the outskirts of Curitiba-PR (Brazil), reaching optimality. Compared to

the strictly serial lines, the model led to great advantages by allowing parallel stations in the

production system, making it possible to evaluate an expected trade-off between the production
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rate and the total cost; reductions of several hundred thousand dollars on the production layout

cost can be achieved by the company, as indicated by the studied cases.”

3.1 INTRODUCTION

Production systems used in the automotive industry are frequently based on assembly

lines for regular operation. This variety of configuration has given rise to traditional assembly

line balancing problems (ALBP), vastly approached in the literature. However, most part of the

research focuses on achieving the best assignment of tasks among several stations arranged in a

serial line considering many restricting assumptions, which not always describe and solve more

realistic problems (BATTAÏA; DOLGUI, 2013).

Although the literature on ALBP is quite extensive, a gap between the practical and

theoretical cases still exists (BECKER; SCHOLL, 2006; BOYSEN et al., 2008; BATTAÏA;

DOLGUI, 2013). In real-world lines, flexible assembly systems are adopted and must be properly

designed in order to reach the desired production rate at the minimum cost, which includes

facilities, programmable robots and equipment selection. Therefore, the global decisions made

by the company necessitate and depend on the optimal solution for the line layout, which comes

along with the balancing objective in an integrated problem.

Researches concerning ALBP are also strongly related to the automotive industry,

mainly to the final stage assembly. Notwithstanding, the arrangement of body-shop stages also

consists of assembly or manufacturing lines that can be treated by ALBP formulations (LOPES

et al., 2017). The body-in-white stage transforms sheets of metal into the vehicle’s body by using

welding procedures. This stage is composed of welding assembly lines that are usually highly

automated (MICHALOS et al., 2010). Welding procedures might present several spot welding

tasks with similar characteristics. Formulations can take advantage of the high multiplicity of

welding tasks and treat them as a group of similar tasks. Therefore, these similar tasks can be

gathered together into a single task with a given number of copies of the same task, since their

processing times are virtually identical (SIKORA et al., 2017b). Moreover, welding tasks are

found in the body-shop stage and these tasks fall into three main categories: geometry, stud, and

finishing tasks. Geometry welding tasks assemble the metal sheet pieces together, stud welding

tasks add screws on the metal sheets’ surface, and finishing welding tasks are used to reinforce

the vehicle’s structure. Geometry and finishing tasks can be performed with identical tools, but a

different tool is required in order to execute stud tasks.
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According to Baybars (1986), these differences in describing realistic features divide

the classification of ALBPs in two and make the problems fall into one of these categories: the

Simple Assembly Line Balancing Problem (SALBP), or the General Assembly Line Balancing

Problem (GALBP). In SALBPs, the system is only restricted by precedence relations and cycle

time constraints, whereas GALBPs regard further specification, such as task incompatibility,

space constraints, station paralleling, multiple and capable workers, equipment selection, or

unproductive time, among others. An extensive review on SALBP is done by Scholl and Becker

(2006), the same is done for GALBP by Becker and Scholl (2006), and a more recent survey on

ALBPs is done by Battaïa and Dolgui (2013).

The solution methods for ALBPs are separated into exact and approximate approaches.

The first one seeks the optimality, whilst the other includes heuristics and meta-heuristics proce-

dures, which are intended to produce comparatively good results in a reduced computing time.

Surveys on exact and heuristic methods are found in Scholl (1999), Scholl and Becker (2006)

and Becker and Scholl (2006) for SALBP and GALBP, respectively. For meta-heuristics, some

common improvement procedures applied in ALBPs are: tabu search (SUWANNARONGSRI;

PUANGDOWNREONG, 2008), ant colony optimisation (SABUNCUOGLU et al., 2009), simu-

lated annealing (CAKIR et al., 2011), genetic algorithms (SIKORA et al., 2015), or local-search

methods (SIKORA et al., 2017c; MICHELS et al., 2018).

Thus far, we can declare that GALBPs are generalisations of SALBPs, since they

consider relaxing one or any combination of the SALBP stated assumptions. However, GALBPs

still omit some designing sub-problems, such as selecting the equipment depending on the set of

candidate solutions for each manufacturing operation, costs of dimensioning the production area,

and the layout itself (BAYBARS, 1986). For instance, Bukchin and Rubinovitz (2003) show a

case study in which different tasks can only be performed by different equipment, and distributing

limited units of these tools is necessary. At the same time, parallel stations are required due to

long task durations higher than the demanded cycle time, changing the line’s configuration. Amen

(2006) assumes each station to have a pre-specified investment. In automotive industry, these

concepts can be extended to welding gun selection for particular tasks and capital costs of robots

in an automated assembly line. Whenever these fixed and variable costs (facilities, technology,

operation) are taken into account, we have a further generalisation of the GALBP, namely

Assembly Line Design Problem (ALDP) (BAYBARS, 1986). For exact methods, heuristics

and meta-heuristics that deal with the ALDP, Rekiek et al. (2002) provide a comprehensive
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review. Nonetheless, as assembly line balancing and design problems are intimately linked, this

nomenclature boundary is not always observed, and some design problems are named “balancing

problems” by their authors. This fact is notably attested by the further explored literature.

Many of these ALBP extensions are explored individually. For instance, Rubinovitz

and Bukchin (1991), Rubinovitz and Bukchin (1993) introduced the Robotic Assembly Line

Balancing (RALB) problem, and a method based on branch and bound algorithm that aimed to

minimise the number of workstations (type-1), while allocating robots into a (balanced) robotic

assembly line. This model, however, does not analyse how workers (or robots, in the said case)

behave in the production system when multiple robots, equipment selection, and parallel stations

are considered. Cycle time minimisation variants (type-2) of the RALB problem were introduced

by Levitin et al. (2006) and Gao et al. (2009). More recently, a multi-objective version of the

type-2 RALB considering set-up and robot costs minimisation as secondary objectives has been

presented (YOOSEFELAHI et al., 2012).

Applicable variations of the GALBP might be incorporated in the robotic models.

Multiple workers could be assigned to the same station (FATTAHI; ROSHANI, 2011; YAZGAN

et al., 2011), some workers might be able to perform tasks in more than one station and, hence,

they would have to move between them (SIKORA et al., 2017a), inclusion of workers with

different capabilities or tools may be studied as in Araújo et al. (2015), that use disabled workers

in the line, and ergonomic factors can be considered to decide workstation positioning on the

line (BAYKASOGLU et al., 2017). Multiple product design alternatives are investigated to

influence balancing decisions: mixed-model assembly lines can be evaluated by several objective

functions and require products to be sequenced, Lopes et al. (2020b) analyse and compare them

considering buffer positions (if any) and product sequences as parameters, whereas Oesterle et

al. (2017) incorporate such product design alternatives into balancing and equipment selection

decisions and test their formulation with numerous multi-objective algorithms. Furthermore,

tasks cannot always be assigned to any station (DECKRO, 1989), some set of specific tasks

frequently must be allocated either at the same station (inclusion constraints), or are incompatible

and must be placed at different stations (exclusion constraints) (SCHOLL et al., 2010). Task

incompatibility occurs when a pair of tasks cannot be assigned to the same station due to practical

characteristics of the operation and, therefore, the precedence diagram is not sufficient to describe

the precedence relations between tasks (PARK et al., 1997). This particularity is also found in

body-shop stages of automotive industries and is further explained in Section 3.2, by Figure 11.
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Other incompatibility problems might also happen due to position or accessibility problems

(ESSAFI et al., 2010), fixed machinery (SCHOLL et al., 2010), among others.

In parallel stations, each station has its effective cycle time multiplied by its parallelism

degree, allowing more time for operations. Therefore, another particularity applied on line design

problem is the inclusion of parallelism as an option for better balancing solutions when there

are tasks with longer duration times than the desirable cycle time or the system’s efficiency

requires improvement. Lusa (2008) supplies a survey of parallelism applications in ALBPs,

summarising the state of the art for the combined problem. Station and line paralleling extensions

are approached by several authors, Askin and Zhou (1997) use a heuristic procedure for the

mixed-model line with parallel stations, while Bard (1989) presents a dynamic programming

algorithm which takes into account equipment and task costs, as well as unproductive time

between cycles (dead time), which is mostly affiliated with transportation time between stations.

The transportation time of work-pieces is attached to the movement of a conveyor or the time a

robot takes to move a work-piece in (set-up) and out (tear-down) of a station, this usually is a

fixed and unproductive handling time.

Some authors examine fixed and variable line configuration design costs in the planning

stage, with decisions connected to the balancing problem, characterising such studies as ALDPs:

Bukchin and Rubinovitz (2003), Ege et al. (2009), Dolgui et al. (2012), Yoosefelahi et al.

(2012), and Tuncel and Topaloglu (2013) research potential advantages and drawbacks in

station paralleling, including equipment selection, labour costs, positional constraints, and task

assignment restrictions. Parallel stations require more space, hence additional constraints limiting

the parallelism degree should also be considered. Both Kim et al. (2000b) and Guney and Ahiska

(2014) consider a two-sided assembly line, the first one is dealt with using a genetic algorithms,

whereas the other is solved by mixed-integer programming and is applied on an automotive

industry in order to decide the optimal automation level. For industrial robotic lines, these

designing decisions ought to be combined with cost minimisation procedures as to determine the

production system layout. Amen (2000), Amen (2006) provide a survey on heuristic procedures,

model formulations, and methods to solve cost-oriented problems. In order represent and solve

practical problems, several herein mentioned real-world aspects must be taken into consideration

simultaneously.

In this work, we develop a mathematical model that minimises the designing cost of an

assembly line considering several realistic aspects found in the automotive industry: (i) robots,
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(ii) their space and accessibility constraints, (iii) equipment selection for each of them, (iv) task

assignment restrictions (incompatibility and special precedence), (v) parallel stations, and (vi)

unproductive time due to work-pieces movement between stations (dead time). The combination

of these realistic aspects are not present in previous ALDP models, thus a new model is herein

proposed and solved. The chapter is organised as follows. In Section 3.2, the practical extensions

of the problem are explained in order to introduce the Robotic Assembly Line Design (RALD)

problem. Section 3.3 presents the Mixed-Integer Linear Programming (MILP) model developed

for solving the general case of the problem and the practical case study. Section 3.4 analyses the

case studies and the effects on the production system layout once the line designing cost ratios

and unproductive times are altered. Lastly, in Section 3.5, concluding remarks are summarised

and future research directions are suggested.

3.2 PROBLEM STATEMENT

The Robotic Assembly Line Design (RALD) problem is proposed and studied in this

chapter. We aim at the optimisation of an assembly line’s layout. The decisions concern the

length of the line along with the number and type of robots assigned to the line. Tasks requiring

different types of tools are balanced within the line, while the transport system and parallel

stations are also layout decisions of the problem. In order to ease the understanding of the

problem’s features, Figure 6 will be used as a visual support.

We consider that a robotic assembly line is composed of platform stations and transporter

robots to displace work-pieces between these platforms, as illustrated by Figure 6. Multiple

robots may be assigned to each platform station. By defining each transporter or platform as

a station, and assuming the line starts and finishes with a transporter robot, the configuration

results in a line with an odd number of stations in an alternating pattern of platform-fixed and

transporter robots. More examples can be found in Figures 13, 14, 15, and 16 of Section 3.4.

In this example of Figure 6, the first transporter robot is on a track-motion device (S1)

and has a welding tool placed on its side. The second station (S2) is a parallel platform station

composed of two cells with four robots each. The third station (S3) is also paralleled, contains

two cells of transporter robots, and each robot has a stud tool placed on its side. The forth station

(S4) has only one cell and holds three robots. The fifth and last station (S5) is a single transporter

cell without any task performing tool placed sideways.

The line allows parallelism of both platform and transporter stations. However, when a
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Figure 6 – Example of elements in the proposed RALD problem are shown: parallelism in platform and
transporter stations, multiple platform and transporter robots holding different tools or placed
sideways, and transporter robots on track-motions.

IN

Second station: a platform station composed
of two cells with four robots each.

S1 S2 S3 S4

OUT

S5

Source: Michels et al. (2018b).

non-paralleled transporter is adjacent to a paralleled platform station, a track-motion device is

required. Notice that the track-motion device applied on station S1 is necessary for its transporter

robot to reach both cells of station S2.

The robots are assigned to platform or transporter stations composed of one cell (single

stations) or two identical parallel cells (double stations). The transportation of work-pieces

between the stations is done by manipulator robots. Commonly, these movement times (dead

times) are neglected in the problem formulation, a simplification that may lead to unreliable

solutions. An advantage of using robotic arms as transporters is that they can also perform tasks

on work-pieces during a cycle time between their loading and unloading operations.

Platform robots holding welding tools are dedicated exclusively to perform assembly

tasks, while transporter robots are mainly used for moving products in and out of the stations,

but they also can use the remaining time of their cycle to perform tasks as long as they have a

static tool placed on the line’s sideways. This condition can be observed in stations S1 and S3 of

Figure 6. These transporter robots that are capable of performing tasks are named capacitated

transporter robots. Such robots are under the effect of an increased time penalisation on task

time duration, since they take longer to perform the same tasks robots in platform stations do.

This increment in the task time duration happens because, whereas in platform stations the
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work-pieces are steady for the robot to access the spot welding points, in transporter stations the

robots have to manipulate the entire work-piece in order to make the points accessible to the tool.

For many industry segments, tools are usually lighter and smaller than the produced work-pieces.

Figure 7 is a picture of platform robots assembling a work-piece (highlighted in blue)

by performing welding tasks. The welding guns (highlighted in yellow) are held by the robots

and the product stays fixed in the station. As the movement between welding spots is small, so is

the processing time of the tasks.

Figure 7 – Platform robots performing welding tasks at the same time on the same blue work-piece. The
yellow welding guns that each robot holds are highlighted in the picture.

Source: Michels et al. (2018b).

Figure 8, on the other hand, is a picture of a transporter robot that uses a static welding

tool. The yellow welding gun, in this case, is placed in the line’s sideways and the robot moves

the entire blue work-piece in order to make the welding spots accessible to the welding gun and

perform the required tasks in a diminished rate. Platforms and capacitated transporter robots can

be very similar. In our example, the same robot model can be employed both in platform and

transport stations, the difference lays on the tools attached to them.

Generally, robotic arms are not long enough to reach both sides of a parallel station (at

least for large work-pieces, such as vehicle parts, for instance). These transporter robots might

be placed on track-motion devices in order to allow them to reach adjacent paralleled stations



44

Figure 8 – Transporter robot holding the entire work-piece and manipulating it to the welding gun placed
on the line’s sideways. The work-piece that the robot holds and the static yellow welding gun are
highlighted in the picture.

Source: Michels et al. (2018b).

and avoid unnecessary transporter station paralleling. Although the device allows more reach

to the robot, an additional unproductive time penalty tied to the track-motion device movement

should be accounted on the robot’s cycle time. Figure 9 portrays a transporter robot placed on

a track-motion device set to unload a platform station. The arrow placed on the track-motion

device shows the movement that it permits. Figure 6 depicts this alternated pattern between

platform and transport stations, as well as equipment disposition and several other characteristics

of the RALD problem from a simplified top side view. Parallel station advantages and spot

welding processes are explained separately in this section.

Firstly formulated by Rubinovitz and Bukchin (1991) and later dealt with a genetic

algorithm (GA) by Levitin et al. (2006), the robotic assembly line balancing (RALB) problem

is incorporated into the problem we have at hand. Some general assumptions can be kept from

their work since the balancing core characteristic for the single product problem is present in our

formulation:

1. The cycle time to meet the demand is known.

2. The assembly tasks precedence diagram is known.

3. There are no precedence relations within a station.

4. The duration of a task is deterministic and cannot be subdivided.
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Figure 9 – Transporter robot on a track-motion device unloading a work-piece from a parallel platform
station.

Source: Michels et al. (2018b).

5. Robots and equipment are available at any quantity.

The specific problem has some differences. They are highlighted in bold in the following

assumptions:

6. The duration of a task depends on which robot and tool is assigned to perform it.

7. Parallel stations are allowed.

8. For the general case, any task can be performed at any station when the precedence

relations and equipment requirements are attended.

9. Multiple robots may be assigned to each station on the line not considering task scheduling

within stations.

10. Transportation time for loading (set-up) and unloading (tear-down) are considered. There-

fore, dead time is considered (BARD, 1989).

11. The goal is to minimise design cost, both robots and equipment have their prices as

parameters.

These highlighted aspects distinguish the classical RALB problem from our RALD

problem: lines are not strictly serial, i.e. either platform or transporter workstations can be

doubled (see second and third stations in Figure 6) in order to improve efficiency at a reduced
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cost, unproductive transportation time is considered in the mathematical formulation, and multiple

robots holding different tools are allowed at the same station (see second and forth stations in

Figure 6).

Station paralleling might lead to some advantages over single lines. The cycle time

increase at the doubled station is one of them, mainly when the dead time is considered, since the

relative importance of movement times (set-up and tear-down) is reduced. This effect is depicted

in Figure 10, showing how parallel stations affect the line efficiency positively.

In Figure 10, cycle times of two serial and parallel stations are presented on a schematic

diagram. In the first case (S1 and S2), for a given cycle time of 48 time units, set-up and tear-

down times of 12 time units each, the processing time (useful time) represents only 50% of

the cycle time (24 time units represented by the larger block placed on its top) and set-up and

tear-down (dead time) the other 50% (12 time units each represented by the smaller blocks).

When the station is doubled, one work-piece should be delivered per station every two cycles,

in an alternated fashion. Each copy of it (P1 and P2) benefits from paralleling and increases its

useful time to 75% (72 time units) of their doubled cycle time (96 time units). Therefore, there

is more available time to be dedicated to task performing activities, an improvement of 50% in

the useful time. The work-piece handling time (dead time) is the same for both configurations

when loading (set-up) or unloading (tear-down) stations. However, the relative importance of

this manipulation time is reduced because such work-piece handling process is conducted fewer

times. The efficiency gain depends on which tasks were allocated to the serial stations and which

could be allocated to an equivalent paralleled one.

Moreover, secondary advantages of paralleling stations are the improvement in produc-

tivity as a consequence of better balancing (BOYSEN et al., 2007) and the reduction on failure

sensitivity, albeit the reduced production rate (REKIEK et al., 2002). These reasons make parallel

stations a potentially profitable feature to be allowed into the line for practical applications.

Nonetheless, there are some drawbacks in the practical use: doubled stations might require

greater investments on equipment and higher operational costs. Not only the costs represent

a trade-off, also larger space is required for the double stations, robots and equipment, which

forces limits on the number of robots per workstation and paralleling degree.

Even disregarding the aforementioned drawbacks, paralleling stations indefinitely is

not always possible depending on which tasks one is performing. For instance, the automotive

manufacture widely uses the Resistance Spot Welding (RSW) technique in order to perform
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Figure 10 – Schematic comparative between serial and parallel stations. The benefits of paralleling a station
increase as the dead time represents a higher proportion of the cycle time.
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Source: Michels et al. (2018b).

welding tasks in the body-in-white stage. This process unites metal sheets by using welding guns,

which, in turn, require accessibility on both sides of the piece and, therefore, multiple types of

this tool may be necessary as the welding steps proceed. In addition, metal sheet joining tasks

must respect geometric tolerances, demanding external actuators to bind the metal sheets to be

united in the proper position. Such tasks are called geometry tasks. Due to precision conditions,

these geometry tasks must be performed at platform stations and the stations in which they are

processed must not be paralleled for quality control.

Furthermore, the RSW technique is also used for reinforcement welding and screw

adding points, namely finishing and stud tasks, respectively. Differently from geometry tasks,

these ones do not require actuators to assure geometric tolerances and, theoretically, there are

no precedence relations among any welding point. However, these spot welding points might

become inaccessible after geometry tasks are performed, since the newly added sheets block the

access of inner layers. These blockages can be seem as station-wise accessibility windows that

can be represented as a special precedence diagram (see Figure 12 on page 60). Moreover, this

welding assembly line property creates an incompatibility restriction between piece joining tasks

(geometry tasks) and reinforcement tasks (finishing and stud tasks): all reinforcement tasks must

be completed a station before any successor geometry task is allocated, since piece joining must
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be the first operation performed at a station and reinforcement tasks would not be accessible

after joining parts.

Figure 11 exemplifies why task incompatibility exists. Two car parts have to be joined,

which requires geometry tasks. This operation must be the first to be performed at a station due

to the use of external actuators. Yet once it is completed, some reinforcing welding procedures

(finishing and stud tasks on the base pieces) become inaccessible for the robots in the assembled

set. The region that becomes inaccessible is denoted by the area in which an overlap is verified

between the base pieces. For instance, consider a spot welding point 𝑃 that requires a finishing

task and belongs to the first base piece, as illustrated by Figure 11. As stated before, welding

procedures need access to both sides of the metal sheet to be performed. If the required finishing

task is not performed on 𝑃 before joining the base pieces, this point would be inaccessible

afterwards, due to an inner layer blockage.

Figure 11 – Two car parts are assembled by platform robots performing geometry tasks. After the assem-
blage, the welding point 𝑃 becomes inaccessible to further reinforcing welding procedures, there-
fore creating an incompatibility restriction between specific tasks.

Source: Michels et al. (2018b).

The assemblage of succeeding metal sheets is the only reason for the precedence rela-

tions between tasks. Since incompatible tasks must be performed at different stations (and before

being inaccessible), it is possible to use multiples robots not considering the task scheduling

within a station by the automotive industry. This is further discussed in Section 3.3.

Therefore, after the presented considerations, the configuration of an entire robotic line

can be defined, conceiving the Robotic Assembly Line Design (RALD) Problem: how many

robots per platform and transporter stations should be installed, how many tools of each type to

use, which tasks are assigned to each robot considering equipment availability, and which stations

would need to be paralleled in order to meet the demand at minimum cost. These decisions

must all be made simultaneously to assure the optimal solution. The summary of elements in the

optimisation model is shown in Figure 6 and are hereafter detailed as:
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• Parallelism possibilities: both platform and transporter stations are allowed to be single

or double stations;

• Platform and transporter robots: multiple robots per platform cell are allowed, and both

platform and transporter robots are capable of performing tasks as long as they have a tool

assigned to them;

• Equipment selection: different types of tools may be assigned to platform and transporter

robots, even at the same station;

• Track-motion device possibility: transporter robots might be placed on track-motion

devices, this feature is required for single transporters adjacent to double platforms due to

the size of the products to be assembled.

Ultimately, if one knows the productivity rate to meet the demand (desired cycle time of

the line), the best solution will be the one that accomplishes this need and satisfies the precedence

and space constraints at the lowest cost.

3.3 ROBOTIC ASSEMBLY LINE DESIGN (RALD) MODEL

This section contains a Mixed-Integer Linear Programming (MILP) formulation for the

Robotic Assembly Line Design (RALD) considering the problem definition and its characteristics

described in Section 3.2. In order to ease the model’s understanding, a concept based on the

initial letter orientation will be employed for the parameters, sets, and variables definition as

follows: all parameters and sets are written with an initial capital letter, an initial “b" indicates a

binary variable (domain in {0,1}) and an initial “v" indicates a non-negative continuous (domain

in R+) or integer variable (domain in Z+).

Table 2 contains the applied terminology, describing the parameters and the sets used in

the formulation. The parameters are empirically collected based on industrial conditions, such as

available physical space and suppliers’ prices. Note that the maximum number of stations (𝑁𝑆)

must always be an odd number due to: (i) work-piece initial handling and final manipulation

out of the line, and (ii) the transporter-platform sequential stations characteristic of the problem,

which make transporter stations to be indexed with odd numbers and platform stations with even

numbers. Figure 6 on page 42 illustrates a line with an odd number of stations planned in an
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alternated pattern. The variables are detailed in Table 3, they are created by the model depending

on the sets.

Table 2 – Terminology: names of parameters and sets, their meaning, and [dimensional units].

Parameter Meaning
𝑁𝑇 Number of tasks
𝑁𝑆 Maximum number of stations (an odd number, 𝑁𝑆 ≥ 3)

𝑁𝑚𝑎𝑥 Maximum number of robots per cell
𝐶𝑇 Cycle time [time units]
𝐷𝑇 Dead time [time units]
𝑇𝑀 Time penalisation for track-motion [time units]
𝐷𝑡,𝑒 Duration [time units] of task 𝑡 performed by equipment 𝑒
𝑁𝑡 Number of copies of task 𝑡

𝑃𝐶𝑜𝑠𝑡 Platform cost [$]
𝑇𝑀𝐶𝑜𝑠𝑡 Track-motion cost [$]
𝑅𝑇𝐶𝑜𝑠𝑡𝑒 Transporter robot cost [$] holding equipment 𝑒
𝑅𝑃𝐶𝑜𝑠𝑡𝑒 Platform robot cost [$] holding equipment 𝑒

Set Meaning
𝑇 Set of tasks 𝑡
𝑆 Set of stations 𝑠
𝑆𝑡 Set of transporter stations 𝑠, odd stations in 𝑆

𝑆𝑝 Set of platform stations 𝑠, even stations in 𝑆

𝑇𝑆 Set of feasible Task-Station elements
𝑆𝐸 Set of feasible Station-Equipment elements
𝑇𝑆𝐸 Set of feasible Task-Station-Equipment elements
𝑃𝑟𝑒𝑐 Set of precedence relations between two tasks 𝑡𝑖 and 𝑡𝑗 : (𝑡𝑖,𝑡𝑗)

𝑆𝑆 Set of tasks that require single stations
𝐼𝑛𝑐 Set of incompatible tasks 𝑡𝑖 and 𝑡𝑗 : (𝑡𝑖,𝑡𝑗)

Source: Michels et al. (2018b).

Table 3 – Terminology: definition of the model’s variables.

Variable Set Domain Meaning

𝑣𝑇𝑑𝑡,𝑠,𝑒 (𝑡,𝑠,𝑒) ∈ 𝑇𝑆𝐸 Z+
Task designation: set to the number of copies of task 𝑡 assigned at
station 𝑠 using equipment 𝑒

𝑏𝑇𝑒𝑡,𝑠 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 {0,1} Task ending: set to 1 if all the copies of task 𝑡 are finished up to station 𝑠

𝑏𝑇𝑜𝑡,𝑠 (𝑡,𝑠) ∈ 𝑇𝑆 {0,1} Task occurrence: set to 1 if any copy of task 𝑡 is performed at station 𝑠

𝑏𝑆𝑜𝑠 𝑠 ∈ 𝑆 {0,1} Station opened: set to 1 if station 𝑠 needs to be used
𝑏𝑆𝑑𝑠 𝑠 ∈ 𝑆 {0,1} Station doubled: set to 1 if station 𝑠 needs to be parallel

𝑏𝑇𝑀𝑠 𝑠 ∈ 𝑆𝑡 {0,1} Transporter station with track-motion: set to 1 if the robot in
transporter station 𝑠 is on a track-motion device

𝑣𝑁𝑅𝑠,𝑒 (𝑠,𝑒) ∈ 𝑆𝐸 Z+ Number of robots per cell in the station 𝑠 holding equipment 𝑒
𝑣𝑇𝑁𝑅𝑠,𝑒 (𝑠,𝑒) ∈ 𝑆𝐸 Z+ Total number of robots per station 𝑠 holding equipment 𝑒
𝑣𝑈𝑇𝑠,𝑒 (𝑠,𝑒) ∈ 𝑆𝐸 R+ Useful time at the station 𝑠 using equipment 𝑒 [time units]

Source: Michels et al. (2018b).

The problem’s objective function is to minimise the purchase cost of the line. As it is
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described in Expression 1, the line’s cost is composed of the cost of the platform and transporter

robots along with their tools, platforms, and track-motions.

Minimise:
∑︁

(𝑠,𝑒)∈𝑆𝐸
𝑠∈𝑆𝑝

𝑅𝑃𝐶𝑜𝑠𝑡𝑒 · 𝑣𝑇𝑁𝑅𝑠,𝑒

⏟  ⏞  
platform robots’ cost

+
∑︁

(𝑠,𝑒)∈𝑆𝐸
𝑠∈𝑆𝑡

𝑅𝑇𝐶𝑜𝑠𝑡𝑒 · 𝑣𝑇𝑁𝑅𝑠,𝑒

⏟  ⏞  
transporter robots’ cost

+

+ 𝑃𝐶𝑜𝑠𝑡 ·
∑︁
𝑠∈𝑆𝑝

(𝑏𝑆𝑜𝑠 + 𝑏𝑆𝑑𝑠)⏟  ⏞  
platform cost

+𝑇𝑀𝐶𝑜𝑠𝑡 ·
∑︁
𝑠∈𝑆𝑡

𝑏𝑇𝑀𝑠⏟  ⏞  
track-motion cost

(1)

The layout planning depends on balancing tasks among workstations. For each work-

station, the number of robots, station paralleling, and the presence of track-motion devices

delimit the available time for operations to be performed. The inequalities for the balancing

core of the model (Inequalities 2 to 5) are based on the formulation for the high dimensionality

(Integer) SALBP, presented by Sikora et al. (2017b) and applied on real-world instances from

an automotive body welding assembly line. In this alternative formulation, decision variables

for each existent type of task are defined and replicas of a task are treated in a single integer

variable. Therefore, instead of creating binary variables to determine whether a task is assigned

to a station or not, the integer based formulation relies on integer variables that decide how many

copies of each type of task are assigned to each station. Assembly lines with high multiplicity of

identical tasks (e.g. resistance spot welding tasks) may be modelled using fewer variables than

traditional binary based formulations.

Equation 2 is the occurrence restriction. While binary based formulations allocate every

task individually, Equation 2 states that the sum of all allocations of task 𝑡 assigned to stations

must be equal to its number of copies 𝑁𝑡. The precedence restriction is given by Inequality 3.

Each task can only be assigned to a station (by task designation variable 𝑣𝑇𝑑) if all of its

predecessors have already been completed (measured by task ending variable 𝑏𝑇𝑒) in or before a

station 𝑠. The link between 𝑣𝑇𝑑 and 𝑏𝑇𝑒 variables for the same task is given by Inequalities 4 and

5. Inequality 4 assures 𝑏𝑇𝑒 can only assume 1 if all 𝑁𝑡 copies of the task are already performed

up to station 𝑠, hence allowing followers to be assigned. Complementary, Inequality 5 forces

𝑏𝑇𝑒 = 1 when the task is finished. This last restriction can be seen as a cut. Although it is not

necessarily mandatory to formulate the problem correctly, it can help to tighten the formulation.∑︁
(𝑡,𝑠,𝑒)∈𝑇𝑆𝐸

𝑣𝑇𝑑𝑡,𝑠,𝑒 = 𝑁𝑡 ∀ 𝑡 ∈ 𝑇 (2)
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𝑏𝑇𝑒𝑡𝑖,𝑠 ·𝑁𝑡𝑗 ≥ 𝑣𝑇𝑑𝑡𝑗 ,𝑠,𝑒 ∀ (𝑡𝑖,𝑡𝑗) ∈ 𝑃𝑟𝑒𝑐, (𝑡𝑗,𝑠,𝑒) ∈ 𝑇𝑆𝐸 (3)

𝑏𝑇𝑒𝑡,𝑠 ≤
∑︁

(𝑡,𝑠𝑎,𝑒)∈𝑇𝑆𝐸
𝑠𝑎≤𝑠

𝑣𝑇𝑑𝑡,𝑠𝑎,𝑒
𝑁𝑡

∀ 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 (4)

𝑏𝑇𝑒𝑡,𝑠 + 𝑁𝑡 − 1 ≥
∑︁

(𝑡,𝑠𝑎,𝑒)∈𝑇𝑆𝐸
𝑠𝑎≤𝑠

𝑣𝑇𝑑𝑡,𝑠𝑎,𝑒 ∀ 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 (5)

Bukchin and Rubinovitz (2003) state that there is a diminishing return in paralleling

stations. The first station in parallel improves the efficiency, whereas the contribution of additional

parallel stations is quite small. Moreover, having many parallel station is only needed due to

long task times, which do not happen in spot welding assembly lines (SIKORA et al., 2017b).

Besides, the cost of adding another copy of a robotic cell and the transporter accessibility to the

stations would result in unaffordable or infeasible production layouts due to the size of vehicles.

Therefore, we only consider possibilities of single or double stations.

The variable 𝑣𝑈𝑇 is responsible for the measurement of the useful time used to perform

tasks, and is calculated by summing the performed tasks (Equation 6). The available time depends

on whether the station is open, single or double, and the number of robots. Inequality 7 presents

a limit for the variable 𝑣𝑈𝑇 based on the available time. The bold terms are variables. Note that

the equation is not linear: the useful time depends on the product of three variables, posing a

linearisation challenge.

𝑣𝑈𝑇𝑠,𝑒 =
∑︁

(𝑡,𝑠,𝑒)∈𝑇𝑆𝐸

𝑣𝑇𝑑𝑡,𝑠,𝑒 ·𝐷𝑡,𝑒 ∀ (𝑠,𝑒) ∈ 𝑆𝐸 (6)

𝑣𝑈𝑇𝑠,𝑒 ≤ bSo𝑠 · [(1 + bSd𝑠) · 𝐶𝑇 −𝐷𝑇 ] · vNR𝑠,𝑒 ∀ (𝑠,𝑒) ∈ 𝑆𝐸 (7)

This non-linear expression can be decomposed in the linear expressions 8, 9, and 11.

Inequality 8 is used to determine whether the station is open: if 𝑏𝑆𝑜 is 0, there is no useful time

in the station; otherwise, the value (2 · 𝐶𝑇 − 𝐷𝑇 ) · 𝑁𝑚𝑎𝑥 is an upper bound for the useful

time in a station. If the station is open and single, Inequality 9 is dominant. A non-doubled

station (𝑏𝑆𝑑 = 0) results in restricting the useful time to (𝐶𝑇 −𝐷𝑇 ) · 𝑣𝑁𝑅. Inequality 10 is

only applied to the transport stations (𝑆𝑡), also considering a time penalisation for the use of

track-motion devices. Once a robot using track-motion has to move between two workstations,
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there is less available time for the performance of tasks. Finally, Inequality 11 restricts the useful

time when a station is doubled.

𝑣𝑈𝑇𝑠,𝑒 ≤ bSo𝑠 · (2 · 𝐶𝑇 −𝐷𝑇 ) ·𝑁𝑚𝑎𝑥 ∀ (𝑠,𝑒) ∈ 𝑆𝐸 (8)

𝑣𝑈𝑇𝑠,𝑒 ≤ (𝐶𝑇 −𝐷𝑇 ) · vNR𝑠,𝑒 + bSd𝑠 ·𝑁𝑚𝑎𝑥 · 𝐶𝑇 ∀ (𝑠,𝑒) ∈ 𝑆𝐸 (9)

∑︁
𝑠,𝑒∈𝑆𝐸

𝑣𝑈𝑇𝑠,𝑒 ≤
∑︁

𝑠,𝑒∈𝑆𝐸

(𝐶𝑇 −𝐷𝑇 ) · vNR𝑠,𝑒 + bSd𝑠 ·𝑁𝑚𝑎𝑥 ·𝐶𝑇 −bTM𝑠 ·𝑇𝑀 ∀ 𝑠 ∈ 𝑆𝑡

(10)

𝑣𝑈𝑇𝑠,𝑒 ≤ (2 · 𝐶𝑇 −𝐷𝑇 ) · vNR𝑠,𝑒 ∀ (𝑠,𝑒) ∈ 𝑆𝐸 (11)

Due to space and accessibility constraints, the number of robots per cell (𝑣𝑁𝑅) must

be limited (Inequality 12). The total number of robots per station (𝑣𝑇𝑁𝑅) depends on whether

the station is doubled. For example, in Figure 6, the second station contains four robots per

cell (𝑣𝑁𝑅 = 4), however, as that station has been doubled, the total number of robots in

the station is eight (𝑣𝑇𝑁𝑅 = 8). This could be stated as a non-linear equation (𝑣𝑇𝑁𝑅𝑠,𝑒 =

𝑣𝑁𝑅𝑠,𝑒 · (1 + 𝑏𝑆𝑑𝑠)), but, in order to keep a linear formulation, a decomposition is required.

Hence, Inequality 13 measures the number of robots for single stations, while Inequality 14 is

active for double stations. Notice that this multi-robots aspect is only possible because there

are no precedence relations within a station. Otherwise, task scheduling would be necessary in

order to assure feasible answers. Nonetheless, if one sets the maximum number of robots per cell

to one (𝑁𝑚𝑎𝑥 = 1) in Inequality 12, the model is still valid for problems with a single robot

per station. It is also important to notice that 𝑣𝑇𝑁𝑅 is minimised in the objective function and,

therefore, the variable 𝑣𝑇𝑁𝑅 is set to receive the value of the number of robots per cell (𝑣𝑁𝑅)

depending on the parallelism applied to the station in Inequalities 13 and 14.∑︁
(𝑠,𝑒)∈𝑆𝐸

𝑣𝑁𝑅𝑠,𝑒 ≤ 𝑁𝑚𝑎𝑥 ∀ 𝑠 ∈ 𝑆𝑝 (12)

𝑣𝑇𝑁𝑅𝑠,𝑒 ≥ 𝑣𝑁𝑅𝑠,𝑒 ∀ (𝑠,𝑒) ∈ 𝑆𝐸 (13)

𝑣𝑇𝑁𝑅𝑠,𝑒 ≥ 2 · 𝑣𝑁𝑅𝑠,𝑒 − 2 ·𝑁𝑚𝑎𝑥 · (1− 𝑏𝑆𝑑𝑠) ∀ (𝑠,𝑒) ∈ 𝑆𝐸 (14)
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The next restrictions control the shape and flow of the line. Firstly, adjacent stations can

only be opened if a previous one has already been opened (Inequality 15). A parallel station has

two identical cells (same number of robots and equipment) performing the same tasks. In order

to duplicate a cell, it firstly needs to exist and be operative. Inequality 16 assures that a station

can only be doubled if it is open. As the product flows across the line using transporter robots, it

is necessary to have at least one of them at the starting point and after all platform stations in an

alternated manner (see Figure 6). The transport cells are considered to contain only one robot

and must both start and finish the assembly line. These restrictions are represented by Equality

17 for the first station and Equality 18 for the remainder stations. Note that Equality 17 is only

applied to 𝑠 = 1 and Equality 18 for 𝑠 ∈ 𝑆𝑡, such that 𝑠 > 1.

𝑏𝑆𝑜𝑠 ≤ 𝑏𝑆𝑜𝑠−1 ∀ 𝑠 ∈ 𝑆 | 𝑠 > 1 (15)

𝑏𝑆𝑑𝑠 ≤ 𝑏𝑆𝑜𝑠 ∀ 𝑠 ∈ 𝑆 (16)

∑︁
(𝑠,𝑒)∈𝑆𝐸

𝑣𝑁𝑅𝑠,𝑒 = 1 ∀ 𝑠 ∈ 𝑆 | 𝑠 = 1 (17)

∑︁
𝑠,𝑒∈𝑆𝐸

𝑣𝑁𝑅𝑠,𝑒 = 𝑏𝑆𝑜𝑠−1 ∀ 𝑠 ∈ 𝑆𝑡 | 𝑠 > 1 (18)

Furthermore, either when a work-piece has to be transported from a single transporter

robot into a doubled platform station or vice-versa, the transporter robot requires to be on

a track-motion device (see Figure 9), unless this transporter station has also been paralleled

(Inequalities 19 and 20). In Figure 6, S2 is a platform station that has been doubled, consequently,

the transporter robot before it (S1) had to be placed on a track-motion device in order to make

the robot reach both platform cells and deposit work-pieces correctly. Alternatively, one could

duplicate a transportation cell instead, as it happened to S3, in which each transporter robot

is responsible for unloading work-pieces from different cells in the previous parallel station.

Inequality 19 controls the use of a track-motion device when moving work-pieces from single to

parallel stations and Inequality 20 the other way around. Note that both restrictions are valid for

𝑠 ∈ 𝑆𝑡 and variables 𝑏𝑇𝑀𝑠 must assume 1 when the respective transporter station is not double,

i.e. 𝑏𝑆𝑑𝑠 = 0.

𝑏𝑇𝑀𝑠 ≥ (1− 𝑏𝑆𝑑𝑠) + 𝑏𝑆𝑑𝑠+1 − 1 ∀ 𝑠 ∈ 𝑆𝑡 | 𝑠 < 𝑁𝑆 (19)
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𝑏𝑇𝑀𝑠 ≥ (1− 𝑏𝑆𝑑𝑠) + 𝑏𝑆𝑑𝑠−1 − 1 ∀ 𝑠 ∈ 𝑆𝑡 | 𝑠 > 1 (20)

Up to this point, the model is sufficient to describe the basic Robotic Assembly Line

Design presented in Section 3.2. There are, however, some extra practical restrictions in the case

study of Section 3.4 that require more expressions. As it is stated in Section 3.2, some pair of

tasks may require a single station, and some tasks cannot be performed in the same station.

The modelling of extra restrictions requires an auxiliary binary variable (𝑏𝑇𝑜) that

controls whether any copy of task 𝑡 is performed at a station 𝑠. The link between 𝑏𝑇𝑜 and the

number of copies of tasks allocated to a station (𝑣𝑇𝑑) is given by Inequalities 21 and 22.

𝑏𝑇𝑜𝑡,𝑠 ≥
∑︁

(𝑡,𝑠,𝑒)∈𝑇𝑆𝐸

𝑣𝑇𝑑𝑡,𝑠,𝑒
𝑁𝑡

∀ (𝑡,𝑠) ∈ 𝑇𝑆 (21)

𝑏𝑇𝑜𝑡,𝑠 ≤
∑︁

(𝑡,𝑠,𝑒)∈𝑇𝑆𝐸

𝑣𝑇𝑑𝑡,𝑠,𝑒 ∀ (𝑡,𝑠) ∈ 𝑇𝑆 (22)

Due to technological restrictions (quality in precision, process control constraints),

geometry welding tasks are required to be performed on single platform stations, and all the

precedent tasks must be completed one station before the geometry tasks start. Therefore,

Inequality 23 is needed to assure that if a geometry task is performed in station 𝑠, the station

cannot be doubled (𝑏𝑆𝑑 = 0). The necessity of finishing all precedence tasks before a geometry

task can be modelled with a precedence relation (Inequality 3) added to the effect of an exclusion

constraint due to incompatibility (Inequality 24).

1− 𝑏𝑇𝑜𝑡,𝑠 ≥ 𝑏𝑆𝑑𝑠 ∀ 𝑡 ∈ 𝑆𝑆, (𝑡,𝑠) ∈ 𝑇𝑆 (23)

𝑏𝑇𝑜𝑡𝑖,𝑠 + 𝑏𝑇𝑜𝑡𝑗 ,𝑠 ≤ 1 ∀ (𝑡𝑖,𝑡𝑗) ∈ 𝐼𝑛𝑐, (𝑡𝑖,𝑠) ∈ 𝑇𝑆, (𝑡𝑗,𝑠) ∈ 𝑇𝑆 (24)

3.4 RESULTS

Two datasets were developed based on real-world data and computational tests were

performed in order to examine the influence of several model’s parameters and validate the model.

This first case study also seeks to evaluate the influences of model’s parameters in computational

difficulty. The complete mathematical formulation, including extensions (Constraints 21 and 22)

and extra restrictions (Constraints 23 and 24), was applied on them. The first dataset is composed
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of basic robots and tools, whilst the second one was elaborated with the same data in an enlarged

equipment pool. These results are presented in Section 3.4.1.

Moreover, the model is tested on real-world data that has been collected from an

automotive industry located on the outskirts of Curtiba-PR (Brazil) and converted into practical

instances in order to analyse three case studies for different vehicle models produced in the

company. Each vehicle model requires different amount of copies of each task and the duration

of each copy may also be different depending on the vehicle model. The last model is the most

complex one, presenting more tasks to be performed. The production rate to meet the demand

is known and the assembly welding line ought to be designed aiming to achieve the desired

cycle time at the lowest cost. The obtained results (Table 8) for the optimal line and the line as it

currently is implemented are compared and discussed by Table 9 in Section 3.4.2, suggesting a

potential economy of 5.9%.

To all instances, a 64 bit Intel™ i7 CPU (2.9 GHz) with 8 GB of RAM was employed

using eight threads and the IBM ILOG CPLEX Optimization Studio 12.6. Optimal solutions were

found for all instances in the first set (Section 3.4.1, Table 4) of the computational experiments

and practical cases (Section 3.4.2, Table 8) within 3600 seconds, not exceeding the solving time

limit. For the enlarged set, 18 out of 32 instances were solved within the time limit (Section

3.4.1, Table 5).

3.4.1 Parameters’ Influence Computational Study

It has been shown in Figure 10 that the dead time can be diluted between parallel

stations. As the relative importance of the dead time (𝐷𝑇 ) in regard of the cycle time (𝐶𝑇 )

increases, it is expected that the line design will converge towards solutions with more parallel

stations, so as to reduce the negative effects of unproductive movements and product loading.

To observe this behaviour, computational tests were performed varying the 𝐷𝑇 from 0 to 70%

of the 𝐶𝑇 . Larger values of 𝐷𝑇 were neglected for functional reasons: no line would operate

with such inefficiency and CPU processing time is much higher when the number of maximum

stations is increased. Consequences of this fluctuation on 𝐷𝑇 can be detected on the number of

robots, use of track-motions, and the final cost.

Another computational experiment has been conducted in order to analyse the effects of

changing cost structures (ASKIN; ZHOU, 1997), i.e. setting the cost ratio between the robot cost

(𝑅) and equipment cost (𝐸). The chosen rations represent the practical case rate (approximately
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𝑅/𝐸 = 2), 𝑅/𝐸 = 1 (Equal: robots and equipment have comparable costs), 𝑅/𝐸 = 30 (High:

robots are much more expensive than equipment), and 𝑅/𝐸 = 1/30 (Low: robots are much

cheaper than equipment). Moreover, tools that are able to perform the same tasks in a reduced

time are included in the equipment pool in order to evaluate computational complexity and a

possible trade-off. Faster robots and tools combination are capable of executing the same tasks

normal robots and tools do in 60% of the time, and cost twice as much. For instance, if a welding

robot that performs a copy of task 𝑡 in 10 time units and costs 10 monetary units ($) is considered,

an additional welding robot that performs the same copy of task 𝑡 in 6 time units and costs 20

monetary units ($) is also considered in the enlarged set.

Thus, the combination of both experiments (𝐷𝑇 and 𝑅/𝐸 variations) resulted in a total

of 64 instances that were summarised in Table 4 and Table 5, containing the total number of

robots in system (#𝑣𝑇𝑁𝑅), the number of opened and doubled stations (#𝑏𝑆𝑜 and #𝑏𝑆𝑑), the

number of robots on track-motion devices (#𝑏𝑇𝑀 ), and the computational time in seconds.

Fixed parameters were defined based on practical characteristics of robotic welding

assembly lines found in automotive industries. The desired 𝐶𝑇 is set to 1000 time units, the

𝐷𝑇 ranged from 0 to 70% of it, the number of maximum stations (𝑁𝑆) is gradually increased

by the user depending on the 𝐷𝑇 proportion and varies from 13 to 19, the necessary time to

use the track-motion to 10% of the 𝐶𝑇 . The number of tasks is set to 40 (13 geometry tasks, 4

stud tasks and 23 finishing tasks), the number of copies of tasks varies from 1 to 20 replicas.

The duration time of each copy ranges from 21 to 77 time units, and this value is increased by

50% if the task is performed at a transporter station. The Supporting Information is available and

contains detailed data concerning these instances.

Table 4 – Results for different relative dead times (𝐷𝑇 ) and cost ratios (𝑅/𝐸) with a reduced equipment
pool. #𝑣𝑇𝑁𝑅, #𝑏𝑆𝑜, #𝑏𝑆𝑑, and #𝑏𝑇𝑀 stand for total number of robots in system, the number
of opened, the number of doubled stations, and the number of robots on track-motion devices,
respectively.

𝐷𝑇 (%) Cost ratios (𝑅/𝐸): Practical | Equal | High | Low
#𝑣𝑇𝑁𝑅 #𝑏𝑆𝑜 #𝑏𝑆𝑑 #𝑏𝑇𝑀 CPU Time (s)

0 22 | 22 | 22 | 22 11 | 11 | 11 | 11 1 | 1 | 1 | 1 0 | 0 | 0 | 0 29 | 20 | 23 | 28
10 25 | 25 | 25 | 26 13 | 13 | 13 | 13 0 | 0 | 0 | 0 0 | 0 | 0 | 0 52 | 39 | 76 | 67
20 28 | 26 | 26 | 28 13 | 13 | 13 | 13 0 | 2 | 3 | 1 0 | 4 | 3 | 2 21 | 43 | 22 | 22
30 30 | 29 | 29 | 32 13 | 13 | 13 | 15 4 | 3 | 5 | 3 0 | 4 | 2 | 6 39 | 71 | 127 | 82
40 32 | 33 | 32 | 33 13 | 15 | 13 | 15 4 | 3 | 5 | 3 3 | 6 | 2 | 6 13 | 31 | 41 | 22
50 36 | 36 | 36 | 37 15 | 15 | 15 | 15 9 | 4 | 6 | 3 0 | 5 | 1 | 6 55 | 183 | 729 | 387
60 39 | 39 | 39 | 43 15 | 15 | 15 | 15 7 | 7 | 8 | 3 2 | 2 | 1 | 6 36 | 30 | 33 | 30
70 46 | 48 | 46 | 51 19 | 19 | 19 | 19 9 | 5 | 9 | 3 1 | 4 | 1 | 6 18 | 18 | 27 | 22

Source: Michels et al. (2018b).
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Table 5 – Results for different relative dead times (𝐷𝑇 ) and cost ratios (𝑅/𝐸) with an enlarged equipment
pool. #𝑣𝑇𝑁𝑅, #𝑏𝑆𝑜, #𝑏𝑆𝑑 and #𝑏𝑇𝑀 stand for total number of robots in system, the number
of opened, the number of doubled stations and the number of robots on track-motion devices,
respectively.

𝐷𝑇 (%) Cost ratios (𝑅/𝐸): Practical | Equal | High | Low
#𝑣𝑇𝑁𝑅 #𝑏𝑆𝑜 #𝑏𝑆𝑑 #𝑏𝑇𝑀 CPU Time (s)

0 19 | 19 | 19 | 19 9 | 9 | 9 | 9 0 | 0 | 0 | 0 0 | 0 | 0 | 0 72 | 190 | 150 | 302
10 23 | 20 | 23 | 21 11 | 9 | 11 | 9 0 | 0 | 0 | 0 0 | 0 | 0 | 0 487 | 207 | 3600 | 450
20 26 | 26 | 26 | 28 11 | 13 | 13 | 13 1 | 2 | 3 | 1 0 | 4 | 3 | 2 3600 | 211 | 183 | 135
30 29 | 30 | 29 | 31 13 | 13 | 13 | 13 3 | 2 | 3 | 2 0 | 4 | 1 | 4 3600 | 2058 | 3600 | 129
40 32 | 33 | 32 | 33 13 | 15 | 13 | 15 4 | 3 | 5 | 3 3 | 6 | 2 | 6 3600 | 386 | 3600 | 220
50 36 | 35 | 36 | 35 15 | 15 | 15 | 15 9 | 3 | 7 | 3 0 | 6 | 1 | 6 3600 | 944 | 3600 | 1227
60 39 | 39 | 39 | 43 15 | 15 | 15 | 15 7 | 7 | 10 | 3 2 | 2 | 0 | 6 3600 | 3600 | 3600 | 518
70 44 | 45 | 41 | 43 17 | 17 | 15 | 15 8 | 5 | 8 | 3 2 | 4 | 1 | 6 3600 | 3600 | 3600 | 1899

Source: Michels et al. (2018b).

Out of the 32 cases from Table 4, all of them were solved to optimality, whilst only 18

out of 32 cases from Table 5 would result in optimal solutions within the time limit. On average,

the cost is increased in 9.92% whenever there is an increase of 10% in the 𝐷𝑇 , except for the

pace from 60% to 70%. In this last case, the cost is impacted with a 16.69% raise and it clearly

attests that such relative unproductive times would result in impractical production systems.

The cost ratio experiment turned out as expected, validating the model for the practical

cases: the line layout is completely changed depending on robot and equipment relative costs.

For the cases in which the robots are much more expensive (𝑅/𝐸 = 30), the line applies parallel

stations more frequently in order to take advantage on productive time enlargement. On the other

hand, the use of track-motion devices was more intensive for the opposite cases (𝑅/𝐸 = 1/30),

since the robots are much cheaper than the tools, the model decided to allocate the equipment

mainly on platform stations, where there is no penalisation on task performing time.

Comparing Table 4 with Table 5, it is possible to state that computational times were

highly affected by allowing more equipment options in the pool. However, the increase on the

𝐷𝑇 does not necessarily influence the solving time directly, and the instances in which the robot

cost was much lower than the equipment cost (Low 𝑅/𝐸) expressed that this class of parameters

presents a reduced computational time to be solved. Moreover, the potential gains in saving

design costs were analysed based on the cases that reached optimality, i.e. the 18 out of 32

instances presented in Table 5. On average, a potential economy of 1.11% was obtained and the

larger difference was found to be a 7.57% (Low 𝑅/𝐸 and 0% of 𝐷𝑇 ) cost reduction.

The optimal answer was proved for all the instances in Table 4. Still, for the enlarged

equipment pool instances (Table 5), there was a gap between the best found answer (UB) and the

best possible answer (LB) in 14 out of 32 cases. The gap for each instance is shown in Table 6.
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For the instances that did not prove optimality in one hour of computational processing time, the

average gap was 7.97%.

Table 6 – Gaps for different relative dead times (𝐷𝑇 ) and cost ratios (𝑅/𝐸) for the enlarged equipment pool
instances.

𝐷𝑇 (%) Gap: (𝑈𝐵 − 𝐿𝐵)/𝑈𝐵

Practical 𝑅/𝐸 Equal 𝑅/𝐸 High 𝑅/𝐸 Low 𝑅/𝐸

0 0% 0% 0% 0%
10 0% 0% 5.06% 0%
20 1.87% 0% 0% 0%
30 1.37% 0% 9.90% 0%
40 1.66% 0% 5.00% 0%
50 11.95% 0% 20.54% 0%
60 2.93% 3.26% 8.71% 0%
70 10.86% 7.32% 21.18% 0%

Source: Michels et al. (2018b).

Lastly, the maximum number of stations (𝑁𝑆) for the herein reported tests were

estimated based on previous knowledge of the problem and the proposed dataset, this 𝑁𝑆 was

generally higher than necessary, i.e. a pessimistic estimation. Since all variable sets are built

for all stations, an overestimation of this parameter may include unnecessary variables to the

problem.

3.4.2 Practical Case Study

Currently, three different vehicle models are being produced in the studied line. The

validated model explored in Section 3.4.1 has been employed to the data of each vehicle model in

order to conduct the practical tests. Figure 12 shows the adapted real-world automotive industry

precedence diagram presented by Sikora et al. (2017b), geometry and stud tasks are indicated in

the diagram. Table 7 presents the task times for each vehicle model as long as they are performed

in platform stations. These time durations are 50% longer if the task is performed in a transporter

station. Geometry tasks are bold-faced, stud tasks are italicised, and the remaining ones are

finishing tasks. Notice that less complex vehicles do not have all the assembly tasks that Model 3

does.

As for the other parameters, the operating line had been observed and movement

time analysed to properly determine 𝐷𝑇 and 𝑇𝑀 (respectively 50% and 10% of the 𝐶𝑇 for

the practical case), and the desired 𝐶𝑇 has also been informed by the company (1168 time

units). The maximum number of stations is empirically estimated by measuring the possible
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Figure 12 – Precedence diagram for all vehicle models. Geometry (G) and Stud (S) tasks are indicated in the
diagram. The remaining ones are finishing tasks.
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Source: Michels et al. (2018b), adapted from Sikora et al. (2017b).

Table 7 – Task times in platform stations for each model. Geometry tasks are boldfaced, stud tasks are in
italics, and the remaining ones are finishing tasks.

Task Model 1 Model 2 Model 3
Copies Duration Copies Duration Copies Duration

1 8 57 8 57 8 57
2 6 38 6 38 6 38
3 6 50 6 50 6 50
4 6 47 4 49 10 42
5 10 29 10 29 20 27
6 14 58 10 57 6 55
7 18 40 18 40 22 43
8 4 47 4 47 8 43
9 4 63 4 63 2 64

10 15 63 15 63 15 63
11 13 39 13 39 13 39
12 7 42 11 38 11 38
13 34 35 46 34 40 37
14 21 70 18 71 37 77
15 11 28 7 26 13 21
16 15 69 15 69 16 71
17 5 44 5 44 8 45
18 0 - 0 - 12 37
19 20 34 6 35 18 32
20 0 - 12 50 4 52
21 12 35 12 35 14 33
22 12 55 12 55 12 51
23 0 - 6 56 11 52

Source: Michels et al. (2018b), adapted from Sikora et al. (2017b).

maximum length of the line and was set to 𝑁𝑆 = 15 for the practical case study. Industrial

economic parameters have been collected, namely robot, equipment, track-motion, and platform
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costs. These are not always the same for any project, they often depend on numeric studies

and labour cost for installing the line. The price parameters are average normalised values ($)

taken from the last recent projects and updates: platform cost (𝑃𝐶𝑜𝑠𝑡 = 4.2), track-motion

cost (𝑇𝑀𝐶𝑜𝑠𝑡 = 10.3), transporter robot cost holding no equipment other than the work-piece

manipulation system (𝑅𝑇𝐶𝑜𝑠𝑡𝑒 = 19.8), with a static welding tool placed in the sideways

(𝑅𝑇𝐶𝑜𝑠𝑡𝑒 = 29.9), with a static stud tool placed in the sideways (𝑅𝑇𝐶𝑜𝑠𝑡𝑒 = 25.8), and

platform robot cost holding a welding tool (𝑅𝑃𝐶𝑜𝑠𝑡𝑒 = 20.7), or a stud tool (𝑅𝑃𝐶𝑜𝑠𝑡𝑒 = 18.4).

These prices and parameters can be found in the Supporting Information.

3.4.2.1 Line Design for Vehicle Models

Table 8 presents the results for the given parameters applied to each vehicle model.

Naturally, the line cost is higher for Model 3, since it is the most complex vehicle model and has

more assembly tasks than the other vehicle models.

Table 8 – Results for the three vehicle models produced by the company nowadays.

Model 1 Model 2 Model 3
Cost ($) 557.5 561.5 628.6
#𝑣𝑇𝑁𝑅 24 23 26

#𝑏𝑆𝑜 13 11 13
#𝑏𝑆𝑑 0 2 2

#𝑏𝑇𝑀 0 2 1
CPU Time (s) 40.1 31.2 32.7

Source: Michels et al. (2018b).

The first and simplest vehicle model’s layout configuration could be designed as an

exclusively serial line in the optimal solution. Figure 13 shows the distribution of the robots and

their tools’ allocation through the stations.

Analogously to the representation of the first model, Figure 14 depicts the optimal

layout configuration for Model 2. In this case, station paralleling has been employed in order to

reduce costs for the design project and has also shorten the line’s length. Moreover, track-motion

devices are used to reach and move work-pieces in and out of parallel stations.

The optimal line design of the last and most complex vehicle model is shown in Figure

15. In this configuration, the production layout requires 11 serial stations, 2 parallel stations and

a track-motion device. The Model 3’s line employs more features than the first one and is longer

than Model 2’s line. This fact is expected due to the larger number of tasks and copies in the

parameters.
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Figure 13 – Optimal line design for Model 1. There are 13 serial stations (S1 to S13), no double stations or
track-motion were employed on the configuration. There are 24 robots in total, composed of 17
platform robots (15 performing geometry and finishing welding tasks and 2 performing stud
tasks) and 7 transporter robots (4 performing finishing welding tasks, 1 performing stud tasks
(S9) and 2 for work-pieces handling, in the entrance and S11).

S8S1 S2 S3 S4 S6S5 S7 S9 S10 S11 S12 S13

Source: Michels et al. (2018b).

Figure 14 – Optimal line design for Model 2. There are 11 stations (S1 to S11), 2 of them are doubled (S3
and S6) and 2 use a track-motion device (S5 and S7). There are 23 robots in total, composed of
16 platform robots (14 performing geometry and finishing welding tasks and 2 performing stud
tasks) and 7 transporter robots (5 performing finishing welding tasks, none performing stud
tasks and 2 for work-pieces handling, in the entrance and S7).

S8S1 S2 S3 S4 S6S5 S7 S9 S10 S11

Source: Michels et al. (2018b).

3.4.2.2 Results Comparison

Figures 13, 14, and 15 represent robotic welding assembly lines for single products, as

stated in the problem’s hypotheses (Section 3.2). However, in the automotive industry, production

systems are frequently built to process multiple models of vehicles, giving them the property

of mixed-model assembly lines. Therefore, in order to analyse the applicability of any of these

layouts, they must be feasible for all the vehicle models, otherwise, extra robots would have to

be included in the faulty segments. Note that this approach can be seen as designing the line
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Figure 15 – Optimal line design for Model 3. There are 13 stations (S1 to S13), 2 of them are doubled (S7 and
S8) and 1 uses a track-motion device (S9). There are 26 robots in total, composed of 18 platform
robots (16 performing geometry and finishing welding tasks and 2 performing stud tasks) and 8
transporter robots (5 performing finishing welding tasks, 2 performing stud tasks (S7) and 1 in
the entrance for work-pieces handling).

S8S1 S2 S3 S4 S6S5 S7 S9 S10 S11 S12 S13

Source: Michels et al. (2018b).

for the worst case. In this situation, the layout proposed by the mathematical model for vehicle

Model 3 is the only possible candidate to assume such position and is a natural candidate to be

tested for the remaining vehicle models.

The adopted procedure was setting the variables in the optimisation model for the last

vehicle model’s design, apply it to the data of vehicle models 1 and 2 and verify its feasibility for

each case. The obtained results indicate that the configuration presented in Figure 15 was able

to support the production of the three vehicle models and, thus, allowing the cost comparison

with the current as-built line, presented in Figure 16. Alternatively, (i) some robots could be

disable depending on the vehicle model that is to be processed in order to avoiding idle times

or (ii) the cycle time for the less complex models could be even reduced in specific situations.

Nonetheless, it is important to state and remind that the costliest design for a single product is

not necessarily fit to produce all the products in a mixed-model assembly line due to the task

distribution possibilities and idle times caused by relative demands of the products. A more

general approach for mixed-model lines is a future research goal (Section 3.5).

Table 9 presents a comparative between the model’s solution for the optimal line design,

the configuration proposed by the engineering team, and the strictly straight line for the Model 3.

The optimal solution for Model 3 has been compared to the current as-built design and proven

coherent, reinforcing the reliability of the mathematical formulation, previously stated by the

computational results of Section 3.4.1. Similarly to the last procedure to test the Model 3’s
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Figure 16 – Current as-built line. There are 13 stations (S1 to S13), 2 of them are doubled (S8 and S9) and 1
uses a track-motion device (S7). There are 28 robots in total, composed of 20 platform robots (19
performing geometry and finishing welding tasks and 1 performing stud tasks) and 8 transporter
robots (5 performing finishing welding tasks, 2 performing stud tasks (S9) and 1 in the entrance
for work-pieces handling).

Source: Michels et al. (2018b).

layout to Models 1 and 2, the strictly serial line was simulated for the vehicle Model 3 by setting

decision variables (𝑏𝑆𝑑) to the desired values (always equal to zero). In other words, parallel

stations had been forbidden in the model and it was applied to the vehicle Model 3’s data. A

similarity between the optimal solution and the as-built configuration might be noticed in Table

9. However, if Figure 15 is compared to Figure 16, one can realise that the optimal design did

not just reduce the number of robots in the line, but also gave a different configuration from the

current operating line as solution.

Table 9 – Comparative between the optimal line design, the configuration proposed by the engineering team
(as-built), and the strictly straight line for Vehicle Model 3.

Optimal As-built Serial
Cost ($) 628.6 667.7 692.4
#𝑣𝑇𝑁𝑅 26 28 30

#𝑏𝑆𝑜 13 13 15
#𝑏𝑆𝑑 2 2 0

#𝑏𝑇𝑀 1 1 0

Source: Michels et al. (2018b).

The costs on Table 9 are normalised due to industrial reasons and do not appear to be so

large in absolute values. The obtained relative values indicate a potential economy of approx-

imately 5.9%, when comparing the as-built with the obtained optimal solution. Nonetheless,

taking into consideration the purchase cost of industrial welding robots and the potential of
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applying the model to all robotic lines found in an automotive industry, the cost reduction on the

production layout can reach several hundred thousand dollars to be saved by the company.

Finally, this cost reduction comparison is only fair because both optimal and as-built

layouts for Model 3 (Figure 15 and Figure 16, respectively) can produce all vehicle models

through the same line and space, while respecting the demanded cycle time. Other layouts

(Figure 13 and Figure 14) are completely valid (and optimal) for single vehicle model processing,

but are not capable of producing all vehicle models under desired conditions of productivity

rate (infeasible). Table 10 summarises which solution is optimal, feasible or infeasible for each

model. Although there are optimal solutions for Models 1 or 2 for a lower cost, notice that such

solutions are not feasible for the remaining vehicle models. Therefore, a global optimal solution

could only be obtained by Layout 3 (Figure 15).

Table 10 – Feasibility verification between Models 1, 2, and 3 optimal layouts and as-built configuration.

Model 1 Model 2 Model 3 Cost ($)
Layout 1 (Figure 13) Optimal Infeasible Infeasible 557.5
Layout 2 (Figure 14) Infeasible Optimal Infeasible 561.5
Layout 3 (Figure 15) Feasible Feasible Optimal 628.6
As-built (Figure 16) Feasible Feasible Feasible 667.7

Source: Michels et al. (2018b).

3.5 CONCLUSIONS

Robotic welding assembly lines are frequently found in the automotive industry and

defining their production layout design is an important global and strategic decision. In this

chapter, the Robotic Assembly Line Design (RALD) problem is defined and an MILP formulation

is proposed for it, taking into account several practical considerations of an RALD scenario. The

proposed model incorporates the linearisation of a cubic constraint. The developed model also

allows to explicitly evaluate costs and benefits associated to parallel stations in an exact manner.

Computational case studies were performed in Section 3.4.1, combining large instances

of real-world inspired cases adapted from Sikora et al. (2017b) and cost ratio principles proposed

by Askin and Zhou (1997). The existence of multiple tool alternatives and with the trade-off

between equipment cost and efficiency led to higher computational difficulties. However, 18

out of 32 of such cases were solved to optimality within the time limit (Table 5). The main

conclusions drawn from this experiment are: (i) optimal answers tend to have more parallel

stations as the dead time increases or the robots are costly compared to the equipment, and (ii)
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the intense use of track-motion devices when equipment prices are much higher than the robot

ones, due to its tendency to be more cost-effective.

Practical case studies based on the three vehicle models presented in Sikora et al.

(2017b) reached optimal answers and led to a 5.9% cost reduction in the line design for the most

complex model compared to the originally human-designed line (Section 3.4.2). This was only

possible because the third vehicle model line layout was able to assemble both vehicle models 1

and 2, as indicated in Section 3.4.2.1. Furthermore, parallel stations evidenced its essential role

when unproductive times are considered, though paralleling was not necessarily cost-effective in

every condition (e.g. Figure 13).

Our study exposed how effective the formulation is when it comes to designing a robotic

assembly line, including practical extensions. Therefore, for future research, the proposed model

can be widened to incorporate task scheduling for each robot in the station. Moreover, the model

might be adapted to represent literature variants, such as different product models characteristics

in a mixed-model line and set-up times between them.



67

4 THE TYPE-1 MULTI-MANNED ASSEMBLY LINE BALANCING PROBLEM

This chapter contains a slightly modified version of the paper Michels et al. (2019),

which is entitled “A Benders’ decomposition algorithm with combinatorial cuts for the multi-

manned assembly line balancing problem” and was published in the European Journal of

Operational Research.

Section 4.1 introduces the type-1 multi-manned assembly line balancing problem

(MALBP-1). Section 4.2 describes the studied problem, showing the main advantages of adopting

multi-manned stations and its specific assumptions. Section 4.3.1 presents a new MILP model

with symmetry breaks for the MALBP-1. Section 4.4 gives an overview of the proposed Benders

decomposition algorithm (BDA) and how it is executed for the studied problem. Section 4.5

validates the results of the proposed BDA by optimally solving most MALBP-1 instances in the

benchmark dataset. Final considerations of this chapter are presented in Section 4.6.

Abstract from Michels et al. (2019): “Multi-manned assembly lines are commonly

found in industries that manufacture large-size products (e.g. automotive industry), in which

multiple workers are assigned to the same station in order to perform different operations

simultaneously on the same product. Although the balancing problem of multi-manned assembly

lines had been modelled before, the previously presented exact mathematical formulations

are only able to solve few small-size instances, while larger cases are solved by heuristics

or metaheuristics that do not guarantee optimality. This work presents a new Mixed-Integer

Linear Programming model with strong symmetry break constraints and decomposes the original

problem into a new Benders’ Decomposition Algorithm to solve large instances optimally. The

proposed model minimises the total number of workers along the line and the number of opened

stations as weighted primary and secondary objectives, respectively. Besides, feasibility cuts and

symmetry break constraints based on combinatorial Benders’ cuts and model’s parameters are

applied as lazy constraints to reduce search-space by eliminating infeasible sets of allocations.

Tests on a literature dataset have shown that the proposed mathematical model outperforms

previously developed formulations in both solution quality and computational processing time

for small-size instances. Moreover, the proposed Benders’ Decomposition Algorithm yielded

117 optimal results out of a 131-instances dataset. Compared to previously presented methods,

this translates to 19 and 25 new best solutions reached for medium and large-size instances,

respectively, of which 19 and 23 are optimal solutions.”
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4.1 INTRODUCTION

Production systems used in high-volume industries of standardised products are fre-

quently based on flow-shop layouts, which are product-oriented designs. Assembly lines in

a flow-shop configuration are generally dedicated to make homogeneous products, enabling

their mass production. Along with this real-world usage, assembly lines have given rise to

a combinatorial problem widely discussed in the literature (BATTAÏA; DOLGUI, 2013): the

Assembly Line Balancing Problem (ALBP).

Considering several restrictive assumptions described by Baybars (1986), the problem

of assigning a list of tasks subjected by a precedence graph to stations is called Simple Assembly

Line Balancing Problem (SALBP). Allowing only one worker in each station is one of the

restrictions. Moreover, these stations are organised in a straight, serial line that produces a unique

model of a single product. The importance of ALBP is shown in the literature by the high

number of published papers that still contribute to practical applications. In order to optimise

(minimise) the number of stations (SALBP-1) or the cycle time (SALBP-2), several algorithmic

solution methods were proposed: SALOME – an efficient bidirectional branch-and-bound

procedure – was developed (SCHOLL; KLEIN, 1997) followed by a dynamic programming

approach (BAUTISTA; PEREIRA, 2009), a branch, bound, and remember algorithm (SEWELL;

JACOBSON, 2012), and an enhanced multi-Hoffmann heuristic (STERNATZ, 2014). These and

other techniques were gathered in an overview and improved for SALBP-1 by Pape (2015).

However, assembly lines applied to automotive industry, for instance, commonly process

large-size products, such as cars and buses. In these lines, the SALBP’s hypothesis of allowing

only one worker in each station often is not a practical limitation. As product size is rather

large, it becomes admissible to assign more than one worker to each station and perform tasks

simultaneously in different sectors of the same product, giving rise to natural extensions and

more generalised versions of the SALBP: the Multi-manned Assembly Line Balancing Problem

(MALBP) and the Two-sided Assembly Line Balancing Problem (TALBP), which are surveyed

by Becker and Scholl (2006) along with a variety of practical extensions. Figure 17 depicts both

above-mentioned lines, it shows simple, two-sided, and multi-manned assembly lines with three

stations each. Nevertheless, two-sided and multi-manned assembly lines permit more than one

worker in each station (i.e. stations 1 and 3), with workers performing tasks on the same product

at the same time. The main difference between MALBP and TALBP is the flexibility on the
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quantity of workers and their positioning. TALBP allows at most two operators, each of them at

the station’s right or left side, whereas in MALBPs the number of maximum workers depends on

product’s attributes, such as size, structure, and tasks’ precedence relations. Another divergence

is that TALBPs might have to deal with tasks that can be performed exclusively on the right or

left side of the product.

Figure 17 – Configuration examples of a simple assembly line, a two-sided assembly line, and a multi-
manned assembly line.

Station 1 Station 3

Simple assembly line 

Multi-manned assembly line 

Two-sided assembly line 

Station 2

Source: Michels et al. (2019).

This work focuses on the MALBP variant; advantages of using the multi-manned

configuration are associated to workforce and line length reduction, which are further exemplified

in Section 4.2. Other simplification hypotheses from SALBP are kept, the most important ones

to be mentioned are: (i) a straight, serial line is considered and (ii) the line produces a unique

model of a single product.

In industrial environments, the use of multi-operated stations is intense. Consequently,

numerous studies concerning MALBPs and TALBPs have recently been elaborated. To the best of

the authors’ knowledge, the Parallel Assignment Method (PAM) developed by Akagi et al. (1983)

takes place as the first study in the literature to tackle the problem of achieving higher production

rates in assembly lines with more than one worker in each station. Many years later, Dimitriadis

(2006) proposed a heuristic method based on modifying a procedure created by Hoffmann (1963).
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The heuristic has shown to be effective in enhancing space utilisation, with the objective of

minimising the total number of workers and stations given a cycle time, which is still the most

usual goal function employed in various works. Succeeding those papers, Becker and Scholl

(2009) introduced the Assembly Line Balancing Problem with Variable Workplaces (VWALBP).

In this problem, working areas are minimised given a cycle time, while work-pieces are divided

into mounting positions and only a single worker is able to assemble them in each multi-manned

station. A Mixed-Integer Linear Programming (MILP) model is generated including lower

bounding techniques and a branch-and-bound algorithm named VWSolver (based on SALOME)

is implemented to solve larger instances. Concomitantly, two-sided assembly lines were firstly

explored by Bartholdi (1993), and its variants concerning mixed-model lines (ÖZCAN; TOKLU,

2009) and stochastic task times (ÖZCAN, 2010) were further developed.

Following those publications, works on MALBPs have been increasing yearly; Moon

et al. (2009) included the feature of variably skilled workers into MALBPs, proposed a mathe-

matical formulation, and solved large-size instances with a Genetic Algorithm (GA). Cevikcan

et al. (2009) devised the application of multi-manned stations for mixed-model assembly lines

with zoning constraints. Due to the complexity of the mathematical model, a five-phase heuristic

was developed to solve it. However, none of them used exact algorithms, and their adopted

methods would find near-optimal feasible solutions. The first mathematical model that minimises

the total number of workers and stations simultaneously in a MALBP was proposed by Fattahi

and Roshani (2011). They consider a single model line, in which the number of workers and

stations are the primary and secondary objectives in the optimisation procedure, respectively.

Their model could solve small-size instances in a reasonable amount of time, but failed in

solving larger cases. For that reason, an Ant Colony Optimisation (ACO) algorithm has been

developed to find feasible and near-optimal solutions for medium and large test problems. A

novel efficient branch-and-bound algorithm called Jumper was developed by Kellegöz and Toklu

(2012) to solve ALBPs with parallel multi-manned stations. Their algorithm outperforms the

VWSolver in both quality of feasible solutions and computational processing times. Kazemi and

Sedighi (2013) and Michels et al. (2018b) examine real-size cost-oriented problem instances

for assembly lines with multi-operated stations: the first paper takes into consideration the

objective of minimising total cost per production unit by presenting a heuristic method based

on GA, whilst the latter one develops a MILP model to minimise design implementation costs

(robots, station facilities, and equipment) of a robotic line that conceives the use of multiple
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robots per station. Roshani et al. (2013) addressed the MALBP with a multi-objective function

in their mathematical model, which maximises smoothness index and line efficiency, whereas

minimising the line length. Moreover, an improved Simulated Annealing (SA) algorithm was

proposed to solve the problem. Kellegöz and Toklu (2015) presented a constructive heuristic

based on priority rules, a GA based improvement procedure, and conducted computational

experiments on MALBP instances with the objective of minimising the total number of workers

in the line. Yilmaz and Yilmaz (2015) aimed at the minimisation of number of workers, stations,

and workload difference between workers with a mathematical formulation. Yilmaz and Yilmaz

(2016a) also analysed the impacts of MALBPs with skilled workers and equipment needs, and

for that a heuristic procedure was proposed for solving the problem. Roshani and Giglio (2017)

approached the MALBP by trying to minimise the cycle time of a line as the primary objective,

for a given number of stations. Besides the MILP model, two meta-heuristics based on SA

algorithm were developed: the indirect and direct SA (ISA and DSA, respectively). The DSA

performance in solving the problem showed to be better in terms of quality and computational

time. In order to reduce the required workspace for shop operations, Chen (2017) developed

a hybrid heuristic approach based on SA algorithms with specific practical extensions for the

automotive industry, prioritising the minimisation of stations. Kellegöz (2017) has improved the

mathematical formulation proposed by Fattahi and Roshani (2011) to minimise the total number

of workers and stations in a MALBP. In addition, a Gantt-based heuristic is proposed within a

SA algorithm to solve medium and large-size instances. This procedure outperforms the ACO

algorithm presented by Fattahi and Roshani (2011) and finds better feasible solutions to most

instances in the tested benchmark. Lastly, another SA algorithm is implemented by Roshani

and Nezami (2017), this time to undertake the mixed-model MALBP with the minimisation of

number of workers and stations as primary and secondary objectives, respectively.

Table 11 provides a summarised literature review and, by comparing the proposed

method with previously published papers, it is possible to situate the proposed work’s contribution

into the literature. Although Becker and Scholl (2009) and Kellegöz and Toklu (2012) have

developed exact methods to solve ALBPs with parallel workplaces, they had only considered the

minimisation of working areas and the number of worker as a consequence, which is a different

concept. The main concern from the literature appears to be problems with single model lines in

which both total number of workers and stations are minimised. This is due to the reason that, as

stated in several published articles (e.g. Fattahi and Roshani (2011), Kellegöz (2017), Roshani
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and Nezami (2017)), minimising the number of workers might be more important reducing

the number of stations. For that, mathematical models were developed along with heuristic

(YILMAZ; YILMAZ, 2016a), genetic algorithm (MOON et al., 2009), ant colony optimisation

(FATTAHI; ROSHANI, 2011; YILMAZ; YILMAZ, 2016b), and simulated annealing (ROSHANI

et al., 2013; KELLEGÖZ, 2017) methods. However, none of these methods can guarantee

optimality for medium and large-size instances. In order to fill such gap, a new mathematical

formulation is developed with search-space reduction constraints and symmetry breaks to address

the problem. Furthermore, a Benders’ decomposition algorithm is proposed as an innovative

exact method for the problem under study. By applying Benders’ combinatorial cuts (BENDERS,

1962; CODATO; FISCHETTI, 2006) techniques as lazy constraints, larger benchmark instances

can be solved to optimality. Differently from the classical Benders’ decomposition, the proposed

algorithm presents an integer slave problem intended for feasibility seeking. These works

presented in Table 11, in particular Fattahi and Roshani (2011) and Kellegöz (2017), will serve

as a benchmark for this chapter and the decomposition procedure herein proposed, which focus

on minimising the total number of workers as the primary objective and the number of stations

as the secondary one in a MALBP. In this way, a direct performance comparison of the objective

function results is possible for each instance. Besides, these works (Fattahi and Roshani (2011)

and Kellegöz (2017)) are the most recent ones concerning MALBPs with such minimisation

objective and they also provide an extensive dataset to validate the proposed model and algorithm.

The remaining of the chapter is organised as follows. In Section 4.2, a deeper definition

of MALBP is given in order to explain the problem. Section 4.3 presents the MILP model and the

additional constraints to reduce the problem’s search-space. Section 4.4 reviews the development

and applications of Benders’ decomposition and combinatorial cuts. It also describes in detail the

proposed algorithm. Computational results retrieved from this study are presented and discussed

in Section 4.5. Lastly, in Section 4.6, concluding remarks are summarised and further research

directions are suggested.

4.2 PROBLEM STATEMENT

As mentioned, the assembly lines considered in this study are dedicated to mass produc-

tion of a single model of a unique product. Their stations are positioned sequentially in a serial,

straight line. Only one work-piece can be processed at a given time in each station. Contrary to

unpaced and mixed-model lines, in which processing time oscillations, starvations, and blockages
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Table 11 – Literature overview for the type-1 Multi-manned Assembly Line Balancing Problem (MALBP-1).
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Akagi et al. (1983) ∙ ∙ ∙
Dimitriadis (2006) ∙ ∙ ∙
Becker and Scholl (2009) ∙ ∙ ∙ ∙
Moon et al. (2009) ∙ ∙ ∙ ∙ ∙
Cevikcan et al. (2009) ∙ ∙ ∙ ∙
Fattahi and Roshani (2011) ∙ ∙ ∙ ∙ ∙
Kellegöz and Toklu (2012) ∙ ∙ ∙
Kazemi and Sedighi (2013) ∙ ∙ ∙ ∙
Roshani et al. (2013) ∙ ∙ ∙ ∙
Kellegöz and Toklu (2015) ∙ ∙ ∙ ∙
Yilmaz and Yilmaz (2015) ∙ ∙ ∙ ∙
Yilmaz and Yilmaz (2016a) ∙ ∙ ∙ ∙ ∙
Roshani and Giglio (2017) ∙ ∙ ∙ ∙
Chen (2017) ∙ ∙ ∙ ∙ ∙
Kellegöz (2017) ∙ ∙ ∙ ∙ ∙
Roshani and Nezami (2017) ∙ ∙ ∙ ∙ ∙
Proposed work (2019) ∙ ∙ ∙ ∙ ∙

Source: Michels et al. (2019).

are relevant factors (LOPES et al., 2018a), these pieces are moved forward between stations with

a previously known and fixed cycle time (𝐶𝑇 ), while their transportation times are neglected. As

the line produces a single product, its pace is exclusively determined by the most loaded station

or the defined cycle time (BAYBARS, 1986).

In order to assemble any product, a set of tasks 𝑇 must be performed. These tasks are

indivisible and must respect precedence restrictions in their execution order. Each of them takes a

deterministic duration time (𝐷𝑡) to be completed, thus, the sum of these duration times assigned

to the same worker must not exceed the defined cycle time. Nevertheless, due to parallel work

within stations, it is also necessary for tasks to be scheduled in such a way that precedence

relations are respected.

A sample instance is used to illustrate the difference of SALBP and MALBP. The

precedence graph containing task indexes (number inside the circle) and durations (value on the

top right corner of the circle), as well as optimal solutions for a SALBP and MALBP with a

defined 𝐶𝑇 = 10 are presented in Figure 18. For the multi-manned line, each station is allowed to

be occupied by more than one worker simultaneously working on the same work-piece. However,
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the maximum number of operators (𝑁𝑊 , with 𝑁𝑊 = 3 for the illustrative instance) admitted

to perform different tasks concomitantly may vary due to the product size. The configuration of

SALBP’s optimal solution necessitates 6 workers assigned to 6 stations, totalling an idle time of

10 time units, or approximately 16.67% of the line’s available working time, represented by the

blank spaces in each station. On the other hand, by permitting more than one worker per station,

the MALBP solution was able to not only reduce the line length from 6 to 2 stations, but also

assign 5 workers instead of 6 to perform the task set. In this illustrative instance, it was possible

to verify an advantage of multi-manned lines over simple ones by bringing the idle time down

to zero. This efficiency improvement arises from allowing multiple workers to perform tasks

simultaneously. Naturally, it depends on the instance’s parameters.

Figure 18 – Precedence graph, SALBP-1, and MALBP-1 optimal solutions for the illustrative instance.
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Source: Michels et al. (2019).

Nonetheless, this viable advantage comes along with the drawback of computational

burden in solving the problem. Notice that the task indivisibility attribute is still valid and must

be respected. Into the same station, each worker can only execute at most one task at a given time,

and no cooperation is allowed between workers, i.e. no common task (YAZGAN et al., 2011;

SIKORA et al., 2017a) can be performed by two or more workers together. Furthermore, tasks are

not constrained by positioning and zoning restriction (BARTHOLDI, 1993; BECKER; SCHOLL,
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2009), i.e. no interference occurs between workers during the assembly process (LOPES et

al., 2017). Lastly, there is no heterogeneity among workers (MOREIRA et al., 2015), i.e. all

workers have the same capacity and can perform a task with the same specific time required for

its execution. Whilst different tasks can be performed by different workers synchronously, they

still must satisfy all precedence relations imposed by the precedence graph. Therefore, a task

scheduling problem arises for each station with conceivable waiting times for workers before

or between the execution of tasks, making MALBPs more complex than SALBPs (FATTAHI;

ROSHANI, 2011).

For the studied problem, it is assumed that the balancing decision is a long-term plan

due to the high costs and line utilisation associated to it. That said, it is considered that the cost

of a worker is much greater than the cost of opening an additional station, since each worker has

some associated costs such as wages, equipment, labour regulations, among others. Hence, the

primary objective of the mathematical model presented in Section 4.3 is to minimise the total

number of workers, accompanied by the secondary objective of minimising the total number of

stations, that is, the line length.

Ultimately, this work presumes that optimal SALBP solutions are feasible configurations

for MALBPs. Naturally, the necessary number of workers (and stations) to achieve an optimal

solution for the SALBP can be accepted as an upper bound for the MALBP, since SALBPs

are more restrictive and assume the number of workers and stations to be the same in a given

solution. Likewise, it is reasonable to adopt the upper bound for the total number of stations

(𝑁𝑆) in a MALBP to be one unit lesser than its simpler counterpart optimal solution. As the

MALBP’s objective is to minimise both the number of workers and stations, with a higher weight

in the former, the minimal marginal improvement taken from a SALBP solution is reducing

the line length in one station by reallocating a worker in some of the remaining stations. For

instance, the upper bound for the number of stations in a MALBP would be considered to be five

(𝑁𝑆 = 5) for the illustrative example presented in Figure 18, since that is the SALBP’s optimal

number of stations minus one. It is justified by the reasoning that, if the model is not even able to

reduce one station in the previous solution by pointing out an infeasibility, then it is concluded

that allowing more than one worker per station cannot contribute to efficiency improvements,

and optimal solutions of both versions (SALBP and MALBP) are coincident in objective value.

This fact is further analysed in Section 4.3.3.
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4.3 MATHEMATICAL FORMULATION

This section contains a Mixed-Integer Linear Programming (MILP) model developed

to represent the Multi-manned Assembly Line Balancing Problem (MALBP) considering the

characteristics identified in Section 4.2. Section 4.3.1 presents the main model to represent

the problem and Section 4.3.2 exhibits the implemented symmetry breaks that strengthens the

problem’s linear relaxation. Table 12 informs the applied terminology to describe parameters

and sets used in the formulation. The variables are detailed in Table 13, they are created by the

model depending on the sets.

Table 12 – Terminology: MALBP-1 names of parameters and sets, their meaning, and [dimensional units].
Parameter Meaning

𝑁𝑇 Number of tasks
𝑁𝑆 Maximum number of stations
𝑁𝑊 Maximum number of workers per station
𝐶𝑇 Cycle time [time units]
𝐷𝑡 Duration [time units] of task 𝑡

𝑊𝐶𝑜𝑠𝑡 Worker cost [monetary units]
𝑆𝐶𝑜𝑠𝑡 Station cost [monetary units]
𝐵𝑖𝑔𝑀 A sufficiently large positive number

Set Meaning
𝑇 Set of tasks 𝑡; 𝑇 = {1, 2,..., 𝑡,..., 𝑁𝑇}
𝑆 Set of stations 𝑠; 𝑆 = {1, 2,..., 𝑠,..., 𝑁𝑆}
𝑊 Set of workers 𝑤; 𝑊 = {1, 2,..., 𝑤,..., 𝑁𝑊}
𝑇𝑆 Set of feasible Task-Station elements
𝑇𝑊 Set of feasible Task-Worker elements
𝑊𝑆 Set of feasible Worker-Station elements
𝑇𝑊𝑆 Set of feasible Task-Worker-Station elements
𝑃 Set of precedence relations between two tasks 𝑡𝑖 and 𝑡𝑗 : (𝑡𝑖,𝑡𝑗)

Source: Michels et al. (2019).

Table 13 – Terminology: MALBP-1 definition of model’s variables.
Variable Set Domain Meaning
𝑋𝑡,𝑠 (𝑡,𝑠) ∈ 𝑇𝑆 {0,1} Task-station assignment: set to 1 if task 𝑡 is performed in station 𝑠

𝑌𝑤,𝑠 (𝑤,𝑠) ∈𝑊𝑆 {0,1} Worker-station assignment: set to 1 if worker 𝑤 is used in station 𝑠

𝑊𝑡,𝑤 (𝑡,𝑤) ∈ 𝑇𝑊 {0,1} Task-worker assignment: set to 1 if task 𝑡 is performed by worker 𝑤
𝑍𝑠 𝑠 ∈ 𝑆 {0,1} Station opened: set to 1 if station 𝑠 needs to be used

𝐹𝑡𝑖,𝑡𝑗 𝑡𝑖, 𝑡𝑗 ∈ 𝑇 | 𝑡𝑖 ̸= 𝑡𝑗 {0,1} Follow variable: set to 1 if task 𝑡𝑖 is followed by task 𝑡𝑗
𝑆𝑇𝑡 𝑡 ∈ 𝑇 Z+ Starting time: time in which task 𝑡 starts to be performed
𝐴𝑡,𝑤,𝑠 (𝑡,𝑤,𝑠) ∈ 𝑇𝑊𝑆 {0,1} Auxiliary variable: set to 1 for mimicking variables 𝑌𝑤,𝑠

𝐼𝑤,𝑠 (𝑤,𝑠) ∈𝑊𝑆 Z+ Idle time: total time that worker 𝑤 spends idle in station 𝑠

Source: Michels et al. (2019).
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4.3.1 Main model

The objective function considered in Expression 25 for this problem is similar to the

ones used in Fattahi and Roshani (2011) and Kellegöz (2017). The first component in the objective

function corresponds to the total number of workers employed in line and their weighted cost

(𝑊𝐶𝑜𝑠𝑡). The remaining of the expression represents the total number of stations used in the

line, along with its weighted cost (𝑆𝐶𝑜𝑠𝑡). Remind that 𝑊𝐶𝑜𝑠𝑡 is a positive number much

larger than 𝑆𝐶𝑜𝑠𝑡, therefore, the primary objective is to minimise the total number of workers.

Minimise: 𝑊𝐶𝑜𝑠𝑡 ·
∑︁

(𝑤,𝑠)∈𝑊𝑆

𝑌𝑤,𝑠⏟  ⏞  
𝑤𝑜𝑟𝑘𝑒𝑟𝑠 𝑐𝑜𝑠𝑡

+ 𝑆𝐶𝑜𝑠𝑡 ·
∑︁
𝑠∈𝑆

𝑍𝑠⏟  ⏞  
𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑠 𝑐𝑜𝑠𝑡

(25)

In the model’s constraints, Equations 26 are the occurrence constraint, forcing each

task to be allocated to a station exactly once. Equations 27 are analogous to the previous one, it

ensures that each task is exclusively performed by one worker. Equations 28 assign appropriate

values to 𝑌𝑤,𝑠 variables: if a task 𝑡 is allocated to station 𝑠, and this same task 𝑡 is performed

by worker 𝑤, then it is possible to induce which worker 𝑤 from station 𝑠 is employed for the

activity. The precedence relations between tasks allocated in different stations are satisfied by

Inequalities 29. ∑︁
𝑠∈𝑆

𝑋𝑡,𝑠 = 1 ∀ 𝑡 ∈ 𝑇 (26)

∑︁
𝑤∈𝑊

𝑊𝑡,𝑤 = 1 ∀ 𝑡 ∈ 𝑇 (27)

𝑌𝑤,𝑠 ≥ 𝑋𝑡,𝑠 + 𝑊𝑡,𝑤 − 1 ∀ (𝑡,𝑠) ∈ 𝑇𝑆, (𝑡,𝑤) ∈ 𝑇𝑊 (28)

∑︁
𝑠∈𝑆

𝑠 ·𝑋𝑡𝑖,𝑠 ≤
∑︁
𝑠∈𝑆

𝑠 ·𝑋𝑡𝑗 ,𝑠 ∀ (𝑡𝑖,𝑡𝑗) ∈ 𝑃 (29)

The task scheduling core of the problem is based on the concept of task following, i.e.

when a task can only start after other is finished. How task following and task starting time

variables behave in the formulation is hereafter presented. If a pair of tasks (𝑡𝑖,𝑡𝑗) is contained

in the precedence set 𝑃 , it is mandatory that task 𝑡𝑗 follows task 𝑡𝑖 (Equations 30). Logically,

tasks with the same index cannot follow one another, and so is the set 𝐹𝑡𝑖,𝑡𝑗 accordingly defined.

Inequalities 31 and 32 are logical ties to properly decide following variables depending on
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task allocation and worker use. Between stations, if a task 𝑡𝑖 is not allocated to the station

that 𝑡𝑗 is or in any station after that, then 𝑡𝑗 follows 𝑡𝑖 (Inequalities 31). Into the same station,

if tasks 𝑡𝑖 and 𝑡𝑗 are performed by the same worker, then one of them must follow the other

(Inequalities 32). Contrary to previously presented mathematical formulations that use a relative

order time reasoning (FATTAHI; ROSHANI, 2011; KELLEGÖZ, 2017), this follow variable

(𝐹𝑡𝑖,𝑡𝑗 ) concept allows the proposed model to be less dependent on Big-M based constraints.

Nonetheless, the definition of task starting times still relies on few formulations containing

Big-M strategies (HILIER; LIEBERMAN, 2015). In all cases, the 𝐶𝑇 · 𝑁𝑆 numerical value

is a valid, sufficiently large, value for the parameter 𝐵𝑖𝑔𝑀 (Table 12). Inequalities 33 bind the

starting time of a task 𝑡 to a minimum value (lower bound) regarding station 𝑠 in which it is

allocated. From the other side, Inequalities 34 limit the maximum starting time (upper bound)

that a task 𝑡 can begin to be performed in station 𝑠. Complementary, the last task 𝑡 must be

finished up to the last opened station (Inequalities 35), and all tasks 𝑡𝑖 that precede 𝑡𝑗 must be

completed before 𝑡𝑗 starts to be performed (Inequalities 36).

𝐹𝑡𝑗 ,𝑡𝑖 = 1 ∀ (𝑡𝑖,𝑡𝑗) ∈ 𝑃 (30)

𝐹𝑡𝑗 ,𝑡𝑖 ≥ 𝑋𝑡𝑗 ,𝑠 −
∑︁

𝑠𝑘∈𝑆|𝑠𝑘≥𝑠

𝑋𝑡𝑖,𝑠𝑘 ∀ 𝑡𝑖, 𝑡𝑗 ∈ 𝑇, 𝑠 ∈ 𝑆 (31)

𝐹𝑡𝑖,𝑡𝑗 +𝐹𝑡𝑗 ,𝑡𝑖 ≥ 𝑋𝑡𝑖,𝑠+𝑋𝑡𝑗 ,𝑠+𝑊𝑡𝑖,𝑤+𝑊𝑡𝑗 ,𝑤−3 ∀ (𝑡𝑖,𝑤,𝑠), (𝑡𝑗,𝑤,𝑠) ∈ 𝑇𝑊𝑆 | 𝑡𝑖 ̸= 𝑡𝑗 (32)

𝑆𝑇𝑡 ≥ 𝐶𝑇 · (𝑠− 1)−𝐵𝑖𝑔𝑀 · (1−𝑋𝑡,𝑠) ∀ (𝑡,𝑠) ∈ 𝑇𝑆 (33)

𝑆𝑇𝑡 + 𝐷𝑡 ≤ 𝐶𝑇 · 𝑠 + 𝐵𝑖𝑔𝑀 · (1−𝑋𝑡,𝑠) ∀ (𝑡,𝑠) ∈ 𝑇𝑆 (34)

𝑆𝑇𝑡 + 𝐷𝑡 ≤ 𝐶𝑇 ·
∑︁
𝑠∈𝑆

𝑍𝑠 ∀ 𝑡 ∈ 𝑇 (35)

𝑆𝑇𝑡𝑗 ≥ 𝑆𝑇𝑡𝑖 + 𝐷𝑡𝑖 −𝐵𝑖𝑔𝑀 · (1− 𝐹𝑡𝑗 ,𝑡𝑖) ∀ 𝑡𝑖, 𝑡𝑗 ∈ 𝑇 | 𝑡𝑖 ̸= 𝑡𝑗 (36)
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4.3.2 Symmetry break constraints

The model 25–36 represents the problem. However, some ordering symmetry breaks

were implemented into the model to strengthen the problem’s linear relaxation and avoid wasting

much time visiting symmetric solutions (WALSH, 2006). Inequalities 37 state that a station

can only be opened if there is a task allocated to it. Inequalities 38 are similar, but for a

worker assigned to that station. The combination of these inequalities assists the searching

process for tighter bounds, as they prohibit the existence of unproductive or unoccupied stations.

Inequalities 39 state that a station can only be opened if a previous one is already opened,

they prevent the issue found by Yilmaz and Yilmaz (2016b) in a previous paper (FATTAHI;

ROSHANI, 2011), in which an arbitrary opening order of stations was allowed, leading to

inconsistent solutions. Analogously, Inequalities 40 break the symmetry between workers by

stating that a worker can only be used if a previous one is already in use, avoiding equivalent

solutions (in terms of objective function value) to be taken into consideration by the model and,

therefore, shrinking the search-space. Notice that Inequalities 39 and 40 are only applied to the

model from the second station/worker onwards, as it also was used by Kellegöz (2017).

𝑍𝑠 ≥ 𝑋𝑡,𝑠 ∀ (𝑡,𝑠) ∈ 𝑇𝑆 (37)

𝑍𝑠 ≥ 𝑌𝑤,𝑠 ∀ (𝑤,𝑠) ∈ 𝑊𝑆 (38)

𝑍𝑠 ≤ 𝑍𝑠−1 ∀ 𝑠 ∈ 𝑆 | 𝑠 > 1 (39)

𝑌𝑤,𝑠 ≤ 𝑌𝑤−1,𝑠 ∀ (𝑤,𝑠) ∈ 𝑊𝑆 | 𝑤 > 1 (40)

Finally, idle time symmetry breaks are also added to the formulation. An auxiliary

variable (𝐴𝑡,𝑤,𝑠) that mimics the worker-station assignment (𝑌𝑤,𝑠) is necessary for this part of

the formulation. Inequalities 41 and 42 are the bounds to define appropriate values for 𝐴𝑡,𝑤,𝑠.

This is necessary to calculate idle times associated to each worker along stations (𝐼𝑤,𝑠), which is

done by Inequalities 43 and 44. Inequalities 45 conduct the symmetry break based on idle time

information: the first worker’s idle time must be lesser or equal to the second’s and so on. This

also enables the reduction of search-space, since equivalent solutions would be disregarded by the

model due to rules concerning idle time differences between workers imposed by Inequalities 45.
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𝐴𝑡,𝑤,𝑠 ≥ 𝑋𝑡,𝑠 + 𝑊𝑡,𝑤 − 1 ∀ (𝑡,𝑤,𝑠) ∈ 𝑇𝑊𝑆 (41)

∑︁
(𝑡,𝑤,𝑠)∈𝑇𝑊𝑆

𝐴𝑡,𝑤,𝑠 ·𝐷𝑡 ≤ 𝐶𝑇 ∀ (𝑤,𝑠) ∈ 𝑊𝑆 (42)

𝐼𝑤,𝑠 ≥ 𝐶𝑇 · 𝑌𝑤,𝑠 −
∑︁

(𝑡,𝑤,𝑠)∈𝑇𝑊𝑆

𝐴𝑡,𝑤,𝑠 ·𝐷𝑡 ∀ (𝑤,𝑠) ∈ 𝑊𝑆 (43)

∑︁
(𝑤,𝑠)∈𝑊𝑆

𝐼𝑤,𝑠 +
∑︁
𝑡∈𝑇

𝐷𝑡 ≤ 𝐶𝑇 ·
∑︁

(𝑤,𝑠)∈𝑊𝑆

𝑌𝑤,𝑠 (44)

𝐼𝑤,𝑠 ≥ 𝐼𝑤−1,𝑠 ∀ (𝑤,𝑠) ∈ 𝑊𝑆 | 𝑤 > 1 (45)

The MILP formulation defined by 25–45 is henceforth referred to as PM (proposed

model).

4.3.3 Upper bound value for NS

This section mathematically formalises the modelling decisions for upper bound values

applied to 𝑁𝑆. By hypothesis, the SALBP is a very restrictive problem, constrained by several

simplification hypotheses (BAYBARS, 1986). One of them states that each station is operated

by one worker. Thus, by minimising the number of stations, one is, in practice, minimising the

number of workers as a consequence. When such hypothesis is relaxed, more than one worker

can be allowed in each station, and the number of workers and stations are explicitly minimised

separately. Furthermore, it is possible to attribute weights to workers and stations based on the

importance (cost) of each resource, in which cumulative wages generally are much more costly

than the physical parts of a station (FATTAHI; ROSHANI, 2011; KELLEGÖZ, 2017).

That stated, it is known that the number of workers and stations in both SALBP and

MALBP cases are integers. For SALBP, 𝑥𝑆 and 𝑦𝑆 represent the number of workers and stations

in a given configuration, respectively. Analogously, let 𝑥𝑀 and 𝑦𝑀 respectively represent the

number of workers and stations in a given configuration of MALBPs. Naturally, 𝑥𝑆 and 𝑦𝑆 will

always assume the same integer value (𝑥𝑆 = 𝑦𝑆) in any solution, since it is, by hypothesis,

mandatory for a SALBP to have the same number of workers and station. Conversely, 𝑥𝑀 is

considered to be greater or equal to 𝑦𝑀 (𝑥𝑀 ≥ 𝑦𝑀 ), because each opened station must have at
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least one worker performing operations in it. Moreover, the worker component weighted cost

(𝑤1) is much larger than its station counterpart (𝑤2): 𝑤1 >> 𝑤2. Therefore, an objective function

considering SALBP hypotheses can be expressed as 𝑆(𝑥𝑆,𝑦𝑆) = 𝑤1 · 𝑥𝑆 + 𝑤2 · 𝑦𝑆 | 𝑥𝑆 = 𝑦𝑆

and a MALBP objective function as 𝑀(𝑥𝑀 ,𝑦𝑀) = 𝑤1 · 𝑥𝑀 + 𝑤2 · 𝑦𝑀 | 𝑥𝑀 ≥ 𝑦𝑀 .

In terms of optimal solutions, the number of workers and stations are represented by 𝑥*
𝑆 ,

𝑦*𝑆 , 𝑥*
𝑀 , and 𝑦*𝑀 for SALBP and MALBP cases, respectively. As MALBPs are less restrictive

than SALBPs, their optimal solutions for the minimisation problem cannot be worse than their

simpler counterpart in any given instance: Proposition 1.

Proposition 1. 𝑀(𝑥*
𝑀 ,𝑦*𝑀) ≤ 𝑆(𝑥*

𝑆,𝑦
*
𝑆), which can be subdivided into two cases:

1. 𝑀(𝑥*
𝑀 ,𝑦*𝑀) = 𝑆(𝑥*

𝑆,𝑦
*
𝑆)

2. 𝑀(𝑥*
𝑀 ,𝑦*𝑀) < 𝑆(𝑥*

𝑆,𝑦
*
𝑆)

Proof. In Proposition 1, case (i), the SALBP solution has, by hypothesis, the same

number of workers and stations (𝑥*
𝑆 = 𝑦*𝑆). Therefore, in order to have an optimal MALBP

solution equivalent to a SALBP one, 𝑥*
𝑀 must be equal to 𝑥*

𝑆 , and 𝑦*𝑀 must be equal to 𝑦*𝑆 , that

is: 𝑀(𝑥*
𝑀 ,𝑦*𝑀) = 𝑆(𝑥*

𝑆,𝑦
*
𝑆)⇔ 𝑥*

𝑀 = 𝑥*
𝑆 = 𝑦*𝑀 = 𝑦*𝑆 , which is perfectly feasible. For case (ii),

in which the optimal MALBP solution value of a given instance is exclusively lower than the

optimal SALBP one, at least one of the following conditions must happen: (a) fewer workers

(𝑥*
𝑀 < 𝑥*

𝑆), which would inevitably lead to fewer stations (a station without any worker/operation

cannot be opened), or (b) same number of workers, but fewer stations (𝑥*
𝑀 = 𝑥*

𝑆 ∧ 𝑦*𝑀 < 𝑦*𝑆),

which still meets the MALBP hypothesis of allowing more than one worker per station and is

also reckoned possible by an illustrative example (Figure 18).

Given the assumption that the worker cost component receives a much higher weight

in the objective function than the station one (𝑤1 >> 𝑤2), it can be concluded by Proposition

1, case (ii), that the minimal marginal improvement in a MALBP solution over a SALBP one

comes from the reduction of the line length in one station unit (𝑥*
𝑀 ≤ 𝑥*

𝑆, 𝑦
*
𝑀 < 𝑦*𝑆), and from

case (i) that, in the worst case, the MALBP optimal solution is equivalent to the SALBP one,

which produces the following corollary that is used in the proposed mathematical model.

Corollary. The upper bound for the number of stations (𝑁𝑆) in a MALBP model can

be set to a value one unit lesser than the optimal solution to its SALBP counterpart (taking

𝑤1 >> 𝑤2 into account). If the model is found to be infeasible, it is concluded that the MALBP

optimal solution is exactly the same as the configuration yielded by its SALBP version. �
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4.4 BENDERS’ DECOMPOSITION ALGORITHM

The Benders’ decomposition algorithm (hereafter referred to as BDA) developed for

the MALBP is presented in this section. The Benders’ decomposition (BENDERS, 1962) is a

method based on reformulating the original monolithic model into two hierarchical problems: the

master problem (MP) and the slave (or sub) problems (SP). The partition aims at freeing the MP

from several variables and restrictions, which are then solved as SPs. A Benders’ decomposition

works iteratively: a solution of the MP (with fixed values for the key variables) is then used in the

SPs. The SP is generally decomposable in multiple problems, reducing the computational burden

comparing to a monolithic problem. The results of such divided problems are used to inform the

MP by using cutting planes. The MP with extra restrictions is solved and the procedure repeats

with the next answer. In other words, the decomposition strips off difficult variables from the

MP and then iteratively corrects misled solutions by solving the parts that are omitted in the MP.

In the proposed implementation, the MP is related to the high-level decisions of task-station

and worker-station assignments, whereas SP is associated to feasibility tests on the lower-level

problem of task-worker assignment and task-scheduling in each station. Besides, the MP is

enhanced by graph-based feasibility cuts described in Section 4.4.1. Extending the concept to

use Combinatorial Benders’ Cuts (CODATO; FISCHETTI, 2006), the MP is distilled from the

original and complete combinatorial problem (monolithic model), which is equivalent to being

significantly relaxed, since it is initially separated from the SP. Once all decisions variables

to compute the objective value (𝑌𝑤,𝑠 and 𝑍𝑠) are contained in the MP, solving it might yield

feasible integer solutions, which are sent to the SP to be validated (or not) by it. If feasibility

is detected by the SP, the current solution is accepted as an incumbent one. Otherwise, the SP

returns combinatorial inequalities to be added as lazy constraints into the MP. The BDA iterates

this procedure until an optimal solution is found and proven.

The use of BDAs in the literature is reviewed and summarised by Rahmaniani et al.

(2017). Several real-world problems were approached by using Benders’ decomposition method.

Nevertheless, when it comes to line balancing problems, only one work is listed in the survey

(OSMAN; BAKI, 2014), which concerns transfer lines. Further research regarding assembly

line balancing problems was scarcely developed. In Hazir and Dolgui (2013) and Hazir and

Dolgui (2015), straight and U-type layouts are considered under uncertainty, formulating a

robust optimisation model and algorithm. Lastly, Akpinar et al. (2017) takes into account set-up
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times that are dependent on task sequencing in each station, interpreting task assignment and

sequencing decisions as hierarchical problems. None of them involved assembly lines with

multi-manned stations.

For the MALBP, the MP represents task-station assignments and worker-station alloca-

tion problems, whilst the SP takes care of the task-worker scheduling problem. Notice that, in

this application, SP is not a continuous problem, thus a feasibility-seeking variant (BENDERS,

1962) must be used in order to solve the problem previously stated in Section 4.3 by the PM

(Expressions 25–45). Therefore, the slave problem should be used as a feasibility check on

the system, as it was stated by Côté et al. (2014) and Fakhri et al. (2017), who applied the

method in the strip packing problem and the capacitated fixed charge multiple knapsack problem,

respectively. In particular for the proposed BDA, the SPs are task-worker scheduling problems

solved individually for each multi-manned station. As Benders decompositions might go through

a slow convergence process (MAGNANTI; WONG, 1981), some algorithm enhancements are

deemed necessary to accelerate such operation and so they are pointed out along with the MP

and SP descriptions. Also for that reason, whenever an infeasibility is detected, such condition

is modelled as a new restriction and added to the MP. These combinatorial Benders’ cuts are

further explained in Section 4.4.2. Moreover, feasibility cuts based on precedence graph analyses

are implemented in the MP (Section 4.4.1), limiting the possibilities of task allocations.

4.4.1 Master problem

For the MP, Expressions 25, 26, 29, and 37–40 are maintained, and additional constraints

are developed based on a set of incompatible task pairs (𝐼𝑛𝑐), which are tasks that cannot be

executed in the same station due to precedence relations and cycle time restrictions, independently

on the number of workers assigned there (Enhancement 1). How this analysis is conducted to

define such task pairs is hereafter presented. In order to do so, the precedence relations set 𝑃 must

be extended to a complete set 𝑃 * by considering all direct and indirect precedence relations. By

constructing this complete set 𝑃 *, it is possible to create successors and predecessor sets for each

task: 𝑆𝑢𝑐𝑡 and 𝑃𝑟𝑒𝑡 are sets that represent all direct and indirect successors and predecessors of

a task 𝑡, respectively. Furthermore, two extra parameters are needed to represent the critical path

duration (𝛿𝑡𝑖,𝑡𝑗 ) and the sum of task durations (𝜎𝑡𝑖,𝑡𝑗 ) between tasks 𝑡𝑖 and 𝑡𝑗 . When computed,

these parameters are recursively evaluated in a topological order.

Given three tasks 𝑡𝑖, 𝑡𝑗 , and 𝑡𝑘, such that 𝑡𝑖 ̸= 𝑡𝑗 ̸= 𝑡𝑘, Equations 46 recursively
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attribute to parameter 𝛿𝑡𝑖,𝑡𝑗 the critical path between two tasks by employing an algorithmic

procedure, that is, they run through the precedence graph and establishes what is the longest sum

of task durations that have to be performed between tasks 𝑡𝑖 and 𝑡𝑗 . This concept was adopted

from project scheduling problems (KLEIN, 2000). Equations 47 are needed to further calculate

capacity bounds, another logic inherited from the resource constrained project scheduling

problems (KLEIN, 2000). The sum of task durations of all tasks that are successors of task

𝑡𝑖 and predecessors of task 𝑡𝑗 is assigned to the parameter 𝜎𝑡𝑖,𝑡𝑗 . Taking the precedence graph

from Figure 18 as an example, these parameters for the task pair (𝑡1,𝑡6) would be 𝛿𝑡1,𝑡6 = 4 and

𝜎𝑡1,𝑡6 = 8.

𝛿𝑡𝑖,𝑡𝑗 = max [0; 𝛿𝑡𝑖,𝑡𝑘 + 𝐷𝑡𝑘 | 𝑡𝑘 ∈ 𝑆𝑢𝑐𝑡𝑖 ∩ 𝑃𝑟𝑒𝑡𝑗 ] ∀ (𝑡𝑖,𝑡𝑗) ∈ 𝑃 * (46)

𝜎𝑡𝑖,𝑡𝑗 =
∑︁

𝑡𝑘∈𝑆𝑢𝑐𝑡𝑖∩𝑃𝑟𝑒𝑡𝑗

𝐷𝑡𝑘 ∀ (𝑡𝑖,𝑡𝑗) ∈ 𝑃 * (47)

In order to define which task pairs (𝑡𝑖, 𝑡𝑗) are incompatible, only task pairs (𝑡𝑖, 𝑡𝑗) ∈ 𝑃 *

are considered. If either Inequalities 48 or Inequalities 49 are verified, the incompatibility

condition is satisfied, and the task pair (𝑡𝑖, 𝑡𝑗) are added to the incompatibility set 𝐼𝑛𝑐. Once in

hand of 𝐼𝑛𝑐, Inequalities 50 are added to the MP, restricting specific task pairs to be allocated to

the same station. Whenever Inequalities 49 are not satisfied, it is possible to generate weaker –

but still valid – restrictions. Inequalities 51 state the minimum number of workers that a station

requires in order to perform both tasks of a task pair (𝑡𝑖, 𝑡𝑗), being 𝜀 a very small positive number

to avoid dividing by zero. Finally, the available time to perform tasks in each station is given by

the number of workers assigned there (Inequalities 52).

𝐷𝑡𝑖 + 𝐷𝑡𝑗 + 𝛿𝑡𝑖,𝑡𝑗 > 𝐶𝑇 (48)

𝐷𝑡𝑖 + 𝐷𝑡𝑗 +

⌈︂
𝜎𝑡𝑖,𝑡𝑗

𝑁𝑊

⌉︂
> 𝐶𝑇 (49)

𝑋𝑡𝑖,𝑠 + 𝑋𝑡𝑗 ,𝑠 ≤ 1 ∀ 𝑠 ∈ 𝑆, (𝑡𝑖,𝑡𝑗) ∈ 𝐼𝑛𝑐 (50)

∑︁
𝑤∈𝑊

𝑌𝑤,𝑠 ≥
⌈︂

𝜎𝑡𝑖,𝑡𝑗

𝐶𝑇 −𝐷𝑡𝑖 −𝐷𝑡𝑗 + 𝜀

⌉︂
−𝑁𝑊 · (2−𝑋𝑡𝑖,𝑠 −𝑋𝑡𝑗 ,𝑠) ∀ 𝑠 ∈ 𝑆, (𝑡𝑖,𝑡𝑗) ∈ 𝑃 *

(51)
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∑︁
𝑡∈𝑇

𝑋𝑡,𝑠 ·𝐷𝑡 ≤ 𝐶𝑇 ·
∑︁
𝑤∈𝑊

𝑌𝑤,𝑠 ∀ 𝑠 ∈ 𝑆 (52)

This reformulated part of BDA focus on finding an optimal solution for the problem.

Any feasible solution (�̃�, 𝑌 ) = {(�̃�1,1, ..., �̃�𝑡,𝑠), (𝑌1,1, ..., 𝑌𝑤,𝑠)} found by the MP is passed

to SP for scheduling feasibility check in each station 𝑠. That way, the monolithic model is

decomposed in an MP that decides allocation variables (𝑋𝑡,𝑠) and the number of total workers

and stations (𝑌𝑤,𝑠 and 𝑍𝑠) used along the line, while the SP seeks for feasible task-worker

assignments (𝑊𝑡,𝑤) by considering task starting times and ordering (𝑆𝑇𝑡 and 𝐹𝑡𝑖,𝑡𝑗 ) for each

station.

4.4.2 Slave problem

The SP keeps Expressions 27, 30, and 36 as in Section 4.3, but modifies Inequalities 32,

43, and 45 for simpler ones. For that, they are applied to each station 𝑠 separately by using

task and worker sub-sets 𝑇𝑠 and 𝑊𝑠, which are dependent on the solution (�̃�, 𝑌 ) sent from

MP, as expressed by Equations 53 and 54. Thinking of each station as a separate resource-

constrained scheduling sub-problem, Inequalities 55, 56, and 57 respectively substitute the

previous monolithic ones without any loss of functionality. Slave problems in which only one

worker is employed in the station are automatically deemed feasible, since there is no scheduling

problem to begin with in such cases.

𝑇𝑠 = {𝑡 ∈ 𝑇 | �̃�𝑡,𝑠 = 1} ∀ 𝑠 ∈ 𝑆 (53)

𝑊𝑠 = {𝑤 ∈ 𝑊 | 𝑌𝑤,𝑠 = 1} ∀ 𝑠 ∈ 𝑆 (54)

𝐹𝑡𝑖,𝑡𝑗 + 𝐹𝑡𝑗 ,𝑡𝑖 ≥ 𝑊𝑡𝑖,𝑤 + 𝑊𝑡𝑗 ,𝑤 − 1 ∀ 𝑡𝑖, 𝑡𝑗 ∈ 𝑇𝑠 (55)

𝐼𝑤 = 𝐶𝑇 −
∑︁
𝑡∈𝑇𝑠

𝐷𝑡 ·𝑊𝑡,𝑤 ∀ 𝑤 ∈ 𝑊𝑠 (56)

𝐼𝑤 ≥ 𝐼𝑤−1 ∀ 𝑤 ∈ 𝑊𝑠 | 𝑤 > 1 (57)
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In order to prevent redundant feasibility seeking tests, a hash-table (MAURER; LEWIS,

1975) is employed to store SP instance information that had led to feasible solutions (Enhance-

ment 2). Whenever a task allocation set for a given station is tested and found to be feasible,

that set of tasks and number of workers used to perform them is included into a tested problem

hash-table, so the SP model does not need to solve repeated scheduling problems, since the

algorithm can quickly consult this hash-table beforehand. If the MP’s solution is evaluated as

feasible for all stations by the SP, then such solution is considered incumbent by the proposed

BDA and the algorithm returns to the MP with a new UB. Otherwise, the submitted MP’s solution

might be detected as infeasible. If that is the case, Benders’ combinatorial cuts are applied to the

MP as lazy constraints, that is, new restrictions are added to the initial optimisation problem in

order to cut off infeasible task allocation and worker assignment possibilities (Enhancement 3).

The type of cut depends on the number of workers that the SP instance had employed

and was proven infeasible. Stronger cuts can be added when the trial solution employs the

maximum allowed workers for a specific station. Inequalities 58 state that, if a given tested

task allocation set cannot be performed in the same station 𝑠, then at least one of them must be

performed elsewhere. Alternatively, the allocation may be infeasible, but the maximum number

of workers is not being used for that combination of tasks. In such cases, the cut described by

Inequalities 59 are applied to the MP; it states that a tested task allocation set cannot be entirely

performed in the same station unless an additional worker (represented by the |𝑊𝑠|+ 1 index) is

assigned there. ∑︁
𝑡∈𝑇𝑠

𝑋𝑡,𝑠 ≤
∑︁
𝑡∈𝑇

�̃�𝑡,𝑠 − 1 ∀ 𝑠 ∈ 𝑆 (58)

∑︁
𝑡∈𝑇𝑠

𝑋𝑡,𝑠 ≤
∑︁
𝑡∈𝑇

�̃�𝑡,𝑠 − 1 + 𝑌|𝑊𝑠|+1,𝑠 ∀ 𝑠 ∈ 𝑆 (59)

After solving all SPs, the BDA returns to MP and keeps searching for better solutions

with a revised UB or newly added lazy constraints. This process is repeated iteratively until an

optimal solution is found and proven or the computational processing time limit is reached.

4.4.3 BDA pseudo code

A summarised pseudo-code of the proposed BDA is presented in Algorithm 1. This is

the implementation used to obtain the results reported in the computational study performed in

Section 4.5. Initially, MALBP’s parameters and computational processing time limit are input in
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order to build the optimisation problem. After that, the algorithm starts solving the MP (line 5).

Tight upper bounds for the number of workers along the line (𝑂𝑏𝑗𝑊 ) and the number of opened

stations (𝑂𝑏𝑗𝑆) based on SALBP results are taken into consideration to shrink the search-space

(Enhancement 4). Any time a new solution is found by MP, it is sent to feasibility check at the

SP (line 6). Task-worker scheduling is conducted for each station (lines 8 and 9). When the

combination of tasks and number of workers is feasible for a given station, such combination is

added to a list coded as a hash-table (lines 10 and 11). Otherwise, if an infeasibility is detected,

either Cut 58 or Cut 59 is added to the MP as a lazy constraint depending on the cardinality of

𝑊𝑠 (lines 14 to 18). If all SP stations are proven to be feasible, this tested solution is considered

to be the current incumbent solution (lines 21 and 22). Finally, the algorithm stops processing if

optimality is proven or if time limit is reached (lines 23 and 24).

Algorithm 1 – BDA’s pseudo-code for the MALBP-1.
1: function BDA(𝑁𝑇,𝑁𝑆,𝑁𝑊,𝐶𝑇,𝐷𝑡, 𝑃, 𝑇 𝑖𝑚𝑒.𝐿𝑖𝑚𝑖𝑡)
2: 𝑆𝑡𝑎𝑡𝑢𝑠← 0, 𝐼𝑛𝑐𝑢𝑚𝑏𝑒𝑛𝑡← {𝑚𝑎𝑥.𝑣𝑎𝑙𝑢𝑒,𝑚𝑎𝑥.𝑣𝑎𝑙𝑢𝑒, 0,−}, 𝐻𝑎𝑠ℎ← {}, 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 ← 0
3: while 𝑆𝑡𝑎𝑡𝑢𝑠 = 0 do
4: Timer.Start, compute 𝐶𝑃𝑈 time
5: Solve MP, compute 𝑂𝑏𝑗𝑊,𝑂𝑏𝑗𝑆, 𝐿𝐵, 𝑇𝑊𝑆𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛

6: if (�̃�,𝑌 )𝑛𝑒𝑤 then
7: 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 ← 0
8: for each 𝑠 ∈ {1,...,𝑂𝑏𝑗𝑆} do
9: Solve SP (�̃�,𝑌 )𝑠, compute feasibility

10: if 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 then
11: 𝐻𝑎𝑠ℎ← 𝐻𝑎𝑠ℎ

⋃︀
{(�̃�,𝑌 )𝑠}

12: 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 ← 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 + +
13: else
14: if |𝑊𝑠| = 𝑁𝑊 then
15: Add Cut 58 to MP
16: else
17: Add Cut 59 to MP (in case |𝑊𝑠| < 𝑁𝑊 )
18: end if
19: end if
20: end for each
21: if 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 = 𝑂𝑏𝑗𝑆 then
22: 𝐼𝑛𝑐𝑢𝑚𝑏𝑒𝑛𝑡(𝑂𝑏𝑗𝑊,𝑂𝑏𝑗𝑆, 𝐿𝐵, 𝑇𝑊𝑆𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛)← (�̃�,𝑌 )𝑛𝑒𝑤
23: if (𝑂𝑏𝑗𝑊 + 𝑂𝑏𝑗𝑆 = 𝐿𝐵) ∨ (𝐶𝑃𝑈 ≥ 𝑇𝑖𝑚𝑒.𝐿𝑖𝑚𝑖𝑡) then
24: 𝑆𝑡𝑎𝑡𝑢𝑠← 1
25: end if
26: end if
27: return BDA(𝑂𝑏𝑗𝑊,𝑂𝑏𝑗𝑆, 𝐿𝐵,𝐶𝑃𝑈, 𝑇𝑊𝑆𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛)
28: end while
29: end function

Source: Michels et al. (2019).
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4.5 COMPUTATIONAL STUDY

This section presents a computational study that was carried out in the same benchmark

dataset used by Fattahi and Roshani (2011) and Kellegöz (2017) combined. Thus, both datasets

were used, totalling 131 instances. All tested instances are contained in a well-known literature

benchmark. They are available for download at <www.assembly-line-balancing.de> with infor-

mation about task durations, precedence graphs, and cycle time values. Some of these instances’

features can be observed in Table 14: the number of tasks (𝑁𝑇 ) is the chosen parameter to divide

instances into three categories related to size (small, medium, and large), and instances are solved

with different cycle time (𝐶𝑇 ) values and maximum number of workers (𝑁𝑊 ) allowed in each

station. Upper bounds for the number of stations (𝑁𝑆) for each instance has been obtained

in a pre-processing step: (i) the SALBP version of each problem is solved using SALOME

(SCHOLL; KLEIN, 1997), which takes less than a second; (ii) 𝑁𝑆 is set to one unit lesser than

such value for the MALBP. In order to ease results’ visualisation and respect parameters’ order

of magnitude, 𝑊𝐶𝑜𝑠𝑡 and 𝑆𝐶𝑜𝑠𝑡 were set to 100 and 1, respectively.

Table 14 – Summary of MALBP-1 dataset instances.
Size (Total of instances) Problem NT CT NW
Small (50) Mitchell 21 14; 15; 21; 26; 35; 39 2

Heskiaoff 28 138; 205; 216; 256; 324; 342 2; 4
Sawyer 30 25; 27; 30; 36; 41; 54; 75 2; 4
Kilbridge 45 57; 79; 92; 110; 138 184 2; 4; 6

Medium (45) Tonge 70 176; 364; 410; 468; 527 2; 4; 6
Arcus1 83 5048; 5853; 6842; 7571; 8412; 8998; 10816 2; 4; 6
Mukherje 94 176; 248; 351 2; 4; 6

Large (36) Arcus2 111 5755; 8847; 10027; 10743; 11378; 17067 2; 4; 6
Barthol2 148 84; 106; 170 2; 4; 6
Barthold 148 403; 513; 805 2; 4; 6

Source: Michels et al. (2019).

The computational study is divided in two parts. Firstly, small-size instances are solved

in Section 4.5.1 for the monolithic model presented in Section 4.3 (PM) and results are compared

to those obtained by Kellegöz (2017); this last model is henceforth referred to as KM (Kellegöz’s

Model). In addition, the BDA exhibited in Section 4.4 is also applied to the same fraction of the

benchmark dataset and its performance is compared to the Ant-Colony Algorithm (ACO) and

the Gantt Simulated Annealing (GSA) heuristic developed by Fattahi and Roshani (2011) and

Kellegöz (2017) in terms of solution quality reported by them.

Afterwards, as both BDA, ACO, and GSA demonstrated dominance over monolithic

models in terms of solution quality and computational processing time, mathematical formula-
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tions (PM and KM) were discarded in the remainder testing process. Therefore, for the second

part of this computational study, only BDA, ACO, and GSA were considered to be applied to the

remaining dataset (medium and large-size instances). Such results and comparisons are presented

in Section 4.5.2.

In both Sections 4.5.1 and 4.5.2, each instance result is reported in a line of Tables 15

to 17, addressed by the problem, CT, and NW values. St indicates solution status, reporting

optimal (*) or integer (I) solutions. The objective function value is represented by the Obj column.

For the BDA, this Obj column is branched into upper bound (UB), lower bound (LB), and Gap

values. Total computational processing times (CPU) and computational processing times for the

slave problems (SCPU) are informed in seconds. As CPU of some instances were not reported in

Fattahi and Roshani (2011), they are left in unfilled (–). Lastly, the number of added cuts (Cut1

and Cut2 for Inequalities 58 and 59, respectively) and the number of times that the algorithm

accessed the hash-table (HT) are reported.

To all instances, Gurobi 8.1 (Gurobi Optimization, 2019) was selected as universal

solver due to implementation readiness, focusing on optimality for the MP and feasibility for

the SP. A 64 bit Intel™ i7-3770 CPU (3.4 GHz) with 16 GB of RAM was employed using four

threads. The BDA was coded in Microsoft Visual Basic 2015 programming language.

4.5.1 Small-size instances

Both PM and BDA were applied to the small-size instances presented in Table 14 with

a time limit set to 3600 seconds. Table 15 summarises the comparison between monolithic

models and algorithms for the small-size dataset. The results obtained by PM are compared

to those reported by KM whenever such instance has also been solved by Kellegöz (2017),

whilst BDA results are displayed alongside with the best result found by either ACO or GSA

in their respective papers. This subset contains 50 instances, in which PM clearly outperforms

KM. The PM obtained 46 optimal solutions, whereas in the 26 instances tested by Kellegöz

(2017), KM reached optimality in only 12 instances. In other words, PM has improved and

proven the optimality of 6 solutions (boldfaced in Table 15) and proven the optimality of 7

previously known integer solutions (italicised in Table 15) obtained by a mathematical model.

As reported in Section 4.3, this might be due to the fact that modelling decisions were different

between PM and KM: the formulation is less dependent on Big-M constraints, a follow variable

concept was employed instead of a relative order time one, and symmetry break constraints were
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implemented.

BDA, ACO, and GSA results are reported in the remaining of the comparison by

Table 15. Equivalent solutions and computational processing times are verified for both methods,

however, the BDA presented in Section 4.4 is able to concede optimality proofs. Therefore, the

BDA not only has reached results as good as the ACO algorithm and the GSA heuristic, but

it also has guaranteed solutions to be optimal for 49 out of 50 small-size instances in a very

reduced CPU time.
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4.5.2 Medium and large-size instances

As BDA has been validated as a reliable and efficient method in Section 4.5.1 by quickly

obtaining optimal solutions in all but one instance, the superiority of the proposed algorithm

over the monolithic model was evidenced. Hence, this section focuses on computationally

solving medium and large-size instance only with specialised methods (i.e. BDA, ACO, and

GSA heuristic) and comparing their results in regard to solution quality that were previously

reported in Fattahi and Roshani (2011) and Kellegöz (2017).

Table 16 reports the results for 45 medium-sized instances from Table 14. In terms

of solution quality, the proposed BDA has outperformed ACO algorithm and GSA heuristic

in 19 instances (boldfaced values in Table 16), while tying in the remaining 26. Nonetheless,

it is important to notice that none of these instances had been directly solved to optimality

previously, since their results would rather be compared to calculated theoretical LBs. Out of the

45 medium-sized instances, the proposed BDA has proven the optimality of 40 solutions, with a

small integer gap for the remaining 5 cases.

The last 36 instances to be tested from Table 14 are contained in the large-size subset.

Table 17 presents the comparison between BDA, ACO algorithm, and GSA heuristic when both

are applied to such instances. The boldfaced values represent the 23 out of 36 results in which

BDA has outperformed ACO and GSA in terms of solution quality and also proven optimality

for the instance. Moreover, 2 previous best-known integer solutions were improved by BDA,

whereas in 1 other instance GSA performed better. Out of the remaining 10 instances in which

both methods tied, there are 5 newly proven optimal solutions obtained by BDA.

Both BDA, ACO algorithm, and GSA heuristic were able to reach the same number of

workers as the optimal SALBP value in their solutions for the whole solved dataset (Tables 15,

16, and 17). Instances that the proposed BDA outperformed ACO algorithm and GSA heuristic

were solved with a reduced number of stations, which indicates a tendency that it is more

profitable to accept the SALBP optimal solution as the number of workers, and try to minimise

as much as possible the line length (i.e. the number of multi-manned stations). An evidence

to support this methodology is that the possibility to also reduce the number of workers in a

multi-manned assembly line presented in Section 4.2 was not verified in any instance of the

benchmark. Finally, it was verified that the BDA has a tendency in spending the majority of its

computational processing time solving SPs in most cases. Besides, Cut1 is less frequently added
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Table 16 – Results comparison for medium-size instances between BDA, ACO algorithm, and GSA heuristic.
Prob 𝐶𝑇 𝑁𝑊 BDA ACO/GSA

St UB LB Gap CPU SCPU Cut1 Cut2 HT Obj CPU1

Tonge 176 2 * 2112 2112 0.0% 16.87 3.86 4668 0 755 2112 14.54
4 * 2110 2110 0.0% 36.99 30.86 610 5940 1217 2110 27.82
6 * 2110 2110 0.0% 56.15 50.26 0 7720 1683 2110 41.17

364 2 * 1005 1005 0.0% 19.89 19.57 534 0 104 1007 –
4 * 1004 1004 0.0% 0.95 0.76 0 24 6 1007 –
6 * 1004 1004 0.0% 17.51 16.99 0 162 53 1007 –

410 2 * 905 905 0.0% 62.74 62.68 35 0 1 905 12.07
4 * 903 903 0.0% 13.94 13.86 0 16 2 904 24.71
6 * 903 903 0.0% 91.80 91.68 0 96 12 904 37.10

468 2 * 804 804 0.0% 0.18 0.14 0 0 0 804 –
4 * 803 803 0.0% 273.54 273.41 0 48 8 804 –
6 * 803 803 0.0% 161.06 160.93 0 52 2 804 –

527 2 * 704 704 0.0% 0.18 0.15 4 0 0 704 13.35
4 * 703 703 0.0% 119.85 119.82 0 57 9 703 26.35
6 * 703 703 0.0% 575.63 575.57 0 132 32 703 38.75

Arcus1 5048 2 * 1610 1610 0.0% 23.94 5.44 970 0 53 1610 17.95
4 * 1610 1610 0.0% 153.58 99.78 0 1200 56 1610 34.42
6 * 1610 1610 0.0% 122.59 92.61 0 1120 65 1610 50.92

5853 2 * 1408 1408 0.0% 8.17 0.34 70 0 8 1410 –
4 * 1408 1408 0.0% 12.25 0.86 0 80 4 1410 –
6 * 1408 1408 0.0% 13.66 0.54 0 20 1 1410 –

6842 2 * 1207 1207 0.0% 3.45 3.06 472 0 34 1208 –
4 * 1207 1207 0.0% 52.21 51.72 0 544 55 1208 –
6 * 1207 1207 0.0% 160.19 159.68 0 656 80 1208 –

7571 2 * 1106 1106 0.0% 1.18 1.05 18 0 3 1106 17.20
4 * 1106 1106 0.0% 5.90 5.79 0 48 3 1106 32.57
6 * 1106 1106 0.0% 38.80 38.66 0 90 26 1106 47.78

8412 2 * 1006 1006 0.0% 0.22 0.09 0 0 0 1006 –
4 * 1006 1006 0.0% 0.32 0.22 0 0 0 1006 –
6 * 1006 1006 0.0% 0.22 0.12 0 0 0 1006 –

8998 2 * 905 905 0.0% 30.60 30.38 12 0 2 906 –
4 * 905 905 0.0% 2.88 2.72 0 12 0 906 –
6 * 905 905 0.0% 0.67 0.50 0 18 3 906 –

10816 2 * 804 804 0.0% 87.83 84.74 485 0 54 805 17.10
4 * 804 804 0.0% 2.46 0.03 0 0 0 805 32.78
6 * 804 804 0.0% 14.17 11.27 0 170 4 805 47.45

Mukhe 176 2 * 2516 2516 0.0% 52.07 12.39 4368 0 392 2516 30.28
4 I 2513 2512 0.1% 1h 3479.8 20072 13793 2744 2513 60.99
6 I 2513 2512 0.1% 1h 3478.8 312 11089 453 2513 95.78

248 2 * 1810 1810 0.0% 29.61 17.84 6750 0 1073 1810 30.71
4 I 1808 1807 0.1% 1h 3523.2 528 7112 982 1808 63.44
6 * 1807 1807 0.0% 785.02 78.75 56 868 59 1807 98.48

351 2 I 1308 1307 0.1% 1h 3495.71 10800 0 550 1308 31.02
4 I 1307 1306 0.1% 1h 3520.5 3115 4095 332 1307 64.09
6 * 1306 1306 0.0% 188.23 187.51 0 90 6 1306 99.53

1As reported in Kellegöz (2017).

Source: Michels et al. (2019).
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Table 17 – Results comparison for large-size instances between BDA, ACO algorithm, and GSA heuristic.
Prob 𝐶𝑇 𝑁𝑊 BDA ACO/GSA

St UB LB Gap CPU SCPU Cut1 Cut2 HT Obj CPU1

Arcus2 5755 2 * 2714 2714 0.0% 331.42 303.84 5888 0 554 2716 26.22
4 * 2712 2712 0.0% 1900.1 1880.7 1391 3965 572 2713 48.78
6 * 2712 2712 0.0% 861.55 840.12 0 2236 183 2713 73.00

8847 2 * 1811 1811 0.0% 2593.9 2521.8 25839 0 4116 1812 –
4 * 1810 1810 0.0% 304.24 287.28 55 1562 23 1812 –
6 * 1810 1810 0.0% 12.06 1.53 0 253 0 1812 –

10027 2 * 1609 1609 0.0% 151.24 150.42 2241 0 312 1610 –
4 * 1607 1607 0.0% 1147.9 1134.5 90 2808 240 1610 –
6 * 1607 1607 0.0% 676.12 669.81 0 837 37 1610 –

10743 2 * 1508 1508 0.0% 328.60 303.63 1323 0 34 1509 31.41
4 * 1507 1507 0.0% 610.87 608.03 8 1040 98 1508 61.87
6 * 1507 1507 0.0% 558.84 555.84 0 544 32 1508 92.53

11378 2 * 1407 1407 0.0% 194.89 193.96 904 0 266 1409 –
4 * 1406 1406 0.0% 1298.1 1296.8 1547 1330 388 1409 –
6 * 1406 1406 0.0% 1636.3 1634.4 0 3374 742 1409 –

17067 2 * 905 905 0.0% 0.26 0.17 5 0 0 905 29.44
4 * 904 904 0.0% 119.42 119.11 0 195 9 905 57.68
6 * 904 904 0.0% 339.91 339.42 0 720 25 905 84.96

Bart2 84 2 I 5127 5126 0.1% 3599.2 2.51 4576 0 14 5126 68.00
4 I 5116 5113 0.1% 3602.3 1839.3 90272 13648 1460 5116 138.64
6 I 5114 5111 0.1% 3608.8 2603.6 11102 46060 628 5114 224.44

106 2 I 4121 4020 2.4% 3600.2 2.90 2688 0 186 4121 68.96
4 I 4111 4010 2.5% 3615.9 2175.3 10751 1664 256 4113 145.09
6 I 4110 4010 2.4% 3601.5 3192.3 1896 7200 245 4112 234.68

170 2 * 2513 2513 0.0% 20.37 2.33 143 0 9 2513 67.18
4 * 2507 2507 0.0% 199.16 196.54 40 24 16 2508 144.08
6 * 2506 2506 0.0% 169.62 168.35 24 16 4 2508 232.94

Bart 403 2 * 1407 1407 0.0% 218.58 217.96 140 0 7 1407 66.10
4 * 1404 1404 0.0% 70.28 70.02 0 5 0 1405 143.39
6 * 1404 1404 0.0% 1004.3 1002.6 25 120 12 1405 228.79

513 2 * 1106 1106 0.0% 2.69 1.90 0 0 0 1106 66.57
4 * 1103 1103 0.0% 1708.6 1708.2 168 16 17 1104 142.99
6 * 1103 1103 0.0% 3797.8 3794.9 120 300 28 1104 226.17

805 2 * 704 704 0.0% 75.13 74.83 8 0 0 704 66.55
4 I 703 702 0.1% 3640.3 3638.3 183 174 0 703 140.12
6 I 703 702 0.1% 3701.6 3700.9 3 333 0 703 216.74

1As reported in Kellegöz (2017).

Source: Michels et al. (2019).

than Cut2 when the maximum number of workers is increased and the hash-table is more often

consulted for lower values of cycle time.

In order to conduct a feasibility check, the task-worker-station allocation results were

tested for all newly found solutions. Task starting and ending times for each worker were

examined for consistency regarding station and global cycle times, as well as precedence relation

imposed orders. Filling their purpose to validate the proposed BDA’s reliability, these tests are
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made available along with task-station-worker allocation results in the supporting information

files for reproducibility purposes.

4.6 CONCLUSIONS

The Multi-manned Assembly Line Balancing Problem (MALBP) with the objective of

minimising the number of workers and stations has been addressed in this study. The existing

literature on MALBPs indicated a lack of efficient exact solution methods for these problems,

since past mathematical formulations were only able to solve some instances with up to 45

tasks. This chapter’s main contribution is solving to optimality MALBPs up to 148 tasks

by decomposing the original problem and implementing a Benders’ decomposition algorithm

employing combinatorial cuts during its execution.

A new Mixed-Integer Linear Programming (MILP) model was developed along with

several valid inequalities that work as symmetry break constraints to solve the optimisation

problem. This proposed formulation outperforms previously presented monolithic mathematical

formulations in terms of solution quality and computational processing time. By analysing the

MALBP’s structure, it is possible to infer that the problem is divisible hierarchically into a Master

Problem (MP) and a Slave Problem (SP), and hence forging a Benders’ Decomposition Algorithm

(BDA). After adapting several logical cuts inherited from project scheduling problems, the MP

solves task-station and worker-station assignment problems, whilst the SP deals with the task-

worker scheduling problem for each station, detects infeasibility, and generates combinatorial

Benders’ cuts to be added into MP as lazy constraints during BDA’s execution. The proposed

BDA was compared to previously developed methods and was shown to produce improved

results while maintaining reasonable CPU time. In total, 42 new optimal solutions were obtained,

2 integer solutions were improved, and 18 previously known solutions were proven optimal out

of a dataset with 131 instances.

Allowing multiple workers to perform different tasks simultaneously in the same station

is a natural extension of the simpler version of the problem, as well as a notable realistic feature

widely employed in industries manufacturing large-size products. Nonetheless, incorporating

more practical extensions such as line layout (U-line, parallel stations), product variety (multi

and mixed model lines), and zoning restriction in the BDA is a desirable modification. Further

research should focus on doing so and, in order to mitigate computational burden, might include

balancing and project scheduling heuristics for the master and slave problems, respectively.
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5 THE TYPE-2 MULTI-MANNED ASSEMBLY LINE BALANCING PROBLEM

This chapter contains a slightly modified version of the paper Michels et al. (2020),

which is entitled “An exact method with decomposition techniques and combinatorial Benders’

cuts for the type-2 multi-manned assembly line balancing problem” and was published in the

Operations Research Perspectives.

Section 5.1 introduces the type-2 multi-manned assembly line balancing problem

(MALBP-2). Section 5.2 conducts a thorough literature review on related multi-manned prob-

lems. Section 5.3 describes the studied problem, showing the main advantages of adopting

multi-manned stations and its specific assumptions are compared to the ones in literature. Sec-

tion 5.4 presents a new MILP model with valid inequalities and upper bounds for the MALBP-2.

Section 5.5 gives an overview of the proposed solution method and how it is executed for the

studied problem. Section 5.6 validates the results of the proposed method by optimally solving

many MALBP-2 instances in the benchmark dataset and yielding improved primal bounds for an

industrial case study. Final considerations of this chapter are presented in Section 5.7.

Abstract from Michels et al. (2020): “Multi-manned assembly lines are widely applied

to manufacturing industries that produce large-size products and are concerned with high levels

of productivity. Such lines are commonly found in automotive industries, where different tasks

are simultaneously performed by more than one worker on the same product in multi-operated

stations, giving rise to a class of balancing problem that aims to minimize the line’s cycle time.

This clear practical application had made the type-2 multi-manned assembly line balancing

problem to be explored in the past. However, only few small-size instances could be solved by

preceding exact solution approaches, whereas large and real-life cases still lack optimality proofs

since they were tackled by heuristics. In this work, a new Mixed-Integer Linear Programming

model is presented and its modeling decisions discussed. Moreover, an innovative exact solution

procedure employing a combination of decomposition techniques and combinatorial Benders’

cuts is presented to solve large and real-life instances optimally. Tests on an extended literature

dataset and a real-life assembly plant case study have demonstrated that the proposed algorithm

outperforms previously developed methods in terms of solution quality by an ample margin in

efficiency gains. Synergies between the algorithm’s components are also revealed. Finally, the

proposed exact method has been able to yield 60 optimal results out of a 108-instance dataset,

with the remaining 48 solutions presenting a small integer gap (less than 2%).”
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5.1 INTRODUCTION

Assembly lines are production systems usually applied to large-scale industries of

similar and standardized products. They are frequently built to fit homogeneous products and

enable their mass production, hence generally designed as flow-shop layouts. In the academic

research, the Assembly Line Balancing Problem (ALBP) is widely discussed in the literature,

which is the main combinatorial problem that assembly lines have created Battaïa and Dolgui

(2013).

In its simplest form, the Simple Assembly Line Balancing Problem (SALBP) consists

in assigning a list of tasks subjected to a precedence graph to stations, whilst considering various

simplification hypotheses described by Baybars (1986). One of them is to solely allow one

worker to operate each station. Furthermore, a serial, straight line organization is imposed to

the stations. In turn, such line produces a single product model. The most common goals in

a SALBP are (i) minimizing the number of stations (SALBP-1) or (ii) minimizing the cycle

time (SALBP-2) and important contributions to its literature was surveyed by Scholl and Becker

(2006). Among those, algorithmic solution methods were proposed and related to practical

applications: developed by Scholl and Klein (1997), SALOME is an effective procedure based

on a bidirectional branch-and-bound, while Bautista and Pereira (2009) proposed a dynamic

programming approach, which were followed by Sewell and Jacobson (2012) and their branch,

bound, and remember algorithm, as well as a multi-Hoffmann heuristic with enhanced properties

proposed by Sternatz (2014). For an overview and improved techniques for SALBP-1, it is

possible to refer to Pape (2015).

Notwithstanding, by revisiting the “only one worker per station" hypothesis applied to

SALBPs, one can verify that it often is not a practical limitation on, for instance, manufacturing

lines found in automotive factories. These industries regularly produce cars, buses, and trucks,

which are large-size products, broadly speaking. Because the physical area occupied by stations

are quite large compared to an operator’s working space, multiple workers can simultaneously

perform tasks on the same product. Accordingly, more generalized extensions of the SALBP

come to light as natural extensions: the Multi-manned Assembly Line Balancing Problem

(MALBP) and the Two-sided Assembly Line Balancing Problem (TALBP). Both problems,

along with an assortment of other practical extensions, are surveyed by Becker and Scholl

(2006).
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These above mentioned lines are illustrated in Figure 19. It exhibits examples of

assembly lines composed of three stations each: simple, two-sided, and multi-manned assembly

lines are respectively depicted. As observed, both two-sided and multi-manned assembly lines

admit multiple workers in each station (first and third stations), with workers simultaneously

performing tasks on the same product. Notice, however, that MALBPs are more flexible than

TALBPs in terms of the quantity of workers and their positioning. The main difference is that

two-sided lines allow at most one operator in each side of the station (right and left), whereas

multi-manned lines have their maximum number of workers set depending on product’s attributes.

These can be seen as size, structure, and tasks’ specificities. The last divergence is that TALBPs

may have to deal with tasks exclusively performed on the right or left side of the product. Both

of these problems can also be solved considering analogous goal functions studied for SALBP

(BECKER; SCHOLL, 2006).

Figure 19 – Layout examples of simple, two-sided, and multi-manned assembly lines.

Station 1 Station 3

Simple assembly line 

Multi-manned assembly line 

Two-sided assembly line 

Station 2

Source: Michels et al. (2020).

This work focuses on the MALBP-2 variant, namely cycle time minimization. A

previous MALBP-1 specialized algorithm (MICHELS et al., 2019), when adapted, was not

capable to satisfactorily solve the proposed problem, not even generating feasible solutions for

most large-size instances, and the best-known meta-heuristic for the MALBP-2 (ROSHANI;

GIGLIO, 2017) produces several sub-optimal solutions. Therefore, the main contribution to



99

the state-of-the-art herein proposed comes from the implementation of an innovative exact

algorithm to optimally solve the MALBP-2 dataset. Some relevant simplification hypotheses

from SALBP-2 mentioned in Baybars (1986) are kept, viz. a serial, straight line is considered

and such line produces a single, unique model. The remaining of the chapter is organized as

follows. In Section 5.2, the relevant literature is introduced, focusing on specific objective

functions, extensions, and methodologies used by each author. In order to define the problem,

Section 5.3 precisely explains the characteristics of a type-2 MALBP, demonstrating advantages

associated to obtainable production rate improvement and line length reduction when using a

multi-manned configuration. Section 5.4 presents the MILP model, valid inequalities, upper and

lower bounds, and a brief discussion on modeling decision. Section 5.5 describes the development

and applications of the proposed Benders’ decomposition algorithm and combinatorial cuts, as

well as how an initial solution is constructed for the problem at hand. Computational results

retrieved from a benchmark dataset and a real-life assembly plant case study are presented and

discussed in Section 5.6. Finally, in Section 5.7, a summary of the concluding remarks and

further research directions are described.

5.2 LITERATURE REVIEW

As a consequence of the intense use of multi-operated stations in industrial environments,

several studies regarding MALBPs and TALBPs have been elaborate in the literature. To the

best of the authors’ knowledge, Akagi et al. (1983) is the first study to take on the problem of

allowing more than one worker per station in assembly lines, while attaining good production

rates. For that, an approach denominated Parallel Assignment Method (PAM) was developed.

Much later, a heuristic method to address such problem was introduced by Dimitriadis

(2006), which was based on altering a procedure previously created by Hoffmann (1963). Given

a fixed cycle time, it has been shown that the heuristic was useful in enhancing stations physical

utilization. The objective of minimizing the total number of workers and stations was considered,

which turns out to be the most customary goal function exploited in subsequent works since then.

Following those pioneer publications, the attention on MALBPs have been growing in

the last ten years. Becker and Scholl (2009) proposed the Assembly Line Balancing Problem

with Variable Workplaces (VWALBP), in which a cycle time is given and working areas are

minimized. Here the product is fragmented into mounting positions, while imposing in each multi-

manned station that only one worker is capable of assembling them. A Mixed-Integer Linear



100

Programming (MILP) formulation is modeled in conjunction with lower bounding techniques.

Besides, a branch-and-bound algorithm based on SALOME – called VWSolver – is developed

to solve large instances. In sequence, a novel efficient algorithm was implemented by Kellegöz

and Toklu (2012) to tackle ALBPs with multi-manned stations (Jumper), which is also based on

branch-and-bound procedures. Jumper outperforms VWSolver in both computational processing

times and quality of feasible solutions.

Fattahi and Roshani (2011) were the first to propose a mathematical formulation that

simultaneously minimizes the total number of workers and stations in a MALBP, defining the

type-1 variant. In the optimization procedure, minimizing the number of workers is the primary

objective and minimizing the number of stations is the secondary one. Keeping the remaining

SALBP hypotheses, their model failed in solving medium and large cases, but was able to solve

small-size test problems in an acceptable time limit. To settle this issue, they have developed an

Ant Colony Optimization (ACO) algorithm. The ACO algorithm could find the same optimal

solutions for small-size problems in a much reduced computational time, as well as feasible and

near-optimal solutions for many medium and large instances. Later, Kellegöz (2017) has created

a better MALBP-1 mathematical model proposed by Fattahi and Roshani (2011). Additionally,

a Gantt-based heuristic was developed within a Simulated Annealing (SA) framework. This

procedure is able to solve medium and large-size instances, finding improved feasible solutions

to a large number of instances in the tested benchmark. Therefore, it has been concluded that the

GSA algorithm outperforms the ACO algorithm given by Fattahi and Roshani (2011).

The examination of assembly lines with multi-operated stations regarding cost-oriented

problem instances has been conducted by Kazemi and Sedighi (2013) and Michels et al. (2018b)

on real-size case studies. The former presents a heuristic method based on Genetic Algorithm

(GA) that takes into account the objective of minimizing costs per production unit, whereas the

latter analyzes a robotic assembly line that considers the employment of multiple robotic workers

per station, conceiving robots, facilities, and tool prices. Hence, an MILP model to minimize

implementation costs for the line design is developed.

A multi-objective function to address MALBPs is firstly proposed by Roshani et al.

(2013). By maximizing line efficiency and minimizing the line length and smoothness index, a

mathematical model is formulated. Furthermore, an improved SA algorithm has been developed

to tackle the problem. Meanwhile, a constructive heuristic based on priority rules followed by

an improvement procedure based on GA has been presented by Kellegöz and Toklu (2015).
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Computational experiments have been conducted on MALBP instances to minimize the total

number of workers in the line. At this point, Yilmaz and Yilmaz (2015) have created a new

mathematical formulation, aiming at the minimization of total number of workers, stations, as

well as workload difference between workers. Subsequently, Yilmaz and Yilmaz (2016a) also

studied the impacts of equipment needs and skilled workers on MALBPs. In order to solve the

problem, a heuristic procedure was proposed.

For a given fixed number of stations, Roshani and Giglio (2017) approached the MALBP

by attempting to minimize the cycle time and the number of workers in a line as the primary and

secondary objective, respectively. This strategy is further discussed in Section 5.4.3, as it neglects

fundamental MALBP hypotheses regarding the higher importance of workers over stations,

flexibility gains over SALBP solutions, and conditions found in practice. Alongside the MILP

model, two meta-heuristics, the indirect and direct SA algorithm (ISA and DSA, respectively),

were implemented. In both terms of solution quality and computational time. Therefore, the

DSA showed to be more efficient, with a better performance in solving the problem. Moreover,

another SA algorithm was developed by Roshani and Nezami (2017), this one undertakes the

mixed-model variant of MALBP-1.

More recently, both Naderi et al. (2019) and Michels et al. (2019) developed and applied

Benders’ decomposition algorithms (BDA) (BENDERS, 1962) with combinatorial Benders’ cuts

(CBC) (CODATO; FISCHETTI, 2006) to the MALBP-1 variant, reaching outstanding results.

The former is able to solve a realistic five-sided MALBP with moving workers and limited

workspace, whereas the latter solves various medium and large-size MALBP-1 instances opti-

mally, proving the optimality of some solutions reported by Kellegöz (2017) and improving many

others in terms of solution quality. The Benders’ decomposition method aspires to reformulate an

original and complete monolithic model into a master problem (MP) and slave (or sub) problems

(SP), transforming them into two hierarchical problems. This partition aims at removing the

burden of several variables and restrictions from the MP, transferring part of the load to one

or more SPs, which are then solved individually. By iteratively working between the MP and

SPs, solutions can be found and evaluated much faster: values for key variables are fixed in a

given solution of the MP, then used in the SPs to define the remaining ones. Each MP candidate

solution is generally decomposable into multiple smaller problems, which is translated into a

set of SPs that are solved individually, supposedly reducing the computational burden when

compared to straightforwardly solving the monolithic problem. Each SP yields a solution that
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can be used to inform the MP of infeasible combinations: these are known as CBC. The MP

with these added cutting planes (extra CBC restrictions) is then solved and the procedure iterates

with the next result. Specifically, this decomposition method strips off complicated variables

from the MP, then repeatedly corrects misled solutions by solving the SPs (MICHELS et al.,

2019). These corrections are made by finally applying CBC to the MP (CODATO; FISCHETTI,

2006), pointing out infeasibilities caused by parts that were omitted in it. As BDAs are highly

dependent on the problem being dealt with, straightforward adaptations of previous algorithms

rarely work as well as intended. Thus, authors generally develop specific algorithms to their

problems, incorporating as much particular information as possible from the problem under

study.

Rahmaniani et al. (2017) surveys and summarizes the use of BDAs in the literature,

where only one work concerning a transfer line balancing problem is listed in the review

(OSMAN; BAKI, 2014). Nonetheless, it was verified by further investigation that, besides

the aforementioned works, various real-world problems have been approached by using BDAs.

However, related research was scarcely developed for assembly line balancing problems. In Hazir

and Dolgui (2013) and Hazir and Dolgui (2015), different layouts (straight lines and U-lines)

are considered under uncertainty. A robust optimization model and a specialized algorithm are

formulated for each case. Lastly, Akpinar et al. (2017) task-dependent set-up times are taken

into account. In this problem, task assignment and task sequencing decisions can be interpreted

as hierarchical problems.

Finally, other recent works worth mentioning on MALBP variants are: Sahin and

Kellegöz (2019a), which considered resource investment and developed a hybrid heuristic based

on Particle Swarm Optimization (PSO) to tackle the problem; Sahin and Kellegöz (2019b) took

into account the possibility of walking workers (SIKORA et al., 2017a) in the line and solved

large instances with a reduced integer gap by applying an Electromagnetic Field Optimization

(EFO) algorithm to the problem; Lopes et al. (2019) pointed out inconsistencies in a previously

published paper (CHEN, 2017) and proposes a model based hierarchical decomposition procedure

to minimize the number of stations after the task-worker assignment solution has been decided in

a multi-manned assembly line; Lopes et al. (2020) brought more flexibility to multi-manned lines

by explicitly considering continuous paced line control, relaxing the limitation of fixed, discrete,

and restrictive frontiers between stations. Their model, heuristic procedure, and algorithmic lower

bounds accommodate significantly shorter line lengths; Yilmaz and Yilmaz (2020) proposed
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a mathematical model to consider assignment restrictions, i.e. positive and negative zoning,

distance, station, and synchronous task restrictions. A tabu-search algorithm is also developed to

effectively solve the problem; and Yadav et al. (2020) improved worker and station efficiencies

of a real-life automotive plant by reconfiguring the assembly line under study.

In summary, none of the reviewed works but Roshani and Giglio (2017) considered the

type-2 MALBP. Nevertheless, by using SA algorithms that would not guarantee optimality, they

obtained sub-optimal solutions with lower levels of efficiency than its SALBP-2 counterpart. In

order to bridge this gap, a new mathematical formulation with different modeling decisions is

developed with valid inequalities to address the problem. Furthermore, a solution method for the

problem under study is proposed. It combines the decomposition technique introduced by Lopes

et al. (2019) to find an initial assignment with a BDA as the strategy to find and prove optimal

solutions for MALBP-2 instances. Larger benchmark instances can be solved to optimality by

applying CBC (BENDERS, 1962; CODATO; FISCHETTI, 2006) as lazy constraints while the

algorithm is executing. Unlike classical Benders’ decompositions with linear SPs (BENDERS,

1962), the proposed algorithm presents integer slave problems (CODATO; FISCHETTI, 2006),

which are intended for feasibility seeking, as in Michels et al. (2019) and Naderi et al. (2019).

Besides Roshani and Giglio (2017) being the only work concerning MALBP-2, they likewise

supply an comprehensive dataset to validate both the proposed model and algorithm. Therefore,

these instances are provided as a benchmark for this work and the solution method herein

proposed, which defines the MALBP-2 and focus on minimizing the cycle time as the primary

objective and the number of stations as the secondary given a fixed number of worker. In this

way, objective function results can be directly compared to evaluate the algorithm’s performance.

5.3 PROBLEM STATEMENT

As aforementioned, multi-manned stations from assembly lines examined in this study

are employed to large-scale production of a single model of large products. Such stations are

sequentially positioned in a straight, serial line. Work-pieces can just be processed one at a time

in each station. These pieces move forward between stations within a cycle time (𝐶𝑇 ) to be

optimized (minimized), whilst their transfer times between stations are neglected. As a single

product is produced in the line, its pace – and consequently its production rate – is entirely

determined by the most loaded station (BAYBARS, 1986).

A set of indivisible tasks 𝑇 must be performed in order to assemble any product. Since
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precedence relations must be respected, they cannot be executed in an arbitrary order. Tasks

have a deterministic processing duration time (𝐷𝑡) to be finished. Therefore, the sum of task

processing times assigned to the same worker must not surpass the cycle time limit, which

is imposed by the most loaded worker. However, the possibility of parallel work within each

station makes it essential to schedule tasks in such a manner that precedence restrictions are still

respected.

In Table 18, an illustrative instance is sampled to depict differences between SALBP

and MALBP possible results. This illustrative instance will be used as a numerical example

throughout the chapter to explain the proposed method. For the considered precedence graph,

task index numbers are ordered on the first line, their respective durations are represented by the

value just below it, and their direct predecessor are given in the last line. Additionally, optimal

solutions for both SALBP (Figure 20(a)) and MALBP (Figure 20(b)) versions of this instance

are shown in the format of Gantt diagrams, with a defined maximum number of workers in the

line to be five (𝑁𝑚𝑎𝑥 = 5). Differently from multi-manned lines, the total number of workers

and stations must be the same for SALBPs. In the former, notwithstanding, each work-piece is

allowed to be engaged by more than one worker employed in the same station simultaneously.

Due to product sizes, the maximum number of workers that a station can suit to perform different

tasks concomitantly (𝑁𝑊 ) may vary. In this example, 𝑁𝑊 = 3.

Table 18 – Task duration times and precedence relations for the illustrative instance.
Task 1 2 3 4 5 6 7 8 9

Duration 3 3 5 5 2 2 10 10 10
Precedence – – 1,2 1,2 3,4 3,4 5 5,6 6

Source: Michels et al. (2020).

The SALBP’s solution requires 5 workers (represented by bars) assigned to 5 stations

(on the y-axis) to deliver a production rate (with times on x-axis) of one product unit each 11 time

units (i.e. 𝐶𝑇𝑆𝐴𝐿𝐵𝑃 = 11) in its optimal configuration. Represented by dashed blank spaces in

each station, idle times total 5 time units along the line, which translates to approximately 9.09%

of the line’s available task performing time. On the other hand, by permitting simultaneous

operations within stations by different workers, the MALBP optimal solution could, at the same

time, reduce the line length from 5 to 2 stations and improve the production rate to a cycle

time of 10 time units (𝐶𝑇𝑀𝐴𝐿𝐵𝑃 = 10) instead of 11 to perform the same task set. Hence, an

advantage of multi-manned lines over simple ones was demonstrated: the additional flexibility

allowed idle time to be reduced to zero. Naturally, these improvements depend on the instance’s
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Figure 20 – Gantt diagram representations of SALBP-2 and MALBP-2 optimal solutions for the illustrative
instance.

(a) SALBP-2 solution

(b) MALBP-2 solution

Source: Michels et al. (2020)

parameters, but it is clear that efficiency gains can occur at no extra or even reduced cost when

multiple workers are allowed to perform different tasks at the same time within a station.

Nevertheless, tasks must still be scheduled within each station to ensure that precedence

relations are respected. These task-scheduling requirements imply on a computational burden to

solve the problem, which inevitably comes along as a drawback by allowing such flexibility to

acquire the presented viable advantage. Notice that, into the same station, at most one task can be

executed by each worker at a given time, whilst cooperation between workers is forbidden, which

means that common tasks are not considered (YAZGAN et al., 2011; SIKORA et al., 2017a).

Moreover, positioning and zoning restrictions do not constrain task assignments (BARTHOLDI,

1993; BECKER; SCHOLL, 2009), and interferences between workers do not happen during the

assemblage process (LOPES et al., 2017) as long as precedence relations are respected. Workers

are homogeneous (MOREIRA et al., 2015), meaning all of them have the same regular capability

and can perform any task with the same specific time duration required for its execution. As
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stated, even though different workers can perform different tasks synchronously, all precedence

relations enforced by the precedence graph still must be satisfied. Consequently, for each station

a task scheduling problem originates, with possible waiting (idle) times for workers between or

before the performance of tasks. These must be taken into account, thus making MALBPs more

complex and difficult to solve than SALBPs (FATTAHI; ROSHANI, 2011).

Due to high line utilization associated to assembly lines, it is assumed that balancing

decisions are a long-term plan for the studied problem, which implies in a desire to maximize

productivity with the available resources. In this situation, the number of workers that a company

can employ is the main fixed resource, as they represent costs related to wages, equipment,

labor regulations, among others. Stations and facilities, on the other hand, are a one-time

investment that is relatively much cheaper when compared to workers, but should be considered

nonetheless (FATTAHI; ROSHANI, 2011; KELLEGÖZ, 2017; MICHELS et al., 2019). Hence,

the mathematical model presented in Section 5.4 prioritizes productivity maximization in its

objective function, i.e. minimizing cycle time, accompanied by a secondary objective of reducing

facility costs, i.e. minimizing the total number of stations and, accordingly, the line length.

Ultimately, solutions that are deemed optimal for SALBPs are necessarily feasible

configurations for MALBPs. It follows that the optimal cycle time solution given a fixed number

of workers (and stations) achieved by a SALBP can be viewed as an upper bound for its MALBP

counterpart, since simple lines are less flexible and restrict the use of workers to only one in

each station for any given solution. Correspondingly, the maximum number of stations (𝑁𝑆) in

a MALBP can be set to one unit lesser than the optimal solution found by its simpler counterpart.

This adopted upper bound is a reasonable measure: as the MALBP-2’s goal is to minimize both

the cycle time and the total number of stations, with a much lower importance in the latter, the

minimal marginal improvement taken from a SALBP solution is keeping the same productivity

level while reducing the line length in at least one station. This has been similarly demonstrated

by Michels et al. (2019) for the MALBP-1 variant. For the illustrative example presented in

Figures 20(a) and 20(b), a MALBP-2 instance starts with an upper bound for the number of

stations equaling four (𝑁𝑆 = 4). It is explained by the fact that, if the model is incapable of

reducing at least one station in the previous solution (accusing the problem to be infeasible), then

it is concluded that having the flexibility to allow multiple worker per station does not help in

obtaining efficiency improvements at no additional costs, meaning that both versions (SALBP

and MALBP) have the same optimal solution in terms of objective value. This reasoning is
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further discussed in Section 5.4.3.

5.4 MILP MODEL

In this section, the developed Mixed-Integer Linear Programming (MILP) model is

presented. It represents the type-2 Multi-manned Assembly Line Balancing Problem (MALBP-

2), taking into account the characteristics recognized in Section 5.3. Section 5.4.1 outlines the

main model to express the problem and Section 5.4.2 shows the implemented constraints that

strengthens the problem’s linear relaxation (valid inequalities). Furthermore, modeling decisions

concerning the objective function and parameter values are discussed in Section 5.4.3. Tables 19

and 20 display the applied terminology to describe parameters, sets, and variables used in the

formulation. Variables are created by the model depending on its sets, as detailed in Table 20.

Table 19 – Definition of MALBP-2 parameters and sets.
Parameter Description

𝑁𝑇 Number of tasks
𝑁𝑆 Upper limit on the number of stations
𝑁𝑊 Upper limit on the number of workers per station
𝑁𝑚𝑎𝑥 Upper limit on the number of workers in the line
𝐷𝑡 Duration [time units] of task 𝑡, always a natural number
𝐵 A big positive number

Set Description
𝑇 Tasks set 𝑡; 𝑇 = {1, 2,..., 𝑡,..., 𝑁𝑇}
𝑆 Stations set 𝑠; 𝑆 = {1, 2,..., 𝑠,..., 𝑁𝑆}
𝑊 Workers set 𝑤; 𝑊 = {1, 2,..., 𝑤,..., 𝑁𝑊}
𝑇𝑆 Task-Station tuple
𝑇𝑊 Task-Worker tuple
𝑊𝑆 Worker-Station tuple
𝑇𝑊𝑆 Task-Worker-Station tuple
𝑃 Precedence relations between tasks (𝑡𝑖,𝑡𝑗): 𝑡𝑖 ≺ 𝑡𝑗

Source: Michels et al. (2020).

Table 20 – Definition of MALBP-2 variables.
Variable Set Domain Description
𝐶𝑇 – R+ Cycle time [time units]
𝑋𝑡,𝑠 (𝑡,𝑠) ∈ 𝑇𝑆 {0,1} Task assigned to station: 1 if task 𝑡 is assigned to station 𝑠

𝑌𝑤,𝑠 (𝑤,𝑠) ∈𝑊𝑆 {0,1} Worker assigned station: 1 if worker 𝑤 is hired in station 𝑠

𝑊𝑡,𝑤 (𝑡,𝑤) ∈ 𝑇𝑊 {0,1} Task assigned to worker: 1 if task 𝑡 is executed by worker 𝑤
𝑍𝑠 𝑠 ∈ 𝑆 {0,1} Open station: 1 if station 𝑠 is used

𝐹𝑡𝑖,𝑡𝑗 𝑡𝑖, 𝑡𝑗 ∈ 𝑇 | 𝑡𝑖 ̸= 𝑡𝑗 {0,1} Following: 1 if task 𝑡𝑗 follows task 𝑡𝑖
𝑆𝑇𝑡 𝑡 ∈ 𝑇 R+ Start time: task 𝑡 starts to be performed at this time

Source: Michels et al. (2020).
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5.4.1 Main model

The formal mathematical definition of the MALBP-2 is given by Expressions 60 to 72:

minimize: 𝐶𝑇⏟ ⏞ 
𝑐𝑦𝑐𝑙𝑒 𝑡𝑖𝑚𝑒

+
1

𝑁𝑇 + 1
·
∑︁
𝑠∈𝑆

𝑍𝑠⏟  ⏞  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑠

(60)

∑︁
𝑠∈𝑆

𝑋𝑡,𝑠 = 1 ∀ 𝑡 ∈ 𝑇 (61)

∑︁
𝑤∈𝑊

𝑊𝑡,𝑤 = 1 ∀ 𝑡 ∈ 𝑇 (62)

𝑌𝑤,𝑠 ≥ 𝑋𝑡,𝑠 + 𝑊𝑡,𝑤 − 1 ∀ (𝑡,𝑠) ∈ 𝑇𝑆, (𝑡,𝑤) ∈ 𝑇𝑊 (63)

𝑁𝑚𝑎𝑥 ≥
∑︁

(𝑤,𝑠)∈𝑊𝑆

𝑌𝑤,𝑠 (64)

𝐹𝑡𝑖,𝑡𝑗 = 1 ∀ (𝑡𝑖,𝑡𝑗) ∈ 𝑃 (65)

𝐹𝑡𝑖,𝑡𝑗 ≥ 𝑋𝑡𝑗 ,𝑠 −
∑︁

𝑠𝑘∈𝑆|𝑠𝑘≥𝑠

𝑋𝑡𝑖,𝑠𝑘 ∀ 𝑡𝑖, 𝑡𝑗 ∈ 𝑇, 𝑠 ∈ 𝑆 | 𝑡𝑖 ̸= 𝑡𝑗 (66)

𝐹𝑡𝑖,𝑡𝑗 +𝐹𝑡𝑗 ,𝑡𝑖 ≥ 𝑋𝑡𝑖,𝑠+𝑋𝑡𝑗 ,𝑠+𝑊𝑡𝑖,𝑤+𝑊𝑡𝑗 ,𝑤−3 ∀ (𝑡𝑖,𝑤,𝑠), (𝑡𝑗,𝑤,𝑠) ∈ 𝑇𝑊𝑆 | 𝑡𝑖 ̸= 𝑡𝑗 (67)

𝑆𝑇𝑡 ≥ 𝐶𝑇 · (𝑠− 1)−𝐵 · (1−𝑋𝑡,𝑠) ∀ (𝑡,𝑠) ∈ 𝑇𝑆 (68)

𝑆𝑇𝑡 + 𝐷𝑡 ≤ 𝐶𝑇 · 𝑠 + 𝐵 · (1−𝑋𝑡,𝑠) ∀ (𝑡,𝑠) ∈ 𝑇𝑆 (69)

𝑆𝑇𝑡𝑗 ≥ 𝑆𝑇𝑡𝑖 + 𝐷𝑡𝑖 −𝐵 · (1− 𝐹𝑡𝑖,𝑡𝑗) ∀ 𝑡𝑖, 𝑡𝑗 ∈ 𝑇 | 𝑡𝑖 ̸= 𝑡𝑗 (70)

𝑍𝑠 ≥ 𝑋𝑡,𝑠 ∀ (𝑡,𝑠) ∈ 𝑇𝑆 (71)

𝑍𝑠 ≥ 𝑌𝑤,𝑠 ∀ (𝑤,𝑠) ∈ 𝑊𝑆 (72)



109

Expression 60 states the objective function considered for this problem, it is akin to

the one used in Roshani and Giglio (2017). The first portion in the expression is the same, it

corresponds to the line’s cycle time. The second component of the objective function, however,

represents the total number of stations opened in the line instead of the total number of workers,

along with its weighted cost ( 1
𝑁𝑇+1

). This crucial modification is further detailed in Section 5.4.3.

Notice that, in this manner, the primary objective is to minimize the cycle time: there is a clear

hierarchical order of importance between cycle time and number of stations, so that a cycle

time unit is at least 1 + 𝑁𝑇 times costlier than a station, enforcing a disadvantageous trade-off

between them. It is also important to mention that cycle time values are always integer due to the

nature of task processing times: the ALBP benchmark only contains instances with integer task

durations and, in any case, one can simply multiply the actual task processing times (given in

seconds or minutes) of all tasks by an arbitrary large number in order to obtain integer durations,

which is a common practice in the surveyed literature (Section 5.2).

Occurrence is stated by Constraints 61, they force each task to be assigned to a station

exactly once. Analogously, Constraints 62 ensure each task to be exclusively executed by a

specific worker. Constraints 63 impute appropriate values to 𝑌𝑤,𝑠 variables: whenever a task 𝑡

is assigned to station 𝑠 and such task 𝑡 is also performed by worker 𝑤, then it is conceivable to

infer that worker 𝑤 from station 𝑠 is employed for such tasks. Finally, Constraints 64 state that

the total number of workers in the line is limited by the maximum number of available workers

(𝑁𝑚𝑎𝑥).

The precedence relations and scheduling between tasks are satisfied by Constraints 65–

70, which use the same reasoning recently presented by Michels et al. (2019). Task following

(𝐹𝑡𝑖,𝑡𝑗 ) and starting time (𝑆𝑇𝑡) variables define if and when each task can or must start. It is

mandatory for a given task 𝑡𝑗 to follow task 𝑡𝑖 (Constraints 65) if such pair of tasks (𝑡𝑖,𝑡𝑗) is

included in 𝑃 (the precedence set). The variables 𝐹𝑡𝑖,𝑡𝑗 exclude situations in which 𝑡𝑖 = 𝑡𝑗 , since

a task cannot follow itself. In order to properly determine following variables based on task

assignment and worker use, Constraints 66 and 67 work as logical ties. Constraints 66 decide

whether or not 𝑡𝑗 follows 𝑡𝑖 between stations: task 𝑡𝑖 follows task 𝑡𝑗 whenever 𝑡𝑖 is not assigned

to the same station that 𝑡𝑗 is or in any station after that. In the same station, however, one of them

must follow the other if both tasks 𝑡𝑖 and 𝑡𝑗 are performed by the same worker (Constraints 67).

Introducing a sufficiently large natural number 𝐵 (whose value is stated in Section 5.4.3), the

starting time of a task 𝑡 must be superior to a minimum value regarding the station 𝑠 in which it
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is performed (Constraints 68), as well as inferior to its upper maximum limit (Constraints 69).

Lastly, Constraints 70 state that all tasks 𝑡𝑖 that precede 𝑡𝑗 must be finished before 𝑡𝑗 can start.

Finally, the combination of Constraints 71 and 72 along with the objective function

assists in a logical searching process, as they forbid the existence of unoccupied or unproductive

stations: they respectively state that a station must be opened for a task or a worker to be assigned

there.

5.4.2 Valid inequalities

The model 60–72 represents MALBP-2. Nonetheless, in order to save some time by not

visiting symmetric solutions, some ordering symmetry breaks have to be implemented into the

model (WALSH, 2006). The problem’s linear relaxation is strengthened and the issue found by

Yilmaz and Yilmaz (2016b) in a previous paper is prevented by them. In Fattahi and Roshani

(2011), objective function values would be correct, but inconsistent solutions were found because

an arbitrary opening order of stations was permitted. Therefore, a station can only be opened if

a previous one is already opened (Constraints 73) and a worker can only be used if a previous

one is already in use (Constraints 74). They break the symmetry between stations and workers,

respectively, avoiding equivalent solutions to be taken into account by the model in respect of

objective function values, thus shrinking the search-space and leading to tighter bounds. These

ordering constraints were also used by Kellegöz (2017), Michels et al. (2019), and Naderi et al.

(2019) in their MALBP-1 mathematical models, provided that Constraints 73 and 74 are just

applied to the model from the second station/worker onwards.

𝑍𝑠 ≤ 𝑍𝑠−1 ∀ 𝑠 ∈ 𝑆 | 𝑠 > 1 (73)

𝑌𝑤,𝑠 ≤ 𝑌𝑤−1,𝑠 ∀ (𝑤,𝑠) ∈ 𝑊𝑆 | 𝑤 > 1 (74)

Henceforth, the MILP formulation defined by 60–74 is referred to as PF (proposed

formulation).

5.4.3 Upper and lower bound values for CT

This section explores a crucial modeling decision. It concerns the definition of an

upper bound value applied to 𝐶𝑇 and its role in the objective function. It is necessary to
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remind that, by hypothesis, Baybars (1986) define the SALBP to be a very constrained problem,

restricted by several simplification assumptions. One of them being that each station can only

be operated by one worker. Thus, by fixing the number of stations in a type-2 SALBP, one is,

in practice, minimizing the line’s cycle time while maintaining the number of workers fixed

as a consequence. It makes sense; tasks are actually performed by workers rather than by

physical stations. Nevertheless, more than one worker can be engaged in each station once this

hypothesis is relaxed. It follows that the number of workers and stations must be expressly

disassociated, allowing more flexible and efficient manufacturing configurations. Moreover, it

has been repeatedly stated that weights can be attributed to workers and stations based on the

explicit economical importance of each resource, in which fixed monthly costs (cumulative

salaries) are generally much costlier than the one-time expense of physical parts of a station

(FATTAHI; ROSHANI, 2011; KELLEGÖZ, 2017; NADERI et al., 2019; MICHELS et al., 2019)

in MALBP-1 works.

For a MALBP-2, Roshani and Giglio (2017) have chosen to minimize the cycle time

as the primary goal and the number of workers along the line as the secondary, all that whilst

fixing the total number of stations. As a consequence, their model tends to fit as many workers

as possible in the stations in order to achieve better levels of productivity. Thus, the results

reported in their paper show solutions in which a SALBP-2 configuration with the same number

of workers could be more efficient in terms of cycle time than the one optimized for MALBP-2.

Considering that the primary objective is to minimize 𝐶𝑇 , optimized MALBP solutions should

have been at least equivalent to its SALBP counterpart (MICHELS et al., 2019), but never worse.

Taking that issue into consideration, it has been decided that the proposed formulation would

fix the number of workers along the line (𝑁𝑚𝑎𝑥) and minimize the total number of stations as

the secondary objective. The reasoning behind it is that, in this way, the problem is closer to its

SALBP-2 relative (minimize cycle time) and still accepts the concept of previously developed

MALBP-1 works, in which the number of workers is the resource that should be prioritize over

the number of stations. This approach is also in accordance with what can be found in reality: it

does not exaggerate labor costs to achieve better production rates. In fact, overall costs must be

lower than (or at least equal to) its less flexible counterpart, a characteristic that cannot be found

in Roshani and Giglio (2017).

With the number of workers as the fixed resource, it is expected that the proposed

MALBP-2 formulation cycle time is at least as good as its SALBP-2 version with the same given



112

number of workers. That said, Constraints 75 are included in the model to represent an upper

bound for the cycle time value in a MALBP-2, in which 𝐶𝑇𝑆𝐴𝐿𝐵𝑃 is a newly introduced param-

eter for the optimized SALBP-2 variation of the same data. On the other hand, Constraints 76

and 77 are trivial lower bounds for the cycle time and the total number of stations, respectively.

Moreover, 𝐶𝑇𝑆𝐴𝐿𝐵𝑃 ·𝑁𝑆 is sufficiently large to assume the 𝐵 role in the PF.

𝐶𝑇 ≤ 𝐶𝑇𝑆𝐴𝐿𝐵𝑃 (75)

𝐶𝑇 ≥
⌈︂∑︀

𝑡∈𝑇 𝐷𝑡

𝑁𝑚𝑎𝑥

⌉︂
(76)

∑︁
𝑠∈𝑆

𝑍𝑠 ≥
⌈︂
𝑁𝑚𝑎𝑥

𝑁𝑊

⌉︂
(77)

5.5 SOLUTION METHOD

The Benders’ decomposition algorithm (Section 5.5.2) – hereafter referred to as BDA –

and its initial solution procedure (Section 5.5.1) developed for the MALBP-2 are herein presented.

Section 5.5.2.1 presents the master problem (MP), whilst Section 5.5.2.2 is dedicated to the

slave problem (SP). In the proposed implementation, the former is associated to decisions

concerning task and worker assignments to stations (high-level problem) and the latter is related

to feasibility tests of task assignments and scheduling to workers in each station (lower-level

problem). However, since Benders’ decompositions are known to have a slow convergence

process (MAGNANTI; WONG, 1981), the algorithm may go through enhancement modifications

to accelerate its operation. Those are explicitly pointed out along with the initial solution, MP,

and SP descriptions.

5.5.1 Initial solution decomposition

An initial feasible solution for the MALBP-2 can be obtained by following the routine

presented in Sections 5.5.1.1 and 5.5.1.2. Afterwards, the task-worker-station allocation and

scheduling found by this procedure feeds the Benders’ decomposition algorithm, which is, in turn,

presented in Section 5.5.2. The illustrative instance presented in Table 18 is solved step-by-step

as the proposed solution method stages are presented.
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5.5.1.1 Solving the SALBP counterpart

In the proposed solution method, the first step to solve a MALBP-2 instance is to

solve its simpler counterpart, the SALBP-2. For that, the well-known exact algorithm SALOME

(SCHOLL; BECKER, 2006) is used to find the optimal or an integer solution for a given case.

By applying this step to the illustrative instance (Table 18), the solution previously presented in

Figure 20(a) can be obtained, with 5 workers placed into 5 stations, and a cycle time of 11 time

units.

5.5.1.2 Minimizing stations

Since SALBPs assume that there is always only one worker in each station, once with a

feasible task-station assignment (𝑋𝑡,𝑠) provided by SALOME at hand, it is possible to emulate

that solution to a fixed task-worker assignment (𝑊𝑡,𝑤), treating such variables as parameters.

The residual problem, then, can be reduced to worker-station assignment (𝑌𝑤,𝑠) and

task scheduling (𝑆𝑇𝑡) problems. As precedence relations constraints between stations are au-

tomatically respected from the SALBP solution, this model only has to group workers whose

assignments do not violate such constraints within each station, and therefore minimizing the

number of stations for a given task-worker assignment.

For example, by considering once again the illustrative instance from Table 18, the

initial SALBP solution in Figure 20(a), and an upper limit on the number of workers per station

set to 𝑁𝑊 = 3, this intermediary step of minimizing stations given task-worker assignments

can aggregate multiple workers in the same station while still respecting precedence relations

constraints. An intermediary multi-manned feasible solution for the illustrative instance is

presented in Figure 21. The initial decomposition procedure is not able to deliver a solution with

a reduced production rate (i.e. 𝐶𝑇 = 11, with times on x-axis), and idle times remain at 5 time

units along the line, or 9.09% of the line’s available task performing time. On the other hand, by

allowing co-occurring operations within the third station by three different workers (represented

by bars), the intermediary MALBP feasible solution was capable of reducing the line length from

5 to 3 stations (on the y-axis). Notice that all task-worker assignments persist from the input

SALBP solution (Figure 20(a)) and no constraint imposed by precedence relations is violated.

As demonstrated, this approach does not ensure optimality for any type of MALBPs.

Nonetheless, it has been successfully applied to the MALBP-1 instances by Lopes et al. (2019),
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Figure 21 – Gantt diagram representation of an intermediary MALBP-2 feasible solution for the illustrative
instance by applying the initial decomposition procedure.
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Source: Michels et al. (2020).

as it yields good solutions in quite reduced computational times. As evidenced in Section 5.6.2,

using such task-station-worker assignment as an initial solution for the complete Benders’

decomposition approach (Section 5.5.2) can drastically improve faster convergence for the

algorithm (Enhancement 1).

5.5.2 Benders’ decomposition algorithm

For the MALBP-2, the MP tackles task and worker assignments to stations, whereas

the SP takes care of task scheduling problems, orderly assigning tasks to workers. Naturally, MP

and SP cannot be formulated by simply decoupling parts of the PF: Sections 5.5.2.1 and 5.5.2.2

explain how each of these models is generated. Figure 22 is a flowchart that illustrates the

path taken by the proposed BDA, when looking for an optimal solution, in which HT is a

hash-table to be consulted for repetitive solutions. When the algorithm loads the initial solution,

it consequently establishes an upper bound for the problem and gets a proxy on the direction that

the search process should occur: for the illustrative instance, this initial solution is represented

by Figure 21, which the proposed algorithm promptly leads to an optimal MALBP-2 solution

previously presented in Figure 20(b).

In order to deal with the problem stated in Section 5.4 by the PF (Expressions 60–77),

one should notice that the SP is a mixed-integer problem in this application, thus a feasibility-

seeking variant (CODATO; FISCHETTI, 2006) should be used. Once again, the SP must be

employed as a feasibility check on the algorithm, as analogously proposed by recent MALBP-1

works (MICHELS et al., 2019; NADERI et al., 2019). Given its resources to each multi-manned

station, the SPs should, particularly for the proposed BDA, assign and schedule tasks to workers
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Figure 22 – General flowchart scheme of the MALBP-2 proposed solution method.
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for each individual station, in an effort to complete all the assigned tasks within the cycle time

limit previously defined by the current MP iteration.

The second enhancement is detailed in Section 5.5.2.1: feasibility cuts are implemented

and applied to the MP before execution starts, constraining the possibilities of task assignments

(Enhancement 2). These are based on precedence graph analyzes (KLEIN, 2000). Besides,

each infeasible SP returns combinatorial inequalities (cutting planes) to be appended as lazy

constraints into the MP, originating the third enhancement procedure to accelerate convergence

(CODATO; FISCHETTI, 2006): the use Combinatorial Benders’ Cuts (Enhancement 3). This is

done by extending the previous concept to use such cuts. The MP is distilled from the monolithic

model, i.e. the original and complete combinatorial problem, unconstrained from scheduling

restriction, since it is initially taken apart from the SP. As all decision variables to calculate
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the objective value (𝐶𝑇 and 𝑍𝑠) are found in any given MP iteration, solving it may generate

feasible integer solutions. These candidate solutions are then sent to the SP to be validated by it.

If all SPs detect the tentative solution to be feasible, the current solution is established as the

new incumbent. Otherwise, a set of the aforementioned CBC is returned from each infeasible SP.

Finally, the BDA iterates this procedure until (i) an optimal solution is found and proven or (ii)

the time limit is reached.

The last improvement prevents redundant feasibility seeking tests to occur (Enhance-

ment 4). In order to do so, a hash-table (MAURER; LEWIS, 1975), hereafter referred to as HT, is

exploited to store SP instance data that had led to feasible solutions. If a set of task assignments

for a given SP is solved and deemed to be feasible, such set of tasks is included into a HT with

tested feasible problems, along with the number of workers and cycle time used to perform them.

This procedure allows the SP model to skip repeated scheduling problems, since the HT can be

quickly consulted by the algorithm’s sub-routine beforehand. For similar reasons, every time

an infeasibility is detected by an SP, such circumstance is modeled as a new set of constraints

and appended to the MP, so those task and worker assignments will not be repeated. These

combinatorial Benders’ cuts are further explained in Section 5.5.2.2.

5.5.2.1 Master problem

Expressions 60, 61, 64, and 71–77 are kept in the MP, since they are part of the

balancing core of the complete problem. Likewise, additional constraints are developed to

adapt and strengthen the MP. Before establishing them, however, Table 21 newly introduces the

terminology needed to describe the remaining of the MP model.

Table 21 – Definition of new MALBP-2 parameters, sets, and variables for the MP.
Parameter Description

𝛿𝑡𝑖,𝑡𝑗 Critical path duration between tasks 𝑡𝑖 and 𝑡𝑗 ; 𝑡𝑖 ≺ 𝑡𝑗
𝜎𝑡𝑖,𝑡𝑗 Sum of task durations between tasks 𝑡𝑖 and 𝑡𝑗 ; 𝑡𝑖 ≺ 𝑡𝑗

Set Description
𝑃 * Set of complete extended precedence relations 𝑃 : (𝑡𝑖,𝑡𝑗)

𝑆𝑢𝑡 Set of all direct and indirect successor of task 𝑡

𝑃𝑟𝑡 Set of all direct and indirect predecessor of task 𝑡

𝐼𝑛𝑐 Set of incompatible task pairs: (𝑡𝑖,𝑡𝑗)

Variable Description
𝐴𝑤,𝑠 Auxiliary integer variable: detects the available time for each worker 𝑤 in station 𝑠

Source: Michels et al. (2020).

Independently of the number of workers assigned to a station, there are tasks that
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cannot be performed together in the same station due to limitations imposed by cycle time and

precedence relation restrictions. In order to represent those, a set of incompatible task pairs

(𝐼𝑛𝑐) is developed. Algorithm 2 shows the steps on how this incompatibility is determined

to find such task pairs. Firstly, the direct precedence relations set 𝑃 must be extended to a

complete (direct and indirect) precedence set 𝑃 * in order to do so. That is easily made possible

by regarding all direct and indirect precedence relations in the precedence graph. With 𝑃 * at

hand, the next step consists in constructing sets for each task containing all their successors and

predecessor: 𝑆𝑢𝑡 represents direct and indirect successors of task 𝑡 and 𝑃𝑟𝑡 constitutes direct and

indirect predecessors of task 𝑡. Moreover, the critical path duration and the sum of task durations

between tasks 𝑡𝑖 and 𝑡𝑗 are represented by the two extra parameters 𝛿𝑡𝑖,𝑡𝑗 and 𝜎𝑡𝑖,𝑡𝑗 , respectively.

A topological order is applied in order to recursively evaluate and properly compute the values

of these parameters.

Algorithm 2 – Pseudo-code for the MALBP-2 incompatibility set generation.
1: function Incompatibility(𝑃 *, 𝑆𝑢𝑡, 𝑃 𝑟𝑡, 𝐶𝑇𝑆𝐴𝐿𝐵𝑃 , 𝐷𝑡)
2: 𝛿𝑡𝑖,𝑡𝑗 ← 0, 𝜎𝑡𝑖,𝑡𝑗 ← 0, 𝐼𝑛𝑐← {}
3: forall (𝑡𝑖,𝑡𝑗) ∈ 𝑃 * do
4: 𝛿𝑡𝑖,𝑡𝑗 = max [0; 𝛿𝑡𝑖,𝑡𝑘 + 𝐷𝑡𝑘 | 𝑡𝑘 ∈ 𝑆𝑢𝑡𝑖 ∩ 𝑃𝑟𝑡𝑗 ]
5: 𝜎𝑡𝑖,𝑡𝑗 =

∑︀
𝑡𝑘∈𝑆𝑢𝑡𝑖

∩𝑃𝑟𝑡𝑗
𝐷𝑡𝑘

6: if 𝐷𝑡𝑖 + 𝐷𝑡𝑗 + 𝛿𝑡𝑖,𝑡𝑗 > 𝐶𝑇𝑆𝐴𝐿𝐵𝑃 ∨𝐷𝑡𝑖 + 𝐷𝑡𝑗 +

⌈︂
𝜎𝑡𝑖,𝑡𝑗

𝑁𝑊

⌉︂
> 𝐶𝑇𝑆𝐴𝐿𝐵𝑃 then

7: 𝐼𝑛𝑐← 𝐼𝑛𝑐
⋃︀
{(𝑡𝑖,𝑡𝑗)}

8: end if
9: end forall

10: return Incompatibility(𝛿𝑡𝑖,𝑡𝑗 , 𝜎𝑡𝑖,𝑡𝑗 , 𝐼𝑛𝑐)
11: end function

Source: Michels et al. (2020).

That stated, 𝑃 *, 𝑆𝑢𝑡, 𝑃𝑟𝑡, 𝐶𝑇𝑆𝐴𝐿𝐵𝑃 , and 𝐷𝑡 can be the input for Algorithm 2, whereas

𝛿𝑡𝑖,𝑡𝑗 , 𝜎𝑡𝑖,𝑡𝑗 , and 𝐼𝑛𝑐 are its output. Given a task pair (𝑡𝑖,𝑡𝑗) ∈ 𝑃 * (line 3), the code runs through

the complete precedence graph and establishes the critical path (𝛿𝑡𝑖,𝑡𝑗 , line 4) and capacity bounds

(𝜎𝑡𝑖,𝑡𝑗 , line 5) between any two tasks that have direct or indirect precedent relations, recursively

attributing correct values to the parameters. In other words, Algorithm 2 assigns to 𝛿𝑡𝑖,𝑡𝑗 the

highest value for the sum of task durations that have to be executed between tasks 𝑡𝑖 and 𝑡𝑗 and

to 𝜎𝑡𝑖,𝑡𝑗 the sum of task durations taken from all tasks that are, at the same time, successors and

predecessor of tasks 𝑡𝑖 and 𝑡𝑗 , respectively. This is a logical concept inherited from Klein (2000)

and likewise adopted in previous MALBP-1 works Becker and Scholl (2009), Michels et al.

(2019), which takes into account similarities between the SP and project scheduling problems.

Lastly, by taking the task pair (𝑡1,𝑡8) of the precedence graph from Table 18 for instance, these
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parameters would be 𝛿𝑡1,𝑡8 = 7 and 𝜎𝑡1,𝑡8 = 14.

If either condition 𝐷𝑡𝑖 + 𝐷𝑡𝑗 + 𝛿𝑡𝑖,𝑡𝑗 > 𝐶𝑇𝑆𝐴𝐿𝐵𝑃 or 𝐷𝑡𝑖 + 𝐷𝑡𝑗 +

⌈︂
𝜎𝑡𝑖,𝑡𝑗

𝑁𝑊

⌉︂
> 𝐶𝑇𝑆𝐴𝐿𝐵𝑃

is verified (line 6), then the condition to flag an incompatibility is satisfied, and the task pair

(𝑡𝑖, 𝑡𝑗) is included into the incompatibility set 𝐼𝑛𝑐 (line 7). This process goes on until the whole

complete precedence graph is analyzed.

Once in possession of 𝐼𝑛𝑐, Constraints 78 can be appended to the MP, which should

restrict specific task pairs to be assigned to the same station. Generating a set of weaker but still

valid inequalities is possible by using information extracted from parameter 𝜎𝑡𝑖,𝑡𝑗 : a very small

positive number (𝜀) is introduced to prevent dividing by zero, Constraints 79 define what is the

minimum number of workers that must be employed in any given station to perform both 𝑡𝑖 and

𝑡𝑗 of a task pair (𝑡𝑖, 𝑡𝑗).

𝑋𝑡𝑖,𝑠 + 𝑋𝑡𝑗 ,𝑠 ≤ 1 ∀ 𝑠 ∈ 𝑆, (𝑡𝑖,𝑡𝑗) ∈ 𝐼𝑛𝑐 (78)

∑︁
𝑤∈𝑊

𝑌𝑤,𝑠 ≥
⌈︂

𝜎𝑡𝑖,𝑡𝑗

𝐶𝑇𝑆𝐴𝐿𝐵𝑃 −𝐷𝑡𝑖 −𝐷𝑡𝑗 + 𝜀

⌉︂
−𝑁𝑊 ·(2−𝑋𝑡𝑖,𝑠−𝑋𝑡𝑗 ,𝑠) ∀ 𝑠 ∈ 𝑆, (𝑡𝑖,𝑡𝑗) ∈ 𝑃 *

(79)

Finally, precedence relations constraints (Constraints 80) are added to the MP and the

available time to execute tasks in each station (Constraints 81) is reckoned. Notice that the

available time is dependent on the cycle time and the number of workers assigned for a given

station, leading to a non-linear constraint. To solve that issue, an integer auxiliary variable (𝐴𝑤,𝑠)

must be introduced to evaluate how much available time each station 𝑠 has at each worker

position 𝑤. Constraints 82 and 83 are respectively activated as trivial lower and upper bounds for

𝐴𝑤,𝑠 and limit its value to zero unless some worker 𝑤 is assigned to their position. Constraints 84

and 85, on the other hand, attribute the correct amount of cycle time to 𝐴𝑤,𝑠 whenever worker

𝑤 is employed in a given station. Ultimately, Constraints 81 can be replaced by its linearized

version: Constraints 86.∑︁
𝑠∈𝑆

𝑠 ·𝑋𝑡𝑖,𝑠 ≤
∑︁
𝑠∈𝑆

𝑠 ·𝑋𝑡𝑗 ,𝑠 ∀ (𝑡𝑖,𝑡𝑗) ∈ 𝑃 (80)

∑︁
𝑡∈𝑇

𝑋𝑡,𝑠 ·𝐷𝑡 ≤ 𝐶𝑇 ·
∑︁
𝑤∈𝑊

𝑌𝑤,𝑠 ∀ 𝑠 ∈ 𝑆 (81)

𝐴𝑤,𝑠 ≥
⌈︂∑︀

𝑡∈𝑇 𝐷𝑡

𝑁𝑚𝑎𝑥

⌉︂
· 𝑌𝑤,𝑠 ∀ (𝑤,𝑠) ∈ 𝑊𝑆 (82)
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𝐴𝑤,𝑠 ≤ 𝐶𝑇𝑆𝐴𝐿𝐵𝑃 · 𝑌𝑤,𝑠 ∀ (𝑤,𝑠) ∈ 𝑊𝑆 (83)

𝐴𝑤,𝑠 ≥ 𝐶𝑇 − 𝐶𝑇𝑆𝐴𝐿𝐵𝑃 · (1− 𝑌𝑤,𝑠) ∀ (𝑤,𝑠) ∈ 𝑊𝑆 (84)

𝐴𝑤,𝑠 ≤ 𝐶𝑇 −
⌈︂∑︀

𝑡∈𝑇 𝐷𝑡

𝑁𝑚𝑎𝑥

⌉︂
· (1− 𝑌𝑤,𝑠) ∀ (𝑤,𝑠) ∈ 𝑊𝑆 (85)

∑︁
𝑡∈𝑇

𝑋𝑡,𝑠 ·𝐷𝑡 ≤
∑︁
𝑤∈𝑊

𝐴𝑤,𝑠 ∀ 𝑠 ∈ 𝑆 (86)

For the proposed BDA, seeking an optimal solution is the emphasis of this refor-

mulated MP. In order to concentrate the efforts in that direction, each feasible solution

(�̄�, 𝑌 ) = {(�̄�1,1, ..., �̄�𝑡,𝑠), (𝑌1,1, ..., 𝑌𝑤,𝑠)} with an improved objective value (𝐶𝑇 *, 𝑆*) attained

by the MP is passed on to the SP model, so it can carry on scheduling feasibility checks in each

station 𝑠 ∈ 𝑆* (Figure 22). Therefore, the PF is decomposed into an MP that decides cycle time,

task-station allocation, worker-station assignment, and station opening variables: 𝐶𝑇 , 𝑋𝑡,𝑠, 𝑌𝑤,𝑠,

and 𝑍𝑠, respectively. Meanwhile, the SPs look for feasible task-worker assignments (𝑊𝑡,𝑤), by

accounting for task starting times and ordering (𝑆𝑇𝑡 and 𝐹𝑡𝑖,𝑡𝑗 ) for each station.

5.5.2.2 Slave problem

The path taken by the BDA to solve each SP is presented in Figure 22. Algorithm 3

details each step of that process. It gets as input an improved solution from the MP, with

information regarding the task and worker assignments to stations (�̄�,𝑌 ), as well as the new

objective value to be tested, represented by a cycle time (𝐶𝑇 *) and the total number of stations

(𝑆*) used for such solution. The current incumbent (𝑈𝐵), lower bound (𝐿𝐵), and the parameter

𝐶𝑇𝑆𝐴𝐿𝐵𝑃 are also informed.

As to generate an SP for each station 𝑠 ∈ 𝑆* (line 3), the SP model maintains Expres-

sions 62, 65, and 70 as in Section 5.4, but simplifies Constraints 67 and adds Constraints 88

and 89 as valid inequalities for idle time symmetry breaks.

For that, they are separately applied to each SP (line 4), where task and worker sub-

sets (𝑇𝑠 and 𝑊𝑠) are extracted from the MP solution (�̄�, 𝑌 ), as declared by on lines 5 and

6. Regarding each station 𝑠 ∈ 𝑆* as a detached resource-constrained scheduling problem,
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Algorithm 3 – Pseudo-code for the MALBP-2 SP generated cuts.

1: function SP_Cuts((�̄�,𝑌 ), 𝐶𝑇 *, 𝑆*, 𝑈𝐵,𝐿𝐵,𝐶𝑇𝑆𝐴𝐿𝐵𝑃 )
2: 𝑆𝑃𝑠 ← 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒, 𝑆𝑡𝑎𝑡𝑢𝑠← 0, 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 ← 0, 𝐻𝑇 ← {}
3: Generate an SP for each station: 𝑆𝑃𝑠

4: forall 𝑠 ∈ 𝑆* do
5: 𝑇𝑠 = {𝑡 ∈ 𝑇 | �̄�𝑡,𝑠 = 1}
6: 𝑊𝑠 = {𝑤 ∈ 𝑊 | 𝑌𝑤,𝑠 = 1}
7: if {(𝑇𝑠,𝑊𝑠, 𝑂𝑏𝑗*)} ⊂ 𝐻𝑇 ∨ |𝑊𝑠| = 1 then
8: 𝑆𝑃𝑠 ← 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒
9: 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 ← 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 + +

10: else
11: Solve 𝑆𝑃𝑠

12: if 𝑆𝑃𝑠 = 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 then
13: 𝐻𝑇 ← 𝐻𝑇

⋃︀
{(𝑇𝑠,𝑊𝑠, 𝐶𝑇 *)}

14: 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 ← 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 + +
15: else Generate 𝐶𝑢𝑡𝑠 for infeasible 𝑆𝑃𝑠

16: if |𝑊𝑠| = 𝑁𝑊 ∧ 𝐶𝑇 * = 𝐶𝑇𝑆𝐴𝐿𝐵𝑃 then
17: Add Cut 90
18: else
19: if |𝑊𝑠| < 𝑁𝑊 ∧ 𝐶𝑇 * = 𝐶𝑇𝑆𝐴𝐿𝐵𝑃 then
20: Add Cut 91
21: else
22: if |𝑊𝑠| = 𝑁𝑊 ∧ 𝐶𝑇 * < 𝐶𝑇𝑆𝐴𝐿𝐵𝑃 then
23: Add Cut 92
24: else (|𝑊𝑠| < 𝑁𝑊 ∧ 𝐶𝑇 * < 𝐶𝑇𝑆𝐴𝐿𝐵𝑃 )
25: Add Cut 93
26: end if
27: end if
28: end if
29: end if
30: end if
31: end forall
32: if 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 = 𝑆* then
33: Update incumbent solution with a complete 𝑇𝑊𝑆𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛: 𝑈𝐵 ← (𝐶𝑇 *, 𝑆*)
34: if 𝑈𝐵 = 𝐿𝐵 ∨ 𝐶𝑃𝑈 ≥ 𝑇𝑖𝑚𝑒.𝐿𝑖𝑚𝑖𝑡 then
35: 𝑆𝑡𝑎𝑡𝑢𝑠← 1
36: end if
37: end if
38: return SP_Cuts(𝐶𝑢𝑡𝑠, 𝑇𝑊𝑆𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛)
39: end function

Source: Michels et al. (2020).

Constraints 87, 88, and 89 can replace the previous PF’s monolithic ones.

𝐹𝑡𝑖,𝑡𝑗 + 𝐹𝑡𝑗 ,𝑡𝑖 ≥ 𝑊𝑡𝑖,𝑤 + 𝑊𝑡𝑗 ,𝑤 − 1 ∀ 𝑡𝑖, 𝑡𝑗 ∈ 𝑇𝑠, 𝑤 ∈ 𝑊𝑠 (87)

𝐼𝑤 = 𝐶𝑇 −
∑︁
𝑡∈𝑇𝑠

𝐷𝑡 ·𝑊𝑡,𝑤 ∀ 𝑤 ∈ 𝑊𝑠 (88)

𝐼𝑤 ≥ 𝐼𝑤−1 ∀ 𝑤 ∈ 𝑊𝑠 | 𝑤 > 1 (89)

There are two situations that an SP is automatically deemed feasible (line 7 to 9): (i) the

solution under analysis has already been evaluated before and is contained in HT or (ii) there is
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only one worker employed in the station, which means there is no scheduling problem in the first

place. If none of these conditions is observed, then the new SP is solved (line 11). Whenever

feasibility is detected to this new problem, its information concerning tasks, workers, and cycle

time used in the instance is stored into HT (line 13) in order to avoid wasting time solving the

same instance in the future by simply accessing HT. On the other hand, when the SP is detected

to be infeasible, a set of combinatorial Benders’ cuts (CBC) can be applied to the MP as lazy

constraints, i.e. the initial optimization problem receives new restrictions while executing in

order to cut off infeasible combinations of task and worker assignments to all stations (lines 15

to 29).

Nonetheless, deciding which set of CBCs to add depends on the number of workers

(|𝑊𝑠|) and the trial cycle time (𝐶𝑇 *) value used by SPs that were proven to be infeasible. The

strongest set of CBCs is appended when the trial solution employs the maximum allowed workers

(𝑁𝑊 ) on a maximum allowed cycle time (𝐶𝑇𝑆𝐴𝐿𝐵𝑃 ) for a specific station (line 16). On line

17, Constraints 90 state that, if any given task assignment set is tested to be infeasible, then it

cannot be entirely executed in the same station 𝑠, thus at least one of the tasks must be performed

elsewhere. Alternatively, the SP may be infeasible, but it might not be using the maximum

number of workers for that set of tasks (line 19), the trial cycle time might be lower than the

SALBP’s imposed one (line 22), or both (line 24).

In such cases, the set of CBCs described by Constraints 91, 92, and 93 are applied to

the MP; they respectively state that a tested task assignment set cannot be totally performed in

the same station unless an additional worker (represented by the |𝑊𝑠| + 1 index) is assigned

there (line 20), the cycle time is increased (line 23), or both (line 25). This wide variety of cuts

could not be found in any previous work.∑︁
𝑡∈𝑇𝑠

𝑋𝑡,𝑠 ≤
∑︁
𝑡∈𝑇

�̄�𝑡,𝑠 − 1 ∀ 𝑠 ∈ 𝑆 (90)

∑︁
𝑡∈𝑇𝑠

𝑋𝑡,𝑠 ≤
∑︁
𝑡∈𝑇

�̄�𝑡,𝑠 − 1 + 𝑌|𝑊𝑠|+1,𝑠 ∀ 𝑠 ∈ 𝑆 (91)

∑︁
𝑡∈𝑇𝑠

𝑋𝑡,𝑠 ≤
∑︁
𝑡∈𝑇

�̄�𝑡,𝑠 − 1 + (𝐶𝑇 − 𝐶𝑇 *) ∀ 𝑠 ∈ 𝑆 (92)

∑︁
𝑡∈𝑇𝑠

𝑋𝑡,𝑠 ≤
∑︁
𝑡∈𝑇

�̄�𝑡,𝑠 − 1 + 𝑌|𝑊𝑠|+1,𝑠 + (𝐶𝑇 − 𝐶𝑇 *) ∀ 𝑠 ∈ 𝑆 (93)
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The SP evaluates a trial solution as wholly feasible only if it is feasible for all stations

𝑠 ∈ 𝑆* (line 32), then the proposed method judges this solution sent from the MP as incumbent

and the instance’s 𝑈𝐵 is updated with the new, improved cycle time, number of stations, and a

complete set of task-worker-station assignments (line 33). This process is repeated iteratively

and the MP keeps searching for better solutions, either with a revised UB or newly added lazy

constraints, until any stopping criterion is met, namely (i) an optimal solution is found and

proven or (ii) the CPU time limit is reached (line 34).

In combination with the initial solution generation technique (Section 5.5.1), the BDA

herein presented (Section 5.5.2) is what constitutes the whole proposed solution procedure,

which is hereafter referred to as PM (Proposed Method).

5.6 COMPUTATIONAL STUDY

This section carries out a computational study based on the same benchmark dataset and

industrial case used by Roshani and Giglio (2017). Nevertheless, the current dataset extends the

previous one (with 72 instances) by considering the possibility of employing 2, 4, or 6 workers in

the same station, totaling 108 instances. A well-known literature benchmark is contained in the

tested instances. It is also accessible for download at <www.assembly-line-balancing.de>. They

comprise information about task durations, precedence graphs, and cycle time values. The list

of instances is summarized in Table 22; in it, instances are divided into three categories: small,

medium, and large, according to the number of tasks (𝑁𝑇 ) parameter. Additionally, there are 4

case study instances regarding the problem studied by Dimitriadis (2006). These instances are

run with different values of total number of workers in the line (𝑁𝑚𝑎𝑥) and maximum number

of workers allowed in each station (𝑁𝑊 ). As explained in Section 5.4.3, upper bounds for the

cycle time (𝐶𝑇 ) and number of stations (𝑁𝑆) have been obtained with a preliminary process,

retrieving information from SALBP-2 counterpart solutions of each instance.

The computational tests are split in three parts. Firstly, Section 5.6.1 reports results

obtained by the monolithic model (PF) presented in Section 5.4 when it is applied to small-size

instances. These results are compared to those described in Roshani and Giglio (2017); this last

mathematical model is henceforth referred to as RF (Roshani’s Formulation). In addition, the

same fraction of the benchmark dataset is also solved by the PM displayed in Section 5.5, whilst

its performance is compared to the best outcome obtained by either Direct or Indirect Simulated

Annealing (DSA/ISA) heuristics developed by Roshani and Giglio (2017) in terms of solution
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Table 22 – Summary of MALBP-2 dataset instances.
Size (Total of instances) Problem 𝑁𝑇 𝑁𝑚𝑎𝑥 𝑁𝑊

Small (32) Mitchell 21 3; 4; 5; 7; 8; 9 2
Heskiaoff 28 4; 6; 8; 9; 10 2; 4
Sawyer 30 4; 6; 8; 9; 10; 12; 13; 14 2; 4

Medium (34) Kilbridge 45 4; 6; 8; 10; 11 2; 4
Tonge 70 12; 14; 16; 18; 19; 20; 22; 23 2; 4; 6

Large (42) Arcus1 83 11; 12; 14; 15; 18; 19; 21 2; 4; 6
Arcus2 111 12; 16; 18; 23; 24; 26; 27 2; 4; 6

Case study (4) Dimitriadis 64 8; 10 2; 4
Source: Michels et al. (2020).

quality reported by them; the latter method is henceforth referred to as RM (Roshani’s Method).

Secondly, as both methods demonstrated dominance over their respective mathematical

formulations, monolithic models (PF and RF) were discarded in the remainder testing process,

as they are not expected to keep up with specific methods in terms of solution quality and

computational processing time. Therefore, for this medium and large-size computational study

conducted afterwards, only PM and RM were considered and applied to MALBP-2 instances.

Moreover, in order to test the synergies between the initial decomposition (Dec) and the Benders’

decomposition algorithm (BDA) that compose the PM, Dec and BDA were also applied to

medium and large-size instances separately. Section 5.6.2 presents and discusses such results

and comparisons.

These comparisons are conducted as suitably as possible: as Roshani and Giglio (2017)

fixed the number of stations and minimized cycle time as the primary objective, their formulation

tends to fit as many workers as it can to the limited number of stations, which leads to solutions

with lower efficiencies than its less flexible version. As argued in Section 5.4.3, the assumption of

limited number of stations (line area) is not practical and ignore the fact that workers and stations

have completely different costs, with those of the former being much higher. Wages are paid to

the workforce at least in a monthly basis, so labor costs directly influence the final cost of the

product and impose a limit on the resources one can use. Assembly line plants for the automotive

industry can regularly surpass 300,000m2 in area, with extreme examples such as the Hyundai

Ulsan Factory and the Volkswagen Wolfsburg Plant with 5,050,000m2 and 6,500,000m2 in area,

respectively. Considering the dimensions of a regular car and the additional space to perform

tasks by multiple workers, a station is a much more plentiful resource than skilled labor. That is

precisely why objective functions in the type-1 problem make sense, with workers representing

higher costs than stations with a difference of one or two orders of magnitude (FATTAHI;

ROSHANI, 2011). Acknowledging that, PF and PM may have outperformed RF and RM in some
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instances due to such space limitation imposed by Roshani and Giglio (2017). Nevertheless,

specific instances for direct comparison are identified and examined in both Sections 5.6.1

and 5.6.2.

Lastly, Section 5.6.3 evaluates the performance of both methods (PM and RM) when

applied to a real-life automotive assembly plant case study. Their efficiency improvements are

compared based on instances that contain a dataset originally published by Dimitriadis (2006).

Since Roshani and Giglio (2017) also solved a case by fixing the upper limit on the number

of workers in the line to be 𝑁𝑚𝑎𝑥 = 8, the comparison here is decidedly straightforward.

Furthermore, the other case (𝑁𝑚𝑎𝑥 = 10) yielded a solution with workers hired for all possible

positions in the station, which equally allows a direct comparison with the PM.

In all Sections 5.6.1, 5.6.2, and 5.6.3, each instance result is reported in a line of

Tables 23 to 26. They are addressed by their precedence graph structure, 𝑁𝑚𝑎𝑥, and 𝑁𝑊

values. For the results, columns headlines with CT, St, Gap, CPU, DCPU, SCPU, CBC, and

HT respectively indicate: best found cycle time (CT), best found total number of stations (St)

for that cycle time, integrality gap (Gap), computational processing time in total (CPU), for

the initial decomposition (DCPU), for the slave problems (SCPU), total number of applied

combinatorial Benders’ cuts (CBC), and how many times the hash-table has been accessed (HT)

for each instance. For small-size instances, Gap is not reported because PM has found the optimal

solution for all of them. Some results are left unfilled (–) due to the fact that no integer solutions

could be found by the BDA within the time limit for some instances. As this is an extended

dataset, the same happens for some instances that were not solved in Roshani and Giglio (2017).

For the case study, line efficiency (LE) is also computed.

For every instance, Gurobi 8.1 (Gurobi Optimization, 2019) with optimality focus for

the MP and feasibility focus for SPs was employed as universal solver. Four threads of a 64-bit

Intel™ i7-3770 CPU (3.4 GHz) with 16GB of RAM were used to run the algorithm. The PM’s

BDA and its interaction with Dec were coded in Microsoft Visual Basic 2019 programming

language. Roshani and Giglio (2017) solved their instances on a 64-bit Intel™ i3-330M CPU

(2.13 GHz) with 4GB of RAM. Therefore, a factor of 0.37 (obtained by Passmark Performance

Test 9.0) will be applied to their CPU time. Nonetheless, notice that computational processing

time results are just mentioned, while relevant comparisons are strictly focused on solution

quality.
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5.6.1 Small-size instances

Table 23 is a summary of the comparison between monolithic models (PF and RF) and

solution methods (PM and RM). In this section, they were applied to the small-size instances

with a time limit set to 3600 seconds. Whenever an instance had been solved by Roshani and

Giglio (2017) as well, results obtained by PF are compared to those found in the referred paper.

Complementary, PM results are exhibited alongside with the best result reported by either DSA

or ISA in their respective paper (RM).

The PF clearly outperforms RF in this subset containing 32 instances: the former

obtained 16 optimal solutions (50% of cases), whilst the latter reached optimality in only 6

out of the 16 instances tested by Roshani and Giglio (2017), being 4 of them in the smallest

problem. In other words, PF has improved 8 previously known integer solutions obtained by a

mathematical model and has proven the optimality of 4 of them. This may be attributed to the

fact that PF and RF took different modeling decisions: as reported in Section 5.4, the proposed

formulation prioritizes cycle time minimization taking into account information acquired from

SALBP bounds.

A particular attention is given to the Sawyer family of instances. For 𝑁𝑚𝑎𝑥 = 4,

solutions reported for both formulations and methods comprise 2 stations, however, PF and

PM were able to prove an optimal cycle time result of 81 time units, while RF and RM were

outperformed by yielding solutions with 82 and 83 cycle time units, respectively. By just

considering the solution methods, PM has also outperformed RM in instances with 𝑁𝑚𝑎𝑥 = 8

and 𝑁𝑚𝑎𝑥 = 12: PM has proven cycle times of 41 and 28 time units, whereas RM had reached

solutions with 42 and 29 cycle time units for the same number of workers and stations along the

line.

The remaining information in Table 23 compares PM and RM results. Similar compu-

tational processing times were reported for both methods. Nevertheless, the PM presented in

Section 5.5 has improved and proven 12 previously known integer solutions (boldfaced values in

Table 23). Therefore, it can be stated that the PM has reached better results than RM’s heuristics.

Moreover, it has guaranteed solutions to be optimal for all small-size instances in a very low

CPU time, achieving 100% of optimality proofs in this subset of instances.
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5.6.2 Medium and large-size instances

By rapidly finding and proving optimal solutions in all small instances (Section 5.6.1,

Table 23), the PM has been validated as an efficient and reliable method. Besides, its superiority

over the monolithic model was evidenced. Hence, only specialized methods (i.e. PM and

RM) are compared in this section regarding solution quality. The comparison only takes into

account instances that were previously reported in Roshani and Giglio (2017), focusing on

computationally solving medium and large-size instances. Furthermore, in order to observe

possible synergy effects caused by integrating the initial decomposition (Dec) and the Benders’

decomposition algorithm (BDA) that compose the PM, they were also applied to medium and

large-size instances separately.

Table 24 reports results for 34 medium-sized instances from Table 22. Out of that

enlarged dataset, Roshani and Giglio (2017) has only solved and reported solutions for 13

instances. In terms of solution quality, the PM has outperformed RM in 12 instances (boldfaced

in Table 24), whilst tying in the last one. Out of the totality of 34 medium-sized instances, the

PM has solved 15 cases to optimality (i.e. 44.12% of this subset), with a minor integer gap for

the remaining 19 solutions (1.81% in the worst case and 0.77% on average).

The importance of the possibility to allow 4 workers per station was evidenced for both

Kilbridge and Tonge families of instances. By defining 𝑁𝑊 = 4 as a parameter, it has been

possible to further reduce the required number of stations along the line in all 13 instances with

𝑁𝑊 = 2. Since this flexibility was not considered by Roshani and Giglio (2017), it can be seen

as a novel contribution to the MALBP-2 literature. Furthermore, by closely analyzing the Tonge

family last instance (𝑁𝑚𝑎𝑥 = 23), one can realize that, even for the same number of workers

and stations, PM demonstrated to be superior to RM in terms of cycle time, the former resulting

in a solution with 156 time units, while the latter only achieved a solution with 177 time units. It

is, in relative terms, a 11.86% improvement generated by the PM.

Synergies between Dec and BDA could be verified in many instances throughout the

medium dataset. Although PM and BDA have been able to optimally solve the same instances,

CPU time reduction was observed in the most challenging ones. In addition, PM found better

integer solutions than BDA in 2 instances, and also yielded good integer solutions to 8 instances

in which BDA was not capable of attaining any initial solution. It means an improved result

in 29.41% of the medium-size instances when compared to the direct BDA approach. Such
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improvement can be attributed to Dec feeding the PM with a feasible solution at the beginning

of its execution. Nonetheless, also notice that, for those same 8 instances that BDA could not

find any feasible solution, PM did not simply maintained the initial solution provided by Dec,

but in fact improved all of them in terms of the number of used stations.

The large-size subset from Table 22 contains the last 42 instances to be tested. The

comparison between Dec, BDA, PM, and RM when they are applied to such instances is presented

in Table 25. The boldfaced values represent 14 results in which the PM has outperformed RM

in terms of solution quality for the instances solved and reported in Roshani and Giglio (2017).

In total, PM has optimally solved 12 large-sized instances (i.e. 28.57% of them for this subset),

whilst reaching integer solutions with gaps inferior to 0.14% (or 0.03% on average) in the

remaining 30 ones. Synergies between Dec and BDA were strongly verified this time: (i) out

of the 9 instances that both PM and BDA solved to optimality, a reduced CPU time could once

again be observed for PM; (ii) out of the remaining 33 instances, BDA was unable to find a

feasible solution, whereas PM yielded good integer solutions for all of them, which translates

into obtaining improved results for 78.57% of the large-size instances when compared to the

direct BDA approach; and (iii) the PM has improved the initial solution found by Dec in 23

instances.

These results convey the efficiency of the PM when applied to the studied problem:

similar methods used in isolation in the past for MALBP-1 (LOPES et al., 2020; NADERI et

al., 2019; MICHELS et al., 2019) were not sufficient to generate solutions as good as the ones

produced by the PM, and the known MALBP-2 solutions previously found by RM (ROSHANI;

GIGLIO, 2017) were greatly improved.

Another feature that could be examined with these tests herein conducted was to

evidence the possibility to improve cycle time beyond the SALBP-2 optimal solution limit. For

MALBP-1, Michels et al. (2019) has stated that the results obtained for the problem’s type-1

variant were an indicative that it would be more profitable to accept SALBP-1 optimal solutions

as the number of workers, while trying to minimize the line length as much as possible, since

no improvement could be verified in the total number of workers throughout the entire dataset.

Indeed, such methodology generates great results, as corroborated by Lopes et al. (2019), Lopes

et al. (2020). Nevertheless, cycle time improvements could have been confirmed in 12 instances

(3 medium and 9 large) for the MALBP-2 dataset, supporting with empirical evidence that the

possibility depicted in Figure 20, Section 5.3 exists for benchmark instances as well.
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The full assignment and scheduling results concerning tasks, workers, and stations were

tested for all solutions in order to carry on with a feasibility check. The starting time for each

task was evaluated for consistency in regard to station and worker assignments, global cycle

times, and order imposed by precedence relations. These assignment files are made available in

Michels et al. (2020)’s supporting information for reproducibility purposes, filling their function

of validating the proposed PM’s reliability.

Finally, contrary to the BDA applied to MALBP-1 (MICHELS et al., 2019), in most

cases the PM has a tendency to spend the majority of its available CPU time running the MP.

The latter is more similar to the case of the BDA proposed by Naderi et al. (2019), which spends

more than 98% of its computational processing time solving the MP.

5.6.3 Real-life assembly plant case study

The PM is lastly applied to the data of an industrial assembly plant originally published

by Dimitriadis (2006) and its results are compared to those obtained by the RM: Table 26

summarizes the results of such comparison. The number of tasks to be performed in this case

study is 64, with a total duration time of 65693 time units. In this study, Roshani and Giglio

(2017) also fixed the total number of workers, lines with 8 and 10 total workers were tested,

allowing at most 2 or 4 workers per station in each case.

Table 26 – Results for MALBP-2 real-life case study instances: comparison between solution methods (PM
and RM).

Prob 𝑁𝑚𝑎𝑥 𝑁𝑊 PM RM
CT St LE CPU1 DCPU SCPU CBC HT CT St LE

Dimit 8 2 8212 4 99.9% 7.3 9.7 5.5 0 3 8310 5 98.8%
4 8212 3 99.9% 1h 10.0 1h 108 2 – – –

10 2 6571 5 99.9% 1h 1’ 95.3 1945 155 6650 5 98.6%
4 6570 3 99.9% 191.5 1’ 191.5 6 4 – – –

1Not reported in Roshani and Giglio (2017).

Source: Michels et al. (2020).

According to these results, the PM methodology is once again more effective than RM

when it comes to determining lower values of cycle time. In fact, for 𝑁𝑊 = 2, PM reduced the

cycle time (improved the line efficiency) for 𝑁𝑚𝑎𝑥 = 8 and 𝑁𝑚𝑎𝑥 = 10 from 8310 (98.8%) to

8212 (99.9%) and from 6650 (98.6%) to 6571 (99.9%), respectively, with the same numbers of

workers in both cases and one less stations in the former. Moreover, when 𝑁𝑊 = 4 is allowed,

line length is reduced to 3 stations in both situations, with improvements in cycle time (6571 to
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6570) and line efficiency (99.9%) for 𝑁𝑚𝑎𝑥 = 10.

5.7 CONCLUSIONS

The type-2 Multi-manned Assembly Line Balancing Problem (MALBP-2) has been

addressed in this study. The objective is to minimize the cycle time and the total number of

stations as ranked goals. The existing literature on MALBP-2 was very limited, and efficient

exact solution methods were only available for the type-1 variant (MALBP-1). This chapter’s

main contribution was presenting an innovative method to optimality solve larger MALBP-2

instances by decomposing the original problem. It proposed an initial solution procedure and

implemented a Benders’ decomposition algorithm with the application of multiple combinatorial

Benders’ cuts during its execution. The results showed that the proposed algorithm is very

efficient in comparison to an adapted version of an exact method for the MALBP-1 and to a

meta-heuristic for the MALBP-2.

In order to solve the optimization problem, a new Mixed-Integer Linear Programming

(MILP) model was developed (Section 5.4.1), along with several symmetry break constraints (i.e.

valid inequalities, Section 5.4.2) and strong bounds (Section 5.4.3). The proposed formulation

(PF) outperformed previous monolithic mathematical formulations in terms of solution quality

and computational processing time (Section 5.6.1). By studying MALBP-1 specific solutions

methods, it was possible to infer that the type-2 variant was also hierarchically divisible into a

Master Problem (MP) and a group of Slave Problems (SPs). By reformulating the original mono-

lithic model and using problem specific knowledge, a new Benders’ Decomposition Algorithm

(BDA) with an initial feasible solution procedure is forged (Section 5.5). The solutions obtained

by the proposed method (PM) were compared to previously developed methods by applying the

PM to an extended benchmark dataset and a real-life assembly plant case study (Section 5.6.1).

From the 46 instances that an integer solution was known in the literature, the PM was able to

produce improved results in most cases, totaling 38 new integer solutions, of which 29 were

proven optimal. In total, 60 optimal solutions were obtained out of a dataset with 108 instances,

resulting in 55.56% of optimal solutions in the proposed dataset (Section 5.6.2). Lastly, better

integer solutions were found in all case study instances (4), of which 2 were deemed optimal

(Section 5.6.3).

Industries manufacturing large-size products often allow multiple tasks to be simultane-

ously performed by different workers in the same station. Given the resources, the managers aim
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to achieve the best possible productivity level. This is a notable realistic feature, which is viewed

as a natural extension of the problem’s simpler version and is widely employed in the literature.

Nonetheless, incorporating more practical extensions is a desirable modification. For instance,

equipment selection, worker heterogeneity, product variability (multi and mixed-model lines),

and line layouts (U-line, parallel stations) could be valuable features to be added to the PM.

Further research should concentrate in doing so, as well as implementing balancing and project

scheduling heuristics for the master and slave problems to mitigate computational burden.
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6 CONCLUDING REMARKS

This chapter presents final considerations along with the main contributions of the

presented PhD thesis. Furthermore, future research directions are provided.

6.1 FINAL CONSIDERATIONS AND CONTRIBUTIONS

This PhD thesis proposed solution methods that combine mathematical programming

and decomposition algorithms to solve extensions of the assembly line balancing problem.

Several real-world operational aspects of the studied industrial assembly lines have been taken

into account, such as robotic assembly lines and multi-operated stations. The obtained solutions

are analysed and compared to real-world as-built robotic lines or previous results from benchmark

datasets.

Chapter 1 introduced usual assembly lines found in manufacturing industries (e.g.

Figure 1 on page 14), focusing on the primary importance of decision aid models for assembly

line balancing problems. Several design and operational costs are concerned: facilities, equipment,

robots, workforce, productivity levels, among others. Furthermore, the general and specific

objectives of this PhD thesis had been described and the author’s research output has been listed.

The details and main terminologies of these particular assembly line balancing problems

were described in Chapter 2, such as its elements, physical characteristics, operational constraints,

and typical simplification hypotheses. Moreover, an extensive literature review based on publi-

cations and surveys regarding the Assembly Line Balancing Problem (ALBP) was conducted

in Chapter 2 to further define the proposed problems. This chapter specifically covered the

definition and uses of flow-shop production layouts, which are employed in automotive assembly

lines and gives rise to the ALBP. The simplification hypotheses (SH) presented in Section 2.2

define the most explored problem in the literature, the Simple Assembly Line Balancing Problem

(SALBP). Several variations of SALBPs were discussed in Section 2.3. In order to generalise

the problem into a General Assembly Line Balancing Problem (GALBP), SH are relaxed and

exemplified. A further generalisation was explored in Section 2.4 to define the Assembly Line De-

sign Problem (ALDP). Variations that are applicable in the automotive industry were presented,

describing their distinctive characteristics. Finally, in conjunction with introductory sections of

Chapters 3, 4, and 5, robotic assembly lines and multi-operated workstations are thoroughly



135

examined in Sections 2.5 and 2.6 to place the proposed problems into the gap and evidence its

contribution.

Contribution 1: The development of a literature review concerning the

ALBP and its general variations to evidence gaps for (i) an automotive in-

dustry assembly line design model and (ii) exact solution methods for as-

sembly lines with multi-manned stations.

Contributions of Chapter 3 are separately highlighted in Section 6.1.1. Similarly, contri-

butions of Chapters 4 and 5 are independently listed in Section 6.1.2.

6.1.1 Contributions to the robotic assembly line literature

Providing the best solution to real-world problems has been the greatest interest of

optimisation practical applications. Nonetheless, a gap between the academy research and

industrial applications still exists in the literature, one of them was observed on robotic welding

assembly lines, which are frequently found in the automotive industry: defining their production

layout design is an important global and strategic decision. In Chapter 3, the work developed in

the full-paper Michels et al. (2018b) and published in the Computers & Industrial Engineering

is presented. The Robotic Assembly Line Design (RALD) problem is defined and an MILP

formulation is proposed for it, taking into account several practical considerations of an RALD

scenario. The proposed model incorporates the linearisation of a cubic constraint and allows to

explicitly evaluate costs and benefits associated to parallel stations in an exact manner.

In Section 3.2, the RALD problem is described in detail and an overview of the

optimisation elements is done. It states the problem’s assumption and distinguishes the proposed

problem from previous Robotic Assembly Line Balancing (RALB) problems. Furthermore, it

described practical advantages of parallel station and welding tasks characteristics found in

automotive industries.

Contribution 2: The proposal and definition of the Robotic Assembly Line

Design (RALD) problem, which considers real-world practical extensions.

An MILP formulation to solve the proposed RALD problem was exposed in Section 3.3.

The modelling challenges were due to an integer linearisation of a cubic constraint and the

possibility to allow parallel stations in order to weight the costs and benefits of this feature in an

exact manner. Moreover, extra practical restrictions caused by welding line characteristics are

added to the general problem.
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Contribution 3: The development of an MILP formulation to solve the pro-

posed problem and the modelling of extra restriction for resistance spot

welding tasks.

Furthermore, the model described in Section 3.3 was applied to computational tests and

case studies in Section 3.4, in which the results were presented and discussed. Computational

case studies were performed in Section 3.4.1, combining large instances of real-world inspired

cases adapted from Sikora et al. (2017b) and cost ratio principles proposed by Askin and Zhou

(1997). The main conclusions drawn from this experiment were: (i) optimal answers tend to

have more parallel stations as the dead time increases or the robots are costly compared to the

equipment, and (ii) the intense use of track-motion devices when equipment prices are much

higher than the robot ones, due to its tendency to be more cost-effective.

Contribution 4: The development of a validation dataset for the parameters’

influence analysis and the model’s computational results analyses them-

selves.

Practical case studies based on three vehicle models presented in Sikora et al. (2017b)

reached optimal solutions (Section 3.4.2). As previously indicated in Section 3.4.2.1, it has been

possible only because the third vehicle model line layout could assemble both vehicle models

1 and 2. Furthermore, parallel stations evidenced its essential role when unproductive times

are considered, though paralleling was not necessarily cost-effective in every condition (e.g.

Figure 13, on page 62).

Contribution 5: The presentation of an industrial case study from a real-

world automotive assembly line to apply the RALD model and the possibility

to design robotic assembly lines at lower costs in the future.

6.1.2 Contributions to the multi-manned assembly line literature

In Chapters 2, 4, and 5, the existing literature on MALBPs referenced in Sections 2.6, 4.1,

and 5.2 indicated a lack of efficient exact solution methods for these problems.

The type-1 Multi-manned Assembly Line Balancing Problem (MALBP-1) with the

objective of minimising the number of workers and stations has been addressed in Chapter 4

of this PhD thesis. Preliminary results of this work were shortly presented in Michels et al.

(2018a), and its current version (MICHELS et al., 2019) is published in the European Journal of

Operational Research.
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In Section 4.3, a new Mixed-Integer Linear Programming (MILP) model was developed

along with several valid inequalities that work as symmetry break constraints to solve the

optimisation problem. This proposed formulation outperforms previously presented monolithic

mathematical formulations (KELLEGÖZ, 2017) in terms of solution quality and computational

processing time (Section 4.5.1).

Contribution 6: The development of a new decomposable MILP model with

valid inequalities for the MALBP-1.

By analysing the structure of MALBPs, it was possible to infer that the problem

was hierarchically divisible into a Master Problem (MP) and a Slave Problem (SP). Hence, a

Benders’ Decomposition Algorithm (BDA) could be forged (Section 4.4). The proposed BDA

was compared to previously developed methods (KELLEGÖZ, 2017) and was shown to produce

improved results while maintaining reasonable CPU time (Section 4.5.2).

Contribution 7: The generation of a decomposition strategy for the MALBP-

1 to forge a Benders’ decomposition algorithm.

Since past mathematical formulations were only able to solve some instances with up to

45 tasks, the main contribution of this work (MICHELS et al., 2019) was the ability to optimally

solve MALBPs up to 148 tasks. It has been possible by decomposing the original problem and

implementing a Benders’ decomposition algorithm employing combinatorial cuts during its

execution.

Contribution 8: The development of an exact algorithm to optimally solve

large-size instances from the MALBP-1 benchmark.

Correspondingly, the type-2 Multi-manned Assembly Line Balancing Problem

(MALBP-2) with the objective of minimising the line’s cycle time and number of stations

has been approached in Chapter 5 of this PhD thesis. The manuscript containing this variant of

the MALBP is presented in a slightly modified version (MICHELS et al., 2020) from the one

currently published in the Operations Research Perspectives.

In Section 5.4, the Mixed-Integer Linear Programming (MILP) model developed for the

MALBP-1 is extended to the MALBP-2 along with appropriate valid inequalities for the problem

at hand. This section explores crucial modelling decisions to correctly define the MALBP-2 in

the literature.

Contribution 9: The clarification on the definition of what constitutes a

MALBP-2.
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The proposed formulation for the MALBP-2 also outperforms previously presented

monolithic mathematical formulations (ROSHANI; GIGLIO, 2017) in terms of solution quality

and computational processing time (Section 5.6.1).

Contribution 10: The extension of the previous MILP model with valid in-

equalities for the MALBP-2.

Section 5.5 presented the proposed method for the MALBP-2: it integrated an initial

solution procedure with an adapted and enhanced BDA from the previous work. When compared

to previously developed methods (ROSHANI; GIGLIO, 2017), it has produced improved results

for virtually all medium and large-size instances (Section 5.6.2).

Contribution 11: The adaptation, extension, and enhancement of the previ-

ously developed Benders’ decomposition algorithm for the MALBP-2.

Once again, past mathematical formulations were only able to optimally solve few

instances with up to 30 tasks, the main contribution of this work (MICHELS et al., 2020) was to

develop a method that is capable to optimally solve MALBP-2 instances up to 83 tasks. It has

only been possible by integrating an initial solution procedure with an adapted and enhanced

Benders’ decomposition algorithm from the previous MALBP-1 work. Innovative Benders’

combinatorial cuts were developed and synergies between the initial procedure and the enhanced

BDA were verified.

Contribution 12: The development of an exact algorithm to optimally solve

large-size and real-world instances from the MALBP-2 benchmark.

6.2 FUTURE RESEARCH

The study published in Michels et al. (2018b) exposed how effective the proposed MILP

formulation is when it comes to designing a robotic assembly line. It has included practical

extensions that were able to shrink the search-space. Therefore, for future research, the proposed

model can be widened to incorporate task scheduling for each robot in the station. Moreover,

the model may be adapted to represent literature variants, such as different product models

characteristics in a mixed-model line and set-up times between them.

Allowing multiple workers to simultaneously perform different tasks at the same station

is a natural extension of the simpler version of the assembly line balancing problem. It is also

a notable realistic feature widely employed in industries manufacturing large-size products.
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Nonetheless, incorporating more practical extensions into the developed BDAs is a desirable

modification to extend works developed in Michels et al. (2019) and Michels et al. (2020).

Different line layouts (U-line, parallel stations), product variety (multi and mixed-model lines),

and task assignment restriction are desirable extensions to be modified in the BDAs.

Further research should focus on doing so and mitigating computational burden at

the same time. Despite the quite significant progress achieved by the proposed models and

algorithms, further important improvements can still be devised for new methods. They might

include, for instance, balancing and project scheduling heuristics for the master and slave

problems, respectively. That stated, as a final research direction of this thesis, the author invites

readers to enhance and integrate the previously developed models and algorithms as follows:

• MALBP: integrating equipment selection, paralleling possibilities, and dead time as an

extension to the classical problem. This may generate a cost-oriented MALBP, thus several

adaptations are also required in the previously proposed BDAs.

• RALD: integrating task scheduling for each robot in the station in order to generalise

the problem for all types of tasks. It guarantees that multiple robots working at the same

station respect precedence relations within stations, which could translate into practical

features being included into the enhanced MALBP model.

In addition to the mentioned items, there is room for improvements to the presented algo-

rithms and MILP models themselves. That could undoubtedly contribute to facilitate applications,

improve solution quality, and enhance performance of the proposed methods.
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