
UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ
CAMPUS DOIS VIZINHOS

CURSO DE ESPECIALIZAÇÃO EM CIÊNCIA DE DADOS

FELIPPE GALDINO SILVA

MANIPULANDO DADOS ESPACIAIS FUZZY EM R USANDO O

PACOTE FSR

TRABALHO DE CONCLUSÃO DE CURSO DE ESPECIALIZAÇÃO

DOIS VIZINHOS
2021

FELIPPE GALDINO SILVA

MANIPULANDO DADOS ESPACIAIS FUZZY EM R USANDO O

PACOTE FSR

Trabalho de Conclusão de Curso de Especialização
apresentado ao Curso de Especialização em Ciência de
Dados da Universidade Tecnológica Federal do Paraná, como
requisito para a obtenção do t́ıtulo de Especialista em Ciência
de Dados.

Orientador: Prof. Dr. Anderson Chaves Carniel

DOIS VIZINHOS
2021

4.0 Internacional

Esta licença permite remixe, adaptação e criação a partir do trabalho, para

fins não comerciais, desde que sejam atribúıdos créditos ao(s) autor(es).

Conteúdos elaborados por terceiros, citados e referenciados nesta obra não

são cobertos pela licença.

https://creativecommons.org/licenses/by-nc/4.0/deed.pt_BR

FELIPPE GALDINO SILVA

MANIPULANDO DADOS ESPACIAIS FUZZY EM R USANDO O
PACOTE FSR

Trabalho de Conclusão de Curso de Especialização
apresentado ao Curso de Especialização em Ciência de
Dados da Universidade Tecnológica Federal do Paraná, como
requisito para a obtenção do t́ıtulo de Especialista em Ciência
de Dados.

Data de aprovação: 17/dezembro/2021

Anderson Chaves Carniel
Doutorado

Universidade Federal de São Carlos

Marcelo Teixeira
Doutorado

Universidade Tecnológica Federal do Paraná - Câmpus Pato Branco

Rafael Gomes Mantovani
Doutorado

Universidade Tecnológica Federal do Paraná - Câmpus Apucarana

DOIS VIZINHOS
2021

Handling Fuzzy Spatial Data in R Using the fsr Package
Anderson Chaves Carniel∗
Federal University of São Carlos
Department of Computer Science

São Carlos, SP, Brazil
accarniel@ufscar.br

Felippe Galdino
Juliana Strieder Philippsen
Federal University of Technology -

Paraná
Dois Vizinhos, PR, Brazil

{ocfgaldino,striederjp}@gmail.com

Markus Schneider
University of Florida

Department of Computer &
Information Science & Engineering

Gainesville, FL, USA
mschneid@cise.ufl.edu

ABSTRACT
GIS and spatial data science (SDS) tools have been recently ap-
proaching each other by establishing bridge technologies between
them. R as one of the most prominent programming languages
used in SDS projects has been granted access to GIS infrastructure,
while R scripts can be integrated and executed in GIS functions.
Unfortunately, the treatment of spatial fuzziness has so far not been
considered in SDS projects and bridge technologies due to a lack of
software packages that can handle fuzzy spatial objects. This paper
introduces an R package named fsr as an implementation of the
fuzzy spatial data types, operations, and predicates of the Spatial
Plateau Algebra that is based on the abstract Fuzzy Spatial Algebra.
This R package solves the problem of constructing fuzzy spatial
objects as spatial plateau objects from real datasets and describes
how to conduct exploratory spatial data analysis by issuing geomet-
ric operations and topological predicates on fuzzy spatial objects.
Further, fsr provides the possibility of designing fuzzy spatial in-
ference models to discover new findings from fuzzy spatial objects.
It optimizes the inference process by deploying the particle swarm
optimization to obtain the point locations with the maximum or
minimum inferred values that answer a specific user request.

CCS CONCEPTS
• Information systems → Geographic information systems;
• Computing methodologies→ Vagueness and fuzzy logic.

KEYWORDS
Spatial data science, spatial database, spatial fuzziness, Spatial Plateau
Algebra, fuzzy spatial inference model, particle swarm optimization
ACM Reference Format:
Anderson Chaves Carniel, Felippe Galdino, Juliana Strieder Philippsen,
and Markus Schneider. 2021. Handling Fuzzy Spatial Data in R Using the
fsr Package. In 29th International Conference on Advances in Geographic
Information Systems (SIGSPATIAL ’21), November 2–5, 2021, Beijing, China.
ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3474717.3484255

∗This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal
de Nível Superior - Brasil (CAPES) - Finance Code 001.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGSPATIAL ’21, November 2–5, 2021, Beijing, China
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8664-7/21/11. . . $15.00
https://doi.org/10.1145/3474717.3484255

1 INTRODUCTION
Several specialized software packages provide sophisticated library
support to represent, manipulate, and process crisp spatial objects
that are characterized by an exact location and a precisely defined
extent, shape, and boundary in space. Examples are GDAL/OGR
(written in C, C++, and Python), GEOS (written in C++), JTS (writ-
ten in Java), Shapely and GeoPandas (written in Python), and sp,
sf, rgdal, and rgeos (written in R). These software packages are
core components in a variety of geographical information systems
(GIS), spatial database systems (SDBS), and spatial data science
(SDS) projects. They all implement spatial data types for the rep-
resentation of crisp point, line, and region objects and include a
large diversity of geometric operations such as topological relation-
ships (e.g., overlap,meet), geometric set operations (e.g., intersection,
union), and numerical operations (e.g., length, area).

But increasingly, geoscientists and spatial data scientists are
interested in modeling and analyzing spatial phenomena charac-
terized by the feature of spatial fuzziness. It captures the inherent
property of many spatial objects in reality that have inexact loca-
tions, vague boundaries, and/or blurred interiors, and hence cannot
be adequately represented by crisp spatial objects. Examples are
air polluted areas, soil strata, and habitats of species. In the geo-
science and GIS domains, fuzzy set theory has become a popular
tool for modeling such fuzzy spatial objects. Fuzzy spatial data types
for fuzzy points, fuzzy lines, and fuzzy regions have been formally
defined for representing them. The central idea is to relax the strict
decision of belonging (value 1) or non-belonging (value 0) of a
point to a spatial object. Instead, partial belonging is allowed and
expressed by amembership degree in the interval [0, 1]. Further, mul-
tiple belonging of a point to several spatial objects is allowed with
equal or different membership degrees. By analogy to crisp spatial
operations, fuzzy spatial operations have been defined to process
fuzzy spatial objects. Examples are fuzzy geometric set operations
(e.g., fuzzy geometric intersection) and fuzzy numerical operations
(e.g., fuzzy area). By analogy to crisp topological relationships, fuzzy
topological relationships have been defined to evaluate and term the
relative position of two fuzzy spatial objects. Examples are the pred-
icates fuzzy overlap and fuzzy inside. Such a relationship computes a
membership degree between 0 and 1 that indicates to which extent
the relationship holds. Such a degree can be mapped to a high-level
linguistic value and transformed into a Boolean predicate.

The currently most prominent programming languages lever-
aged in SDS projects are R and Python. Our focus in this paper is on
R. Until recently, GIS and SDS tools have been independent of each
other although both share common functionalities such as spatial

SIGSPATIAL ’21, November 2–5, 2021, Beijing, China A. C. Carniel, F. Galdino, J. S. Philippsen, and M. Schneider

analysis methods. But lately one-way and two-way bridge technolo-
gies have been established between them. GIS tools have begun
to provide support for SDS projects in R by granting R access to
their infrastructure such as spatial data, spatial algorithms, spatial
analysis tools, and spatial visualization concepts (maps). Vice versa,
R scripts can be integrated and executed in GIS functions by plugin
mechanisms. Examples are (i) the R-ArcGIS Bridge to connect R and
ArcGIS with the R package arcgisbinding in both directions, (ii) the
R package rpostgis to interact with PostGIS from R, (iii) the proce-
dural language PL/R to enable the writing of PostgreSQL functions
and triggers in R, (iv) the R packages RQGIS and qgisprocess to use
QGIS as a geoprocessing engine from within R, and (v) a linking
mechanism in QGIS to integrate R scripts into QGIS.

Unfortunately, spatial fuzziness has so far not found its way into
SDS projects and the aforementioned bridge technologies due to a
lack of complete implementations of software packages that can
handle fuzzy spatial objects. Motivated by this lack of support, the
main contributions of this paper are as follows:

• It introduces an R package named fsr as an implementation
of the fuzzy spatial data types, operations, and predicates
of the Spatial Plateau Algebra (SPA) that has been designed
by the authors and is based on their abstract Fuzzy Spatial
Algebra (FUSA).

• It solves the problem of constructing fuzzy spatial objects as
spatial plateau objects from real datasets.

• It describes how to conduct exploratory (spatial) data anal-
ysis by issuing geometric operations and topological predi-
cates on fuzzy spatial objects.

• It provides the possibility of designing fuzzy spatial inference
models to discover new findings from fuzzy spatial objects.

• It optimizes the inference process in the sense that instead
of evaluating all points in space, particle swarm optimization
(PSO) is deployed to determine and only evaluate a subset of
points that really contributes to finding the final but approx-
imated answer to a user’s inference query.

Section 2 discusses related work. Section 3 sketches some basics
of fuzzy set theory and fuzzy inference systems. Section 4 introduces
a running example to illustrate later how fsr works. Section 5 details
the concepts and interfaces of the R package fsr and focuses on
its main classes, its fuzzy spatial operations and predicates, and its
fuzzy spatial inference (FSI) model that makes use of PSO. Section 6
draws some conclusions and describes future work.

2 RELATEDWORK
Related work can be grouped as follows: (i) R packages for spatial
data handling and (ii) implementations of fuzzy spatial objects.

With respect to the first group, we highlight the following R
packages1: rgeos, rgdal, sp [13], and sf [12]. Their common char-
acteristic is to provide interfaces, bindings, and bridges to spatial
libraries written in C/C++. Hence, it allows the use of function-
alities provided by well-known spatial libraries in R scripts and
applications. While rgeos and rgdal are interfaces to GEOS2 and

1The webpages for these R packages have the canonical form https://CRAN.R-project.
org/package=name, where name should be replaced with the package name.
2https://trac.osgeo.org/geos

Table 1: Comparison of fsr with related work.

Comparison criteria [9] [17] [1] [7, 8] fsr
Fuzzy points ✓ ✓ ✓
Fuzzy lines ✓ ✓ ✓
Fuzzy regions ✓ ✓ ✓ ✓
Visualization methods ✓ ✓∗ ✓
Geometric set operations ✓∗ ✓ ✓
Numerical operations ✓
Topological relationships ✓ ✓
Fuzzy spatial inference ✓
Programming language unknown unknown C PL/pgSQL R
∗ limited support or only partial implementation of the operations

GDAL3, respectively, sp and sf define classes and methods for han-
dling and visualizing spatial data in R. The latter two packages also
use underlying libraries to process specific spatial operations (e.g.,
topological relationships). sf distinguishes itself due to its (i) broad
collection of versatile functions, (ii) compatibility with OGC stan-
dards and SDBS like PostgreSQL/PostGIS4, and (iii) compatibility
with R packages for data science [19] (i.e., tidyverse). Unfortunately,
these R packages do not offer support for fuzzy spatial data since
they focus on dealing with crisp spatial objects only.

The second group comprises implementations of fuzzy spatial
data types and fuzzy spatial operations. Table 1 compares them
with fsr. Each implementation deploys a specific conceptual model
that formally defines what fuzzy spatial objects are and how they
can be manipulated by leveraging point set theory, fuzzy set theory,
and fuzzy topology. Dilo et al. [9] take the conceptual model in [10]
to implement simple fuzzy points, simple fuzzy lines, and simple
fuzzy regions as an extension of the GRASS GIS. The authors pro-
vide visualization methods in the form of a GRASS module and
implement geometric set operations (except the difference between
fuzzy lines). Verstraete [17] proposes implementable representation
methods for fuzzy regions, such as bitmap representations [18] and
TINs. Carniel et al. [1] introduce a PostgreSQL/PostGIS extension
to deal with fuzzy points and fuzzy lines according to the model
in [10]. Davari and Ghadiri [7, 8] specify fuzzy regions and fuzzy
spatial skyline queries in PL/pgSQL by using existing functionali-
ties of PostgreSQL/PostGIS. Further, fuzzy topological relationships
use the concepts of the Fuzzy Region Connection Calculus [16].

The aforementioned approaches face at least one of the following
problems: (i) low applicability due to the limited support for fuzzy
spatial data types and operations, and (ii) problems inherited from
their conceptual models, such as a limited representation of spatial
fuzziness and lack of closure properties (e.g., as discussed in [2]).
On the other hand, fsr does not have these drawbacks because
it implements all concepts defined by SPA [4, 15] and FUSA [2],
which specify data structures for fuzzy spatial data types and define
a broad collection of fuzzy spatial operations. fsr goes further since
it provides functions for designing fuzzy spatial inference models
on fuzzy spatial objects. This is an additional functionality that
expands the range of applications (e.g., SDBS, GIS, SDS) in which
fsr can be used.

3https://gdal.org/
4https://postgis.net/

Handling Fuzzy Spatial Data in R Using the fsr Package SIGSPATIAL ’21, November 2–5, 2021, Beijing, China

3 FUZZY SETS AND LINGUISTIC VARIABLES
Fuzzy set theory [20] extends and generalizes Boolean set theory.
Let X be the universe (of discourse). Let A be a classical subset of X .
The membership of an element to A is given by the characteristic
function χA : X → {0, 1} such that for all x ∈ X holds that χA(x) =
1 if, and only if, x ∈ A, and χA(x) = 0 otherwise. Fuzzy set theory
relaxes this strict rule by allowing that an element can have partial
membership in the set. Let Ã be a fuzzy set. All elements in X
receive an evaluation regarding their membership in Ã by using the
membership function µÃ : X → [0, 1]. Larger (smaller) values mean
higher (lower) degrees of set membership. Hence, fuzzy set theory
permits that an element has multiple and different membership
degrees in different fuzzy sets.

Applications represent the vagueness of a concept by using lin-
guistic values (LVal) in the scope of a linguistic variable (LVar) [21].
While LVars are attributes, LVals characterize situations of an LVar.
For instance, for a given LVar named temperature level, we can
distinguish situations where a temperature value is characterized
by an LVal, such as cold, warm, or hot. LVals are labels for fuzzy sets
in applications. In this paper, we discuss that fuzzy spatial objects
implemented as spatial plateau objects can represent LVals.

4 RUNNING EXAMPLE
Throughout the rest of this paper, we build up a small application to
illustrate how fsr works. For this, we make use of the following real
spatial datasets: (i) Airbnb accommodations in New York City, ex-
tracted from 2021-04-07 to 2021-04-12 and named accom_nyc_full5,
and (ii) New York City restaurant inspection results provided by
the Department of Health and Mental Hygiene (DOHMH) named
rest_nyc_full6. Each dataset contains crisp point objects labeled
with several alphanumerical attributes. We have performed filters
on these datasets to produce the datasets of our running example
named accom_nyc and rest_nyc as follows. accom_nyc contains
Airbnb accommodations that have overall ratings; thus, it is a sub-
set of accom_nyc_full and excludes observations with missing data
in this attribute. rest_nyc comprises the most recent graded in-
spection results valid on April 12th, 2021, since a restaurant can
be reinspected. It is a subset of rest_nyc_full and results from the
execution of an R script provided DOHMH6 and the deletion of ob-
servations with negative scores and missing coordinates. In the end,
accom_nyc and rest_nyc have 26,496 and 24,699 lines, respectively.

We use some attributes from them only. Each attribute is repre-
sented as an LVar with a set of LVals that characterize the values
of the attributes. accom_nyc contains two numerical attributes of
interest for this application. The first one represents the daily price
of the accommodation and its LVar is named accommodation price,
which can be characterized as cut-rate, affordable, and expensive.
The second one stores the overall rating as a value from 0 (worst) to
100 (best). We name its LVar accommodation review and describe its
LVals reasonable, good, and excellent. As for rest_nyc, we are inter-
ested in the sanitary inspection results represented as scores greater
than or equal to 0, where a smaller score implies a better grade.

5http://insideairbnb.com/get-the-data.html
6https://data.cityofnewyork.us/Health/DOHMH-New-York-City-Restaurant-
Inspection-Results/43nn-pn8j

Based on that, we specify the LVar food safety with the following
levels of sanitary conditions: low, medium, and high.

The goal of our application is fourfold. First, we aim to build
spatial plateau objects for representing the desired LVals of each
dataset. For instance, we wish to create a plateau region object that
represents the areas containing cut-rate accommodations. Second,
we conduct an exploratory spatial data analysis by performing
spatial plateau operations on the built plateau region objects. Third,
we design a fuzzy spatial inference model to estimate the visiting
experience based on prices and overall ratings of accommodations
as well as sanitary conditions of restaurants. The output of such a
model infers a value between 0 and 100 that indicates how attractive
it is to visit a specific location. For this, we classify the experience
as awful, average, and great. Finally, we aim to obtain only those
locations that promise to provide a great visiting experience.

5 FSR PACKAGE
The fsr package is an R implementation of the Spatial Plateau Alge-
bra (SPA) that is based on the abstract and conceptual Fuzzy Spatial
Algebra (FUSA). It is publicly available at https://cran.r-project.org/
package=fsr. Its spatial plateau data types, spatial plateau operations,
and spatial plateau predicates are defined in terms of the spatial data
types, operations, and predicates of crisp spatial algebras (Section 2)
for which implementations are available. Therefore, the SPA can
be regarded as an executable type system.

Section 5.1 provides an architectural overview of fsr. Section 5.2
informally describes the spatial plateau data types, introduces a
format for their textual representation, and shows their use in fsr.
Section 5.3 deals with a systematic two-stage approach to creat-
ing spatial plateau objects from real spatial datasets and demon-
strates how this approach is applied in fsr in the context of our
running example. Section 5.4 sketches the spatial plateau opera-
tions and predicates of the SPA and illustrates their application in
fsr. Section 5.5 describes the design and evaluation of fuzzy spatial
inference models by using FIFUS [3].

5.1 Architectural Overview
Figure 1 presents the overview of the fsr package. Applications like
SDBS, GIS, and SDS, make use of the fsr package by calling functions
available in the four modules named Basic Module (Section 5.2), Con-
struction Module (Section 5.3), Fuzzy Spatial Data Handling Module
(Section 5.4), and Fuzzy Spatial Inference Module (Section 5.5).

We employ other R packages to implement fsr. Some of them are
shown in the bottom layer of Figure 1. The R Base package provides
the basic programming support for R. The methods package allows
us to define R classes and their formal methods. Since SPA uses a
crisp spatial type system to specify fuzzy spatial objects as plateau
spatial objects, we deploy the sfg data type from the sf package to
implement and handle crisp spatial objects. We use the FuzzyR [6]
package to deal with membership functions when creating spatial
plateau objects and designing fuzzy spatial inference models. The
tidyverse package contains a set of other packages which we use
for handling strings and tabular data and for producing graphical
visualizations of spatial plateau objects. Finally, the pso package
supplies the implementation of the PSO algorithm. Other packages
are also employed but not listed in the figure.

SIGSPATIAL ’21, November 2–5, 2021, Beijing, China A. C. Carniel, F. Galdino, J. S. Philippsen, and M. Schneider

Applications

fsr package

R Packages

SDBS SDSGIS ...

R base sf psoFuzzyRmethods tidyverse

Basic Module
Data Types Basic Functions

Construction Module
Two Stage Construction Method

Fuzzy Spatial Data Handling Module
Fuzzy Numerical Operations

Fuzzy Geometric Set Operations

Fuzzy Topological Predicates

Fuzzy Spatial Inference Module
Preparation

Evaluation

fsi_create
fsi_add_fsa

fsi_add_cs
fsi_add_rules

spa_intersection
spa_union spa_difference

spa_ncomp spa_avg_degree
spa_area spa_perimeter spa_length

spa_overlap spa_meet spa_disjoint
spa_equal spa_inside spa_contains

plot show ...pgeometry component

fsi_eval

spa_creator

fsi_qw_eval

...

Figure 1: An overview of the fsr package, its underlying R
resources, and some possible applications.

5.2 Classes for Spatial Plateau Data Types
Concepts. The SPA represents fuzzy points, fuzzy lines, and fuzzy
regions as (spatial) plateau points, plateau lines, and plateau regions,
respectively. In general, a spatial plateau object is specified by a
list of pairs where each pair (called component) consists of a crisp
spatial object and a membership degree in]0, 1]. The crisp spatial
objects of all components of a spatial plateau object must be of the
same crisp spatial data type point, line, or region, have different
membership degrees, and be disjoint or adjacent to each other.
Examples of spatial plateau objects are given in Figure 2. A formal
definition of the spatial plateau data types is given in [4, 15].

The membership degree of a single point in a spatial plateau
object depends on the spatial plateau data type. Each component
of a plateau point object consists of a single point and an associ-
ated membership value. The associated membership degree of each
region component of a plateau region is assigned to all interior
points of that component. However, each boundary point of a re-
gion component gets themaximummembership degree of all region
components to which it belongs. Similarly, each point of a com-
ponent of a plateau line object obtains the maximum membership
degree of all line components to which it belongs.

The textual representation of a spatial plateau object has been in-
troduced in [5] and combines the well-known text (WKT) represen-
tation for crisp vector geometry objects and the formal definitions
of the three spatial plateau data types. This textual representation
called PWKT is specified by a function pwkt that takes a spatial
plateau object as input and generates a string as output. Let us as-
sume a spatial plateau region object pr whose n region components
are named ri and have the membership degreemi for i ∈ {1, . . . ,n}.
If wkt is the function that generates the WKT representation of a
complex region object, pwkt applied to pr generates
pwkt(pr) = "PLATEAUREGION((" + wkt(r1) + ", " +m1 + "), "

+ . . . + ", (" + wkt(rn) + ", " +mn + "))"

where the “+” symbol denotes string concatenation and the mem-
bership value is implicitly transformed into a string.

Running Example Using fsr. We employ the S4 object-oriented
system of R to implement the underlying classes of fsr. This system
allows us to explicitly define classes with a particular number of
attributes so that we can create objects through the constructor
function new. We define two S4 classes. The first one is named
component and has two attributes that represent a pair composed
of a crisp spatial object and a membership degree in]0, 1]. Since
we are using the sf package, the crisp spatial object is represented
as an sfg object. This means a component stores a single instance
of a simple or complex crisp spatial object.

The second class of fsr is called pgeometry, which stands for
plateau geometry object. Its attributes include a list of component
objects, an sfg object that represents the support (i.e., the union of
the crisp spatial objects of all components) of the pgeometry object,
and its data type. In particular, the storage of the support improves
the computation of spatial plateau operations (Section 5.4).

The fsr package provides several constructors that enable us to
create component and pgeometry objects. Here, we present two con-
structors named component_from_sfg and create_pgeometry with
the following signatures:

component_from_sfg(sfg, md)
create_pgeometry(components, type)

The constructor component_from_sfg receives an sfg object and
a membership degree as inputs and yields a component object. The
constructor create_pgeometry accepts a list of components and a
string value that indicates the desired spatial plateau data type as
inputs and yields a pgeometry object. These constructors ensure
that the properties defined by SPA are fulfilled. For instance, com-
ponent_from_sfg creates a component object only if a simple or
complex point, line, or region object is provided. Further, it is un-
able to create a pgeometry object with a list of components whose
sfg objects are not of the same simple or complex spatial data type.

We also set methods that override well-known functions of R
to deal with pgeometry objects. We highlight two methods. The
method show is responsible for providing textual representations
of objects so that programmers can view the value of an object in
the console. In this case, fsr produces the PWKT representation
of a pgeometry object. The second method plot provides graphical
visualizations of objects. We supply this method in fsr by using the
ggplot2 package to visualize the components of a pgeometry object.
The default behavior is to use grayscale to indicate how much a
point belongs to the pgeometry object where darker colors mean
higher membership degrees. We also provide the function fsr_plot
that allows users to specify other visualization options.

Program 1 shows a small example that uses the aforementioned
functions. It starts by defining a set of matrices containing the
coordinates to build crisp point objects and crisp line objects (lines 1
to 6). Next, we create three components for these crisp objects (lines
7 to 12). To build the crisp spatial objects, we employ the functions
st_multipoint and st_linestring from sf. Then, the program builds a
plateau point object and a plateau line object (lines 13 and 14). The
surrounding parentheses in the same lines implicitly call the show
method to print them using their PWKT representations. Finally,
such objects are graphically visualized by using the function plot
(lines 15 and 16). The graphical and textual representations of these
objects are shown in Figure 2.

Handling Fuzzy Spatial Data in R Using the fsr Package SIGSPATIAL ’21, November 2–5, 2021, Beijing, China

1.0

1.5

2.0

2.5

3.0

1.0 1.5 2.0 2.5 3.0

PLATEAUPOINT (
(MULTIPOINT ((1 2), (3 2)), 0.3),
(MULTIPOINT ((1 1), (2 3), (2 1)), 0.6),
(MULTIPOINT ((2 2), (3 3)), 1))

(a)

 0.0

 0.5

 1.0

 1.5

 2.0

 0.0 0.5 1.0 1.5 2.0

PLATEAULINE (
(LINESTRING (0 0, 1 1), 0.4),
(LINESTRING (2 1, 1.5 0.5), 0.7),
(LINESTRING (1 1, 1.2 1.9, 2 1), 1))

(b)

Figure 2: Examples of a plateau point object (a) and a plateau
line object (b). Their creation is shown in Program 1.

Program 1: Using basic functions of fsr.
1 pts1 <- rbind(c(1, 2), c(3, 2))

2 pts2 <- rbind(c(1, 1), c(2, 3), c(2, 1))

3 pts3 <- rbind(c(2, 2), c(3, 3))

4 lpts1 <- rbind(c(0, 0), c(1, 1))

5 lpts2 <- rbind(c(1, 1), c(1.2, 1.9), c(2, 1))

6 lpts3 <- rbind(c(2, 1), c(1.5, 0.5))

7 cp1 <- component_from_sfg(st_multipoint(pts1), 0.3)

8 cp2 <- component_from_sfg(st_multipoint(pts2), 0.6)

9 cp3 <- component_from_sfg(st_multipoint(pts3), 1)

10 cp4 <- component_from_sfg(st_linestring(lpts1), 0.4)

11 cp5 <- component_from_sfg(st_linestring(lpts2), 1)

12 cp6 <- component_from_sfg(st_linestring(lpts3), 0.7)

13 (pp <- create_pgeometry(list(cp1,cp2,cp3), "PLATEAUPOINT"))

14 (pl <- create_pgeometry(list(cp4,cp5,cp6), "PLATEAULINE"))

15 plot(pp)

16 plot(pl)

5.3 Creating Spatial Plateau Objects from Real
Spatial Datasets

Concepts. The construction of spatial plateau objects from real
datasets can only be successful with a systematic approach. Our
approach rests on a two-stage construction method. The input is
a point dataset where each point represents the location of a phe-
nomenon treated by the application. Each point is annotated with
alphanumerical data that describe its meaning in the application.
This dataset is used by the first stage called fuzzification stage. This
stage assigns membership degrees to each point of the dataset ac-
cording to the requirements of the application. Each membership
degree indicates howmuch a point belongs to a particular LVal (e.g.,
cut-rate, affordable, expensive) as a possible characterization of an
LVar (e.g., accommodation price). Since different ways of assigning
membership degrees to points are conceivable, this stage includes
a fuzzification policy. The main advantage of this strategy is that
users can choose the best policy that fulfills their needs. Three gen-
eral fuzzification policies are offered that are based on fuzzy sets,
fuzzy clustering algorithms, and fuzzy classification algorithms.

In our running example, we employ the fuzzy set policy, which
requires the specification of membership functions to represent
an LVal. Examples of membership functions include the triangular

Program 2: Constructing plateau region objects for the LVar
accommodation price.
1 lvals_accom_price <- c("cut-rate", "affordable", "expensive")

2 cut_rate_mf <- genmf("trapmf", c(0, 0, 10, 48))

3 affordable_mf <- genmf("trapmf", c(10, 48, 80, 115))

4 expensive_mf <- genmf("trapmf", c(80, 115, 10000, 10000))

5 accom_price <- accom_nyc[, c("longitude", "latitude", "price")]

6 accom_price_layer <- spa_creator(accom_price, classes =
lvals_accom_price, mfs = c(cut_rate_mf, affordable_mf,
expensive_mf))

7 # plotting cut-rate, affordable, and expensive accommodations

8 plot(accom_price_layer$pgeometry[[1]], color=NA, base_poly=nyc)

9 plot(accom_price_layer$pgeometry[[2]], color=NA, base_poly=nyc)

10 plot(accom_price_layer$pgeometry[[3]], color=NA, base_poly=nyc)

cut−rate affordable expensive

0.00

0.25

0.50

0.75

1.00

0 50 100 150

Figure 3: TrapMFs for the LVar accommodation price.

membership function (TrimMF) and the trapezoidal membership
function (TrapMF) [20].

The second stage called construction stage is responsible for
grouping the points belonging to the same LVal into a correspond-
ing plateau region object. The construction stage includes a con-
struction policy that lets the user decide how the plateau region
objects are spatially defined. Construction policies are either based
on Voronoi diagrams, Delaunay triangulations, or convex hulls.
The last step of this stage returns tabular data in which each tuple
represents an LVal and its correspondingly created plateau region
object. This strategy permits that users manage and query these ob-
jects using the SPA (Section 5.4). More details about this two-stage
construction method can be found in [5].
Running Example Using fsr. Since the LVars accommodation
price, accommodation review, and food safety contain geographical
coordinates, we can create spatial region objects that characterize
their LVals by using our two-stage construction method. The pack-
age fsr implements this method through the function spa_creator,
which has the following signature:

spa_creator(tbl, fuzz_policy = "fsp",
const_policy = "voronoi", ...)

The first parameter tbl denotes the point dataset annotated with
numerical values. The second and third parameters fuzz_policy and
const_policy allow users to choose the fuzzification and construction
policies. The default policies are the fuzzy set policy (fsp) and the
Voronoi diagram policy (voronoi). If a policy requires additional
parameters, they have to be listed in the variable parameter list
indicated by the “three dots” argument. For instance, the fuzzy set
policy requires a character vector containing the names of LVals and
another vector containing its corresponding membership functions.
The output of spa_creator is a table containing the plateau region
objects labeled with their LVals.

Program 2 applies the function spa_creator for our running ex-
ample. It has two parameters. First, it requires a character (string)

SIGSPATIAL ’21, November 2–5, 2021, Beijing, China A. C. Carniel, F. Galdino, J. S. Philippsen, and M. Schneider

0.00

0.25

0.50

0.75

1.00

(a) cut-rate (b) affordable (c) expensive

Figure 4: The plateau region objects for each LVal cut-rate (a), affordable (b), and expensive (c) of the LVar accommodation
price including city boundaries.

vector containing all LVals of accommodation price (line 1). Sec-
ond, it expects the membership functions that characterize each
LVal (lines 2 to 4). For this, the function genmf from the FuzzyR
package generates four TrapMFs that are shown in Figure 3. Then,
we select only the columns from accom_nyc that refer to the coor-
dinates of Airbnb accommodations and their daily prices (line 5).
This selection is stored in accom_price. Next, we call spa_creator
to build plateau regions by taking accom_price as first input. Since
Program 2 employs the default policies, we include the character
vector with the LVal names and a vector of the generated member-
ship functions as inputs (line 6). Both vectors are correlated in the
sense that the element i of one vector corresponds to the element
i of the other vector. Finally, the program provides visualizations
of the created plateau region objects (lines 8 to 10). For this, the
function plot is used with two parameters that remove the colors of
boundaries of the components of a pgeometry object (color = NA)
and add the New York City boundaries (base_poly = nyc, where
nyc is an sfg object) to the visualization, as shown in Figure 4. In
Figure 4b, for any specific point location with membership degree 1,
the accommodation price is between 48 and 80 since the TrapMF for
the linguistic value affordable returns 1 for these values (Figure 3).

Similarly to Program 2, we create the plateau region objects for
the other LVars of our running example. This leads to the gener-
ation of the three layers accom_price_layer, accom_review_layer,
and food_safety_layer, respectively, corresponding to the LVars ac-
commodation price, accommodation review, and food safety. To build
the layer accom_review_layer, we specify the TrapMFs (0, 0, 40, 65),
(40, 65, 80, 85), and (80, 85, 100, 100) for the LVals reasonable, good,
and excellent, respectively. To create the layer food_safety_layer, we
use the TrapMFs (24, 28, 115, 115), (10, 14, 24, 28), and (0, 0, 10, 14)
for the LVals low, medium, and high, respectively. As a result, each
layer consists of a set of plateau region objects labeled with LVals.
Figure 5a depicts the plateau region object for high food safety.

5.4 Manipulating Spatial Plateau Objects
Concepts. SPA [4, 15] contains three classes of spatial plateau op-
erations. The first class of spatial plateau set operations comprises
the functions spa_intersection, spa_union, and spa_difference that
implement the respective geometric operations fintersection, funion,
and fdifference of FUSA. They all have the signature α × α × β →

(a) high (b) intersected area

Figure 5: The plateau region object for the LVal high (a) of
the LVar food safety and its intersection with the plateau re-
gion object of Figure 4c (b). This means that each point in (b)
represents to which extent the accommodation is expensive
and the food safety is high in the particular location.

α with α ∈ {PLATEAUPOINT, PLATEAULINE, PLATEAUREGION} and
β ∈ {itype, utype, dtype}. This means that the spatial plateau ob-
jects that form the input and the output of each operation are
of the same spatial plateau data type. The types itype for the op-
eration spa_intersection, utype for the operation spa_union, and
dtype for the operation spa_difference contain the names of possible
operators that can be the third parameter of the respective oper-
ation. Their selection depends on the application and is therefore
context-dependent. Type itype contains the names of t-norms (e.g.,
min and prod), type utype the names of t-conorms (e.g., max), and
type dtype the names of difference operators (e.g., absolute differ-
ence, bounded difference). All these operators have the signature
[0, 1] × [0, 1] → [0, 1] and calculate the membership degree of a
point of the resulting spatial plateau object from the membership
degrees of the same point in the two input spatial plateau objects.

The second class of spatial plateau metric operations offers the
type-independent functions spa_ncomp and spa_avg_degree to de-
termine the number of components and calculate the average mem-
bership degree of a spatial plateau object respectively. The type-
dependent functions spa_perimeter and spa_area compute the area

Handling Fuzzy Spatial Data in R Using the fsr Package SIGSPATIAL ’21, November 2–5, 2021, Beijing, China

Program 3: Handling spatial plateau objects by using spatial
plateau operations.
1 intersected_area <-

spa_intersection(accom_price_layer$pgeometry[[3]],
food_safety_layer$pgeometry[[3]])

2 plot(intersected_area, color = NA, base_poly = nyc)

3 total_area <- spa_area(intersected_area)

4 overlap_degree <- spa_overlap(accom_review_layer$pgeometry[[3]],

food_safety_layer$pgeometry[[1]]) # excellent & low

5 is_quite_overlap <- spa_overlap(accom_price_layer$pgeometry[[2]],
accom_review_layer$pgeometry[[3]], ret = "bool", lval = "quite",
eval_mode = "soft_eval") # affordable & excellent

and the perimeter of a plateau region object, respectively, and
spa_length computes the length of a plateau line object.

The third class relates to spatial plateau topological relationships.
Any two spatial plateau objects are in a particular relative position
to each other that can be expressed by a topological relationship such
as overlap or inside. Such a topological relationship determines the
degree to which it holds for any two spatial plateau objects by a real
value in the interval [0, 1]. The topological relationships provided
are spa_overlap, spa_meet, spa_disjoint, spa_equal, spa_inside, and
spa_contains on two plateau regions. Their key idea is to consider
point subsets resulting from the combination of spatial plateau
set operations and spatial plateau metric operations on the spatial
plateau objects for computing the resulting degree. Their definitions
are complex and can be found in [4].
Running Example Using fsr. The fsr package provides R imple-
mentations of all three classes of spatial plateau operations. The
spatial plateau set operations have the signatures:
spa_intersection(pgo1, pgo2, itype = "min")
spa_union(pgo1, pgo2, utype = "max")
spa_difference(pgo1, pgo2, dtype = "f_diff")

The first two parameters of these functions are pgeometry objects
of the same type. The third parameter allows the user to specify an
operator name from the types itype, utype, or dtype respectively
that will be used to evaluate the operation. The fsr package pro-
vides some operators by default and permits the specification and
implementation of user-defined operators. The latter must have the
correct signature and fulfill the required properties of the respective
operator type. To employ a user-defined operator, its name must be
provided as the third parameter of a spatial plateau set operation.

The fsr package provides the spatial plateau metric operations
with the signatures:

spa_ncomp(pgo)
spa_avg_degree(pgo)
spa_perimeter(pr)
spa_area(pr)
spa_length(pl)

Each operation validates if the pgeometry object given as its input
has the correct data type. If not, it throws a warning message and
returns 0, similarly to the type-dependent operations implemented
by the sf package. The fsr package provides the following spatial
plateau topological relationships in R with the signatures
spa_overlap(pgo1, pgo2, itype = "min", ret = "degree", ...)
spa_meet(pgo1, pgo2, itype = "min", ret = "degree", ...)
spa_disjoint(pgo1, pgo2, itype = "min", ret = "degree", ...)

spa_equal(pgo1, pgo2, utype = "max", ret = "degree", ...)
spa_inside(pgo1, pgo2, utype = "max", ret = "degree", ...)
spa_contains(pgo1, pgo2, utype = "max", ret = "degree", ...)

The first two parameters of these functions are pgeometry objects
of the type PLATEAUREGION. Since the spatial plateau topological
relationships deploy geometric set operations in their implementa-
tions, the third parameter permits that users apply a specific opera-
tor to the internal set operation of the topological relationship. A
t-norm can be provided to the functions spa_overlap, spa_meet, and
spa_disjoint, while a t-conorm can be given for the other functions.

The fourth parameter defines the returning value of a function,
and its possible values are: degree (default), list, and bool. If the
parameter value is degree, the function returns a value of the in-
terval [0, 1] indicating the degree of truth of a given topological
relationship. For the remainder options, the functions utilize a set
of LVals that characterize the different situations of topological
relationships. For instance, we can distinguish if two plateau region
objects are somewhat or slightly overlapping. Each LVal has its
corresponding membership function defined in the domain [0, 1].

If the parameter value is list, the function returns a named list
containing how much the result of the predicate belongs to each
LVal. Since fuzzy set theory allows that an element has different
membership degrees in different sets, this parameter allows users to
analyze the spatial vagueness expressed by a topological predicate.
For instance, the overlapping situation of two plateau region objects
can be 0.4 for somewhat and 0.6 for slightly.

Finally, if the parameter value is bool, the function returns a
Boolean value indicating whether the degree returned by the topo-
logical relationship matches a given LVal according to an evaluation
mode. In this case, the names of the LVal and of the evaluation mode
have to be specified by the “three dots” argument. The fsr package
provides several evaluation modes. An example is the evaluation
mode soft_eval, which returns true if the degree returned by the
topological relationship has a membership greater than 0 in the
membership function of a given LVal; otherwise, it returns false.

User-defined LVals and membership functions for topological
relationships are specified by the following function:
spa_set_classification(classes, mfs)

The parameter classes is a character vector containing the LVals,
and the parameter mfs is the corresponding vector of membership
functions generated by the function genmf of the FuzzyR package.
In addition, user-defined evaluation modes can be implemented as
functions with the signature [0, 1] → {true, false}.

Program 3 depicts a short example that manipulates the spatial
plateau objects of our running example. First, we identify the areas
containing expensive accommodations and restaurants with high
food safety. For this, we compute the intersection of the plateau
region objects of the respective LVals (line 1). Then, we visualize
the resulting spatial plateau object (line 2) as shown in Figure 5b.
Next, we measure the area of this object (line 3). In line 4, we
check the overlapping degree between excellent accommodations
and restaurants with low food safety. Finally, we evaluate whether
affordable accommodations are quite overlapping with excellent
accommodations (line 5). For this, we specify the needed parameters
to use the topological relationship as a Boolean predicate (i.e., ret
= "bool", lval = "quite", and eval_mode = "soft_eval").

SIGSPATIAL ’21, November 2–5, 2021, Beijing, China A. C. Carniel, F. Galdino, J. S. Philippsen, and M. Schneider

5.5 Processing Fuzzy Spatial Inference Models
Concepts. LVars and LVals enable us to write fuzzy conditional
propositions called fuzzy rules that express expert knowledge of
the application domain [21]. A fuzzy rule has the format IF A THEN
B, where A is called the antecedent and B the consequent of the rule
such that A implies B. A and B are statements of the format L is v
where L is an LVar and v is an LVal of the scope of L. Statements
can be combined by using logical connectives like AND and OR.

FIFUS [3] enables us to create fuzzy spatial inference (FSI) mod-
els based on traditional fuzzy inference systems [11]. It gets a crisp
simple point object as input and yields the reasoning conclusion
for that point, such as a recommendation, estimation, or prediction.
For this, it requires two components. The data source component
contains the needed elements for performing an FSI: (i) fuzzy spatial
objects labeled with LVals, (ii) fuzzy sets representing the expected
results of the application, and (iii) the fuzzy rules set. In FIFUS, each
statement of the antecedent of a fuzzy rule employs the LVals of
the fuzzy spatial objects since they represent the main character-
istics of the application; thus, each fuzzy rule has a fuzzy spatial
antecedent (FSA). Each statement of the consequent makes use of
the membership function that represents the employed LVal.

The spatial reasoning component is responsible for evaluating
a fuzzy inference method (e.g., Mamdani’s method [11]) on the
point object given as input by using the elements of the data source
component. In general, an FSI model performs the following steps.
For each fuzzy rule, it determines the degree to which the point
object belongs to each of the fuzzy spatial objects representing the
LVals of the FSA. If the FSA has more than one statement, then
it combines the degrees by using operators corresponding to the
employed logical connectives. The result of this procedure is the
degree of fulfillment of the rule (also known as firing strength of
the rule). Then the inference method applies an implication oper-
ator that reshapes the fuzzy set of the consequent. The resulting
implications are aggregated by a composition operator. The under-
lying inference method can apply different operators to the logical
connectives, one operator for the implication, and one operator for
the composition. For instance, Mamdani’s method applies the min
operator for the AND operator and the implication, and the max
operator for the OR operator and the composition. The result of the
composition is a fuzzy set without meaning for the user. Hence, the
last step of the FSI is to extract a numeric value that best represents
the resulting fuzzy set by executing a defuzzification method such
as the centroid. More details about FIFUS are given in [3].

However, the usability of an FSI model is limited if we consider
a crisp simple point object as input only. Instead, we consider a
query window as input. A query window is an axis-aligned rectangle
that represents an infinite set of points in the Euclidean plane. For
instance, in the context of our running example, the user wants to
know the locations where the visiting experience is great in a given
query window of interest. This leads to a kind of inference that we
call query window inference. Since it is infeasible to infer all points
in the query window due to their infinite number, we propose two
approaches that answer different types of questions.

The first approach is to determine a sample by extracting a
finite number of points from the query window to be evaluated
by the FSI. We call this approach the discretization approach. It is

an approach that requires the number k of points to be extracted
as a “hyperparameter” whose value is used to control the query
window inference. This approach can answer questions like “return
all the m ≤ k points with inferred values belonging to a target
LVal”. In our running example, we are interested in capturing all
the point locations with great visiting experience. This approach
can also answer the question “return the point locations with the
maximum (minimum) inferred value”. For this, we apply a filter to
get the n ≤ m points with the maximum (minimum) inferred value.
However, several points in the query window that are not among
the k points can have the maximum (minimum) inferred value so
that this approach cannot discover them.

The second approach is a better alternative to answer the last
question. It avoids the drawback of the discretization approach by
identifying and processing a subset of points of the query window
that definitely contributes to answering the question. In our running
example, users are interested in gathering only the locations whose
visiting experience has the highest rating so that other locations
are not relevant for them. For this purpose, we can employ an
optimization technique to obtain an approximate solution that
maximizes the output value of an FSI model.

In this paper, we employ PSO [14] to implement the second ap-
proach since it requires a small number of parameters and has a
relatively small computational cost compared to other optimiza-
tion techniques (e.g., genetic algorithms). PSO is based on swarm
intelligence and aims to optimize a given problem iteratively by
considering a search space and the individual and collective per-
formance of particles in this space. A particle can be defined as
a possible solution to the problem to be optimized. Each particle
evaluates a fitness function at its current position [14]. Its movement
in the search space is then determined by using solutions found by
itself (best local) and by other particles (best global) [14]. In addi-
tion to the fitness function, PSO requires the definition of an initial
quantity of particles (i.e., a population) that will travel through the
search space to find the best solution for the problem. Further, the
maximum number of iterations is a common parameter.
Running Example Using fsr. The usage of FSI models is subdi-
vided into a preparation phase and an evaluation phase. The prepa-
ration phase is responsible for instantiating a new FSI model with
the elements of the data source component of FIFUS. For this, the
fsr package provides the following functions:
fsi_create(name, and_method = "min", or_method = "max",

imp_method = "min", agg_method = "max",
defuzz_method = "centroid", default_conseq = NULL)

fsi_add_fsa(fsi, lvar, tbl)
fsi_add_cs(fsi, lvar, lvals, mfs, bounds)
fsi_add_rules(fsi, rules, weights = rep(1, length(rules)))

The first function creates an FSI model without elements of
the data source component. Its first parameter specifies the name
of the FSI model. The next four parameters define the operators
for the logical connectives AND and OR, the implication operator,
and the aggregation operator, respectively. The default values for
these parameters lead to the use of Mamdani’s method for the FSI
model. The parameter defuzz_method determines the defuzzifica-
tion technique and its default value is the centroid technique. Other
defuzzification techniques in the FuzzyR package can also be spec-
ified. The last parameter is a membership function generated by

Handling Fuzzy Spatial Data in R Using the fsr Package SIGSPATIAL ’21, November 2–5, 2021, Beijing, China

Program 4: FSI model for our running example.
1 fsi <- fsi_create("To visit or not to visit, that is the question",

default_conseq = genmf("trimf", c(10, 30, 60)))

2 fsi <- fsi_add_fsa(fsi, "accommodation price", accom_price_layer)

3 fsi <- fsi_add_fsa(fsi,"accommodation review",accom_review_layer)

4 fsi <- fsi_add_fsa(fsi, "food safety", food_safety_layer)

5 lvals_visiting_exp <- c("awful", "average", "great")

6 awful_mf <- genmf("trimf", c(0, 0, 20))

7 average_mf <- genmf("trimf", c(10, 30, 60))

8 great_mf <- genmf("trapmf", c(40, 80, 100, 100))

9 fsi <- fsi_add_cs(fsi, "visiting experience", lvals_visiting_exp,

c(awful_mf, average_mf, great_mf), c(0, 100))

10 rules <- c("IF accommodation review is reasonable AND food safety
is low THEN visiting experience is awful",
"IF accommodation price is expensive AND accommodation review is
reasonable THEN visiting experience is awful",
"IF accommodation price is affordable AND accommodation review is
good AND food safety is medium THEN visiting experience is
average",
"IF accommodation price is affordable AND accommodation review is
excellent AND food safety is high THEN visiting experience is
great",
"IF accommodation price is cut-rate AND accommodation review is
excellent AND food safety is high THEN visiting experience is
great")

11 fsi <- fsi_add_rules(fsi, rules)

12 res <- fsi_eval(fsi, st_point(c(-73.992, 40.7145)))

13 pts_qw1 <- rbind(c(-73.92, 40.68527), c(-73.75, 40.68527),

c(-73.75, 40.75), c(-73.92, 40.75), c(-73.92, 40.68527))

14 qw1 <- st_polygon(list(pts_qw1))

15 dis_res <- fsi_qw_eval(fsi, qw1, approach = "discretization",

target_lval = "great", k = 100)

16 pso_res <- fsi_qw_eval(fsi, qw1, approach = "pso", max_depth = 2)

the function genmf of the FuzzyR package and defines the default
behavior of the FSI model. That is, if there is no fuzzy rule with
a degree of fulfillment greater than 0, the membership function
default_conseq is used as the default reasoning conclusion.

The other three functions add elements of the data source compo-
nent to the FSI model given by the parameter fsi of these functions.
The function fsi_add_fsa adds a part of the FSA to the FSI model.
It gets as input the LVar and its corresponding pgeometry objects
annotated by LVals as second and third parameters respectively.
The format of the last parameter is the same as the output of the
function spa_creator (Section 5.3) so that users can directly provide
built plateau region objects as input when designing FSI models.

The function fsi_add_cs adds the consequent to the FSI model. Its
second parameter is the LVar of the consequent (output) of the FSI
model in which its LVals are provided as a character vector (lvals)
and a vector of corresponding membership functions (mfs). The
consequent has also a domain given by the last parameter (bounds).

The last function fsi_add_rules adds the fuzzy rules set to the
FSI model. These rules are given by a character vector as the sec-
ond parameter of this function. The definition of a fuzzy rule is
user-friendly since users can write it by using the LVars and LVals
previously defined and added to the FSI model. We highlight some
features when specifying these rules with the fsr package. First, the
package checks the compatibility between LVars and LVals. Second,
the order of the statements in the antecedent is not relevant. Finally,
each LVar has to appear at most one time in each fuzzy rule and only
one kind of logical connective must be used in the statements of the
antecedent. These features aid in avoiding possible contradictions.

Program 4 shows how the aforementioned functions are em-
ployed in our running example. The majority of the lines in this
program are dedicated to designing the FSI model. This is an ex-
pected behavior since the fuzzy inference method requires a set
of elements to perform the reasoning conclusions. First, we create
an empty FSI model by providing a name and its standard behav-
ior (line 1). The resulting object named fsi is based on Mamdani’s
method since the default values of the parameters are not changed.
Next, we add the three parts of the FSA for the LVars accommoda-
tion price (line 2), accommodation review (line 3), and food safety
(line 4) of our running example. Note that we use the built plateau
region objects from Program 2 to add these parts of the FSA. Then
we specify the consequent of the FSI model to determine the visiting
experience of a specific location. Thus, we define its LVals (line 5)
and corresponding membership functions (lines 6-8) that are added
to the FSI model (line 9). Note that the visiting experience is a rate
between 0 (worst) and 100 (best). Next, we design the fuzzy rules
(line 10) and add them to the FSI model (line 11). The rules of our
running example express the cost-benefit of staying at a location
based on the food safety of restaurants, the accommodation price,
and the accommodation review. For instance, the experience is great
if the user stays in an accommodation with excellent reviews and
cut-rate prices as well as near to restaurants with high sanitary
inspection grades (last rule in line 10).

The evaluation phase consists of two different functions. The
first function implements the spatial reasoning component of FIFUS
and has the following signature:
fsi_eval(fsi, point, ...)

This function evaluates the FSI model indicated by the first pa-
rameter by considering a simple point object as the second input
parameter. To perform the defuzzification technique, the “three-dots
parameter” can be used to inform the function how the elements
of the resulting fuzzy set should be discretized. The output of this
function is a numeric value that belongs to the domain of the con-
sequent (i.e., as specified by fsi_add_cs) and represents the result of
the reasoning process.

The second function implements the approaches for evaluating
the query window inference and has the following signature:
fsi_qw_eval(fsi, qw, approach = "discretization", ...)

The first parameter of this function is the built FSI model. The
second parameter is an sfg object storing the query window that is
supposed to be used as input for the inference. The next parameter
defines which approach is employed to perform the query window
inference. There are two options: discretization and pso. Each option
requires its own set of parameters that are given by using the “three-
dots” parameter. For the discretization approach, two additional
parameters are needed. The first one is the target LVal from the
LVar of the consequent. It specifies that only those points with
inferred values with membership degrees greater than 0 in the
membership function of the target LVal should be included in the
final answer of the query window inference. The second parameter
is the number k of points that have to be captured from the query
window and evaluated by the function fsi_eval. To capture them,
we create a regular grid inside the query window where the number
of columns and rows is the square root of k . For instance, if k is
equal to 100, then the grid has 10 rows and 10 columns.

SIGSPATIAL ’21, November 2–5, 2021, Beijing, China A. C. Carniel, F. Galdino, J. S. Philippsen, and M. Schneider

70.0

72.5

75.0

77.5

80.0

(a) discretization approach (b) pso approach

Figure 6: The results for the query window inference ap-
proaches on two querywindowswhere the larger querywin-
dow corresponds to the qw1 of Program 4.

For the pso approach, we first discover the user’s goal. If the
user wants to maximize inferred values, we consider the LVal that
contains the greatest values of the domain of the consequent as the
target. Otherwise, we consider the LVal with the smallest values
of the domain of the consequent since the user wants to minimize
the inferred values. For instance, in the running example we aim to
know the best locations to visit. Thus, we are interested in capturing
the points with inferred values with some degree in the LVal great.

Then we split the query window into four subquadrants and
apply the PSO algorithm to each subquadrant as its search space.
A PSO particle is a simple point object. The fitness function of the
PSO employs the function fsi_eval to determine the point in the
subquadrant with the maximum or minimum inferred value. This
means we get four points as a result.

Next, we test if each resulting point belongs to the user’s request
by checking whether its inferred value has a membership degree in
the target LVal. If a point satisfies the user’s request, we continue to
explore the subquadrant by splitting it again into four subquadrants.
This procedure is recursively performed since several points in
the query window can satisfy the user’s request. The recursion is
stopped if a given maximum depth is reached. Hence, it is a needed
parameter for the pso approach. In addition, the PSO algorithm has
its own set of parameters such as themaximumnumber of iterations
and the size of the population (i.e., the number of particles).

Lines 12 to 16 in Program 4 perform the evaluation phase for
our FSI model. First, it infers the visiting experience in a single
point location (line 12). In lines 13 and 14, we build a query window
as an sfg object that is the input of the query window inference
processed by both approaches (lines 15 and 16). For the discretization
approach, we set k = 100 points and show its result in Figure 6a.
For the pso approach, we use the maximum depth 2 and show its
result in Figure 6b. Further, these figures show the results of these
approaches to another query window. Note that the points returned
by the pso approach are much nearer to the greatest inferred value
than the points yielded by the discretization approach.

6 CONCLUSIONS AND FUTUREWORK
In this paper, we have introduced an R package named fsr as an
implementation of the fuzzy spatial data types, operations, and

predicates of the SPA. The fsr package provides a wide range of
functions that allow users to (i) construct spatial plateau objects
from real datasets, (ii) conduct exploratory (spatial) data analysis
by deploying SPA operations, (iii) design FSI models to get new
insights from spatial plateau objects, and (iv) optimize the inference
process by applying the PSO algorithm. To the best knowledge of
the authors, this is the first implementation of a fuzzy spatial type
system with support for fuzzy spatial inference that can be used by
different types of applications such as SDBS, GIS, and SDS.

Future work will deal with a number of topics. First, we aim to
design optimized techniques to implement spatial plateau opera-
tions. Second, we plan to conduct an experimental analysis on the
query window inference approaches to understand the impact of
their parameters on the runtime performance and the quality of
their results. Finally, we plan to explore the combination of the best
characteristics of both approaches to propose a hybrid approach.

REFERENCES
[1] A. C. Carniel, R. R. Ciferri, and C. D. A. Ciferri. 2016. Handling Fuzzy Points and

Fuzzy Lines using the FuzzyGeometry Abstract Data Type. Journal of Information
and Data Management 7, 1 (2016), 35–51.

[2] A. C. Carniel and M. Schneider. 2016. A Conceptual Model of Fuzzy Topological
Relationships for Fuzzy Regions. In IEEE Int. Conf. on Fuzzy Systems. 2271–2278.

[3] A. C. Carniel and M. Schneider. 2017. Fuzzy Inference on Fuzzy Spatial Objects
(FIFUS) for Spatial Decision Support Systems. In IEEE Int. Conf. on Fuzzy Systems.
1–6.

[4] A. C. Carniel and M. Schneider. 2018. Spatial Plateau Algebra: An Executable
Type System for Fuzzy Spatial Data Types. In IEEE Int. Conf. on Fuzzy Systems.
1–8.

[5] A. C. Carniel and M. Schneider. 2019. A Systematic Approach to Creating Fuzzy
Region Objects from Real Spatial Data Sets. In IEEE Int. Conf. on Fuzzy Systems.
1–6.

[6] C. Chen, T. R. Razak, and J. M. Garibaldi. 2020. FuzzyR: An Extended Fuzzy Logic
Toolbox for the R Programming Language. In IEEE Int. Conf. on Fuzzy Systems.
1–8.

[7] S. Davari and N. Ghadiri. 2015. Spatial Database Implementation of Fuzzy Region
Connection Calculus for Analysing the Relationship of Diseases. In Iranian Conf.
on Electrical Engineering. 734–739.

[8] S. Davari and N. Ghadiri. 2019. Fuzzy Region Connection Calculus and Its
Application in Fuzzy Spatial Skyline Queries. In Intelligent Computing. 659–677.

[9] A. Dilo, P. Bos, P. Kraipeerapun, and R. A. de By. 2006. Storage and Manipulation
of Vague Spatial Objects using Existing GIS Functionality. In Flexible Databases
Supporting Imprecision and Uncertainty, G. Bordogna and G. Psaila (Eds.). Vol. 203.
293–321.

[10] A. Dilo, R. A. de By, and A. Stein. 2007. A System of Types and Operators for
Handling Vague Spatial Objects. Int. Journal of Geographical Information Science
21, 4 (2007), 397–426.

[11] C.-C. Lee. 1990. Fuzzy Logic in Control Systems: Fuzzy Logic Controller, Part II.
IEEE Trans. on Systems, Man, and Cybernetics 20, 2 (1990), 419–435.

[12] E. Pebesma. 2018. Simple Features for R: Standardized Support for Spatial Vector
Data. The R Journal 10, 1 (2018), 439–446.

[13] E. J. Pebesma and R. S. Bivand. 2005. Classes and methods for spatial data in R. R
News 5, 2 (2005), 9–13.

[14] R. Poli, J. Kennedy, and T. Blackwell. 2007. Particle swarm optimization. Swarm
Intelligence 1 (2007), 33–57.

[15] M. Schneider. 2014. Spatial Plateau Algebra for Implementing Fuzzy Spatial
Objects in Databases and GIS: Spatial Plateau Data Types and Operations. Applied
Soft Computing 16, 3 (2014), 148–170.

[16] S. Schockaert, M. De Cock, C. Cornelis, and E. E. Kerre. 2008. Fuzzy region
connection calculus: Representing vague topological information. Int. Journal of
Approximate Reasoning 48, 1 (2008), 314–331.

[17] J. Verstraete. 2012. Implementable Representations of Level-2 Fuzzy Regions for
Use in Databases and GIS. In Int. Conf. on Information Processing and Management
of Uncertainty in Knowledge-Based Systems. 361–370.

[18] J. Verstraete, G. De Tré, and A. Hallez. 2006. Bitmap Based Structures for the
Modeling of Fuzzy Entities. Control and Cybernetics 35, 1 (2006), 147–164.

[19] H. Wickham and G. Grolemund. 2017. R for Data Science. O’Reilly Media.
[20] L. A. Zadeh. 1965. Fuzzy Sets. Information and Control 8, 3 (1965), 338–353.
[21] L. A. Zadeh. 1973. Outline of a New Approach to the Analysis of Complex

Systems and Decision Processes. IEEE Trans. on Systems, Man, and Cybernetics
SMC-3, 1 (1973), 28–44.

	Folha de rosto
	Folha de aprovação

