UNIVERSIDADE TECNOLOGICA FEDERAL DO PARANA
CAMPUS DOIS VIZINHOS
CURSO DE ESPECIALIZACAO EM CIENCIA DE DADOS

HERON CARLOS GONCALVES

MANIPULANDO DADOS ESPACIAIS EM BANCO DE DADOS
NOSQL: UMA VISAO CENTRADA NO USUARIO

TRABALHO DE CONCLUSAO DE CURSO DE ESPECIALIZACAO

DOIS VIZINHOS
2021

HERON CARLOS GONCALVES

MANIPULANDO DADOS ESPACIAIS EM BANCO DE DADOS
NOSQL: UMA VISAO CENTRADA NO USUARIO

oNole

4.0 Internacional

Trabalho de Conclusio de Curso de Especializacio
apresentado ao Curso de Especializacdo em Ciéncia de
Dados da Universidade Tecnolégica Federal do Parana, como
requisito para a obtengdo do titulo de Especialista em Ciéncia

de Dados.
Orientador: Prof. Dr. Anderson Chaves Carniel
DOIS VIZINHOS

2021

Esta licenca permite remixe, adaptacdo e criacdo a partir do trabalho, mesmo
para fins comerciais, desde que sejam atribuidos créditos ao(s) autor(es) e
que licenciem as novas criagcdes sob termos idénticos. Contetdos elaborados
por terceiros, citados e referenciados nesta obra ndo s3o cobertos pela licenca.

https://creativecommons.org/licenses/by-sa/4.0/deed.pt_BR

HERON CARLOS GONCALVES

MANIPULANDO DADOS ESPACIAIS EM BANCO DE DADOS
NOSQL: UMA VISAO CENTRADA NO USUARIO

Trabalho de Conclusio de Curso de Especializacio
apresentado ao Curso de Especializacdo em Ciéncia de
Dados da Universidade Tecnolégica Federal do Parana, como

requisito para a obtengdo do titulo de Especialista em Ciéncia
de Dados.

Data de aprovagdo: 30/dezembro/2021

Anderson Chaves Carniel
Doutorado
Universidade Federal de S3o Carlos

Ives René Venturini Pola
Doutorado
Universidade Tecnoldgica Federal do Parana - Campus Pato Branco

Rafael Alves Paes de Oliveira
Doutorado
Universidade Tecnoldgica Federal do Parana - Campus Dois Vizinhos

DOIS VIZINHOS
2021

Proceedings XXII GEOINFO, November 29 - December 02, 2021, Sdo José dos Campos, SP, Brazil. p 167-178

Spatial Data Handling in NoSQL Databases:
A User-centric View

Heron Carlos Gongalves!, Anderson Chaves Carniel®

'Federal University of Technology - Parand
Dois Vizinhos — PR — Brazil

2Department of Computer Science — Federal University of Sdo Carlos
Sao Carlos — SP — Brazil

heroncarlos67@gmail.com, accarniel@ufscar.br

Abstract. Spatial data handling is a core aspect in several advanced appli-
cations due to the popularity of storage and retrieval of spatial information.
NoSQL databases have been widely used to manage massive volumes of data
and have added some specialized support for handling spatial data. How-
ever, it is a challenging task to analyze the spatial support provided by NoSQL
databases and their possible spatial extensions. In this paper, our goal is to
overcome this challenging task by presenting a systematic review of the litera-
ture. This allows us to distinguish popular NoSQL databases employed by spa-
tial applications and compare them based on a user-centric view. That means
our study helps users to select a NoSQL database according to their needs. It
is possible since we correlate the characteristics of NoSQL databases and their
spatial extensions with typical spatial application requirements.

1. Introduction

Spatial data handling has been widely required by modern and advanced applications that
manage geometric and geographic phenomena to improve and enrich different types of
tasks, such as information retrieval, data analysis, and user experience. Specialized data
types like points, lines, and regions are often employed by these applications in order to
represent specific geometric and geographic phenomena [Giiting 1994]. The instances of
these data types called spatial objects are then manipulated by using spatial operations,
such as geometric set operations, topological relationships, and numerical operations.
Further, applications can process different types of spatial queries [Carniel 2020], such
as range queries and k-nearest neighbors queries.

Increasingly, applications have managed large spatial datasets. This leads to
the interest in specialized data management systems that provide efficient functional-
ities to store, handle, process, and retrieve large volumes of spatial objects. Exam-
ples of such systems are spatial extensions designed for parallel and distributed data
processing frameworks based on Hadoop and Spark, such as GeoSpark (now called
Apache Sedona) and SpatialHadoop. More spatial extensions are compared and analyzed
in [Castro et al. 2018, Castro et al. 2020].

NoSQL databases also play an important role in this con-
text [Davoudian et al. 2018]. They provide the needed foundation for storing and
handling massive data by using different types of data models, such as key-value,

167

Proceedings XXII GEOINFO, November 29 - December 02, 2021, Sdo José dos Campos, SP, Brazil. p 167-178

document-oriented, column-oriented, and graph-oriented. Further, they can be integrated
with parallel and distributed data processing frameworks to provide big spatial data
solutions. Hence, the focus of this paper is on NoSQL databases.

Due to the importance of spatial data handling, NoSQL databases have also in-
corporated some support for dealing with spatial data. Further, many approaches have
been proposed in the literature to incorporate spatial data processing in these systems
(see Section 3). However, the choice of the best NoSQL for a given spatial application
is a complicated task since spatial applications can have different characteristics. For
instance, there are applications focused on executing ad-hoc spatial queries or requiring
interoperability among different architectures [Castro et al. 2020].

This motivates us to understand and compare characteristics of NoSQL databases
that have some support for spatial data handling from a user point of view. This al-
lows us to correspond NoSQL databases with the requirements of spatial applications.
Unfortunately, there is a lack of studies on the literature that conducts this user-centric
comparative analysis. We cite two main limitations of existing studies. First, there are
studies that compare NoSQL based on performance evaluations only. Hence, they focus
on the system-centric view. Second, several studies have a limited comparison scope in
terms of the number of spatial operations and spatial extensions.

Our paper fills this gap by conducting a systematic review of the literature that
permits us to identify NoSQL databases with spatial extensions and analyze these systems
from the user-centric point of view. The contributions of this paper are detailed as follows.

e A systematic review of the literature that presents a comprehensive study on the
spatial data handling in NoSQL databases.

e A user-centric comparison of the spatial support provided by popular NoSQL
databases and their extensions proposed in the literature. We identify the main
characteristics and limitations of existing studies.

e A correlation of spatial application requirements and the compared NoSQL
databases. This helps users to select a NoSQL database according to their needs.

The rest of this paper is organized as follows. Section 2 discusses related work.
Section 3 presents our systematic review and compares the identified NoSQL databases
and their spatial extensions. Section 4 correlate these NoSQL databases with typical
requirements of spatial applications. Finally, Section 5 concludes the paper.

2. Related Work

There are several studies in the literature that conduct comparisons of NoSQL databases
with support for spatial data handling. We can group them as follows: (i) studies that
compare characteristics of NoSQL databases, and (ii) studies that empirically analyze the
performance of NoSQL databases.

Concerning the first group, the studies discuss how NoSQL databases fulfill some
spatial features required by spatial applications. In general, these studies establish a set of
criteria that are used to check whether a NoSQL database satisfies them. This means that
these studies conduct qualitative comparisons. However, these comparisons have a limited
scope. For instance, distinct spatial operations are not taken into account and spatial
extensions for NoSQL databases are not deeply compared. In [Guo and Onstein 2020],

168

Proceedings XXII GEOINFO, November 29 - December 02, 2021, Sdo José dos Campos, SP, Brazil. p 167-178

the authors conduct an extensive qualitative comparison on NoSQL databases that attempt
to indicate the most suitable NoSQL database in terms of storage and processing of spatial
queries. Another example of qualitative comparison is the study in [Nassif et al. 2020],
which describes the characteristics of three families of NoSQL databases and how they
are used to manipulate spatial data.

As for the second group, the studies conduct extensive experimental evaluations to
analyze the performance of NoSQL databases when processing different types of spatial
queries. In some cases, the studies also include relational databases in their experiments
as well. For instance, in the study [Baralis et al. 2017] the authors compare relational
and NoSQL databases by using the Database-as-a-service model on Azure. Another ex-
ample is the study in [Makris et al. 2021], which compares the performance of the Mon-
goDB and PostgreSQL/PostGIS to process spatial queries like range and distance-based
queries. The studies of this group are system-centric views since the internal structure and
algorithms of NoSQL databases are stressed in tests focusing on evaluating the runtime
performance of operations.

On the other hand, this paper aims to conduct a user-centric view of NoSQL
databases with respect to spatial data handling. For this purpose and differently from
related work, we select NoSQL databases based on a systematic review of literature that
also considers the development of spatial extensions for them. We also do not face the
same drawbacks since our comparison criteria are based on spatial features commonly
required by applications. It allows us to go further and correlate how NoSQL databases
fulfill the usual requirements of spatial applications. Based on them, we point out limita-
tions and future research opportunities for NoSQL databases.

3. A Systematic Review of NoSQL databases with Support for Spatial Data

In this section, we present a systematic review that aims to pick existing and relevant
studies on NoSQL databases that provide some support for spatial data handling. This
is conducted by employing a well-defined and reproducible methodology (Section 3.1)
that enables us to identify which NoSQL databases are usually studied and extended in
the literature to deal with spatial data. For this, we consider different comparison criteria
based on a user-centric view whose underlying motivation and importance are discussed
in Section 3.2.

3.1. Methodology

To gather relevant studies on spatial data management in NoSQL databases, we have
formulated the following search string:
(’nosql” OR nosql database” OR ”nosql document” OR “’nosql key-value” OR "nosql
column” OR nosql graph”) AND (”spatial data” OR ”geographical data” OR ”GIS” OR
”spatial database” OR “spatial operation”)

We employed this search string in the search engines IEEE', Science Direct?,
Springer’, ACM DL*, and Google Scholar’ from April 10, 2021, to May 14, 2021. As a

Thttps://ieeexplore.ieee.org/Xplore/home.jsp
Zhttps://www.sciencedirect.com
3https://link.springer.com
“https://dl.acm.org
Shttps://scholar.google.com

169

Proceedings XXII GEOINFO, November 29 - December 02, 2021, Sdo José dos Campos, SP, Brazil. p 167-178

Search
string
execution
on digital
libraries

Springer,
Google Scholar,
Science Direct,

ACM DL)

| Repeated

(IEEE Xplore,

23

Remaining

6,718

Returned

6,741

AL

Step 1
Classification by
reading title
and abstract

191

Step 2
Classification by
reading
introduction
and conclusion

~

135

Step 3
Classification by
completely
reading

~—

Selection

Figure 1. The steps employed by our systematic review to select relevant studies
that aims to explore spatial data handling in NoSQL databases.

result, we gathered 6,741 studies. Our inclusion criteria focused on studies that (i) apply
NoSQL databases in spatial applications, (ii) compare and discuss the support of spatial
data management in NoSQL databases, and (iii) propose spatial extensions for NoSQL
databases. We have excluded studies that only mention spatial data and do not discuss the
role of spatial operations.

The main focus of this paper is to discuss and compare the support for spatial data
handling in NoSQL databases. Since spatial extensions are known to provide this kind
of support, we are interested in analyzing them here. To this end, we have incrementally
applied three steps in our methodology, as depicted in Figure 1. In Step 1, we have classi-
fied the 6,718 studies according to the inclusion criteria by reading the title and abstract.
Further, we have initiated a classification that categorize a study as an (i) application, (ii)
a comparison, or (iii) an extension. Note that they match our inclusion criteria and that
one study may belong to more than one category at the same time. In Step 2, we have
read the introduction and conclusion to refine our classification and excluded those stud-
ies that either do not belong to a category or refer only to application descriptions. Step 3
aimed to select only spatial extensions or novel NoSQL databases focused on spatial data.
It was made by completely reading the research paper and excluding studies that mainly
conduct experimental evaluations of NoSQL databases or provide a discussion on some
characteristics of these databases (as discussed in Section 2). As a result, we obtained 28
studies that either propose extensions for NoSQL databases or introduce novel NoSQL
databases with spatial support.

3.2. Comparing NoSQL databases: A User-centric View

In this section, we compare the spatial support provided by popular NoSQL databases
and how studies in the literature have extended them to deal with spatial data. Our sys-
tematic review allowed us to identify the six most popular NoSQL databases employed
by the studies. The popularity was measured by counting the number of times that a
NoSQL database was employed by the studies obtained in the second step of our system-
atic review. Here, we have excluded the NoSQL databases mentioned less than or equal
to 2 times. Section 3.2.1 provides an overview of these popular NoSQL databases, while
Section 3.2.3 compares their available spatial extensions.

170

Proceedings XXII GEOINFO, November 29 - December 02, 2021, Sdo José dos Campos, SP, Brazil. p 167-178

Table 1. An overview of the NoSQL databases with some spatial support.

Has native spatial Available spatial extensions in

NoSQL Data model Latest version .
support? the literature
Redis key-value 6.2.4 v
MongoDB document 4.4.5 v [Xiang et al. 2016]
CouchDB document 3.1.1 v
[Wei et al. 2014,
Cassandra column 3.11.10 Ben Brahim et al, 2016]
[Van and Takasu 2015,
Zhang et al. 2015,
Zhang et al. 2016,
Wang et al. 2017,
HBase column 234 Kokotinis et al. 2017,
Jo and Jung 2017,
Jo and Jung 2018,
Zhang et al. 2018,
Zheng et al. 2019]
Neo4j graph 432 v

3.2.1. General Characteristics

Table 1 presents an overview of popular NoSQL databases identified by our systematic
review. They are: (i) Redis, (ii)) MongoDB, (iii) Apache CouchDB, (iv) Cassandra, (v)
HBase, and (vi) Neo4;j. This overview presents (i) the underlying NoSQL data model, (ii)
the latest version of the NoSQL, (iii) whether the NoSQL has native support for spatial
data handling, and (iv) the list of available extensions proposed in the literature. Each
item is described as follows.

NoSQL data models. There are four main data models of NoSQL databases: (i) key-
value stores, (ii) document-oriented databases, (iii) (wide-)column stores, and (iv) graph
databases. Key-value stores are simple data models that represent information by using
pairs where each pair consists of a value associated with a key. This principle is extended
by document-oriented databases, which store collections of key-value pairs that are usu-
ally represented by JavaScript Object Notation (JSON) objects. Column stores deal with
tables, rows, and columns that can be dynamically structured as needed. Finally, graph
databases represent information by using nodes and the relationship between nodes by
using edges. Table 1 shows that there is some native spatial support in these data models,
including the interest in extending them in research papers.

Latest version. The version control of NoSQL databases indicates the evolution of fea-
tures provided by them. Some of these systems have added some native spatial support
recently only. For instance, Neo4j has introduced 2D and 3D points in its version 3.4. In
this paper, our comparison considers the versions indicated in Table 1.

Native spatial support. Similarly to the support for alphanumerical data, NoSQL
databases can provide support for data handling in their internal structures. This means
that applications can store and manage spatial objects in such databases without third-
party extensions. This kind of native support is not provided by Cassandra and HBase,

171

Proceedings XXII GEOINFO, November 29 - December 02, 2021, Sdo José dos Campos, SP, Brazil. p 167-178

Table 2. Comparing the native support of the NoSQL databases for spatial data
handling. Here, we do not consider third-party extensions proposed in the litera-
ture (see Table 3).

. Representation . Distance- A .
NoSQL Spatial data of spatial TopQIOglc?al based Spatial indexing
types . relationships . methods
objects operations
. . . a sorted sets with
Redis simple points v v geohash
Slclf)lrpillelzzd intersect 2d index based on
MongoDB -Omp GeoJSON e v geohash, 2dsphere
points, lines, within .
. index
and regions
. . index on two
CouchDB simple points v numeric fields
space filling curves
Neo4j simple points v over an underlying

generalized BT -tree

4 It offers functions for processing some specific types of spatial queries based on topological relationships.

which are NoSQL databases based on column stores. A comparison of the native spatial
support of NoSQL databases is conducted in Section 3.2.2.

Available spatial extensions in the literature. Since Cassandra and HBase do not pro-
vide native support for spatial data handling, the majority of available spatial extensions
proposed in the literature are for these NoSQL databases. Our systematic review also
reveals that there is an increasing focus on extending HBase. The main reason is that this
is often used as the underlying storage of Hadoop and Spark systems. Their focus can be
different in terms of storage or spatial query processing by using spatial index structures.
In this sense, we compare them in Section 3.2.3.

3.2.2. Native Spatial Support in NoSQL Databases

Table 2 compares the native spatial support of the NoSQL databases Redis, MongoDB,
Apache CouchDB, and Neo4j. The comparison criteria consider common spatial repre-
sentations and operations required by spatial database applications [Giiting 1994]. We
check whether the NoSQL database provides (i) spatial data types, (ii) representations
of spatial objects, (iii) spatial operations with a focus on topological relationships and
distance-based operations, and (iv) spatial indexing methods.

Spatial data types. Here, we list the spatial data types of the NoSQL databases that are
available to represent spatial information by using geometric data types like points, lines,
and regions (polygons). Spatial data types can be simple or complex. The compared
NoSQL databases provide support for simple points, which means that they are able to
represent single instances of spatial information by using latitude and longitude coordi-
nates. However, the creation of lines and regions can lead to complex structures. For
instance, regions can be formed by relating nodes storing point objects in Neo4j. The na-
tive support for complex objects, including lines and regions, is provided by MongoDB.

172

Proceedings XXII GEOINFO, November 29 - December 02, 2021, Sdo José dos Campos, SP, Brazil. p 167-178

It enables us to represent a large variety of spatial information.

Representation of spatial objects. The instances of spatial data types can have different
types of textual and binary representations. For instance, the Well-known text (WKT) and
Well-known binary (WKB) are specified by [OGC 2011] to represent a vector geometry
object in a textual and binary format, respectively. Applications can use these formats to
load, transfer, and visualize spatial objects. Redis, CouchDB, and Neo4j do not have a
specific format to represent spatial objects since they only handle simple points. Hence,
they use their default visualization and loading methods to handle points (e.g., based on
CSV files). On the other hand, MongoDB employs GeoJSON, which is a JSON-variant
representation for spatial objects. Its binary format can be stored as Binary JSON (BSON)
objects, which allows MongoDB to manage internal structures efficiently.

Spatial operations. = Commonly, spatial objects are handled, manipulated, and
retrieved by using different types of spatial operations. There are classes
of operations commonly provided by spatial databases and GIS [Giiting 1994].
The first one is related to topological relationships, which express the par-
ticular relative position of two spatial objects. The definition of topologi-
cal relationships is widely studied in the literature [Egenhofer and Franzosa 1991,
Egenhofer and Herring 1994, Schneider and Behr 2006] since they are used as conditions
in spatial queries [Carniel 2020]. A common spatial query is the range query, which re-
turns all spatial objects intersecting a search object with a particular shape (e.g., circle
or rectangle). Unfortunately, the compared NoSQL databases provide very limited sup-
port for them. This means that they do not enable us to process ad-hoc spatial queries.
While Redis offers some functions to process spatial queries with notions of topological
relationships, MongoDB has functions that implement two topological relationships (i.e.,
within and intersect). The second class refers to distance-based operations, which can be
deployed to implement the k-nearest neighbors (kNN) query. Given a set of spatial objects
and a search object, this type of query returns the % closest spatial objects to the search
object. All studied NoSQL databases provide this kind of support. Other classes of op-
erations include numerical operations (e.g., area, length), geometric set operations (e.g.,
union, intersection, difference), and general geometric operations (e.g., convex hull). The
compared NoSQL databases do not provide support for these operations, limiting their
applicability in spatial applications.

Spatial indexing methods. The processing of spatial queries is often optimized by
employing spatial index structures. Such structures aim to reduce the search space by
avoiding access to spatial objects that certainly do not belong to the final answer of
the spatial query. Examples of spatial index structures include the R-tree and its vari-
ants. Spatial indexing is widely studied in the literature (see [Gaede and Giinther 1998]
for a survey) and specific implementations are provided for different types of systems
(e.g., [Carniel et al. 2020]). The compared NoSQL databases provide some structures to
improve the performance of spatial queries. In general, a common strategy is to employ
geohash, which represents a spatial object by using alphanumerical data. This repre-
sentation is based on the subdivision of space in buckets so that it is possible to apply
space-filling curves like the Hilbert or Z-order curves or well-known indexing methods
like the B+-tree. It is interesting to note that classical hierarchical tree structures like the
R-tree and its variants for spatial data are not considered by these NoSQL databases.

173

Proceedings XXII GEOINFO, November 29 - December 02, 2021, Sdo José dos Campos, SP, Brazil. p 167-178

Table 3. Comparing existing spatial extensions for popular NoSQL databases.

NoSQL Extension Stf)ragehof Types of .spatlal . Ne.w spatial
spatial objects queries indexing methods
MongoDB [Xiang et al. 2016] - range queries Flattened R-tree
Cassandra [Wei et al. 2014] points range anfi kNN KR*-index
queries
Cassandra [Ben Brahim et al. 2016] geohash based on nurperlc -
range queries
WKT, WKB, . .
HBase [Zhang et al. 2015] Shapefiles range queries based on grids
HBase [Zhang et al. 2016] - range and kNN based on the
queries Hilbert curve
polygons as
column . based on Z-order
HBase [Wang et al. 2017] families with range queries curve
WKT
HBase [Zheng et al. 2019] rectangles range ang kNN base?d on space
and geohash queries filling curves

3.2.3. Available Spatial Extensions

In our systematic review, we have identified 28 available spatial extensions for NoSQL
databases, which also include novel systems. In this section, we discuss the spatial exten-
sions of popular NoSQL databases only (i.e., Section 3.2.1), resulting in 12 extensions.
Most of them are focused on providing novel spatial indexing methods to improve spatial
query processing. Since the goal of this paper is to analyze the spatial data handling in
NoSQL databases, we consider only those approaches that distinguish themselves. They
are shown and compared in Table 3, which takes into account the (i) storage of spatial
objects, (i) types of spatial queries, and (iii) proposed spatial indexing methods.

Storage of spatial objects. The spatial extensions differ in how to represent and store the
spatial information in their corresponding NoSQL database. We can identify three main
approaches. The first approach is to simply deal with the geohashes of spatial objects
since geohash is an alphanumerical representation of a complex object. In this case, the
extensions [Wei et al. 2014, Zheng et al. 2019] do not need a specialized storage method
but sophisticated algorithms for processing spatial queries. The second approach is to
deal with points only since coordinate pairs can be stored separately [Wei et al. 2014].
Finally, the third approach refers to the use of textual or binary representations of spa-
tial objects, such as WKT, WKB, or shapefiles. The extensions based on this ap-
proach [Zhang et al. 2015, Wang et al. 2017] allow users to employ different spatial data
types in their applications. Other extensions [Xiang et al. 2016, Zhang et al. 2016] do not
focus on the storage of spatial objects since their goal is to provide solutions for improving
the performance of spatial queries.

Types of spatial queries. Although there are several different types of spatial queries,
spatial extensions make efforts to efficiently process range and kNN queries only. The
main reason is that they are common types of spatial queries employed in experimental

174

Proceedings XXII GEOINFO, November 29 - December 02, 2021, Sdo José dos Campos, SP, Brazil. p 167-178

Table 4. Checking how NoSQL databases and their spatial extension fulfill the
spatial application requirements.

NoSQL Type of spatial support 1 2 3 4 5 6
Redis native partial v v
MongoDB native + extension partial v v partial v v
CouchDB native v v
Cassandra with extensions v v
HBase with extensions v partial v v
Neodj native partial partial partial v v

evaluations conducted in the literature [Carniel 2020]. We highlight the Cassandra exten-
sion proposed in [Ben Brahim et al. 2016] since it extends range queries to propose other
types of spatial queries like around me and in my path. Such queries are based on numeric
filters in the coordinate pairs coded by the geohash of spatial objects.

New spatial indexing methods. Almost all studies propose spatial indexing methods
that are implemented in the corresponding NoSQL database. This means that their main
focus is on quickly processing specific types of queries by using spatial index structures.
Space-filling curves such as the Z-order and Hilbert curves are widely employed in this
context [Zhang et al. 2016, Wang et al. 2017, Zheng et al. 2019] since they attempt to de-
fine an ordering of access to spatial objects. This aspect is interesting in NoSQL databases
due to the availability of indexing methods for alphanumerical data that are based on sort-
ing properties (e.g., the B-tree). Other extensions strive to adapt well-known spatial index
structures to a particular NoSQL database. For instance, in [Xiang et al. 2016], the clas-
sical R-tree is flattened into a collection of documents in MongoDB so that it is possible
to insert, delete, and retrieve spatial objects by using these documents. In the compared
studies, only the study in [Ben Brahim et al. 2016] does not deal with spatial indexing
methods because it was interested in proposing new types of spatial queries for Cassan-
dra.

4. Correlating Spatial Application Requirements with NoSQL databases

Table 4 checks whether a NoSQL database with its extension fulfill six different types
of requirements commonly required by spatial applications defined in [Castro et al. 2018,
Castro et al. 2020]. These requirements are viewed as a set of guidelines that can help
users to choose the NoSQL database that better fits their needs. This table is fulfilled
by considering the comparisons and discussions previously reported in this paper. The
requirements are detailed as follows.

1. Focus on executing ad-hoc spatial queries. This guideline refers to the design of
spatial queries without a specific format. Hence, a NoSQL database should have a broad
collection of spatial operations or at least have the possibility of including more operations
by using existing functionalities. Unfortunately, the compared NoSQL databases do not
offer some common types of spatial operations, such as geometric set operations and
topological relationships based on the 9-intersection model [Schneider and Behr 2006].
Redis, MongoDB, and Neo4j partially fulfill this guideline since they provide some spatial
operations.

175

Proceedings XXII GEOINFO, November 29 - December 02, 2021, Sdo José dos Campos, SP, Brazil. p 167-178

2. Focus on the interoperability among different systems. This guideline considers that
the spatial application usually requires communication with other systems. In this case, a
NoSQL database that can represent and store spatial object using well-known textual or
binary formats fulfill this requirement. MongoDB with its native support for GeoJSON
and the spatial extensions for HBase fulfill this guideline.

3. Focus on characteristics based on well-known standards. This guideline refers
to the common requirement of using well-established concepts, techniques, and opera-
tions in spatial applications. This aspect is relevant for the development based on stan-
dards that are usually employed in the literature and industry, such as the OGC stan-
dards [OGC 2011]. Only MongoDB makes use of such standards when defining their
spatial data types. Other NoSQL databases partially adopt some standards. For instance,
Neo4j employs well-known coordinate reference systems in their underlying storage.

4. Focus on spatial data visualization. This guideline relates to the intrinsic need
for graphically visualizing spatial objects in spatial applications. NoSQL databases do
not focus on visualization but on providing storage and access methods for spatial data.
However, NoSQL databases can be integrated with other systems to enrich the analysis
of spatial queries. In the documentation of Neo4j and MongoDB, such perspectives are
mentioned and explored. Hence, we indicate that they partially fulfill this guideline.

5. Focus on efficiently processing spatial queries. This guideline checks whether the
NoSQL database provides mechanisms to reduce the elapsed time required to process
spatial queries. Our systematic review was unable to find a complete system-centric com-
parison of the compared NoSQL databases. However, we consider that there are several
performance evaluations of these databases in the literature that focus on improving this
aspect (as reported by the spatial extensions). Hence, we consider that the compared
NoSQL databases fulfill this requirement to deal with specific types of spatial queries,
such as range and kNN queries.

6. Focus on providing extensibility. This guideline relates to the possibility of extending
a NoSQL database to improve its management of spatial data. In this paper, we have
identified spatial extensions proposed in the literature indicating the efforts of researchers
in this topic. Further, there are other third-party extensions, such as those available in
GitHub (which goes beyond the scope of this paper). Hence, we have marked that the
compared NoSQL databases can be extended in some way to include new features.

5. Conclusions and Future Work

In this paper, we have conducted a systematic review of the literature on spatial data han-
dling in NoSQL databases. This allowed us to compare, analyze, and discuss the spatial
support provided by NoSQL databases popularly employed by spatial applications. The
compared NoSQL databases included Redis, MongoDB, CouchDB, Cassandra, HBase,
and Neo4j. Among them, MongoDB distinguishes itself by providing more spatial data
types and spatial operations than other NoSQL databases.

Our systematic review also permitted us to identify existing spatial extensions for
these NoSQL databases. Such extensions are usually proposed for NoSQL databases
without native spatial support. It demonstrates that there is an increasing interest in pro-
viding and improving spatial data handling in different types of NoSQL data models.

176

Proceedings XXII GEOINFO, November 29 - December 02, 2021, Sdo José dos Campos, SP, Brazil. p 167-178

We also identified how the spatial data support provided by the compared NoSQL
databases and their extensions fulfill common requirements of spatial applications. It is
applicable for users that need to understand and pick a NoSQL database that best fits
their needs. In addition, we have indicated their problems and limitations that lead to the
identification of open research topics in this area.

Future work topics include the following items. First, we aim to extend this work
by searching for spatial extensions available in the public repositories of GitHub. For
instance, GeoCouch® is a spatial extension for Couchbase and CouchDB. Second, we aim
to analyze research papers mentioned by the spatial extensions in order to comprehend
their use and advances. Finally, future studies can propose solutions to solve discussed
problems and limitations.

References

Baralis, E., Dalla Valle, A., Garza, P., Rossi, C., and Scullino, F. (2017). SQL versus
NoSQL databases for geospatial applications. In IEEE Int. Conf. on Big Data, pages
3388-3397.

Ben Brahim, M., Drira, W., Filali, F., and Hamdi, N. (2016). Spatial data extension for
cassandra NoSQL database. Journal of Big Data, 3(1):1-16.

Carniel, A. C. (2020). Spatial information retrieval in digital ecosystems: A comprehen-
sive survey. In Int. Conf. on Management of Digital EcoSystems, pages 10-17.

Carniel, A. C,, Ciferri, R. R., and Ciferri, C. D. A. (2020). FESTIval: A versatile frame-
work for conducting experimental evaluations of spatial indices. MethodsX, 7:1-19.

Castro, J. P. C., Carniel, A. C., and Ciferri, C. D. A. (2018). A user-centric view of
distributed spatial data management systems. In Brazilian Symp. on Geolnformatics,
pages 80-91.

Castro, J. P. C., Carniel, A. C., and Ciferri, C. D. A. (2020). Analyzing spatial analytics
systems based on hadoop and spark: A user perspective. Software: Practice and
Experience, 50(12):2121-2144.

Davoudian, A., Chen, L., and Liu, M. (2018). A survey on nosql stores. ACM Comput.
Surveys, 51(2).

Egenhofer, M. J. and Franzosa, R. D. (1991). Point-set topological spatial relations. Int.
Journal of Geographical Information Systems, 5(2):161-174.

Egenhofer, M. J. and Herring, J. R. (1994). Categorizing binary topological relations
between regions, lines and points in geographic databases. In The 9-Intersection: For-
malism and Its Use for Natural-Language Spatial Predicates.

Gaede, V. and Giinther, O. (1998). Multidimensional access methods. ACM Comput.
Surveys, 30(2):170-231.

Guo, D. and Onstein, E. (2020). State-of-the-art geospatial information processing in
nosql databases. ISPRS Int. Journal of Geo-Information, 9(5).

Giiting, R. H. (1994). An introduction to spatial database systems. The VLDB Journal,
3(4):357-399.

Shttps://github.com/couchbase/geocouch

177

Proceedings XXII GEOINFO, November 29 - December 02, 2021, Sdo José dos Campos, SP, Brazil. p 167-178

Jo, B. and Jung, S. (2017). Quadrant-based MBR-tree indexing technique for range query
over HBase. In Int. Conf. on Emerging Databases, pages 14-24.

Jo, B. and Jung, S. (2018). Quadrant-based minimum bounding rectangle-tree indexing
method for similarity queries over big spatial data in HBase. Sensors, 18(9):1-18.

Kokotinis, I., Kendea, M., Nodarakis, N., Rapti, A., Sioutas, S., Tsakalidis, A. K., Tsolis,
D., and Panagis, Y. (2017). NSM-tree: Efficient indexing on top of NoSQL databases.
In Int. Workshop of Algorithmic Aspects of Cloud Computing, pages 3—14.

Makris, A., Tserpes, K., Spiliopoulos, G., Zissis, D., and Anagnostopoulos, D. (2021).
MongoDB vs PostgreSQL: A comparative study on performance aspects. Geolnfor-
matica, 25(2):243-268.

Nassif, E. H., Hicham, H., Yaagoubi, R., and Badir, H. (2020). Assessing nosql ap-
proaches for spatial big data management. In Int. Conf. on Artificial Intelligence and
Symbolic Computation, pages 49-58.

OGC (2011). OpenGIS implementation standard for geographic information - simple
feature access - part 1: Common architecture. Open Geospatial Consortium. https:
//www.ogc.org/standards/sfa.

Schneider, M. and Behr, T. (2006). Topological relationships between complex spatial
objects. ACM Trans. on Database Systems, 31(1):39-81.

Van, L. H. and Takasu, A. (2015). An efficient distributed index for geospatial databases.
In Int. Conf. on Database and Expert Systems Applications, pages 28—42.

Wang, Y., Li, C., Li, M., and Liu, Z. (2017). HBase storage schemas for massive spatial
vector data. Cluster Computing, 20:3657-3666.

Wei, L.-Y., Hsu, Y.-T., Peng, W. C., and Lee, W.-C. (2014). Indexing spatial data in cloud
data managements. Pervasive and Mobile Computing, 15:48-61.

Xiang, L., Huang, J., Shao, X., and Wang, D. (2016). A MongoDB-based management
of planar spatial data with a flattened R-tree. ISPRS International Journal of Geo-
Information, 5(7):1-17.

Zhang, C., Chen, X., Feng, X., and Ge, B. (2016). Storing and querying semi-structured
spatio-temporal data in HBase. In Int. Conf. on Web-Age Information Management,
pages 303-314.

Zhang, C., Zhu, L., Long, J., Lin, S., Yang, Z., and Huang, W. (2018). A hybrid index
model for efficient spatio-temporal search in HBase. In Pacific-Asia Conf. on Knowl-
edge Discovery and Data Mining, pages 108—120.

Zhang, N., Zheng, G., Chen, H., Chen, J., and Chen, X. (2015). HBaseSpatial: A scalable
spatial data storage based on HBase. In IEEE Int. Conf. on Trust, Security and Privacy
in Computing and Communications, pages 644-651.

Zheng, K., Zheng, K., Fang, F., Zhang, M., Li, Q., Wang, Y., and Zhao, W. (2019). An
extra spatial hierarchical schema in key-value store. Cluster Computing, 22:6483—
6497.

178

	Folha de rosto
	Folha de aprovação

