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RESUMO

MOURA, Hector. Estimação de Parâmetros e Superfícies em Ensaios Não-Destrutivos por
Ultrassom. 2021. 82 f. Tese (Doutorado em Engenharia Elétrica e Informática Industrial) –
Universidade Tecnológica Federal do Paraná. Curitiba, 2021.

Técnicas com ultrassom possuem um papel importante na área de Ensaios Não-Destrutivos.
As vantagens do uso de ultrassom são seu baixo custo, portabilidade e uso seguro. O uso de
imageamento por ultrassom facilita a localização e caracterização de defeitos internos, bem
como a detecção e mapeamento de áreas corroídas. O processo de imageamento pode ser feito de
diferentes maneiras, porém, em todas, parâmetros de inspeção como velocidade de propagação do
som em diferentes meios, assim como a interface entre meios, devem ser conhecidos. Premissas
incorretas nesses parâmetros levam a distorções nas imagens resultantes. Essas distorções podem
prejudicar a detecção e caracterização de defeitos. A estimação desses parâmetros, geralmente, é
feita por calibração usando procedimentos e materiais específicos. Os objetivos deste estudo são:
(1) desenvolver métodos para estimação de parâmetros durante a inspeção e sem a necessidade
de materiais específicos, assim como (2) reconstrução de superfícies para mapear a corrosão em
tubulações. Para o primeiro objetivo, é mostrado que algoritmos de imageamento comuns, como
o Total Focusing Method, podem ser usados para estimar a velocidade de propagação do som
nos material imageado. O método proposto consegue realizar uma estimativa sem a necessidade
de uma busca em grade, atingindo uma redução de iterações de 8000 para até 23, com a mesma
tolerância quando comparado a métodos presentes na literatura. Para o segundo objetivo, foi
proposto um método para estimar o perfil 1D de superfícies. Esse método inédito é formulado
como um problema inverso. Esse problema é definido como uma soma de mínimos quadrados
ponderados com regularização Total Variation de segunda ordem, dessa forma, favorecendo
soluções lineares por partes. O método desenvolvido se mostrou mais robusto a ruído do que
outros métodos da literatura. Em comparação com o método estado da arte, o método proposto
obteve erros menores em até uma ordem de grandeza. Quando os perfis estimados foram usados
para o imageamento do interior de objetos, o método proposto também forneceu imagens
melhores que possibilitam melhor detecção dos defeitos presentes.

Palavras-chave: Processamento Digital de Sinais. Ensaios Não-Destrutivos. Estimação de
Parâmetros.



ABSTRACT

MOURA, Hector. Parameter and Surface Estimation in Ultrasound Non-Destructive
Testing. 2021. 82 p. Thesis (PhD in Electrical and Computer Engineering) – Universidade
Tecnológica Federal do Paraná. Curitiba, 2021.

Ultrasound techniques play an important role in Non-Destructive Testing. The advantages of
ultrasound are its low-cost, portability and safety. Ultrasound imaging facilitates the localization
and characterization of internal defects, as well as the detection and mapping of corroded areas.
The imaging process can be done in different ways, but common to all, inspection parameters
such as sound speed in the different media, as well as the interface between these media, must
be known. Wrong assumptions on these parameters lead to distortions in the resulting images
that could, potentially, hinder the characterization of defects. Estimation of these parameters is
usually done by calibration using specific materials and procedures. The objectives of this study
are to develop (1) methods to estimate such parameters during inspection time, without the need
for specific materials, as well as (2) surface reconstruction methods to address corrosion mapping
in pipes. In the first objective, it is shown that commonly used imaging processes, such as the
Total Focusing Method, can be used to estimate the sound speed in the imaged material with low
uncertainty. The proposed method does a gridless search in a given interval and is able to produce
an estimate in up to 23 iterations, from the 8000 iterations needed, for the same tolerance, in the
methods present in the literature. In the second objective, a method for estimating a 1D surface
profile is proposed. This new method weights the contribution of each surface point as a way to
cope with different SNR levels. Also, by means of a second-order Total Variation regularization,
the method promotes piecewise linearity in the solution while suppressing noise. The developed
method is shown to be more robust in the presence of noise than other methods in the literature.
When compared to the state-of-the-art, the proposed method obtained errors almost ten-fold
smaller. Using the estimated profiles to produce interior images of the objects, the proposed
method lead to more accurate images, enabling better detection of the flaws.

Keywords: Digital Signal Processing. Non-Destructive Testing. Parameter Estimation.
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1 INTRODUCTION

In the oil industry, specially in offshore platforms, the safe operation of pipelines is

crucial. As stopping production and replacing sections of a pipeline is a very costly process,

regular inspections of structural health are needed. If, during an inspection, it is detected that

the damage to the pipeline has exceeded a given threshold, then the damaged section must be

replaced. This helps to reduce the costs by stopping production only when it is strictly necessary.

Figure 1 shows an example of a corroded half pipe, this sample was removed from operation

after an inspection. For submarine inspections, ultrasound techniques can be used for damage

assessment.

Figure 1 – A Corroded half pipe that was removed of operation for analysis.

Source: Own.

In Non-Destructive Evaluation (NDE), also known as Non-Destructive Testing (NDT),

ultrasound techniques are widely used for detecting and sizing defects such as voids, cracks and

others, as well as for measuring the remaining thickness of corroded specimens. Ultrasound array

systems for ultrasonic imaging have become standard in industrial NDE due to their capabilities

of beam focusing, steering and electronic scanning. Images of a cross-sectional view are called a

B-scan, for Brightness scan, which is one of the most common kind of images generated with

ultrasound.

To evaluate the reflectivity, or brightness, throughout the Region of Interest (ROI),

conventional phased-array relies on delay laws applied at transmission and reception. These

delay laws allow the focusing of waves at specific points. Then, an image can be formed, or
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reconstructed, by repeating this procedure for every point of a discretized ROI. Depending on

the number of points in the ROI, this process may be prohibitively time-consuming.

One way of reducing the reconstruction time is to emit several unfocused waves and

post-process the received data using imaging algorithms such as the Synthetic Aperture Focusing

Technique (SAFT) (DOCTOR et al., 1986; STEPINSKI, 2007), the Total Focusing Method

(TFM) (HOLMES et al., 2005; HUNTER et al., 2008) and Coherent Plane Wave Compounding

(CPWC) (MONTALDO et al., 2009). These techniques depend on prior knowledge such as

the wave propagation speed in the specimen and, in the case of immersion testing, the wave

propagation speed in the coupling medium and the surface geometry of the inspected object.

In the case of a mismatch between the assumed and actual speeds, the recovered image

will be distorted, making it harder to correctly determine the location and characteristics of flaws.

Similarly, a wrong assumption on the geometry of the interface will result in malformed images.

In this study, methods to estimate inspection parameters, such as sound speed and

surface profile of immersed objects, will be analyzed. The use of the surface profile estimation to

map corroded interior surfaces is analyzed as well. Experiments are carried out on both simulated

and experimental data to ensure practicality.

This document is organized as follows: Chapter 2 reviews the literature of NDE to

establish its basic notions; Chapter 3 describes the sound speed estimation method; Chapter 4

describes the 1D surface profile estimation method developed; finally, Chapter 5 summarizes the

results obtained and details the next steps in the development of both methods.

1.1 GENERAL OBJECTIVE

The objective of this research is to develop methods of estimating inspection parameters

from acquired data. These methods must work in real-world scenarios without the need for

reference specimens.

1.2 SPECIFIC OBJECTIVES

1. To reproduce the state-of-the-art method, and results, presented in (TREEBY et al., 2011)

in order to establish a baseline for comparison on sound speed estimation.

2. To reproduce the state-of-the-art method, and results, presented in (MALKIN et al., 2018)

in order to establish a baseline for comparison on surface profile estimation.



15

3. To improve on the search method used in (TREEBY et al., 2011) in order to reduce the

number of iterations required to reach the same tolerance level.

4. To create a method for surface profile estimation based on second-order Total-Variation

regularized inverse problems.

5. To choose a suitable algorithm for solving the proposed formulation within the time

limitations of the imaging process.

1.3 SUBMITTED PAPERS

The method for sound speed estimation presented in this study is based on the one

described in (MOURA et al., 2020). This thesis contains excerpts and extensions of the following

articles.

1. H. L. Moura et al., (2019) “Image-based ultrasound speed estimation for NDT in homoge-

neous media”, Review of Progress in Quantitative Nondestructive Evaluation.

2. H. L. Moura et al., (2020) “Image-Based Ultrasound Speed Estimation in Isotropic Materi-

als”, in IEEE Sensors Journal, doi: 10.1109/JSEN.2020.3002853.

3. H. L. Moura et al., (under review) “Surface Estimation via Analysis Method: A Constrained

Inverse Problem Approach”, submitted to IEEE Transactions on Ultrasonics, Ferroelectrics,

and Frequency Control.



16

2 ULTRASOUND NDE

This chapter reviews the available literature in order to establish the basic notions of

NDE. The understanding of these notions is necessary since the proposed methods build upon

these notions.

2.1 ULTRASOUND TESTING

NDE can be simply defined as an examination performed on an object in order to

evaluate the material characteristics and presence of flaws, for example, in a way that do not

alter the object (HELLIER, 2020, Chapter 1). NDE is present in every major industry, if not all,

and plays a major role in preventing failures. It can be applied in different stages of a product

life-cycle, during production (RIEDER et al., 2014; EVERTON et al., 2016; MILLON et al.,

2018) and after deployment to ensure its safe operation (MAIERHOFER, 2003; LE et al., 2017;

GIURGIUTIU; CUC, 2005). The monitoring of a structure, or product, is done in order to

prevent failure during service. For example, aircrafts often undergo inspection to ensure it is safe

for flight (HSU, 2013). Bridges (LEE et al., 2014; LE et al., 2017) and pipelines (CARVALHO

et al., 2008; RIZZO et al., 2010) also undergo regular inspections to monitor their integrity.

Technologies applied to NDE include, but are not limited to: visual testing, radiographic

testing, ultrasonic testing, eddy current testing and thermal infrared testing. The development of

ultrasound equipment for NDE dates back to the first half of the 20th century (HELLIER, 2020).

Even so, most articles about it date back to the 1970s (ADLER; LEWIS, 1976; KINO, 1979;

BORLOO, 1973; KRAUT, 1976). It presents a quick, safe and cost-effective method for in-situ

detection of flaws in manufactured parts. It is applied in a wide range of industry applications,

from nuclear energy to aircraft inspection (KINO, 1979).

Figure 2 illustrates an ultrasound inspection using a monolithic probe i.e. a single

element probe. In this scenario, the probe is placed in three different positions. At each position,

the transducer is fired and the echoes are recorded. The recorded signal is called an Amplitude-

scan, or A-scan. A flaw in the object will generate an echo with amplitude dependent on the flaw

size. Also, the angle relative to the normal of the probe affects the amplitude of the echo.

By moving the probe and performing acquisitions at each position, the recorded A-scans

can be used to form a cross-section image of the object, termed B-scan. Figure 3 illustrates
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Figure 2 – Example of ultrasound inspection. An ultrasonic probe placed in three different positions over
an object and the respective A-scans obtained in each position. The red dashed lines indicate the
beam spread. Note that flaws near the limit of beam spread give a lower amplitude echo compared
to a flaw placed right under the probe.

Source: Own.

a B-scan of one of the flaws in Figure 2. The grouping of A-scans side-by-side is one simple

way of obtaining a B-scan. This kind of B-scans presents poor lateral resolution but, as will be

explained in Section 2.3, the use of more advanced techniques can greatly improves that.

In some situations, it is convenient to transmit waves with an incident angle different

from zero. In such cases, a wedge can be used to couple the probe to the object in a way that the

waves enter the object at the desired angle, as shown in Figure 4. Wedges can also be used for

coupling the probe to different geometries, and in this case a wedge must either be specifically

designed for the target geometry or be conformable (LONG; CAWLEY, 2008).

Different transducer technologies were developed that can overcome some of the

restrictions of wedges, such as Ultrassound Array (UA), ElectroMagnetic Acoustic Transducer

(EMAT), and Laser-Induced Focused Ultrasound (LIFU) (DIXON et al., 1999; HWANG et al.,

2000; SONG et al., 2002; DIXON et al., 2011). These technologies enabled more flexible and

informative inspections. An example of that is the possibility of focusing, and steering, beams
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Figure 3 – (a) A simple B-scan can be formed by placing A-scans side-by-side to form an image. (b) A water-
fall plot of the A-scans placed side-by-side.
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Figure 4 – An wedge can be used to transmit waves at different angles in order to reach certain points of the
object.

Source: Own.
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with UAs. The use of UAs has become an industrial standard (TREMBLAY et al., 2013) and

will be the focus of this review.

2.2 ULTRASOUND ARRAYS

UAs are made of small piezoelectric transducer elements in a single casing. These

elements are wired independently, so that elements can be driven separately and the echo signals

can be received in parallel (SCHMERR, 2014, Chapter 1).

UAs can also have multiple element geometries and distributions. The most common

configurations are the linear arrays and the matrix arrays. Linear arrays are composed of several

rectangular elements arranged side-by-side in the G-axis. The elements dimensions are much

smaller on the G-axis than on the H-axis, as shown in Figure 5(a). Due to the smaller length on the

G-axis, the waves generated by the elements are more divergent than in the H-axis (SCHMERR,

2014, Chapter 4). This divergence is what enables the steering and focus of the wavefront.

The G-axis is also called the active direction. In the H-axis, or the passive direction, the wave

generated by a single element is closer to a plane-wave due to the length of the element in this

direction.

Matrix, or 2-D, arrays are composed of small elements distributed on a plane. These

elements can be of any geometry, although squares are more cost-effective (SCHMERR, 2014,

Chapter 1). The distribution can be on an uniform grid, as illustrated in Figure 5(b), but is not

restricted to it. Some papers (DIARRA et al., 2012; DIARRA et al., 2013; HARPUT et al., 2020)

suggest that sparsely distributed elements, with random positions and orientations are capable of

generating images with Signal-to-Noise Ratio (SNR) close to those generated by arrays with

more elements. Matrix arrays are capable of focusing in volumes, instead of a single plane, and

thus allow for volumetric (3D) imaging without movement of the probe.

The emitted wavefront can be manipulated by applying different delays to each element,

forming the delay laws. This enables the emitted beam to be steered and/or focused. Different

delay laws can be applied in transmission and reception. The process of manipulating the

wavefront is called beamforming (SIMONETTI; HUANG, 2008).

Similar to delays, it is also possible to apply individual amplitude gains to each element.

These gains are called apodization laws. Apodization is used to tailor the acoustic radiation

characteristics of a UA. It is mainly used for reducing the effects of grating lobes in imaging

processes. These capabilities are illustrated in Figure 6.
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Figure 5 – A linear array (a) with rectangular elements, typically used for 2D imaging. A matrix array (b)
with square elements distributed in an uniform grid. Such array can be used for 3D imaging
without movement of the probe.

(a) (b)

Source: Own.

Figure 6 – (a) Components of an ultrasonic phased array. Different gains and delays can be applied to each
element separately to manipulate the emitted beam. In (b), the elements are fired according to a
linear delay law to steer the beam. In (c), a non-linear delay law is applied to focus the beam in a
given location. These delay laws can also apply steering and focusing to the same beam in order
to focus in different directions.

(a)

(b) (c)

Source: Adapted from Schmerr (2014)
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The flexibility in defining different delay laws enables the use of a single UA in different

inspection scenarios. For example, a set of delay laws can be used to replace different kinds of

wedges, reducing costs and inspection times.

The process of beamforming can also be done in post-processing, that is, after the

acquisition is done. In this way, acquisition times can be further reduced if the inspector does not

need to see images in real time.
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2.3 POST-PROCESSING BEAMFORMING

For post-processing beamforming, several unfocused waves are fired and the echoes are

received, in parallel, by other elements in the array. This, sometimes, is called Divergent Wave

Imaging (DWI) or Plane Wave Imaging (PWI)(MONTALDO et al., 2009).

One such method of DWI, denoted Full Matrix Capture (FMC), consists in firing each

element sequentially while receiving with all other elements. The firing of every element may

be time consuming (HOLMES et al., 2004). Figure 7 illustrates the structure of an FMC of a

4-elements probe.

Figure 7 – An FMC of a 4-elements probe. The A-scans, ℎ8, 9 [C], of every combination of two elements is
placed in the matrix. The subscripts 8 and 9 denote, respectively, the transmitting and receiving
elements.


ℎ0,0 [C] ℎ0,1 [C] ℎ0,2 [C] ℎ0,3 [C]
ℎ1,0 [C] ℎ1,1 [C] ℎ1,2 [C] ℎ1,3 [C]
ℎ2,0 [C] ℎ2,1 [C] ℎ2,2 [C] ℎ2,3 [C]
ℎ3,0 [C] ℎ3,1 [C] ℎ3,2 [C] ℎ3,3 [C]


Source: Own authorship.

To reconstruct the images from unfocused waves, delays are applied to each A-scan

and summed coherently in order to form an image. The main advantage of post-processing

beamforming compared to hardware beamforming is the superior flexibility to form the im-

age (TREMBLAY et al., 2013).

In hardware beamforming, one needs to determine which points are going to be focused

prior to acquisition. In order to change imaging parameters, a new acquisition must be done. For

post-processing beamforming, assuming the A-scans acquired are long enough, different regions

can be imaged with only one acquisition set.

Among the ultrasound imaging techniques used in NDE, the most used are SAFT,

TFM and CPWC. These techniques are very similar, differing in terms of excitation pattern and

amount of data processed. SAFT was originally developed to handle a single-element transducer

acquiring signals in different positions. This is equivalent to using only the pulse-echo data from

FMC.

TFM uses all data in the FMC (pulse-echo and pitch-catch) and, therefore, presents

better SNR in the reconstructed images. The main disadvantage of TFM is that it requires the

acquisition of the whole FMC, which can be storage burdensome. There are ways to reduce
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storage requirements by undersampling the FMC. For example, by considering the reciprocity

theorem (SCHMERR, 2014)1, a triangular matrix, like the one in Figure 8, can lead to very

similar images by using TFM. This undersampled matrix is often called a Half Matrix Capture

(HMC) (TREMBLAY et al., 2013).

Figure 8 – An HMC of a 4-elements probe. According to the reciprocity theorem, A-scans ℎ8, 9 and ℎ 9 ,8 are
equivalent. In order to make faster acquisitions, it is possible to acquire only one of them and
double its amplitude. This is an example of an upper triangular matrix but an HMC could be
just as well a lower triangular matrix.


ℎ0,0 [C] 2.ℎ0,1 [C] 2.ℎ0,2 [C] 2.ℎ0,3 [C]

ℎ1,1 [C] 2.ℎ1,2 [C] 2.ℎ1,3 [C]
ℎ2,2 [C] 2.ℎ2,3 [C]

ℎ3,3 [C]


Source: Own authorship.

When very fast acquisition is required, PWI is the more common approach. This process

consists in the emission of several plane-waves steered in different angles. The number of waves

emitted can be less than the number of elements in the probe. While the number of waves is

reduced, the energy transmitted by each firing is increased.

The CPWC algorithm uses data acquired by PWI. It presents SNR higher than SAFT

and, if enough waves are fired in different angles, it presents images very close in SNR to

TFM (LE JEUNE, L. et al., 2016a; LE JEUNE, L. et al., 2016b).

2.3.1 Beamforming Methods

For the methods mentioned, the image is formed by a delay and sum process done to

time-domain data. The distances between investigated points in the ROI and the piezoelectric

elements, as well as the sound speed in the material, are assumed to be known. For SAFT, the

2D image formation in the (G,I)-plane is described as

� (G,I) =
�����∑
C∈)

�C (G,I) · ℎC
(
23C (G,I)

2

)����� , (1)

where � (·) denotes the reconstructed image, ) represents the set of elements in the array, �C (·)

denotes the apodization weights, ℎC (·) denotes the analytical signal of the pulse-echo A-scan
1 The reciprocity theorem states that the A-scan received in element 8 when a wave is transmitted by element 9

is equal, ignoring the noise components, to the A-scan received in element 9 when a wave is transmitted by
element 8. In other words, the FMC is symmetrical with respect to the transmitting and receiving elements.
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Figure 9 – The three presented algorithms are based on applying delays and coherently summing different
A-scans. The SAFT algorithm considers only pulse-echo A-scans and the delay depends solely
on the distance between the transducer element and the investigated point in the ROI. TFM
uses every A-scan possible in the FMC data and the delays are calculated using the distances
between emitting and receiving elements to the each point in the ROI. The CPWC algorithm uses
the A-scans received by each element when the array fires a plane wave of angle U. The delays
are calculated taking into account the distance traveled by the plane wave to the point and the
distance from the point to the each receiving element. To evaluate the delays, the total distances
are divided by sound speed in the evaluated media.

Source: Own authorship.

from element C and 3C (·) denotes the Euclidean distance from the element C to the point (G,I), as

shown in Figure 9. For the TFM algorithm, the image is given by

� (G,I) =
�����∑
C,A∈)

�C,A (G,I) · ℎC,A
(
3C (G,I) + 3A (G,I)

2

)����� , (2)

where ℎC,A (·) denotes the analytical signal from element obtained when element C is the emitter

and element A is the receiver. Similarly, �C,A (·) denotes the apodization weights.

Finally, for CPWC the image formation process is described as

� (G,I) =
����� ∑
U∈Λ,A∈)

�U,A (G,I) · ℎU,A
(
3U (G,I) + 3A (G,I)

2

)����� , (3)

where Λ represents a set of emitting angles, ℎU,A (·) denotes the analytical signal obtained in

element A when a plane wave with angle U is emitted and 3U (·) is the distance traveled by the

plane wave to the point (G,I), as shown in Figure 9. The distance 3U (·) is defined according to

the angle U as

3U = (G − G4) sinU + I cosU, (4)

in which G4 denotes the position of the first element to emit. Usually, the apodization weights

can be ignored and set to ones. This leads to visual artifacts in the image. One way of deal-
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Figure 10 – Images reconstructed with TFM from data acquired in an aluminum block of with an SDH
of 1mm radius. The red circles represent the position of the SDH, 40mm below the transducer
position. Assuming wrong values of sound speed causes distortion of the SDH echo. The three
images were reconstructed assuming different speeds, (a) with assumed 25% lower than actual
speed, (b) with actual speed, 6319 m/s, and (c) with assumed speed 25% higher than actual
speed.

(a) (b) (c)

Source: Own authorship.

ing with these is to weight the signals according to the directivity function of the transducer

elements (SCHMERR, 2014, Chapter 4).

From Equations (1), (2) and (3) it becomes clear that a mismatch in sound speed affects

the imaging process. A mismatch can occur, for example, if the reference speed is measured in

different circumstances than those of an inspection. When the assumed sound speed is slightly

different from the actual sound speed, the image obtained appears to be blurred. On the other

hand, for large mismatches, the image obtained is not homogeneously blurred and follows certain

patterns, such as upward and downward curves.

Figure 10 shows three TFM reconstructed images of a Side-Drilled Hole (SDH) in an

aluminum block. It illustrates the effect on the reconstructed image when there is a 25%, positive

and negative, mismatch in the assumed sound speed in relation to the actual sound speed of

6319 m/s. While a mismatch of 25% will hardly occur in a real scenario, it highlights the effects of

a mismatch. In seawater, the sound speed can vary between 1450 m/s and 1570 m/s (DUXBURY,

2020) depending, mostly, on temperature and pressure. This range translates to a mismatch of up

to 7.95%. In solids with higher sound speed, mismatches due to differences between reference

and calibrated values are expected to be lower. In the case of acrylic, the speed found was 1.5%

greater than what is found in a reference table (MATERIAL. . . , 2021).

As the mismatch in sound speed leads to degraded/blurred images, one way to estimate

the magnitude of such mismatch is the quantitative evaluation of the degradation present in a
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Figure 11 – Example of wave trajectory in an immersion inspection. The trajectories are dependent on the
position of the elements, the point investigated and the sound speed in both media.

Source: Own authorship.

given reconstructed image. Chapter 3 reviews major concepts of Image Quality Assessment

(IQA) that can be used to this end.

2.4 IMAGING THROUGH SURFACES

Figure 11 illustrates a scenario where the inspected object is immersed in fluid for

coupling with the probe. This is usually done when the inspected object has an irregular surface

and the probe cannot be placed in direct contact with it. In such cases, imaging the interior of

the object becomes more complex as the waves are refracted by the surface. The refraction is

dependent on the incidence angle and the sound speed in both materials. This relation is given by

Snell’s Law.

Once the trajectories are calculated, based on estimated sound speeds and objects

surface, a TFM image can be formed according to

� (G,I) =
�����∑
C,A∈)

�C,A (G,I) · ℎC,A
(
3C0 (G,I) + 31A (G,I)

21
+ 30 (G,I) + 31 (G,I)

22

)���� , (5)

where 3C0 (·) and 30 (·) denote the distances from point � in the surface to the transmitting element

and to the interior point (G,I), respectively. Similarly, 31A (·) and 31 (·) denote the distances from

point � in the surface to the receiving element and to the interior point (G,I), respectively.
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Figure 12 – Images reconstructed with TFM from simulated data of three SDHs inside a steel cylinder. Im-
age (a) shows the SDHs when the surface is exactly known. Image (b) shows the same region but
with a rough estimated surface. Both images are displayed in dB scale.
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Source: Own authorship.

In the case of a faulty estimated surface, the trajectories calculated will not correspond

to the truth. These will, in turn, lead to artifacts and loss of coherence in the reconstructed images.

These effects are illustrated in Figure 12. Also, if there is a mismatch in sound speed inside

the object, the trajectories will be wrong, causing other artifacts besides the apparent blur. In

Chapter 4, methods of estimating the surface of objects will be revised and a new method will be

presented in details.

2.5 IMAGE STITCHING

The inspection of large objects require the probe to be moved along a trajectory. At

each point of the trajectory, an acquisition is made and, from it, an image can be formed. The

images associated with each position can be analyzed individually or combined together in a

larger image. The process of combining the images is called image stitching (BROWN; LOWE,

2007).

This process is commonly used for creating panoramic images from different photos

with some overlap. By knowing the movement of the camera between different photos, algorithms

can make the necessary transformations, such as translation and rotation, to position images

together correctly. Brown and Lowe (2007) showed that different images must be blended

carefully in order to reduce artifacts. This is illustrated in Figure 13.
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Figure 13 – Example of an image stitching method for panoramic photos. In (a) only half of the captured im-
ages are present, to better illustrate the individual transformations. (b) shows the photos stitched
with no gain correction or blending. (c) shows the same photos combined using gain correction
and alpha blending.

(a)

(b)

(c)

Source: Adapted from Brown and Lowe (2007).

The blending between images is usually done via alpha-blending, where an image

slowly turns transparent while overlapping with another image. This is similar to to a weighted

averaging of pixels, where pixels near the border of their corresponding images have smaller

weights. This allows for smooth transitions, making the "seams" between images subtle.

Although similar, image stitching for ultrasound images has important differences, for

example, a B-scan image shows a cross-section view of the scene. Another difference is the

illumination, which in the case of ultrasound imaging comes from the probe. Depending on the

orientation of reflectors in a certain region, the waves reflected may not reach the probe again.

Because of this, pixels in an overlapped region can be brighter in one image and dimmer in

another.



29

Figure 14 – Difference between stitching methods. Averaging the overlapping pixels leads to a final image
with clear seams and lower contrast. By keeping the maximum valued pixel the transitions are
more subtle and the visual quality of the image is increased. Images are in logarithmic scale for
better visualization of the differences.
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Source: Own authorship.

Malkin et al. (2018) proposed to average the pixels in overlapped regions. As stated

before, pixels that correspond to the same region, but in different images, can have different

values of brightness according to probe positioning. By averaging these pixels, SNR is lost and

contrast is diminished. McKee et al. (2020) proposed the use of the maximum valued pixels to

be used in overlapping regions. The SNR is mantained since there is no loss of signal amplitude

or amplification of noise. This also leads to subtle transitions between images, as demonstrated

in Figure 14. From here on, the process of image stitching will refer to combining images by

keeping the maximum valued pixels in overlapped regions.

2.6 COMMENTARIES

This chapter reviewed the basic notions of NDE, as well as the role of ultrasound in

NDE. Also, the advantages of using UAs and post-processing beamforming for inspections.

Common methods for post-processing beamforming, SAFT, TFM and CPWC, were introduced
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and detailed. Along with the methods, some of the problems associated with wrong inspection

parameters were demonstrated. Additionally, the method of combining images of different and

overlapping regions, called stitching, was defined.
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3 SOUND SPEED ESTIMATION

Generally, sound speed must be calibrated prior to every inspection. This calibration is

done using a specimen of the same material as the inspected object, but with known geometry,

so that the echoes can be related to a known distance, as illustrated in Figure 15. Frequently,

the exact conditions of the inspection cannot be reproduced during calibration, which may

lead to errors. In submarine inspections, for instance, parameters such as pressure, salinity

and temperature influence the sound speed in water (WONG; ZHU, 1995) and the estimation

and reproduction of such conditions beforehand is impractical. To avoid such complications, a

reference-free calibration method is desired.

Figure 15 – Scheme for sound speed calibration with specimen of known geometry for both contact and
immersion testing. The sound speed in the specimen, 2B , may be estimated from the total distance
traveled by the wave inside the specimen, 2�B , divided by the round-trip time measured between
two backwall echoes, CBw. In the case of immersion testing, the sound speed in the water, 2F , can
be measured similarly by dividing the distance of the transducer to the frontwall and back, 2�w,
by the round-trip time measured to the first echo, CFw. In this case, 2B can be found by dividing
2�B by the time between the frontwall echo and the backwall echo, C3 .

Source: Own authorship.
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3.1 REFERENCE-FREE SOUND SPEED ESTIMATION

When no information is available about the geometry of the specimen, the distortion or

blur level on reconstructed images may be used as an indication of speed mismatch. By defining

a metric or function to quantify the sharpness of the reconstructed image, it is possible to search

for the speed that maximizes the sharpness and thus assign it as the estimated speed. This process

is analogous to the autofocus used in practically every modern digital camera (HE et al., 2003;

KO et al., 2001). In this sense, the sound speed can be seen as a focusing parameter that can be

tuned based on visual assessment of image sharpness.

Hunter et al. (2010a) proposed an autofocus method to estimate the position of the

elements in a flexible array by maximizing the contrast of the reconstructed image. The main

limitation of their method is that the image must contain an isolated feature. Although this

limitation has been addressed in another work (HUNTER et al., 2011), the scheme is still based

on strong assumptions of the features present in the image, e.g. a planar backwall.

Napolitano et al. (2006) developed a method to automate the sound speed selection in

order to increase lateral resolution in the resulting image. This is done by analyzing the spatial

frequency data of images reconstructed with various sound speeds.

This concept was also applied to photoacoustic tomography of living tissues (TREEBY

et al., 2011) in order to obtain an average sound speed that maximizes image sharpness. The

authors investigated the use of three image quality metrics in an interval ranging from 1400 m/s

to 1600 m/s. This class of methods eliminates the need of prior knowledge, such as the geometry

of a calibration block, or a reference for comparison, such as a ground-truth image. Therefore,

this class may be denoted as reference-free.

Jakovljevic et al. (2018) proposed a model-based local sound speed estimator. This

estimator uses an inverse problem approach to evaluate the local sound speeds from the average

sound speed in a given path. The average sound speed is obtained using the method by (ANDER-

SON et al., 2000), where a wire target is imaged with varying beamforming parameters, i.e.,

varying assumed sound speeds.

Abe et al. (2019) proposed a method to fit the theoretical propagation time from a

known scatterer to each probe element with the measured values, in order to estimate the sound

speed distribution. Their method requires knowledge of scatterer location in order to evaluate the

theoretical propagation times.
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In (MOURA et al., 2020) it was proposed a method to estimate the sound speed similar

to the one presented in (TREEBY et al., 2011). The method, which also evaluates a metric over

reconstructed images, requires a fine grid in order to obtain the extremum of the metric function.

This requires many images to be reconstructed and, thus, the method is time-consuming.

3.2 IMAGE QUALITY METRICS

The literature of IQA is abundant in methods for determining focus, presence of

artifacts and general quality of images, according to the human perception (WANG et al., 2002a;

WANG, 2011). These methods are usually grouped in three categories: Full-Reference, Reduced-

Reference and No-Reference. The first category compares a distorted image to a reference image

to evaluate the quality. In a Reduced-Reference scheme, there is no reference image but there is

information about the characteristics of the reference image, e.g., some statistical model (D.V.M;

SIMONCELLI, 2005). In the No-Reference case, there is only the distorted image and the

distortion is assumed to follow a model, for example, a gaussian blur (WANG et al., 2002b).

The mismatch between the assumed and actual speeds causes distortions in the recon-

structed images. Without a reference image of the specimen, No-Reference metrics allow this

distortion to be used as a means to estimate the mismatch between speeds. Hereinafter, the term

“metric” refers to No-Reference metrics and the goal is to determine the value for which the

mismatch is closer to zero.

Treeby et al. (2011) employed three metrics: Brenner gradient, Tenenbaum gradient

and normalized variance. Hunter et al. (2010a) employed the contrast of reconstructed images

as a quality metric. The authors used an autofocus approach to estimate the positions of the

transducer elements in a flexible array by maximizing the contrast of the reconstructed images.

In this study, the application of these functions in an autofocus approach to speed estimation in

NDE is verified.

Since there are many possible choices for metrics, here only the more relevant metrics

found in the NDE literature will be used. The first metric, the Tenenbaum gradient (TREEBY et

al., 2011), can be posed as

�6 =
∑
G,I

[
(6 ∗ �)2 + (6) ∗ �)2

]
G,I

, (6)
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where G and I are the horizontal and vertical indices of the image, ∗ denotes the 2-D convolution

operator, � represents the image and 6 can be defined as the Sobel Operator

6 =


−1 0 1

−2 0 2

−1 0 1


. (7)

The Brenner gradient presented in (TREEBY et al., 2011) was not included as it is very similar

to Tenenbaum gradient and presents worse performance as estimatior (TREEBY et al., 2011).

The normalized variance is calculated as

�E =
1
`

∑
G,I

(� (G,I) − `)2, (8)

in which � (G,I) denotes the pixel with coordinates G and I and ` represents the mean pixel value

of the image defined as 1
#

∑
G,I � (G,I) for an image of # pixels.

The next metric is the contrast of the image, defined as

�2 =

1
#

∑
G,I

(�′(G,I))2

`2 , (9)

where �′ is the normalized image

�′(G,I) = � (G,I) − �min
|�max − �min |

. (10)

The contrast lies in the range [1,∞) and is not defined for images that are zero everywhere.

The metrics presented will provide a single value for each image, which quantifies the

image sharpness. These values can then be compared to evaluate which image is sharper and,

thus, is associated with lower mismatch in assumed sound speed.

3.3 EXTREMUM SEARCH

A common approach to find the extremum of a function consists in searching for a

zero in the gradient of the function. Considering a function 5 (2) that returns the metric on a

reconstructed image with sound speed 2, the determination of the gradient 5 ′(2) is difficult,

at best. Fortunately, there are methods to find extrema that do not require the evaluation of a

gradient.

The method presented in (MOURA et al., 2020) showed that for TFM images, the

Tenenbaum function presented an unique maximum inside the search interval. In order to achieve
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a precise estimation with a grid search, the search must be done over a fine grid. This requires

a greater number of images to be reconstructed. Depending on the image size, this process

becomes very time consuming.

When using a grid search, given the search interval [0,1] and a step, C, the method

requires #6B =
(1−0)
C

. One way to reduce the number of images needed is to make use of

a more sophisticated search method. One such method is the Golden Section Search (GSS)

algorithm, which is used for finding an extremum inside an interval. The GSS algorithm takes

approximately (BRENT, 2013, Chapter 5) #6BB u 1.44 log2

(
1−0
C

)
, which makes it a more

appropriate choice than the grid search. GSS has guaranteed convergence but, albeit better than

the grid search, it is not the fastest method of extremum search.

The Successive Parabolic Interpolation is another method for finding an extremum. As

the name suggests, it successively fits parabolas to the function using three points inside the

interval. This method presents superlinear rate of convergence when it converges. Unfortunately,

convergence is not guaranteed. If, for example, the three points selected are collinear, the fitted

parabola is degenerate and the method fails.

Another method is the Brent’s Minimum Search Method (BRENT, 2013, Chapter 5).

For unimodal1functions of one variable, the method approximates the minimum in the search

interval, up to a given tolerance, with guaranteed convergence. The algorithm can be easily

adapted to find the maximum of a function.

Brent’s method combines the robustness of GSS with the superlinear rate of convergence

of the Successive Parabolic Interpolation. Whenever possible, the algorithm uses a parabolic

interpolation step to accelerate convergence and, if the parabola is not acceptable, it uses a GSS

step. The algorithm is detailed in Algorithm 1.

Figure 16 shows an example of finding the minimum of a function using Brent’s method

for an arbitrary function. The search interval is defined as [-40, 20] with a tolerance of 0.01, that

is, the difference between the two last steps is smaller than, or equal to, the tolerance. In order to

achieve this tolerance, the grid search method requires 6000 function evaluations while Brent’s

method requires only 13 evaluations.
1 In this context, 5 is defined as unimodal on [0,1] if for all G0, G1 and G2 ∈ [0,1], G0 < G1 ∧ G1 < G2 ⊃
⊃ ( 5 (G0) ≤ 5 (G1) ⊃ 5 (G1) < 5 (G2)) ∧ ( 5 (G1) ≥ 5 (G2) ⊃ 5 (G0) > 5 (G1)). So, for some unique ` ∈ [0,1], 5 is
either strictly monotonic decreasing on [0, `) and strictly monotonic increasing on [`, 1], or strictly monotonic
decreasing on [0, `] and strictly monotonic increasing on (`, 1] (BRENT, 2013).
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Algorithm 1 – The pseudocode for estimating sound speed using Brent’s Method (BRENT, 2013). Φ(·) de-
notes the metric function that takes an image as input and f� (·) denotes the imaging function
that takes the sound speed as input.

Require: Φ(·), f� (·) ∈ R#×# , 0, 1 and C ∈ R
Ensure: : = 3−

√
5

2 , 4 = 0, n = 0.5√n<02ℎ8=4
1: E = F = G = 0 + : (1 − 0)
2: ΦE = ΦF = ΦG = Φ(f� (G))
3: < = 0.5(0 + 1)
4: C>; = n |G | + C
5: C>;2 = 2C>;
6: while |G − < | > C>;2 − 0.5(1 − 0) do
7: ? = @ = A = 0
8: if |4 | > C>; then

{Fit a parabola}
9: A = (G − F) (ΦG −ΦE ) ; @ = (G − E) (ΦG −ΦF )

10: ? = (G − E)@ − (G − F)A; @ = 2(@ − A)
11: if @ > 0 then ? = −? else @ = −@
12: A = 4; 4 = 3
13: end if
14: if |? | < |0.5@A | and ? < @(0 − G) and ? < @(1 − G) then

{"Parabolic Interpolation" step}
15: 3 = ?/@; D = G + 3
16: if D − 0 < C>;2 or 1 − D < C>;2 then
17: if G < < then 3 = C>; else 3 = −C>;
18: end if
19: else

{"Golden Section" step}
20: 4 = 1 if G < < else 4 = 0
21: 3 = :.4

22: end if
23: if |3 | ≥ C>; then
24: D = G + 3
25: else
26: if 3 > 0 then D = G + C>; else D = G − C>;
27: end if
28: ΦD = Φ(f� (D))
29: if ΦD ≤ ΦG then
30: if D < G then 1 = G else 0 = G
31: E = F; ΦE = ΦF ; F = G; ΦF = ΦG ; G = D; ΦG = ΦD
32: else if ΦD ≤ ΦE or E = G or E = F then
33: E = D; ΦE = ΦD
34: end if
35: < = 0.5(0 + 1)
36: C>; = n |G | + C
37: C>;2 = 2C>;
38: end while
39: return G

Source: Brent (2013).
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Figure 16 – Comparison of grid search and Brent’s minimum search on an function. Both methods were
given the same search interval, [-40, 20] and tolerance, 0.01. Grid search required 6000 function
evaluations while Brent’s method required only 13. The black cross states the initial function
evaluation on Brent’s method, a red cross indicates a GSS step while a green cross indicates a
parabolic interpolation step.

−40 −30 −20 −10 0 10 20

x

101

102

f(
x)

f (x) = |x− 3.01|1.4 + 10

Grid search

Brent’s Method

Source: Own authorship.

3.4 ESTIMATOR PERFORMANCE

One important consideration is that the image metrics will not always be smooth. This

might cause the search methods to deviate from the true extremum. For Brent’s method, this

roughness in the image metrics might increase the standard deviation of the estimator. In this

section, the impact of using Brent’s method is analyzed and the results are compared to those

obtained with grid search.

3.4.1 MSE of the Estimator

The use of simulated data is essential in evaluating the estimator performance, as with

simulations it is easy to insert the required amount of Additive White Gaussian Noise (AWGN)

for a given SNR level. After evaluation of signal power for the whole FMC, the noise power is

determined according to desired SNR. The NDE simulation software CIVA (CIVA. . . , 2021)

is capable of simulating a wide range of inspection scenarios, including: use of linear arrays,

immersion inspections, configurable defects, specimen scanning, among others.
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Using the NDE simulation software CIVA, a simple inspection scenario was designed

in order to evaluate the performance of both grid search and Brent’s method for distinct sound

speeds. Also, the estimator performance under different levels of noise, present in the captured

signals, must be evaluated.

The simulated object consists of a block, of generic material, of dimensions

80x60x24 mm with a single SDH in it. The sound speed in this material was set to two distinct

values, first 4000 m/s then 6000 m/s. This is the same as simulating two different materials. The

SDH included in the simulation has 1mm diameter and is located at 40mm depth with equal

spacing to both sides, as illustrated in Figure 17. The ROI is defined as a 20x20 mm region,

or 200x200 pixels, centered at the SDH. Images of this region were created using TFM. The

transducer simulated is a model of Olympus 5L64-A32. Relevant information is summarized in

Table 1.

The first step to evaluate the practicality of the estimator is to compare it against the

grid search method. This helps in defining a baseline performance for further experiments.

Figure 17 – Simulated specimen used for measurement of estimator performance. The ROI is centered
around the SDH and has dimensions 20x20 mm. For each dimension, the density of points is
0.1 mm/pixels.
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Source: Own authorship.
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Table 1 – Parameters for the transducer Olympus 5L64-A32.
Parameter Value
Central Frequency (MHz) 4.9
Bandwidth 50%
Number of elements 64
Element Pitch (mm) 0.5
Inter element space (mm) 0.02
Element Length (mm) 10

Source: Nova. . . (2021)

In order to evaluate the performance of an estimator, the first metrics that come to mind

are bias and variance. The bias is defined as

1 = E{2̂} − 2, (11)

where E{2̂} denotes the expected value of the estimator and 2 denotes the true value. The variance

of the estimator is defined as

f2 = E{(2̂ − 2)2}. (12)

Another metric is the MSE, that combines bias and variance in a single value. A single

valued metric facilitates the evaluation of performance. The MSE is defined as

MSE = 12 + f2. (13)

For this evaluation, the search interval was defined to lie between 90% and 110% of the

true speed. For both methods the tolerance was set to 0.1 m/s, which for the grid search defines a

uniform grid with a step of 0.1 m/s.

Table 2 shows the results obtained using the approach in (MOURA et al., 2020) and

using Brent’s Method in four scenarios. Each combination of metric and method was evaluated

over 500 trials, using different noise realizations, in order to obtain these results.

In this analysis, as expected, Brent’s method required at most 23 steps to reach the

desired tolerance. It also presented lower MSE than the grid search in the most cases. One

possible explanation is that the Parabolic Interpolation step of Brent’s Method has a smoothing

effect over the metric function. The decrease in SNR presented small changes in bias and a

higher effect on f.

3.4.2 Uncertainty Analysis

Another important analysis to do is the uncertainty analysis. In order to do it, consider a

typical configuration for estimating the sound speed in steel, 2 = 5900 m/s, with a specimen as the
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Table 2 – Results of the sound speed estimator, using both search methods, in a simple simulated scenario.
These were obtained after 500 trials in data embedded in AWGN. Differently from what was ex-
pected, the performance was increased with use of Brent’s Method. Also, the Contrast metric
performed a lot better, surpassing the performance of the Tenenbaum metric.

True Speed
4000m/s

Grid Search Brent’s Method
Tenenbaum Variance Contrast Tenenbaum Variance Contrast

Bias (m/s) 8.01 24.66 34.04 10.19 8.20 7.73
40dB f (m/s) 4.31 4.79 7.05 0.44 2.85 0.97

MSE 82.74 631.06 1208.42 104.03 75.36 60.69
Bias (m/s) 8.37 16.65 16.47 9.17 8.64 7.51

25dB f (m/s) 9.87 7.17 9.50 1.15 2.98 1.45
MSE 167.47 328.63 361.51 85.41 83.53 58.50

True Speed
6000m/s

Bias (m/s) 12.38 38.30 44.66 16.77 20.05 -18.85
40dB f (m/s) 5.43 5.00 9.78 0.99 0.28 6.74

MSE 182.75 1491.89 2090.16 282.21 402.08 400.75
Bias (m/s) 9.78 72.09 90.49 16.37 19.68 -18.07

25dB f (m/s) 8.07 6.78 6.40 0.96 1.54 6.75
MSE 160.77 5242.94 8229.4 268.90 389.67 372.09

Source: Own authorship.

one in Figure 17 and measurement noise added to the simulated signals with SNR level of 43 dB.

This SNR level is compatible with the Panther acquisition system used in later experiments.

The relative combined uncertainty `A (JCGM, 2008) was evaluated for TFM images

using all metrics. It is defined as

`A =
`2

2̄
, (14)

in which 2̄ denotes the mean value obtained in # estimates of sound speed and `2 is the standard

combined uncertainty. For simplicity, only the repeatability uncertainty was considered, leading

to

`2 = `= = f(2̄) =

√√√
1

# − 1

#∑
==1
(2= − 2̄). (15)

The values obtained for this configuration are summarized in Table 3. These values

suggest that the Tenenbaum metric works best as it presents lower uncertainty. It also shows

that the uncertainty increases with the use of Brent’s method, with the exception of the contrast

metric.

Table 3 – Relative uncertainty for the different variations of the method.
Grid Search Tenenbaum Variance Contrast

`A (for steel - 5900 m/s) 0.0166% 0.0241% 0.0785%
Brent’s Method Tenenbaum Variance Contrast

`A (for steel - 5900 m/s) 0.0571% 0.112% 0.0795%
Source: Own authorship.
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3.5 EXPERIMENTS

To demonstrate the efficacy of the Brent’s method in more realistic scenarios, a series

of experiments were realized. Objects of distinct materials were inspected by both contact and

immersion, in order to estimate the sound speeds in each material.

All objects were inspected using an M2M PantherTM (Eddyfi NDT, Inc.) Acquisition

System with a 5L64-A32 transducer from Olympus described in Table 1. For each specimen

used, sound speed was calibrated using the procedure shown in Figure 15. The search interval

used was from 90% to 110% of the calibrated speed and the tolerance was set at 0.1 m/s.

The first experiment is done on an aluminum block, with the same dimensions of the

one described in Figure 17. The sound speed in this block is 6319 m/s. The ROI used in the

method was set to include the SDH and the backwall. Also, it was set to have 0.1 mm/pixels. The

results are compared to those obtained using grid search and presented in Table 4. Although grid

search obtained the best estimate with Tenenbaum metric, results with Brent’s search method

and Tenenbaum beat all other combination.

Table 4 – Sound speed estimation results using both search methods. The estimates using Brent’s method
presented higher error than the grid search estimates. Still, the Tenenbaum metric with Brent’s
method has lower error than the other metrics combined with grid search.
Estimated Speeds (m/s) Tenenbaum Error Variance Error Contrast Error
Grid Search 6305.00 -14.00 6299.00 -20.00 6197.00 122.00
Brent’s Method 6301.74 -17.26 6298.04 -20.96 6201.57 117.43

Source: Own authorship.

A second experiment was done using an acrylic specimen, illustrated in Figure 18. As

in the previous experiment, the inspection was done by contact with the transducer positioned at

G =90 mm. The ROI had dimensions 40 mm×25 mm and was centered at (90, 17.5).

Figure 18 – Acrylic specimen with calibrated sound speed of 2767 m/s and triangular cuts along the back-
wall. The probe is positioned in a single location between the smallest and the largest cut. The
ROI has dimensions 40 mm×24 mm and is positioned 5mm below the center of the probe, this
ensures that the backwall is fully imaged for the entire search interval.

Source: Own authorship.
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The results of this experiment using Brent’s method also were compared to grid search.

This time, Brent’s method paired with any metric presented better estimates.

Table 5 – Sound speed estimation on an acrylic specimen using both search methods. The estimates using
Brent’s method presented better agreement with the measured value of 2767 m/s.

Estimated Speeds (m/s) Tenenbaum Error Variance Error Contrast Error
Grid Search 2731.86 -35.14 2737.12 -29.86 2731.86 -35.14
Brent’s Method 2762.02 -4.98 2764.40 -2.60 2787.22 20.22

Source: Own authorship.

Another experiment with an acrylic specimen was done, this time with a curved speci-

men as illustrated in Figure 19. Because of its shape, this object was inspected by immersion.

Therefore, the sound speed in water and in the acrylic were both estimated. The first step was

to find the sound speed in water using all metrics. The second step consisted in estimating the

sound speed in the acrylic using the estimates from the first step. That is, to reconstruct an image

inside the specimen, the sound speed in water must be considered.

Figure 19 – Drawing of the acrylic curved specimen inspected, the dimensions are in millimeter. This design
is inspired on a corroded pipeline. The calibrated sound speed in the specimen is 2767 m/s. The
acrylic specimen will be inspected inside a water tank with an approximate water path of 33 mm,
with the center of the array over the center of the specimen. The ROI used for estimating the
sound speed in water is represented by ROI 1 and the ROI for estimating the sound speed in the
object is represented by ROI 2, in red.

Source: Own authorship.

In this experiment, the transducer was positioned approximately 35 mm above the

specimen. For estimating the sound speed in water, the ROI was defined with dimensions

30x15 mm and centered at (0 mm, 37.5 mm). For the sound speed in the specimen, the ROI was

defined with dimensions 40 mmx20 mm and centered at (0, 45). The estimates using both search
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methods are compared in Table 6. The estimates using grid search were worse for sound speed

in water but better in acrylic.

An issue that arises here is that the ROI must not contain the external surface of the

object. As the surface will not change position when varying the sound speed in the specimen, it

will dominate the image and the estimation will fail. One possible way to bypass this, is to mask

the image in the external surface region. This is considered for future works.

Table 6 – Sound speed estimation on an acrylic curved specimen using both search methods. The estimates
for sound speed in water presented small changes between the search method, the exception being
the estimates with the contrast metric. For the sound speed in the specimen, grid search estimates
are more accurate.
Estimated Speeds (m/s)
Water - 1481 m/s Tenenbaum Error Variance Error Contrast Error

Grid Search 1487.07 6.07 1490.03 9.03 1776.02 295.02
Brent’s Method 1486.21 5.21 1488.73 7.73 1494.64 13.64
Acrylic - 2767 m/s
Grid Search 2727.99 -39.01 2749.01 -17.99 2750.95 -16.05
Brent’s Method 2725.15 -41.85 2734.10 -32.90 2727.78 -39.22

Source: Own authorship.

The difference between estimates for sound speed in water using the contrast metric,

along with grid search, is caused by the contrast metric having a local maximum close to the

calibrated speed and not a global maximum. Brent’s method is drawn to this local maximum,

thus finding a better estimate. This is shown in Figure 20.

Figure 20 – Metric curves for sound speed estimation in water obtained using grid search with step size of
1 m/s. Curves for Tenenbaum and variance present clear advantage over the contrast metric,
which has a maximum at the upper end of the interval.

Source: Own authorship.
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3.6 SPECKLE PATTERN

An exploratory experiment was done, in order to evaluate how speckle pattern would

affect the sound speed estimation process. Speckle pattern is a granular pattern that appears

in ultrasound images. It is caused by a coherent sum of echoes from scatterers too small to

resolve (WELLS; HALLIWELL, 1981). These scatterers are randomly distributed and with

random amplitudes. Because of that, this pattern is sometimes referred as speckle noise.

Given that these small scatterers and the probe remain stationary, the speckle pattern

will remain fixed. As it is, this pattern cannot be removed simply by taking the mean of several

images as is done for random noise. There are methods in the literature that deal with speckle

pattern removal, or despeckle, to cite a few (LI et al., 1992; ABD-ELMONIEM et al., 2000;

NARAYANAN; WAHIDABANU, 2009).

More recently, some authors have proposed that the speckle pattern brings important

information that can help in a medical diagnosis (NARAYANAN; WAHIDABANU, 2009) or be

used in motion tracking (LIANG et al., 2013).

As the speckle pattern arises from the imaging process, the same way as the discontinu-

ities, it is possible to use it for the purpose of speed estimation. An additional experiment was

done in order to evaluate the efficacy of the proposed method on images containing only speckle.

Figure 21 illustrates one such image where only speckle is present.

Figure 21 – Example of an image containing only speckle in a region of the specimen.
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Source: Own authorship.
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For this analysis, an inspection of a steel block (sound speed 5900 m/s) without any flaw

was simulated. The scatterers are placed using CIVA’s option of "Structural Noise", with density

0.1 pts/mm3 and amplitude of 1 S.I. as parameters. Images of this specimen were created using

TFM with a ROI of 30x10 mm and 0.1 mm/pixels. As the position of small scatterers is randomly

distributed, the ROI was also randomly shifted around the center of the block cross-section for

each trial. These shifts were done in order to evaluate sound speed in different regions.

In total, 1000 trials were done and the MSE obtained with each method are summarized

in Table 7. From these results, it is clear that although bias is similar to the results in Table 2, the

standard deviation is much higher. One possible explanation to these is that some of the random

positions of the ROI might have important features near the borders. Depending of the assumed

speeds, these features might be located outside the reconstructed image. This would cause abrupt

differences in the metrics curves and, possibly, lead to wrong estimates.

Table 7 – Estimator error when the images contain only speckle. Clearly, the Tenenbaum metric provides
much better estimates even if inferior to other scenarios. The foremost issue with these estimates
is the high standard deviation, f.

Speckle density
0.1 pts/mm3 Tenenbaum Variance Contrast

Bias (m/s) 13.42 34.15 -19.96
f (m/s) 37.93 55.35 87.04
MSE 1618.78 4229.85 7974.36

Source: Own authorship.

3.7 COMMENTARIES

Two reference-free methods for sound speed estimation were proposed. The method

proposed in (MOURA et al., 2020) uses grid search in order to find the metric functions

extremum. This search method requires a fine grid and therefore the reconstruction of many

images. By using the Brent’s method, as proposed here, the time required to make an estimate is

greatly reduced while the performance is not much affected. Also, the practicality of the method

was demonstrated for images containing the backwall, flaws and even speckle, either together or

isolated.

The relative uncertainty of the method was evaluated for the three metrics. For the

Tenenbaum metric, it was found to be as low as 0.0571%. Although higher than the value found

using grid search, it is still lower than the values found for the contrast metric. The uncertainties

were found using simulations, therefore the values can only be considered as baselines.



46

The contributions of the studies presented here are three:

• Reference-free sound speed estimation using grid search (MOURA et al., 2019; MOURA

et al., 2020).

• Reference-free sound speed estimation using Brent’s method.

• Reference-free sound speed estimation based on speckle pattern.

Future works include: (1) development of a metric using machine learning methods, in

order to optimize the estimation process; and (2) development of a reference-free method for

estimating direction-dependent sound speed in anisotropic materials.
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4 SURFACE ESTIMATION VIA ANALYSIS METHOD (SEAM)

In many applications of ultrasound in NDE, one needs to image structures with non-

planar surfaces. A common way to accomplish that is to have the transducer coupled to a solid

shoe that conforms to the inspected structure. Although simple, this approach requires a different

shoe for each surface.

Approaches that are more flexible were also designed, such as surface adaptive trans-

ducers (HUNTER et al., 2010a; HUNTER et al., 2010b). In similar fashion, water can be used

as couplant, either by immersing the structure or via a water filled membrane (RUSSELL et al.,

2012).

Independent of how the transducer is coupled to the surface, in order to produce interior

images with methods such as TFM (HOLMES et al., 2004; HOLMES et al., 2005), the ray paths

through the surface to points inside the specimen must be calculated. When the surface is not

known beforehand, it must be estimated prior to interior imaging.

Camacho et al. (2014) proposed a method to extract the surface from A-scans captured

using pulse-echo, pitch-catch and plane-waves schemes with a linear array probe. This method

was reported to be robust when the surface under inspection is of convex shape with relatively

small curvature radius.

Other approaches (LE JEUNE, L. et al., 2015; ZHANG et al., 2014; MCKEE et al.,

2020) consist in applying TFM to the coupling medium (water, rexolite, etc.) and identifying

the surface by the image. LE JEUNE, L. et al. (2015) identified the surface points by taking the

maximum value of each column in the image and applying a moving average filter to smooth the

profile.

Malkin et al. (2018) proposed a scheme for extracting the surface profile after acquiring

the FMC data with a linear array and scanning over a specimen. First, the TFM images obtained

at each position are stitched together. Then, the first peak with amplitude surpassing a certain

threshold in each column of the image is taken as a surface point. This threshold is defined as the

median pixel value in the surface region.

More recently, McKee et al. (2020) proposed a method for estimating the surface in

a 3D setting. The methods first step is to generate an stitched 3D TFM image of the surface,

considering only the coupling medium. From the images, the surface is iteratively identified.
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The common ground of these approaches is that the first step is to generate a TFM

image considering a single medium, i.e., the coupling medium. The method proposed herein

shares some of the steps done in the other approaches but greatly differs in how to treat the

measurements for noise. This method is based on a constrained inverse problem, much like

denoising, and is more robust to image noise than others found in the literature.

4.1 INVERSE PROBLEM BASED SURFACE ESTIMATION

The first step to extracting the surface is to obtain an image of the surface considering a

single medium, e.g., water. This can be done with any imaging algorithm like SAFT, TFM or

CPWC. The choice for TFM imaging is justified as it will also be used for imaging inside the

specimen. The method is formulated using the TFM algorithm and a linear array for 2D imaging,

but this can be easily extended to a matrix array and 3D imaging.

This image, reconstructed considering only the coupling medium, will provide an initial

estimate, ž, of the surface profile. As done in (LE JEUNE, L. et al., 2015), the initial estimate

is taken as the pixel of maximum intensity of each column of the image. If there is more than

one position with the maximum value, the first one is considered. In some cases, the surface will

contain sections that reflect the waves away from the transducer. This will cause these sections

to have lower intensities in the image, as illustrated in Figure 22.

To provide a better estimate of the surface profile, an inverse problem is formulated as

ẑ = arg min
z
� (z − ž) + � (z), (16)

in which � (·) is intended to approximate the estimate, z, to the initial estimate ž. The choice for

� (·) should, ideally, take into account the distribution of r = z − ž. For example, if r is Gaussian

distributed, then the ℓ2-norm would be the best choice so that � (r) = 1
2 ‖z − ž‖22.

The ℓ2-norm is a convenient choice even if r is not Gaussian distributed. The function

is convex, smooth and there are many tools already developed to minimize it. If the distribution

of r can be approximated by a Gaussian, then the ℓ2-norm is a valid choice.

The second term, � (z), is used to include prior knowledge of the solution into the

problem. The Total Variation (TV) seminorm (RUDIN et al., 1992; CHAN et al., 2001) is a very

popular choice (CHAMBOLLE, 2005) for � (·) in signal denoising/reconstruction problems.
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Figure 22 – Image of a simulated inspection of the backwall of a specimen. Pixels with amplitude lower than
-36dB were omitted for greater clarity. The sides of the triangle in the backwall reflect waves
away from the transducer, so that the echoes from these regions are not detected.

Source: Own authorship.

TV regularization is useful when the signal is expected to be piecewise constant. It acts

as a low-pass filter that preserves edges. Total Variation for 1D signals is defined as

TV(z) = g
∑
8

|I8+1 − I8 | = g ‖Dz‖1 , (17)

in which D denotes a first-order finite difference matrix and g is the regularization parameter,

that controls the compromise between the data fidelity and the regularization terms. The idea is

to make the vector Dz sparse, thus, removing small variations from the signal and keeping only

variations from discontinuities. The effects of TV regularization are illustrated in Figure 23.

Differently from the approach in (MALKIN et al., 2018), that forces part of the surface

to be linear by interpolation, the proposed approach does not force this on the solution. Regions

of the surface that have curves are preserved as such, to a certain degree.

While a first-order finite difference operator promotes piecewise constant solutions,

a higher-order operator promotes piecewise smooth solutions and avoids the staircase effect.

Figure 23 shows an example of higher-order TV denoising, where the sharp edges of the original

signal are maintained while slower transitions are smooth.

As the specimen’s surface is not expected to be piecewise constant, a higher-order

operator is desired. A second-order finite difference is then used to promote piecewise linearity
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Figure 23 – Denoising piecewise linear or smooth functions using first-order TV usually lead to the staircas-
ing effect. The use of higher-order TV eliminates the staircasing effect while maintaining sharp
edges.

(a) Original signals (b) Noisy signals

(c) First-order TV (d) Higher-Order TV

Source: Adapted from Chan et al. (2000).

in the estimated surface and will be denoted as D2. This way, Equation (16) becomes

ẑ = arg min
z

1
2
‖z − ž‖22 + g

D2z


1 . (18)

The main issue in this formulation is that it applies the regularization to every part of z equally.

Regions with higher SNR should not be penalized for not being linear the same way as regions

with low SNR. The regularization parameter g is used to weight the regularization term, in order

to reduce noise in the solution. With this approach it is hard to tune g, as the SNR is not constant

along the whole TFM image. Figure 24 illustrates this difficulty. When g is low, regions of higher

SNR are kept but there is little noise suppression in regions of lower SNR. If g is high enough to

suppress noise adequately, it makes the overall profile over-smoothed.

One way to account for these different SNRs, is to change � (·) to the Weighted Least

Squares (WLS). With this change, Equation (18) becomes

ẑ = arg min
z

1
2

W 1
2 (z − ž)

2

2
+ g

D2z


1 , (19)

in which W denotes the diagonal weighting matrix. This diagonality implies that the positions of

the residue vector are uncorrelated. Ideally, the matrix W should be the inverse of the variance-

covariance matrix of the observation (STRUTZ, 2016, Chapter 3).
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Figure 24 – Example of surface estimation with TV regularization. A lower g fails to suppress noise while
keeping the high SNR regions intact. A higher g removes noise from the estimate but makes the
solution over-smooth.
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Equation 19 defines the objective of the proposed method. As the regularization term

makes use of an sparsifying transform (the finite difference operator) this inverse problem falls

into the analysis category (ELAD et al., 2007). Thus, the method was named Surface Estimation

via Analysis Method (SEAM).

Another interpretation to these weights is that they represent the confidence level in

each point of the initial estimate. This way, the ℓ2-norm will enforce lower differences where

the confidence level is high. And if the confidence level in a region is low, the smaller weights

will allow the final estimate to be different from the initial one. This allows the regularization

term to have higher values without over-smoothing regions of high confidence and ensures that it

promotes linearity in the low confidence regions.

As noted, matrix W should be the inverse of the variance-covariance matrix of the

estimator ž. As shown in Appendix A, the variance of this estimator is not easily obtained. But,

considering noise level as constant across the image, a reasonable approximation to the variance

is the value of maximum amplitude for each column. Figure 25 illustrates the effect of these

weights on the profile estimated with SEAM.
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Figure 25 – Different elements of the SEAM algorithm. Top image shows the TFM image of the surface.
Initial surface positions, ž, and weights, W 1

2 , are extracted from the TFM image. The estimated
profile is obtained using SEAM.
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0

1

A
m

pl
it

ud
e

Weights W
1
2

5 10 15 20 25 30 35 40
x [mm]

10

20z
[m

m
]

Estimated Profile
SEAM estimate

Reference

Source: Own authorship.

4.2 SOLVING THE INVERSE PROBLEM

To solve Equation (19), a fast implementation of the Alternating Direction Method of

Multipliers (ADMM) algorithm was used. The algorithm, denoted fADMM (GOLDSTEIN et

al., 2014), uses the acceleration scheme first proposed in (NESTEROV, 1983) to improve the

convergence rate of the algorithm. It also includes a restart condition that ensures stability in the

case of a weakly convex1 problem, such as the one in Equation (19).

In order to use the ADMM algorithm, first the problem needs to be cast as

min � (z) + � (y)

s.t. Az + By = c.
(20)

1 Given any two points, G1 and G2, and a real valued _ ∈ [0,1], a d-convex function 5 satisfies:
5 (_G1 + (1 − _)G2) ≤ _ 5 (G1) + (1 − _) 5 (G2) − _(1 − _)d ‖G1 − G2‖2.
If d is negative, then 5 is said to be weakly convex (VIAL, 1983).
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By defining the following

� (z) = 1
2

W 1
2 (z − ž)

2

2

� (y) = g ‖y‖1

A = D2

B = −I

c = 0,

problem (20) becomes

min
1
2

W 1
2 (z − ž)

2

2
+ g ‖y‖1

s.t. D2z = y,
(21)

which can be minimized separately for z and y. The pseudocode for fADMM, used to solve

Equation (21), is explained in Algorithm 2.

Algorithm 2 – The pseudocode using fADMM to solve Equation (19).

Require: W, D2 ∈ R#×# , ž ∈ R# , and d, g, n, [,  ∈ R
Ensure: ŷ1 = 0, x̂1 = 0, y0 = 0, x0 = 0, 20 = 0, U1 = 1, A0 = ∞
1: [(0 (b)]8 = max( |b8 | − 0, 0) · b8

|b8 |
2: for (: = 1,2,3,..., ) do
3: z: =

(
W)W + d(D2))D2)−1 ×

(
W)Wž + D2 (dŷ: + x̂: )

)
4: y: = (g/d (D2z: − x̂:/d)
5: x: = x̂: − d(D2z: − y: )
6: 2: = d

−1‖x: − x̂: ‖2 + d‖y: − ŷ: ‖2
7: if 2: < [2:−1 then

8: U:+1 =
1+
√

1+4U:
2

2
9: ŷ:+1 = y: + U:−1

U:+1
(y: − y:−1)

10: x̂:+1 = x: + U:−1
U:+1
(x: − x:−1)

11: else
12: U:+1 = 1, ŷ:+1 = y:−1, x̂:+1 = x:−1
13: 2: ← [−12:−1
14: A: = ‖W (z: − ž)‖22 + g

D2z:


1
15: end if
16: if (A: − A:−1) ≤ n then
17: =_8C = :
18: end if
19: end for
20: return z: , A: , =_8C

Source: Own authorship.

The pseudocode for fADMM, with the changes to solve Equation (21), is given in

Algorithm 2. The algorithm can be separated in four blocks:

• Initialization of parameters and auxiliary vectors and variables.
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• Gradient descent steps: minimization with respect to both z and y is done in steps 3 to 6.

(0 (·) denotes the shrinkage operator, defined in Step 1. Vectors x̂: and ŷ: are intermediates

used for the acceleration steps (8 to 10);

• Accelerated steps: The combined residual is denoted as 2: . If the inequality in step 7 is

satisfied, then the acceleration steps (8 to 10) are taken.

• Restart steps: If the inequality (step 7) is not satisfied, steps 12 to 14 follow. These steps

restart the acceleration and roll back vectors x̂: and ŷ: . The following iteration is not

accelerated.

The method requires the definition of three parameters: d, g, n and [. The parameter

[ is used to control the frequency of restarts. Parameter d controls the size of the step taken in

the gradient descent steps. The required convergence tolerance is defined as n and presents a

trade-off between accuracy and computation time. Among these parameters, only g needs to be

adjusted for different problems.

The computational burden of this method is higher than those proposed in (LE JEUNE,

L. et al., 2015) and (MALKIN et al., 2018). However, since it can be accomplished faster than

the imaging process, this should not limit its application.

4.3 SIMULATED SCENARIOS

In order to evaluate the accuracy of SEAM, simulations were carried out using the

software CIVA. SEAM is compared to the method presented in (MALKIN et al., 2018).

SEAM requires parameters g, d and [. Parameter [ is set to 0.999, as recommended

in (GOLDSTEIN et al., 2014), parameter d is set to 100 and parameter g is set to 1 for every

reconstruction from simulated data.

Both methods were used to estimate the bottom surface of an acrylic specimen, shown

in Figure 26. The array was moved in order to scan the specimen at 25 positions, starting above

the tip of the first triangle and, with uniform steps, towards the tip of the last triangle. The

simulated FMCs were embedded in AWGN with an SNR of 40 dB. For each position, an image

was formed using TFM and all images were stitched together to form a single image of the

bottom surface. The final image is then scaled to have maximum pixel value of 1.

Figure 27 shows the TFM image along with the reference and estimated profiles. SEAM

presented slightly higher MSE than Malkin’s method. The fact that the geometry of the specimen
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Figure 26 – Schematic of the acrylic specimen inspected and the probe’s trajectory. The trajectory starts in
G = 45 mm and goes to G = 170 mm in steps of 5 mm. At each position an FMC acquisition is
done.

Source: Own authorship.

contains only straight lines, makes it easy for both methods to perform well. Even so, Figure 28

evidences that Malkin’s method presents noise in the estimate whereas SEAM results in a line

much closer to the reference.

Figure 27 – Surface estimation in a simulated scenario with an SNR level of 40 dB. The bottom surface
was estimated using SEAM and the one by Malkin et al. (2018). Both methods present good
agreement with the reference profile but SEAM presents slightly worse MSE.
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Figure 28 – A zoomed in view reveals the smoothness of the SEAM estimate against the reference method.
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This same scenario was run with an SNR of 25 dB. The results, presented in Figure 29,

show that SEAM removes some of the noise. The result can be improved by increasing g in order

to reduce the noise in the estimate and obtain a higher fidelity. Still, SEAM presented an MSE

much lower than Malkin’s method. In Figure 29 it is noticeable that near the border of the image,

the reconstruction failed to approximate the reference line.

Figure 29 – Surface estimation in a simulated scenario with an SNR level of 25 dB. The MSE for both meth-
ods was greatly increased, still, SEAM performed much better than Malkin’s method.
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Another test was performed on a set of 10 acrylic specimens with curved surfaces.

These specimens were described in (MALKIN et al., 2018), as a way to evaluate surfaces with

different gradients. An example of such specimen is shown in Figure 30. These specimens have

10 regions with the shape of sine wave, with each region having a length of one wavelength, k=.

Also, each specimen have a distinct amplitude for every region, denoted as �<. These parameters

are used to create a wide range of surface gradients, over which the methods are evaluated. If the

maximum surface gradient in a given region is high, the image for this region will present low

intensity as seen in Figure 30. Table 8 summarizes the dimensions of the specimens.

Table 8 – Values for k= and �< used in the design of the ten specimens. The values of< indicate the specimen
while the values of = refer to regions on each specimen. For reference, the wavelength in water is
approximately 0.3 mm.

n 1 2 3 4 5 6 7 8 9 10
k= (mm) 108.12 67.58 54.06 21.62 10.81 6.76 5.41 4.32 3.60 2.70
m 1 2 3 4 5 6 7 8 9 10
�< (mm) 2.00 5.11 8.22 11.33 14.44 17.56 20.67 23.78 26.89 30.00

Source: Own authorship.

The accuracy of both surface estimation methods were compared using three different

criteria: overall MSE for each specimen and, mean and maximum errors in each of the 100

regions. By being a single value metric, MSE is a simpler way to compare the performance of

the methods. Table 9 shows the MSE values obtained. With the exception of specimens 4 and 5,

SEAM presented lower MSE, that is, found a more accurate estimate of the surface profile.

Table 9 – Comparison of MSE between SEAM and the method by Malkin et al. (2018). The MSE for both
methods is very similar for the first two specimens, but, up to a point, the differences increase with
�<.

MSEm �< (mm) Malkin et al. 2018 SEAM Improvement

1 2.00 0.025 0.005 0.020
2 5.11 0.091 0.028 0.063
3 8.22 0.175 0.175 0.000
4 11.33 0.285 0.391 -0.106
5 14.44 0.387 1.450 -1.063
6 17.56 1.753 1.332 0.421
7 20.67 4.650 3.522 1.128
8 23.78 6.393 5.275 1.118
9 26.89 12.858 9.752 3.106
10 30.00 23.551 16.418 7.133

Source: Own authorship.

Looking at each region individually brings more information on the weaknesses of

each method. When comparing the methods by their performances on single regions, it gets

harder to define a winner. Figure 31 illustrates the differences of performance by both methods.
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Figure 30 – Prototype specimen (a) used in the surface estimation experiment of curved specimens. Param-
eter �< varies between specimens and k= varies within specimens. Parameter �< affects the
maximum gradient in each region. Higher gradient regions are hard to image than lower gradi-
ent regions, as shown in (b) and (c).
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Source: Own authorship.

Each position on the image shows the error, mean or maximum, on the given region of a given

specimen. That is, position (<, =) is the error obtained in region k= of specimen �<. The

magnitude of the error is encoded by the color.

When looking at the mean errors, SEAM presents the single higher mean error for

�< = 8 and k= = 10, but overall, it presents lower error than the reference method. When looking

at maximum errors, both methods are pretty close but SEAM presents more errors for higher k=

even with lower amplitude. Close analysis of these images show that the MSE for each specimen,
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showed in Table 9, is dominated by the errors in higher k= regions. This means that for those

regions, interior imaging is much harder than it is for regions of lower k=, if possible at all.

Figure 31 – Comparison of mean and maximum errors, per region, between methods. Although harder to
determine which method has better performance, this comparison highlights situations where
the methods fail. The regions contourned in red present errors bigger than 1, in these regions
imaging is expected to fail.

Source: Own authorship.

In the next section, both methods will be used to estimate surfaces from real data and

these surfaces will be used to produce interior images of the inspected objects.

4.4 EXPERIMENTS

Experiments were carried out using an M2M PantherTM (Eddyfi NDT, Inc.) Acquisition

System and a 64-elements linear array from Imasonic (IMASONIC SAS, France). Relevant

information about the array is summarized in Table 10. Again, the method presented in Malkin

et al. (2018) is used as baseline for the profile estimation and both estimates are compared to a

reference profile.
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Table 10 – Acquisition system and transducer array parameters.
Setup Parameter Value
Sampling Frequency (MHz) 125
Number of elements 64
Element pitch (mm) 0.6
Element width (mm) 0.5
Element length (mm) 10
Central Frequency (MHz) 5.2
Bandwidth at -6dB 71%

Source: Own authorship.

The fADMM algorithm, described in Algorithm 2, requires the definition of four

additional parameters: g, d, [ and n . The parameter [ is set to 0.999, as recommended in

(GOLDSTEIN et al., 2014), while parameters d and n are set to 100 and 10−6, respectively.

These values are kept for all experiments. Only parameter g changes for each experiment, values

in the range [1, 80] were evaluated in order to obtain the best results in terms of MSE.

4.4.1 Experiment I

The first test aimed to estimate the bottom surface profile of the acrylic specimen shown

in Figure 32, this specimen has the same dimensions as the one in Figure 26. This test emulates a

corrosion mapping scenario. The array was moved in order to scan the specimen at 32 positions,

starting with its center at 20 mm from the left corner and moving towards the right corner with

uniform steps of 5 mm. At each position, an image was formed using TFM and all images were

stitched together to form a single image of the bottom surface, as described in Section 2.5.

For this experiment, parameter g was set to 2, according to the minimum in Figure 33.

Figure 34 shows the TFM image along with the reference and estimated profiles. In the TFM

image, it is noticeable that the sides of the narrowest triangle are indistinguishable and only the

tip can be seen. Its sides are well approximated by the both estimates, which is expected since

the reference is a straight line from the base to the tip.

Both methods presented low error when compared to the reference, but SEAM presented

slightly lower MSE, a difference of 5.8 × 10−3, or 15%. This difference reflects the smoothing

effect of noise, specially in the peaks. As the real bottom surface is essentially composed of

straight lines, both methods are well suited.
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Figure 32 – Schematic of the acrylic specimen inspected and the probe’s trajectory. The scanning starts with
the UA centered at G = 20 mm and ends at G = 180 mm with steps of 5 mm. At each position an
acquisition is done.

Source: Own authorship.

Figure 33 – Plot of MSE versus g, ranging from 1 to 80. Best MSE was found using g=2.
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4.4.2 Experiment II

A second experiment was done using an acrylic specimen with a non-flat entry surface

and two side drilled holes (SDH). The specimen, illustrated in Figure 35, was immersed in a

water tank. The array was positioned 32 mm above the peaks of the specimen and 10 acquisitions

were performed with the same 5 mm step. As the surface is wavy, the imposition of straight

lines on the entry surface profile would lead to large errors. Given that, it is expected that the

difference in MSE between the two tested methods increases.

For this experiment, the parameter g for SEAM was set to 7, according to the minimum

found in Figure 36. The reconstructed image and the estimated profiles are shown in Figure 37.
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Figure 34 – TFM image of the bottom surface of an acrylic specimen and the profile estimates using two
different surface extraction methods. Both show good agreement with the reference.
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As the image presents an overall good Signal to Noise Ratio (SNR), both estimates presented

low errors. SEAM obtained a smaller MSE, around 68%, a difference of 0.0137 when compared

to the reference method.

Even though, in a section of the surface, showed in the left side of Figure 37, the

amplitudes were too low and the reference method interpolated the missing points with a straight

line. This led to a higher MSE than that obtained by our method. As expected, SEAM was

capable of recovering the low amplitude points with higher accuracy in regions with lower SNR.

The interior imaging was performed once for each estimate, imaging the region with

two SDHs. The results are compared in Figure 38. Although the estimates presented similar

MSEs, the reconstructed images have a clearer difference. The image obtained using SEAM

presents higher amplitude for the SDHs, making them more distinguishable. This is due to the

smoother surface obtained by SEAM.

As the SDHs are not symmetrical with respect to the closest peak of the surface, the

SDH on the right being closer to the peak, the intensities of the image are not identical.
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Figure 35 – Specimen with a sine-like top surface with two SDHs. The specimen was fabricated in acrylic
with sound speed of 2830 m/s. Dimensions are in millimeters.

Source: Own authorship.

Figure 36 – Plot of MSE versus g, ranging from 1 to 80. Best MSE was found using g=7.
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Figure 37 – TFM image of the top surface of the acrylic specimen and the estimates using two different
surface extraction methods. Both method present good agreement with the reference in regions
where the image presents high reflection values. Even in a low-amplitude region, SEAM was still
capable of accurately estimating the surface.
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Figure 38 – Image of the both SDHs region using the surface profile estimates. The SDHs, denotted by the
red circles, are more evident using SEAM.

Source: Own authorship.
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Figure 39 – Specimen with a concave top surface with two SDHs. The specimen was fabricated in acrylic
with sound speed of 2830 m/s. Dimensions are in millimeters.

Source: Own authorship.

Figure 40 – Plot of MSE versus g, ranging from 1 to 80. Best MSE was found using g=44.
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Source: Own authorship.

4.4.3 Experiment III

A third experiment was performed using an acrylic specimen with a convex region, as

shown in Figure 39. As before, the specimen was immersed in a water tank and scanned in 10

positions 5 mm apart.
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Figure 41 – TFM image of the top surface of an concave acrylic specimen and the estimates using two differ-
ent surface extraction methods. The difference between the estimates is increased compared to
previous comparisons.
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This experiment used g = 44 that was obtained by taking the minimum MSE in

Figure 40. The TFM image and surface estimates are shown in Figure 41. Again, SEAM

presented a better estimate, a difference of 0.2103 in MSE, aroun 94% smaller. The large

difference in the performances of the two methods is due mainly to the fact that imaging artifacts

were wrongly detected as entry surface in the method of Malkin et al. (2018).

Figure 42 shows a comparison between the interior images formed using both surface

profiles. Using the surface estimated by SEAM, both SDHs are clearly visible. Using the reference

method resulted in lower amplitudes and the left SDH being barely visible. It is important to note,

these SDHs are not symmetrical, in relation to the center of the specimen, so their intensities

would not be identical.

The results of these experiments are summarized in Table 11. These experiments show

that SEAM is capable of surpassing the reference method in some scenarios. Also, it is shown

that the more accurate estimated profiles led to better interior imaging of the inspected specimens.
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Figure 42 – Image of the both SDHs region using the surface profile estimates. The SDHs are denotted by
the red circles. Again, the surface obtained with SEAM lead to better visualization of the SDHs.

Source: Own authorship.

Table 11 – Comparison of estimated profiles MSE. In each experiment SEAM, SEAM, presented better MSE
than the reference method (MALKIN et al., 2018).

MSE Reference Method SEAM
Experiment I 0.0384 0.0326
Experiment II 0.0201 0.0064
Experiment III 0.2248 0.0145

Source: Own authorship.

4.5 COMMENTARIES

An inverse problem formulation was proposed in order to improve surface profile esti-

mation. This formulation includes a second-order TV regularization term to promote piecewise

linear solutions. Also, it takes into account the different SNR levels across observations by

including a weighting matrix in the data fidelity term. It was shown that this new method is more

robust to noise than the state-of-the-art method (MALKIN et al., 2018) for 1D surface profile

estimation.

The contributions of this study are: (1) probabilistic modelling of the estimator ž error

and (2) a method for surface estimation that is robust to noise. Still, a more theoretical approach

to the choice of parameter _ is desired.
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The next steps of this study are: (1) reevaluate the existence of correlation between

observations; (2) develop robust procedures for the choice of g; (3) generalize the method for 2D

surfaces.
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5 FINAL REMARKS

Ultrasound imaging is a handy resource for NDT due to its low cost, portability and

safety. With array probes becoming feasible and cheaper, methods based on post-processing

beamforming, such as the TFM, became the golden standard. Such methods rely on prior

knowledge of inspection parameters in order to calculate wave trajectories and produce focused

images. These parameters include the sound speed in the inspected materials and the shape of

inspection objects, among others.

This study was focused on the development of experimental procedures for the esti-

mation of the these parameters. Methods to estimate sound speed in inspected materials were

discussed in Chapter 3. These methods are capable of producing good estimates with low uncer-

tainty. Both methods are based on the same principle of image quality assessment, the difference

being the optimization method. The first method finds the optimal speed using a grid search.

This method was reported in (MOURA et al., 2019; MOURA et al., 2020).

The second method uses an optimization scheme called Brent’s method, which is

a combination of Golden Section Search with parabolic interpolation steps that accelerates

convergence. It was verified that this method converges to a solution faster than the grid search,

but with an increased uncertainty. This method was also tested in a simulated scenario with

images containing only a speckle pattern. Even in this scenario the method was able to produce

estimates with low bias.

In Chapter 4, a method for estimating an objects surface was proposed. The method

takes as input a B-scan image, created with a method such as the TFM, and makes an initial

estimate of the surface profile. This initial estimate is then refined by solving a constrained

inverse problem. The inverse problem formulation consists of a WLS term and a second-order

TV regularization term. This formulation promotes solutions that are piecewise linear in regions

with low SNR. In regions with higher SNR, the estimate is closer to the initial estimate but,

possibly, less noisy. The relation of the SNR to the weights in WLS is analyzed in Appendix A.

This method was developed for 1D surface profiles but can be extended to work with

2D surfaces. Another viable extension is a regularization term with third-order total variation

that promotes piecewise smooth surfaces as solutions.

Future works in the sound speed estimation theme include:
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• Automation of the surface masking process for immersion testing;

• Development of a learned metric for images;

• Development of a reference-free method for direction-dependent sound speed estimation.

For the surface reconstruction theme, future works include:

• Reevaluation of the existence of correlation between observed points;

• Development of robust procedures for the choice of g;

• Generalization of the 1D surface profile estimation to 2D surfaces.
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APPENDIX A – PROBABILITY OF ERROR IN PEAK ESTIMATION WITH

RAYLEIGH DISTRIBUTED NOISE

The choice for � (·) in Chapter 4 should take into account the characteristics of r = z− x̌.

To analyze it, it is assumed that every position of r has the same characteristics. With this

assumption, the analysis of a single position is enough.

First, a column of a TFM image is modeled as

B[I] = 0.B∗ [I] + =[I], (22)

where

B∗ [I] = exp

(
−1

2

(
I − I∗
1

)2
)
, (23)

0 ∈ [0,1] is the amplitude of the echo in a given column, I∗ is the position of the echo, 1 is

related to the wavelength and = is the noise model. Bevan et al. (2019) recently demonstrated

that noise in a TFM image can be modelled by a Rayleigh Distribution. So, it is considered

that each position of = is independently and identically distributed from Rayleigh(f). Figure 43

shown a comparison between a modeled column to a column from an image.

Figure 43 – Comparison of a column from a TFM image and the modeled column.

Source: Own authorship.

The estimator Ǐ is obtained by finding the point that maximizes B[I]. Due to noise, the

point of higher amplitude may not be the peak of B∗ [I]. An error will occur whenever

B[I: ] > B[Ǐ], (24)
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that is

0.B∗ [I: ] + =[I] > 0.B∗ [Ǐ] + =[Ǐ] (25)

=[I: ] − =[Ǐ] > 0.(B∗ [Ǐ] − B∗ [I]). (26)

As the noise is i.i.d., the left side of the equation can be stated as

=[I] − =[Ǐ] = F [I] ∼ ?F (I). (27)

Substituting (27) in (26)

F [:] > 0.3B [I], (28)

where 3B [I] = B∗ [Ǐ] − B∗ [I] = 1 − B∗ [I].

The probability of an error occurring due to F [I] > 0.3B [:] is

?(F [I] > 0.3B [I]) = 1 − %F (0.3B [I]) (29)

where %F is the Cumulative Distribution Function (CDF) of ?F.

Then, the PDF of Î − I∗, i.e. the PDF of a given position of the residue r, can be defined

as

?A [I] ∝ 1 − %F (0.3B [I]) (30)

To determine the distribution of the random variable, , first lets define it as F = G+(−H).

The random variables G and H are independent and identically distributed (i.i.d.) from a Rayleigh

Distribution.

?G =
G

f2 4
− G2

2f2 , for G ≥ 0 (31)

and

?−H =
−H
f2 4

− H2

2f2 , for H ≤ 0, (32)

in which f denotes the scale parameter of the Rayleigh Distribution.

The CDF of the difference between two random variables is defined as

%F (F) =
∬ ∞

−∞
%G (G) ?−H (H) 3G 3H. (33)

Changing the variable −H for F − G and substituting in Eq. 33 leads to

%F (F) =
∫ ∞

−∞
%G (F + H) ?H (F − G) 3H, for F < 0, (34)
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which is equivalent to

%F (F) =
∫ ∞

0
%G (G) ?H (G − F) 3H, for F < 0. (35)

As G and H are i.i.d., the distribution of F = G− H and −F = H−G must be equal, making

the distribution of F symmetric around 0. This results in

%F (F) =
F
√
c4
− F2

2f2

4f
.erfc

( F
2f

)
− 4
− F2

2f

2
+ 1, F ≥ 0, (36)

where erfc(·) denotes the complimentary error function. This expression can be approximated

by the CDF of a normal distribution N(0, (4 − c)f2), so that

%F (F) =
1
2

[
1 + erf

(
|F |

f
√

2(4 − c)

)]
. (37)

Considering the approximation and applying it into Eq. 30, the following is obtained

?A [I] ∝
1
2

[
1 − erf

(
|0.3B [I] |

f
√

2(4 − c)

)]
. (38)

Since %F is symmetric around 0, so is ?A [I]. This is in agreement with the idea in

Chapter 4 that the maximum amplitude of a column, 0, is tied to the variance of the residue.
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