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ABSTRACT

Deep neural networks, a class of machine learning algorithms, added a huge leap in perfor-

mance for many different tasks since they won ImageNet competition in 2012. Among the

benefited fields, Natural Language Processing (NLP) was specially impacted by the publication

of “Attention is All you Need” paper, in 2017, which gave foundation to many posterior advances

in the field. Since then, models are getting progressively more accurate, at the cost of getting

bigger and more expensive to train. Transfer Learning contributes by enabling the reuse of large

Language Models pre-trained parameters, as they are expensive to optimize. It is possible to

fine-tune them from the pre-trained model checkpoint for downstream (derived) tasks. This helps

with computational costs of training such large models as well as it avoids the need to gather all

data needed for such endeavour. Parameter Efficient Language-model Tuning (PELT) strategies

tries to deepen fine-tuning advantages by at least maintaining final model performance while

fine-tuning as few parameters as possible. This enables two things: even less computational

costs and competitive performance on small datasets for fine-tuning. This work leveraged these

advantages in order to obtain better model performance on a legal text classification dataset,

built during this work. BitFit performance on small, domain-specific, real-world dataset was

compared with complete fine-tuning performance. Results have shown that BitFit fine-tuning

is more resistant to fine-tuning data noise and, perhaps, solves the “Catastrophic Forgetting”

problem. Also, BitFit outperformed complete fine-tuning on 3 out 5 dataset versions. Finally, the

model was presented to and amused the brazillian Federal Court of Audits (from Portuguese:

TCU - Tribunal de Contas da União).

Keywords: natural language processing; machine learning; artificial neural networks.



RESUMO

Redes Neurais Profundas, uma classe de algoritmos de aprendizado de máquina, ocasion-

aram um grande salto de performance para várias tarefas diferentes desde que ganharam a

competição ImageNet, em 2012. Entre as áreas beneficiadas, Processamento de Linguagem

Natural (PLN) foi especialmente impactada desde a publicação do artigo “Attention is All You

Need”, em 2017, o qual deu base para muitos dos avanços recentes no campo. Desde então,

modelos estão ficando cada vez mais precisos, ao custo de se tornarem maiores e mais cus-

tosos de treinar. A Transferência de Aprendizado permite o reuso dos parâmetros pré-treinados

de grandes Modelos de Língua. Esse torna possível fazer o ajuste-fino dos modelos à partir

do Modelo de Língua pré-treinado para a realização de tarefas afluentes. Isso contribui para a

redução dos custos computacionais de treinar um modelo deste tamanho, assim como evita a

necessidade de coletar todos os dados necessários para a realização de um pré-treinamento.

Estratégias de Ajuste Eficiente de Parâmetros de Modelos de Língua (PELT, do inglês) buscam

aprofundar as vantagens do ajuste-fino ao pelo menos manter a performance do modelo com

ajuste-fino de todos os parâmetros com o mínimo de parâmetros ajustados possível. Isso

permite duas coisas: um custo computacional ainda menor e performance competitiva para

ajuste-fino em conjuntos de dados pequenos. Este trabalho utilizou destas vantagens para

melhorar a performance do modelo no conjunto de dados de classificação de texto jurídico,

feito ao decorrer deste trabalho. Foi comparada a performance entre o ajuste-fino parcial com

BitFit e o ajuste-fino completo para um conjunto de dados pequeno, de domínio específico e do

mundo real, utilizando-se do ambiente do Google Collaboratory. Os resultados mostraram que

o ajuste-fino com BitFit é mais resistente a ruídos nos dados de ajuste-fino e, talvez, resolve o

problema de “Esquecimento Catastrófico”. Ajuste-fino com BitFit também superou o ajuste-fino

completo em 3 das 5 versões do conjunto de dados construído. Finalmente, o modelo foi

apresentado e causou uma boa impressão no Tribunal de Contas da União.

Palavras-chave: processamento de linguagem natural; aprendizado de computador; redes neu-

rais.
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1 INTRODUCTION

Electronic devices intensified the rise of text generation (KADHIM, 2019), broadening text

data availability. As more textual data is available, it is increasingly profitable to have automated

pipelines in order to treat and process such data, capable of adding valuable information. One

possible way to extract value from text is through NLP.

NLP is the area of research that studies the processing of language and its components.

It has been trending for the four to five years prior to this work’s publication, mainly driven by new

Neural Network applications to NLP, which gave birth to attention based models and, thus, better

text classification techniques (TRIGGS et al., 2021). Among these applications to NLP, mod-

els based on the Attention Mechanism achieved special notoriety since 2017 (VASWANI et al.,

2017), as Attention is a way to process relations between input elements, extracting contextual

embeddings from text.

The study of Attention Techniques, as done by Bahdanau, Cho e Bengio (2016), Luong,

Pham e Manning (2015), Yang et al. (2016) and many others, lead later to the development of

the Transformer architecture (VASWANI et al., 2017), and models like BERT (DEVLIN et al.,

2019), RoBERTa (LIU et al., 2019), and beyond. Those are widely used in text-related tasks,

achieving State-Of-The-Art performance in, but not restricted to, text classification for relevant

benchmarks.

Recent work on text classification is mostly in chinese and english languages (CHEN

et al., 2022), both which have vast amounts of data available for model pre-training. On lower

availability languages, though, pre-trained models are not as robust as in these languages. This

leads to performance degradation when compared with more resourceful languages (ABONIZIO

et al., 2020).

Models are also getting prohibitively big as Large Language Model (LLM) gets common.

In works like Brown et al. (2020) and Smith et al. (2022), we can exemplify models that are too big

to fine-tune on regular computers. In those cases, it is necessary industry-grade infrastructure,

which are capable to store all model parameters gradients during training. Those are expensive,

making it difficult for smaller companies to afford it.

This work aims at leveraging Parameter Efficient Language-model Tuning (PELT) strate-

gies (MAO et al., 2021) in order to improve completely fine-tuned model results. These strategies

attempt to more efficiently learn features from data by reducing the parameter search space (us-

ing a subset of all parameters) as much as possible, and thus reducing the risk of overfitting

(MAO et al., 2021) while also reducing total memory/processing consumption (as you optimize

approximetely 5% of all parameters). These methods are specially useful for limited data avail-

ability environments, which is the case for the Portuguese language when we compare data

availability in English, with work being done exclusively to deal with such problems (ABONIZIO et

al., 2020). This work uses BitFit (ZAKEN; RAVFOGEL; GOLDBERG, 2021) as its PELT strategy,
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in order to more efficiently train models, both in terms of data and in terms of parameters/energy

consumption. BitFit aims at solely optimizing bias parameters.

This research results from a legal texts processing company applying Natural Language

Processing techniques, in order to extract valuable information from legal texts. They use an au-

tomated pipeline for document processing, which was the solution found to meeting their client’s

document classification large demands. Legal text classification is specially useful in large cor-

porations, which make heavy use of NLP and attention-based methods, as the number of doc-

uments gets prohibitively high. It is a core part of intelligent pipelines for automated legal text

processing, which helps humans to deal with such large number of documents, by automat-

ing smaller tasks which would otherwise consume a worker’s time (NOGUTI; VELLASQUES;

OLIVEIRA, 2020).

1.1 General and Specific Objectives

The general objective of this work is to develop the best possible legal text classification

model, fine-tuned for Portuguese, capable of correctly classifying document paragraphs into 16

different classes. In order to achieve this, BitFit (partial) and complete (default) fine-tuning were

compared.

The specific goals of this work are:

• Further fine-tune a legal text classification pre-trained BERT model using BitFit and

regular fine-tuning, using the HuggingFace framework to load pre-trained model pa-

rameters, in order for it to correctly classify document paragraphs into 16 classes;

• Compare performance of both trained models: a completely fine-tuned BERT model,

where all parameters are updated, and a BitFit fine-tuned BERT model, which has only

its bias parameters updated during the fine-tuning process.

1.2 Document Structure

This document will be structured as follows: Chapter 2 will present the theoretical back-

ground necessary to understand our proposed model. Afterwards, recent related work will be

presented, in order to situate this work in the current research context along with recent field ad-

vancements and problems. Chapter 3 describes software and hardware necessary to this work,

why they were chosen and how they were obtained. Also, the chapter describes the followed

methodology, talking about protocols and experiments details, in order to guarantee reproducibil-

ity. In Chapter 4, experiments and results will be discussed and analysed. At last, Chapter 5 will

present this work conclusions, along with suggestions for future researches.
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2 BIBLIOGRAPHIC REVIEW

This chapter will expose a brief overview of the explored topics, in order to guide the

reader through the concepts that give foundation to this work.

2.1 Artificial Neural Networks

Deep Artificial Neural Networks (ANN) models are used for classification and regression

problems and may be used to support or automate decisions (TRIGGS et al., 2021).

This section describes ANN basics and the field State-Of-The-Art for NLP tasks. Firstly

it will introduce the Perceptron, which is the basic unit of a neural network. From the basic unit,

Multilayer Perceptrons, Convolutional Neural Networks and Recurrent Neural Networks can be

comprehended.

2.1.1 Perceptron

Biological neurons consist of cells controlled by biochemical reactions that control

whether it is activated by a given stimuli or not (GOODFELLOW; BENGIO; COURVILLE, 2016).

If the inputs to a neuron excite the cell enough (over a certain threshold), it forwards the signal

to the rest of the neural network.

Inspired by the biological neuron, a Perceptron is a mathematical model of a biological

neuron, which receives inputs, weightening and summing them. If the sum goes over the thresh-

old, the signal is 1, and if it is negative, it is 0. A Perceptron is demonstrated in Figure 1. The

Perceptron operation is demonstrated in Equation 1.

output =

⎧⎨⎩ 0 if
∑︀

𝑗 W𝑗X𝑗 ≤ threshold

1 if
∑︀

𝑗 W𝑗X𝑗 > threshold
(1)

Where 𝑊𝑗 are the weights associated with 𝑗 input features 𝑋𝑗 . The threshold can be

also called the bias term (TRIGGS et al., 2021), as it affects the threshold, making it higher or

lower.

Figure 1 – The Perceptron

Source: (NIELSEN, 2018).
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2.1.2 Multilayer Perceptron

Multilayer Perceptron (MLP) emerges from a group of Perceptrons, arranged in layers

and connected to each other, containing input, output and, often, hidden layers (GOODFEL-

LOW; BENGIO; COURVILLE, 2016). Associating Perceptrons and partnering them with activa-

tion functions, it is usual to obtain a model stronger then a simple Perceptron, modelling non-

linear relations (NIELSEN, 2018).

A MLP is an association of perceptrons, so it is many weighted sums, which may be

followed by activation functions. Each Perceptron computation inside the network can be repre-

sented as shown in Equation 2.

𝑂 = 𝑋𝑊 + 𝑏 (2)

Where 𝑋 ∈ R1×𝑑 denotes 1 instance with 𝑑 features, 𝑊 represents the Perceptron

weights 𝑊 ∈ R𝑑×1 and 𝑏 ∈ R1 is the bias (TRIGGS et al., 2021). This can be interpreted as

pondering over given inputs 𝑋 through 𝑊 and adjusting the defined line through 𝑏 to properly

fit the data, splitting the instances into desired classes by defining a decision boundary (the line

splitting data points) between target labels being discriminated, and then adding the bias term.

MLPs have an input layer, hidden layers and an output layer, as shown in Figure 2, and its

neurons forward each of their outputs to later layers connected neurons, which may or may not

be fully-connected (or connected to all previous layer neurons) (TRIGGS et al., 2021). For those

connections, fully-connected MLPs may be also named Fully-Connected or Densely-Connected

Neural Networks. The difference between a shallow and a deep model is the number of hidden

layers, with varying thresholds among bibliographies, but, generally: a neural model that have

two or more hidden layers can be considered a Deep Neural Network (DNN) (NIELSEN, 2018).

Figure 2 – Multilayer Perceptron/Fully-Connected Layer

Source: (TRIGGS et al., 2021).

A MLP is a generalization of a Perceptron, and one with two layers can be defined as in

Equations 3 and 4 (TRIGGS et al., 2021):
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H = 𝜎(XW(1) + b(1)), (3)

O = HW(2) + b(2). (4)

𝐻 is the first hidden layer output, where it is applied the Perceptron computation. W(𝑙)

and b(𝑙) are layer weights and biases, and in this case 𝑙 = 1 and 𝑙 = 2 for the first and second

layers, respectively, but followed by an activation function 𝜎(.), which is a commom function to

use as an example in most Deep Learning literature. Not all MLPs use an activation function,

but it enables them to model non-linear relations, being usually useful for complex problems

(TRIGGS et al., 2021).

Sigmoid activation functions were amongst the first activations to be paired with MLP,

apart from having some problems. The Sigmoid function will be discussed in Section 2.2, with

other activation functions.

2.1.3 Convolutional Neural Networks

Convolutional Neural Networks are commonly used to learn image features by restrain-

ing a MLP to learn local features, organizing the hidden weights as a matrix instead of a vector,

and using shared parameters to reduce the algorithm runtime, in a way that it is basically a

sliding feature detector (kernel) through the whole image, that automatically learns to discrim-

inate between classes throughout the training process (Backpropagation followed by Gradient

Descent based on loss gradients, iteratively), improving the relevance of extracted features. The

activation function in each neuron over the matrix representing the output of a instance in a mini-

batch detects whether a feature was present or not by the kernel in that neuron receptive field

(GOODFELLOW; BENGIO; COURVILLE, 2016).

A convolutional layer is demonstrated in Figure 3. Two principles guided convolutional

neural networks design in order for it to work: translation invariance and the locality principle

(TRIGGS et al., 2021). The hidden representation calculated by a convolutional layer is given by

Equation 5.

[H]𝑖,𝑗 = 𝑏+
Δ∑︁

𝑎=−Δ

Δ∑︁
𝑏=−Δ

[W]𝑎,𝑏[X]𝑖+𝑎,𝑗+𝑏 (5)

Where 𝑊 and 𝑋 are model weights and inputs, respectively. This is a way of calculating

a hidden representation for the pixel in the 𝑖th row and 𝑗th column, considering information

in some range |𝑎| < Δ or |𝑏| < Δ, where Δ is two times the kernel size. By applying this

constraint, [𝑊 ]𝑎𝑏 = 0 where |𝑎| > Δ or |𝑏| > Δ. This interval creates an 𝑎 × 𝑏 matrix called

kernel. The kernel works as a sliding feature detector, applying cross-correlation with one kernel
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Figure 3 – Convolutional Layer Computation

Source: (GOODFELLOW; BENGIO; COURVILLE, 2016).

per feature to be detected. This is demonstrated in Figure 4, in parallel, across the whole image,

classifying where it detects the learned features. The cross-correlation is a very similar operation

to a convolution.

Figure 4 – Cross-Correlation Operation

Source: (TRIGGS et al., 2021).

In order to create hidden representations [H]𝑖𝑗 for every region in the input, a convolu-

tional layer will slide its kernel over an entire input (e.g. image, time series, text, previous hidden

layer outputs, among others) in parallel (computing every step of the kernel at once), in “steps”,

or small translations, called strides, represented in Figure 5. The larger the stride size, the less

steps it will take and [H]𝑖𝑗 will have less elements, as it would be ignoring or attributing less

weight to some input data. It is also possible to apply padding to a given input in order not to lose

input data information in the boundaries, as demonstrated in Figure 5.
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Figure 5 – (a) From 3x3 to 5x5 input matrix with padding and (b) Cross-correlation with strides of
3 and 2 for height and width, respectively

[a] [b]
Source: (TRIGGS et al., 2021).

Kernel detects features, but in order to achieve complex relations, a CNN must capture

structures formed by features, which can vary in many ways (TRIGGS et al., 2021). For example,

if the problem is to detect a face, the distance between both eyes could be considered, and each

eye would be something close to a circle (which might be 3 or 4 curves) in the kernel. Eyes size

(circle size) and distance may vary greatly with the camera’s angle and distance when the image

is captured, so the method outputs should be robust against this kind of perturbation in data.

A pooling layer works in a way that solves this problem. As a kernel, the pooling window

slides over the hidden representation, computing a single number for each step. The computation

applied in each step will, normally, be the maximum or average values of the elements inside

the pooling window, as shown in Figure 6. This is useful, in the sense that it captures whether a

given feature was detected anywhere inside the pooling window, assuring the model is resistant

to small translations and, thus, assuring the model respects the translation invariance principle

(GOODFELLOW; BENGIO; COURVILLE, 2016).

Figure 6 – Pooling

Source: (TRIGGS et al., 2021).

Features detected by chained Convolutions and Pooling (Convolutional layers detects

features and Pooling layers summarize detected features) operations compose the usual final

hidden representation of data after a Convolutional and a Pooling layer (GOODFELLOW; BEN-

GIO; COURVILLE, 2016). These can be passed to a second set of Convolutional and Pooling

layers, and the associations between input features will come from previously detected ones,

associating them to progressively detect more complex structures. Considering a second Con-

volutional and Pooling layer, what is being considered as inputs are the outputs from the previous

layer that were inferred from a larger set of features (essentially summarizing the previous sum-

marized data). Doing this, the model is receiving information from bigger regions with each extra
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Convolutional and Pooling layers, learning relationships with ever more complex structures and

encoding them in lower dimensional hidden representations. All elements from input data and

previous layers affecting a given computation in some layer are its receptive field (TRIGGS et

al., 2021).

At the end of the chained Convolution and Pooling operations, hidden representations

are usually flattened into a vector and sent to a classifier.

2.1.4 Sequences and Sequence Models

In order to model sequences, where past events might affect future outcomes, sequence

models can be used. This kind of model considers data from the beginning of a sequence 𝑥 until

current time step 𝑡 input data, as in Equation 6.

𝑥𝑡 ∼ 𝑃 (𝑥𝑡 | 𝑥𝑡−1, 𝑥𝑡−2, . . . , 𝑥2, 𝑥1) (6)

Some variation to 𝑥𝑡 is expected, but the goal is to learn series dynamics and character-

istics that might be helpful in order to solve a given problem and discriminate between classes

or predict values (HYNDMAN; ATHANASOPOULOS, 2021; TRIGGS et al., 2021). Unfortunately,

𝑥𝑡−1, . . . , 𝑥1 depends on 𝑡, eventually becoming computationally intractable. To account for this

problem, there are two main strategies: fixing a context window 𝜏 , that limit how far to the past a

given time series goes, and summarizing all past events into a hidden state ℎ𝑡, leading to models

that estimate 𝑥𝑡 with �̂�𝑡 = 𝑃 (𝑥𝑡 | ℎ𝑡).

Given a fixed context window by defining 𝜏 that approximates accurately the series, it

satisfies a Markov condition and can be considered a Markov Model (TRIGGS et al., 2021). If 𝜏

is set to 1, it is a First Order Markov model, which is defined in Equation 7.

𝑃 (𝑥1, . . . , 𝑥𝑇 ) =
𝑇∏︁
𝑡=1

𝑃 (𝑥𝑡 | 𝑥𝑡−1) where 𝑃 (𝑥1 | 𝑥0) = 𝑃 (𝑥1). (7)

2.1.5 Recurrent Neural Networks

Markov Models were outperformed by Recurrent Neural Networks (RNN) (TRIGGS et

al., 2021), which may consider all or a fixed number of instances in 𝑥1, ..., 𝑥𝑡−1, summarizing all

available contextual information, maintaining it with a hidden state ℎ𝑡−1 and being able to work

with an arbitrarily long-lasting series, modelling sequences as in Equation 8.

𝑃 (𝑥𝑡 | 𝑥𝑡−1, . . . , 𝑥1) ≈ 𝑃 (𝑥𝑡 | 𝐻𝑡−1). (8)

For a function 𝑃 capable of modelling linear and non-linear relations across time into a

hidden state, this hidden state model can approximate the whole series model, if it is able to store
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all information seen so far (GOODFELLOW; BENGIO; COURVILLE, 2016). But simply storing

all the data on 𝐻𝑡 may get expensive on space and may explode computationally, so it learns a

locally optimal way to manipulate 𝐻𝑡 by training the model described by Equation 9 (TRIGGS et

al., 2021). A RNN is represented in Figure 7.

𝐻𝑡 = 𝜑(𝑋𝑡𝑊𝑥ℎ ⊕𝐻𝑡−1𝑊ℎℎ + 𝑏ℎ). (9)

Figure 7 – Recurrent Neural Network

Source: (TRIGGS et al., 2021).

The RNN is learning the parameters 𝑊𝑥ℎ, 𝑊ℎℎ and 𝑏ℎ, while X𝑡 ∈ R1×𝑑 is the input

vector in time step 𝑡 with 𝑑 features and H𝑡 ∈ R1×ℎ is the hidden state from the previous

time step 𝑡 − 1. In practice, it concatenates weights and inputs in order to execute a single

operation between the concatenation of weights (𝑊 +𝑊 ) ∈ R(ℎ+𝑥)×ℎ and inputs with hidden

state (𝑋 +𝐻) ∈ R𝑛×(𝑑+ℎ) (TRIGGS et al., 2021).

RNNs are capable of receiving input and outputting both vectors and vector sequences,

in all 4 possible combinations (vector to vector, vector to sequence, sequence to vector and

sequence to sequence), using many different architectures in order to model each one. These

many different architectures helps modelling many different vector sequence problems (GOOD-

FELLOW; BENGIO; COURVILLE, 2016). This allows the modelling of various tasks in Natural

Language Processing, from sentiment analysis (WANG et al., 2016) to text generation (SAN-

THANAM, 2020), which will be further explored in Section 2.4.

2.2 Activation functions

Activation functions are a way to decide whether a neuron will activate or not. It will map

inputs to the neuron into an output in order to introduce non-linearity, thus enabling all neural

architectures to model non-linear relationships. This solves inumerous problem, from image to

audio and text processing, and beyond (TRIGGS et al., 2021).
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Activation functions turn even MLPs (the simplest architecture) with a single hidden layer

into Universal Approximators (NIELSEN, 2018) if an unlimited number of Perceptrons is consid-

ered in this single layer, as it is able to approximate, theoretically, any given continuous function.

The following sections will describe activation functions, which can be used in all neural

network architectures (including Convolutional and Recurrent Neural Networks, which will be

seen in following sections).

2.2.1 Sigmoid

The Sigmoid function is one of the first activation functions to be popularized, being a

differentiable Step function. The definition of a Sigmoid activation funtion can be seen in Equation

10.

𝜎(𝑥) =
1

1 + exp(−𝑥)
(10)

Where 𝑥 is the function input, usually the neuron activation potential. This function ranges

from (0, 1), being useful to map probabilities, and is also entirely differentiable, meaning that it is

possible to calculate its gradients without worrying about numerical instabilities. It is monotonic,

so gradients will not vary unexpectedly from positive to negative, which may disrupt the training

process. For higher magnitudes, vanishing gradient is a problem as function derivative tends to

zero. Sigmoid function and derivative graph can be seen in Figures 8)a and 8)b.

Figure 8 – (a) Sigmoid function and (b) its derivative

[a] [b]
Source: (TRIGGS et al., 2021).

For classifying among many different classes, it is possible to use 𝑛 − 1 Sigmoid neu-

rons to model 𝑛 classes, but this is not the current trend, as Softmax neurons generate a more

appropriate class probability distribution, summing to 1 (100%) (TRIGGS et al., 2021). This will

be further explored in the Softmax function subsection.
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2.2.2 Rectified Linear Unit

The Rectified Linear Unit (RELU) activation function is the most fundamental activation

function in NLP, as SOTA models use ReLU (as in Transformer (VASWANI et al., 2017) and

Transformer-based architectures like BERT (DEVLIN et al., 2019)) or ReLU-based activations

like Gaussian Error Linear Unit in RoBERTa (LIU et al., 2019) and in the 2021 novelty Ernie 3.0

(SUN et al., 2021), from Baidu. ReLU is defined in Equation 11:

ReLU(𝑥) = max(𝑥, 0) (11)

While monotonic and fully differentiable, ReLU is, most of all, efficient to compute. Its gra-

dient is always one for positive values, which accelerates gradient dependent calculations during

training. ReLU allows for faster convergence, even being prone to overfitting (HENDRYCKS;

GIMPEL, 2020). The ReLU function and its derivative can be seen in Figure 9)a and 9)b, respec-

tively.

Figure 9 – (a) Rectified Linear Unit - ReLU and (b) its derivative

[a] [b]
Source: (TRIGGS et al., 2021).

2.2.3 Gaussian Error Linear Unit

To diminish the overfitting problem, Gaussian Error Linear Unit (GELU) was proposed as

a variation to ReLU, which introduces a small insaturation and tends to zero when applied to

negative values (HENDRYCKS; GIMPEL, 2020), as shown in Equation 12 and can be seen in

Figure 10.

GELU (𝑥) = 𝑥𝑃 (𝑋 ≤ 𝑥) = 𝑥Φ (𝑥) = 𝑥 · 1
2

[︁
1 + erf(𝑥/

√
2)
]︁

(12)

If 𝑋 ∼ 𝒩 (0,1).

Where 𝑥 is the input value, which usually corresponds to a neuron activation potential,

𝒩 (0,1) is the normal distribution with a mean of 0 and standard deviation of 1, Φ (𝑥) is the

standard Gaussian cumulative distribution function and erf is an error function. Here, 𝑃 (𝑋 ≤ 𝑥)



21

means the probability that a sample from the input 𝑥 variable distribution (if, 𝑋 is normally dis-

tributed) is smaller than the input 𝑥.

Figure 10 – Gaussian Error Linear Unit comparison

Source: (HENDRYCKS; GIMPEL, 2020).

GELU is not monotonic, which means gradients may vary its sign, regularizing the model

implicitly (HENDRYCKS; GIMPEL, 2020). GELU can also be approximated to optimize efficiency,

as demonstrated in Equations 13 and 14:

0.5𝑥
(︁
1 + tanh

[︁√︀
2/𝜋

(︀
𝑥+ 0.044715𝑥3

)︀]︁)︁
(13)

or

𝑥𝜎 (1.702𝑥) (14)

Where 𝜎 is the sigmoid activation and 𝑥 is the input value. Different Cumulative Distribu-

tion Function (CDF) could be used, as the proposed Sigmoid Linear Unit (SiLU) (HENDRYCKS;

GIMPEL, 2020), but they currently have no major relevance in literature.

2.2.4 Softmax

The Softmax operation outputs a probability distribution, being useful for classification

tasks (where discrete classes are default) and for measuring class probabilities or general feature

importances (VASWANI et al., 2017; TRIGGS et al., 2021).

An output 𝑦𝑗 belong to a given class 𝑗, and the one which has the highest output value

argmax 𝑦𝑗 is the most probable class (TRIGGS et al., 2021). For example, if there are 3 classes

𝑦1, 𝑦2 and 𝑦3, with 0.1, 0.3 and 0.6 as probabilities, respectively, the output class would be 𝑦3.

The Softmax function transforms the logits of a model in a way that they all become

non-negative and sum 1, while still being a differentiable function. In order to achieve its output,
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Softmax applies exponentiation to each logit to ensure non-negativity and divides by their sum,

ensuring that they sum to 1, as in Equation 15.

ŷ = Softmax(o) where 𝑦𝑗 =
exp(𝑜𝑗)∑︀
𝑘 exp(𝑜𝑘)

. (15)

Each term in the output is the percentage of the total logit sum that is composed by the

class neuron output logit.

2.3 Loss Functions

It is possible to view a Neural Network as a function 𝑁𝑁(𝑋), where 𝑋 is the input data,

and the objective is to adjust its parameters in order to fit the function 𝑁𝑁(𝑋) to a desired

vector 𝑦. Taking this statement into consideration, it is possible to say that, with the goal of

adjusting model parameters to output a desired output, one must minimize a loss function that

demonstrates the difference between the model output vector �̂� and the correct output vector 𝑦

(NIELSEN, 2018).

In order to adjust model parameters and minimize the loss function, it is first necessary

to initialize and predict labels for the used dataset with a pseudo-random model (TRIGGS et al.,

2021). To compare model outputs (𝑁𝑁(𝑋) = �̂�) with target outputs (𝑦), applying quadratic loss

function is possible, as it compares �̂� and 𝑦. This is demonstrated in equations 16 and 17.

L(W,𝑏) ≡ 1

2𝑛

∑︁
𝑥

‖𝑁𝑁(𝑥)− 𝑦‖2 (16)

or

L(W,𝑏) ≡ 1

2𝑛

∑︁
𝑥

‖𝑦 − 𝑦‖2 (17)

Where 𝑛 is the total number of instances in the current batch and 𝑥 is a single instance

in the batch.

It is noticeable that the loss function is written in terms of weights 𝑊 and biases 𝑏, which

are the model parameters. It is possible to calculate the partial derivatives with respect to model

parameters, as a way to measure each parameter importance, and use the loss function average

gradient (a vector composed of each parameter derivative [importance]) of the current data batch

to slightly move all of the model parameters in the calculated direction, iteratively (NIELSEN,

2018). The gradients are calculated in a backward pass by the Backpropagation algorithm, and

parameters are optimized based on the chosen loss function gradient direction. This theoreti-

cally leads to a local minimum when following the gradient opposite direction (GOODFELLOW;

BENGIO; COURVILLE, 2016), with the Gradient Descent algorithm. A geometric intuitive inter-

pretation for a Gradient Descent variation, Stochastic Gradient Descent, is shown in Figure 11.
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Figure 11 – Gradient Descent Intuition

Source: (NIELSEN, 2018).

2.4 Natural Language Processing

Natural Language Processing, or NLP, refers to an active area of research that aims at ex-

tracting valuable insight and, more generally, understanding human language from the computer

point of view. Words are the most fundamental way to arrange letters in a way to communicate an

idea in modern languages, and it is not rare to have exactly the same words meaning completely

unrelated things. In Lexical Semantics, a Lemma or Citation Form is the base form of a word,

while its many different variations are its Wordforms. For example, a verb Lemma corresponds

to its infinitive form, while all conjugations are different Wordforms (JURAFSKY, 2020).

The study of words reveals some recurrent patterns in language, which may be seem

as features for machine learning models. The modelling of a language in terms of its lexical

statistical properties is a foundation concept to understand Language Modelling, which is the

area that gave birth to modern NLP models (TRIGGS et al., 2021).

This section exposes an overview of Lexical Semantics, followed by an explanation of

Language Modelling fundamentals through the Distributional Hypothesis.
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2.4.1 Lexical Semantics

Sometimes, different words mean exactly the same thing, and those are called Syn-

onyms. Formally, two words are synonyms if they are interchangeable for one another in any

sentence without altering the sentence truth conditions, which are situations in which the sen-

tence is true. In this cases, words have the same Propositional Meaning (PARADIS, 2012).

Also, the same meaning may be associated to different words in varying contexts. The

Principle of Contrast states that a difference in linguistic form is always associated with some dif-

ference in meaning: in Computer Science, when people talk about “C”, the context is usually clear

that they actually refer to “C Programming Language”, whereas among chemistry researchers,

“C” would more objectively mean “Chemical Element Carbon”.

Word Similarity can help in comparing the similarity between sentences, which can be

useful in question answering, summarizations and other language understanding tasks (TRIGGS

et al., 2021). A number of datasets where build by humans judging the similarity between words.

Words may also be measured in terms of their relatedness or association. One common type of

association is the semantic field, that is the domain which a word belongs to. For example, the

semantic field for the word “stores” can be “sellers”, “products”, “cashier” and all other “stores”

related words. Other associations between words are possible, as hypernymy (IS-A, as in “apple

is a fruit”), and meronymy (IS-PART, which comprehend part-whole relations, as in “piece of

cake”) (JURAFSKY, 2020). Semantic Frames illustrate the situation participants are in, which

can give different meaning to some words (“channel” when you are watching TV and when you

are crossing a water channel has different meanings, because they are in different semantic

frames). Also, when in a determined situation or event, semantic frames may have roles taken

on by words (e.g. in the semantic frame of a university classroom, there are students, teaching

assistants and a professor as roles, generally).

Connotation, in NLP, is interpreted as the meaning of words given the writer’s or reader’s

emotions, knowledge, beliefs and evaluations (GOUWS, 1996). Some words may have good

connotation, like “awesome”, and some may have bad connotation, like “terrible”. It is even pos-

sible to have different connotations for the same thing, like “innocent” and “naive”, which are

positive and negative, respectively. Positive or negative evaluation is referred to as Sentiment in

the literature, being classified in different dimensions in an attempt to capture word meanings.

The task of classifying these sentiments in text is known as sentiment analysis.

2.4.2 Language Modelling

Words may have a different meaning depending on the context (semantic frame) they

are into. Words that appear in similar contexts tend to have a similar meaning, and this con-

nection between distribution and meaning constitutes the distributional hypothesis. Whether it

is to develop spelling correction tools or translate text, it is possible to develop a model that
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assign probabilities for next words given current context. This is called Language Modelling (JU-

RAFSKY, 2020). Machine learning, in special neural networks, leveraged language modelling

by introducing neural language models and embeddings, which are dense representations of

words, first with Static Embedding models with Logistic Regression in Word2Vec, which lead to

neural language models like ELMo (PETERS et al., 2018) and Transformer (VASWANI et al.,

2017).

2.4.3 Vector Semantics and Word Embeddings

Vector Representations of words is the standard way to encode word meaning in NLP.

In the past, before the Neural Network boom in NLP around 2013 (MIKOLOV et al., 2013a;

MIKOLOV et al., 2013b; MIKOLOV; YIH; ZWEIG, 2013), sparse word matrix representations

through algorithms like Term Frequency Inverse Document Frequency (TF-IDF) and Positive

Pointwise Mutual Information (PPMI) were State-of-the-Art (SOTA) for NLP tasks. These algo-

rithms follow the idea of using word frequencies along many different documents in order to

compare and discriminate between different topics. Generally, these algorithms would penal-

ize words that are common to every document and classify according to occurrences in some

particular documents.

Sparse word matrix representation algorithms used matrix with the size of document

vocabulary, in order to achieve a numerical representation of whole texts. But techniques like

that could not consider nuances in the context, as they did not capture word order, and thus,

would not be enough to capture insights from individual phrases and intra-text relationships. But

they were great in order to segment and find articles about specific topics and were relevant for

a long time, being able to capture general topics discussed in specific excerpts.

From the idea of representing words with matrixes, the Neural Network boom leveraged

NLP by converging to Word2Vec, which advanced lexically semantic representation allowing hun-

dreds of not explicitly interpretable features in exchange of few interpretable features. Word2Vec

optimizes an embedding matrix from a large text corpus, producing static Embeddings for every

word in the vocabulary from a training process. Then, utilizes a synthetically generated corpus

by a skipgram with negative sampling algorithm (MIKOLOV et al., 2013a). This algorithm splits

the phrase in tokens and considers a central word to predict if it is a common word given the cur-

rent context or context window (e.g. “Brazil” relates to “country” just as “France” does). By doing

this, the optimization byproducts a embedding matrix for the context and another one for central

words. These embeddings holds relations between some words, being able to infer analogies

like “King” is to “Man” as “Queen” is to “Woman”. This algorithm also maps embeddings from

word frequencies and co-occurences, and successfully extracts some useful embeddings for

classification algorithms. Word2Vec is a static dense embedding algorithm, and thus it does not

vary due to the context a word is inserted into in prediction time, as it will not have different

embeddings for different contexts. Here, the embeddings are only updated considering context
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(co-occurence) with the training data, during training time, and the same words used in many

scenarios will have always the same embedding, as they are assumed to have independent

probabilities (TRIGGS et al., 2021).

In order to measure the similarity of words and, more generally, whole documents, a way

is to calculate the cosine similarity between the embedding of two different words, as described

by Equation 18.

𝑐𝑜𝑠(𝜃) =
a⊤b

‖a‖‖b‖
(18)

where:
a⊤b

‖a‖‖b‖
=

∑︀𝑁
𝑖=1 𝑎𝑖𝑏𝑖√︁∑︀𝑁

𝑖=1 𝑎
2
𝑖

√︁∑︀𝑁
𝑖=1 𝑏

2
𝑖

(19)

Where 𝑎 and 𝑏 are vectors. This can be seen as a normalized dot product, able to mea-

sure vector similarity diminishing the problem of long vector representations (JURAFSKY, 2020).

In section 2.4.4, contextualized word vector representation models will be presented,

which produces different embeddings for different contexts.

2.4.4 Contextualized Embeddings

Researchers proposed dynamic embedding models with the advent of dense vector rep-

resentations now consolidated in the field of NLP. The most relevant for this work are Transformer

(VASWANI et al., 2017) and Bidirectional Encoder Representations from Transformers (BERT)

(DEVLIN et al., 2019), but they were preceded by the already discussed Word2Vec (MIKOLOV

et al., 2013a) and, secondly, by ELMo (PETERS et al., 2018).

ELMo is a deep contextualized dense word representation that models word and charac-

ter level characteristics, considering bidirectional context. As this model produces embeddings

varying based on given word context, they can be considered dynamic or contextualized em-

beddings. ELMo consists of a deep BiLSTM Neural Network (HOCHREITER; SCHMIDHUBER,

1997; SCHUSTER; PALIWAL, 1997), which is a variant of the RNNs. It considers context both

from left and right, for all characters, as it is character-level and bidirectional (PETERS et al.,

2018). This model advanced NLP SOTA as it is capable of extracting dense embeddings sensi-

tively to context while also considering morphological1 features of words.

Transformer model was released in 2017, after further developments in the field of NLP,

using the Transformer Attention Mechanism (referred as Scaled Dot-Product Attention Mecha-

nism), that considers a sequence of words represented as tokens and is defined by Equation

20.

1 Morphology is the branch of linguistics that deals with words, their internal structure, and how they are
formed (ARONOFF; FUDEMAN, 2011)
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Attention(𝑄,𝐾, 𝑉 ) = softmax(
𝑄𝐾𝑇

√
𝑑𝑘

)𝑉 (20)

In Equation 20, 𝑄,𝐾, 𝑉 ∈ R𝑛×𝑑, where 𝑛 is the sequence length and 𝑑 is the dense

embedding reduced dimension (VASWANI et al., 2017). These three matrixes are obtained from

multiplying the current embeddings for each token by trainable matrixes 𝑊𝑄,𝑊𝐾 ,𝑊𝑉 ∈ R𝑑×ℎ

where ℎ < 𝑑, as it is being trained to encode information in a more compact way and 𝑑 is the

original embedding size. The intuition behind Equation 20 is that the product 𝑄𝐾𝑇 will measure

the similarity between the 𝑄 (query) and 𝐾 (key) embeddings by multiplying every query em-

bedding by every key embedding (essentially relating every token to every other token), scaling

by a term defined by the query/key/value embedding dimension square root, in order to main-

tain numerical stability (large numbers can lead to higher magnitude gradients, that can lead to

unstable training) and faster computing. After dividing 𝑄𝐾𝑇 by the scaling term, the resulting

matrix is used as input to a softmax function, which calculates the importance of every key (of

each token in the sequence/sentence, including itself) for every query (essentially relating every

token to every other token). The resulting value is multiplied by the matrix 𝑉 in order to obtain

the final attention heads output, which is concatenated with every other attention head output

and multiplied by matrix 𝑊 ∈ Rℎ×𝑑, resulting in embeddings of the original size 𝐸 ∈ R𝑛×𝑑. The

full Transformer is shown in Figure 12.

The whole attention submodule is formed by the attention mechanism described in Fig-

ure 12. It is followed by normalization and skip connection (which is an addition of original in-

put information, before the previous transformation), that is feed to a token-wise MLP, or Fully-

Connected Layer. Then, one more normalization step is applied after the skip-connection addi-

tion (VASWANI et al., 2017).

Before passing words to the described encoder attention submodule, they are tokenized

and transformed into ids, to later project them in the appropriate tensor 𝐸 ∈ R𝑛×𝑑 through sine

and cosine functions of different frequencies, as in Equations 21 and 22.

sin(𝜔𝑘.𝑡), if 𝑖 = 2𝑘 (21)

cos(𝜔𝑘.𝑡), if 𝑖 = 2𝑘 + 1 (22)

Where

𝜔𝑘 =
1

100002𝑘/𝑑
(23)

Which corresponds to a signal that encodes some positional information for any se-

quence length.
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Figure 12 – Transformer Architecture

Source: (VASWANI et al., 2017).

Finally, there is the transformer decoder, that generates output using a self-attention sub-

module, which performs the Scaled Dot-Product Attention operation on every token, including the

previous outputs of the model. As the output is generated recurrently, similar to RNNs, Trans-

former encodes information in parallel, like CNNs, while generates outputs recurrently, achieving

SOTA performance. The model performs next-word prediction for training.

BERT introduced a new training method for Transformer encoders, where it leveraged

mlm and nsp in order to direct learning towards high level language features, as can be seen

in Figure 13 (DEVLIN et al., 2019). MLM is used to mask 15 out of 100 input words, with 80%

chance of the mask being a special token “[MASK]”, 10% chance of being substituted by a

random word and 10% chance to be kept as it is. NSP consists of two sentence inputs which

BERT predicts whether one follows the other or not. This forces BERT to learn general language
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high-level features, as well as low-level features up to the point of word pieces. Those are parts

of a word that may contain meaningful information (prefixes, suffixes, conjugation, inflexions,

among others) (DEVLIN et al., 2019). More importantly, BERT introduces a feature that was

already incorporated by ELMo but wasn’t yet seen in Transformer Architecture: Bidirectionality.

BERT pre-training procedure enables it to perform well on many downstream (derived) tasks

with a bit of fine-tuning.

Figure 13 – BERT Pre-Training Process

Source: (DEVLIN et al., 2019).

2.4.5 Parameter Efficient Language-model Tuning

As LMs got bigger, its training computational cost became increasingly higher, a problem

which Transfer Learning tries to solve (HOWARD; RUDER, 2018). Through the usage of pre-

trained models, the community was able to reuse huge models without training on an industry-

grade Graphical Processing Unit (GPU), a computer component capable of multiplying matrices

very efficiently (OH; JUNG, 2004), or GPU clusters, and only fine tuning it for specific use cases,

as in (DEVLIN et al., 2019) downstream tasks, which enables researchers and practitioners

without much resources to use big LMs.

In years prior to this work, large LMs with billions of parameters (RAFFEL et al., 2020;

RADFORD et al., ) are being trained, and they tend to get even larger. With that, fine-tuning

scales as well, and can sometimes prove to be too expensive, specially with even bigger models

on the way considering the trend set by NVidia and OpenAI with 100+ billion parameters LMs

(SMITH et al., 2022; BROWN et al., 2020). Those models are also trained on massive amounts

of textual data, which is not available in all languages.

In this scenario, storing these models start to be a burden. Fine-tuningand storing a

different model for each task is an even bigger burden. This lead us to PELT methods, which

optimizes just a subset of model parameters for each fine-tuning task, making it possible to

more efficiently store them, as if we optimize solemnly 0.08% of model parameters, as a PELT
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method named BitFit proposes (ZAKEN; RAVFOGEL; GOLDBERG, 2021), we store 99.02% of

the model once, and the 0.08% subset many times, making it a 99.02% reduction in memory

usage for each additional task the pre-trained model is fine-tuned on (MAO et al., 2021).

One of such methods, and the one explored in this work, is BitFit (ZAKEN; RAVFOGEL;

GOLDBERG, 2021). Although there are other PELT methods (MAO et al., 2021), this work ap-

plied BitFit due to its simplicity. If it proves successful, future work in this project might include

experiments with alternative PELT methods.

There are two main types of PELT methods: with and without additional parameters (MAO

et al., 2021), and BitFit is classified as a “PELT method without additional parameters”. In this

category, there is also fine-tuning using only the top layers or prediction head, which generally

lead to worse model performance compared to complete fine-tuning (LEE; TANG; LIN, 2019;

PFEIFFER et al., 2020). BitFit achieves better performance by fine-tuning bias across the whole

model (MAO et al., 2021)

On the other hand, there are PELT methods with additional parameters. Examples are:

Adapter (HOULSBY et al., 2019), Prefix-Tuning (LI; LIANG, 2021) and LoRA (HU et al., 2021),

which is further classified as an Additive Method. Adapter works by adding a trainable bottleneck

(down+up projection pair) layer after the feedforward network in each transformer layer of the LM,

which reduce dimensionality and recovers the original input from its representation in reduced

dimensions, extracting important features in order to properly recover the input. Prefix-tuning

prepends two task-specific trainable prefix matrices to Query and Key values, which acts as vir-

tual tokens and can be attended to, working as task-specific tokens. Lastly, Additive Methods

interpret model parameters after fine-tuning as an addition of original pre-trained model parame-

ters 𝜃𝑝𝑟𝑒−𝑡𝑟𝑎𝑖𝑛𝑒𝑑 and task-specific variations 𝛿𝑡𝑎𝑠𝑘. There are various ways to parameterize 𝛿𝑡𝑎𝑠𝑘,

which leads to different additive methods; LoRA introduces trainable low-rank matrices and pair

them with the origianl matrices in the multi-head attention (MAO et al., 2021).
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3 MATERIALS AND METHODS

In this section, software and hardware requirements (sections 3.1 and 3.2) for the present

work is explained, as well as the methods followed (Section 3.3).

3.1 Hardware

Hardware requirements for this work were a single computer for model training, analysis

and writing/reading, also making heavy use of Google Collaboratory 1 and Google Collaboratory

Pro:

• Lenovo Legion laptop, with 1 TB HD and 128 GB SSD and a Intel i7 2.80 GHz CPU,

using Windows 10 as Operational System (OS). It has 16 GB RAM and a GTX 1060

GPU with 6 GB memory, in order to realize small scale experiments, prepare data and

develop model training/inference pipeline;

• Google Collaboratory cloud environment is hosted on a different machine each time a

session is started. The two most common settings included Nvidia K80, T4 or (on collab

PRO) P100, with 12 GB, 16 GB and 16 GB of GPU memory, respectively. As for RAM,

the environment has 12 GB and 2 CPU Cores, and also has access to the Google Drive

environment, allowing for unlimited cloud storage as Federal University of Technology -

Paraná sponsors it.

3.2 Software

The software requirements were the programming language (Section 3.2.1.1), frame-

works and libraries (Section 3.2.2.2) and datasets (Section 3.2.3.3).

3.2.1 Programming Language

Python was used for the development of this work. Python 2 is a well-known programming

language for scientific computation, considered intuitive and flexible, being fit for most scientific

problems as it simplifies the implementation process, allowing researchers to focus on the mod-

elling (OLIPHANT, 2007).

Python offers a wide range of advantages, other than ease of use:

• Useful built-in objects: everything in Python is an object, and the language is highly

flexible with object types;

1 https://colab.research.google.com/
2 https://www.python.org/
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• Functions and classes: Pythons allows for both Procedural Programming as well as

Object Oriented Programming, besides other programming paradigms;

• Standard Library: Python’s standard library has a plentora of built-in functions and

classes, enabling more efficient development;

• Ease of Extension: C or C++ code can be easily integrated with Python pipelines as a

way to optimize code;

• Python has, apart from its standard library, a suite of efficient and useful libraries, which

include GPU optimized code for Machine Learning.

The most relevant advantage of Python for Data Science tasks are its external libraries,

which is described in Section 3.2.2.2.

3.2.2 Libraries

The PyTorch 3 (PASZKE et al., 2019) frameworkd was used for Neural Network modelling,

as it surpasses similar frameworks, having more active pull requests than Tensorflow 4 (ABADI et

al., 2016) on GitHub at the time of this work, and according to Papers With Code (2021) GitHub

framework trends for Deep Learning papers shown on Figure 14.

Figure 14 – GitHub Data for Deep Learning Framework Adoption in Paper Implementations
Through Time

Source: (Papers With Code, 2021).

3 https://pytorch.org/
4 https://www.tensorflow.org/



33

In conjunction with PyTorch, Huggingface transformers (WOLF et al., 2020) library was

used 5. It is an open-source library which aims at enabling broader access to transformer models

through an unified API, that facilitates machine learning practitioners to leverage Transformer

models transfer-learning capabilities. This enables faster experimenting, contributing greatly to

the advancement of the field.

For experiments comparison and visualization, both Plotly (INC., 2015) and Weights and

Biases (WB) (BIEWALD, 2020) were used. Plotly is a Python data visualization library with cus-

tomizable and interactive graphs, while WB is used to track and compare multiple experiments

as well as to easily monitor energy consumption metrics.

Finally, for the models, legal text fine-tuned BERTimbau (SOUZA; NOGUEIRA; LOTUFO,

2020) model weights were used, imported from the HuggingFace (WOLF et al., 2019) reposi-

tory 6: “Luciano/bert-base-portuguese-cased-finetuned-peticoes”, which had no published paper

advertised on the HuggingFace repository page at the time of writing.

3.2.3 Dataset

A dataset was built for the purpose of this project, although it is not the emphasis of this

work. The main stakeholder of this project had many unlabeled (unclassified) legal documents,

which their clients handed over in order to also be benefited by the project. In order to build the

dataset, the following steps were executed:

• Extracted text from PDF as plain text using Optical Character Recognition (OCR);

• Submitted extracted text splitted into paragraphs to the annotation platform;

• Paragraphs were annotated (labeled/classified) by human annotators, hired for this

project;

• Annotator agreement was measured through Cohen’s Kappa statistic, after each anno-

tation round, in order to adjust for the next round;

• Annotated data was released as a dataset version, so models could be trained on it.

Those documents were not always in plain text, sometimes being even impossible to

select text in some PDF file formats. The responsible team experimented with OCR techniques

such as Smith (2007) and Dosovitskiy et al. (2021) in order to achieve the most robust/efficient

text extraction engine from images, as it impacts in the quality/latency of all data/processing in

the project pipeline. An OCR model output example can be seen on Figure 15.

The OCR model works by extracting paragraphs from documents (as full-page texts were

giving unstable results), which were annotated in the developed annotating platform. In order to
5 https://huggingface.co/
6 https://huggingface.co/Luciano/bert-base-portuguese-cased-finetuned-peticoes
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Figure 15 – OCR model output example

Source: (DU et al., 2020).

maintain and monitor dataset quality, Cohen’s Kappa statistic was used (FALOTICO; QUATTO,

2015). This dataset statistic is a widely used statistic to verify annotator agreement, and thus

annotation consistency, which helps to minimize bias-related data problems.

Cohen’s Kappa measures annotators answers correlation. It generates a number ranging

from -1 (negatively correlated: annotator A answers 0/1 while annotator B answers 1/0 in every

sample) to 1 (positively correlated: annotator A and B agree in every sample) for every annotator

(WARRENS, 2015). For this work, the perfect scenario consists of annotations that are highly

positively correlated (1) for every annotator, meaning that class definitions are perfectly defined

among every human annotator, and that the same features are being recognized as the same

classes.

Annotators labeled paragraphs along 16 classes: “Dano moral”, “Inexistência de relação

jurídica/débito”, “Inversão do ônus da prova”, “Jurisprudência”, “Fraude”, “Tutela antecipada”,

“Canais Internos”, “Restituição em dobro”, “Justiça gratuita”, “Inscrição indevida”, “Desvio pro-

dutivo”, “Dano material”, “Produtos bancários”, “Financiamento veículo”, “Multa diária” e “Noti-

ficação de inscrição”. Those were defined jointly by data scientists and lawyers participating in

this project. The dataset has a mean Cohen’s Kappa of 0.88, which means that annotators have

good agreement rate for data samples.
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The dataset was then exported as consecutive Comma Separated Files (CSV) files as

annotation time goes on, with each version having more samples (and eventually fixing past

mistakes caused by bugs or misconceptions among annotators). Versions were released weekly

during the duration of this project. Dataset is not balanced, so all metrics used are weighted.

This work don’t disclose class distribution information as it used a private dataset, and leaking

this information could lead to competitive disadvantages for this work sponsor.

A graph depicting dataset growth through versions is shown in Figure 16.

Figure 16 – Dataset growth over versions

Source: Own authorship (2022).

3.3 Method

This section describes the methodology used in this work. It is organized in the following

steps:

• Step 1: Initialized model weights using HuggingFace pre-trained model weights;

• Step 2: Completely fine-tuned model on created dataset;

• Step 3: Partially fine-tuned model using BitFit on created dataset;

• Step 4: Compared model results among dataset versions, plotted results and discussed

model performance on both fine-tuning settings as sample size has grown with each

dataset version;

The experiments flowchart can be observed in Figure 17.

3.3.1 Planned Experiments Flow

Methodology steps are further described as the following:
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Figure 17 – Experiments Overview Flowchart

Source: Own Authorship (2022).

Step 1: For this work, both BERT models (fully fine-tuned and partially fine-tuned with BitFit (ZA-

KEN; RAVFOGEL; GOLDBERG, 2021)) were initialized with pre-trained model weights. Model

weights came from a fine-tuned version of BERTimbau (SOUZA; NOGUEIRA; LOTUFO, 2020),

“bert-base-portuguese-cased-finetuned-peticoes”, which is fine-tuned in petitions, with training

hyperparameters:

• Learning rate: 2.10−5;

• Train batch size: 8;

• Evaluation batch size: 8;

• Optimizer: Adam with betas=(0.9, 0.999) and epsilon=(1.10−8);

• Learning rate scheduler type: linear;

• Number of epochs: 3;

• Seed: 42.

In the HuggingFace repository 7, it is also possible to check fine-tuning hyperparameters:

• Attention probabilities dropout probability: 0.1;

7 https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-
classification/run𝑔𝑙𝑢𝑒.𝑝𝑦
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• Classifier dropout probability: null;

• Directionality: bidirectional;

• Activation function: GELU;

• Hidden dropout probability: 0.1;

• Embedding size/Hidden size: 768;

• Max length: 512;

• Number of attention heads 12;

• Number of hidden layers: 12;

• Pooler fully-connected layer size: 768;

• Vocabulary size: 29794.

Step 2: The first experiment was to perform a complete fine-tuning on the created dataset. Train-

ing followed default settings for HuggingFace sequence classification scripts:

• Max text length: 128;

• Learning rate: 5.105;

• Number of epochs: 3;

• Gradient accumulation steps: 1;

• Learning rate scheduler type: linear;

• Seed: 42.

Step 3: The second experiment was to partially fine-tune on the created dataset, using BitFit

(ZAKEN; RAVFOGEL; GOLDBERG, 2021). Training followed listed settings:

• Max text length: 128;

• Learning rate: 5.105;

• Number of epochs: 3;

• Gradient accumulation steps: 1;

• Learning rate scheduler type: linear;

• Seed: 42.
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Step 4: After running both experiments, their weighted precision, recall and f1-score were com-

pared. These have been shown to be good performance metrics for model comparison and

evaluation (GOUTTE; GAUSSIER, 2005). A high precision model has less false positives, while

a high recall model has less false negatives. The f1-score is the harmonic mean over precision

and recall, which is punishing if one of the values is much lower than the other.

Comparing each model result for each dataset version made possible to analyse how

performance varies along dataset sizes. It was expected that BitFit would perform better on low

dataset size scenarios, as it optimizes less parameters in order to train more efficiently. Although

this fastens convergence, it was also possible that less information would be learned by the

model from training data, as shown in BitFit experiments (ZAKEN; RAVFOGEL; GOLDBERG,

2021), which avoids overfitting in low dataset size scenarios but also prevents the model from

learning everything it can from available data.

With this methodology, this work compared BitFit performance with regular language

model fine-tuning when data is scarce, which proved useful for experimenting with Transformer

models at the start of projects in lower resource languages, where annotated texts may not be

as abundantly available, helpíng researches to develop faster.
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4 RESULTS

This chapter describes all experiments and their results, as well as discussing those

outcomes, following steps described in 3. Firstly, complete model fine-tuning results will be pre-

sented and discussed in Section 4.1, followed by partial fine-tuning with bitfit in Section 4.2 and,

for conclusion, it is shown a comparison among both of them.

4.1 Complete Fine-tuning

This section presents the first set of experiments, which consists in benchmarking com-

plete fine-tuning performance when training on 5 different versions of our dataset. Each subse-

quent version has more samples than the previous one, as they are weekly releases from the

project annotation team. Results obtained in this step will be further used to compare with partial

fine-tuning using BitFit.

Pre-trained parameters from the Huggingface repository named “Luciano/bert-base-

portuguese-cased-finetuned-peticoes” were used for the model initialization. Training parame-

ters are set as described in Section 3.3, through the Huggingface library.

For each dataset version, 3 experiments were run. Each had identical parameters and

hyperparameters, except for the seeds: 40, 41 and 42. Figure 18 shows mean model F1-Score

along dataset versions.

Figure 18 – Complete Fine-tuning F1-Score

Source: Own Authorship (2022).

In general, the model performs better as the dataset grows in size, except from version 3

to 4, the only occurrence of performance degradation. This happenned for a loss in annotation

quality (less annotator concordance) during the project, a problem that was investigated and

solved for version 5, which has continued model performance improvement.
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This model improvement along dataset versions is expected. Following (OLTHOF; OOI-

JEN; CORNELISSEN, 2021), model performance tends to improve as dataset size grows, with

diminishing returns as size increases, up to a plateau.

A table containing all training metric details can be seen in Table 1.

4.2 BitFit - Partial Fine/-tuning

For the second set of experiments, BitFit was employed in order to train the model.

BitFit optimizes just a subset of model parameters, and the method shows results that

even surpass complete fine-tuning for small datasets (ZAKEN; RAVFOGEL; GOLDBERG, 2021),

although they aim solely to be competitive while expending less computational resources through

partially adjusting parameters.

It is important to have this in mind when looking at results for BitFit in Figure 19, as per-

formance is expected to be competitive, but not necessarily better, when compared to complete

fine-tuning.

Figure 19 – Complete Fine-tuning F1-Score

Source: Own Authorship (2022).

It is possible to observe that BitFit perfomance was also impacted in the fourth version

of the dataset, although with less intensity than in full fine-tuning. This goes along with the fact

that less parameters are being optimized, and thus the model is less affected by noise in the

fine-tuning dataset, preserving more knowledge learned in pre-training.

BitFit authors mention that results obtained corroborates the theory which claims that

fine-tuning exposes the model to knowledge induced by pre-training, essentially using pre-

trained linguistic features to understand the new task, which is reinforced by a lower performance

degradation in version 4.



41

This analysis is specially important as it also hints at the possibility of BitFit being more

robust to Catastrophic Forgetting, while also never creating the problem of Catastrophic Remem-

bering.

Catastrophic Forgetting is a well known problem in fine-tuning (and Continual Learning

in general), where a model forgets knowledge acquired during pre-training during the process of

learning a new task (fine-tuning) (KAUSHIK et al., 2021). Some authors proposed data replay

method in order to deal with this problem, where you expose the model again to older tasks

data, and although this deals with Catastrophic Forgetting, models have a penalty in the ability

to discriminate between new and old tasks (SHARKEY; SHARKEY, 1995). If BitFit is able to

overcome catastrophic forgetting, it solves it without ever facing catastrophic remembering.

Keeping 95% of model parameters unchanged further supports BitFit avoiding Catas-

trophic Forgetting. This is because more knowledge acquired from pre-training is retained in

comparison to complete fine-tuning, although feature representations usually aren’t independent

along layers inside deep learning models, as layer 𝑛 usually depends on information coming

from layer 𝑛 − 1, being skip connections and similar methodologies some exceptions. Thus,

empirical evidence indicates BitFit method robustness to Catastrophic Forgetting and problems

alike, although it is not trivial to formally prove it.

4.3 Results comparison

Following what was expected from the BitFit paper, it performed, on average, better for

smaller dataset versions, although it performed worse in early (smaller) dataset versions and

slightly better than complete fine-tuning on later (bigger) versions.

Results discussed can be visually compared in Figure 20.

Figure 20 – BitFit Fine-tuning F1-Score

Source: Own Authorship (2022).
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As already stated, BitFit outperforming complete fine-tuning in dataset version 4 indi-

cates that it is more resistant to fine-tuning data noise, and corroborates that fine-tuning is about

leveraging pre-trained knowledge to solve fine-tuning tasks.

It is possible to lookup results for every single experiment in Table 1. Precision and recall

are strongly correlated with the f1-score, as it is their harmonic mean. BitFit optimized model

seems to keep the good precisions 𝑋 recall tradeoff shown by the completely fine-tuned model,

as they don’t diverge much from the f1-score. This is ideal as it isn’t inflating one over the other,

which would cause a low f1-score or a non-reliable model, as it would either 1) commit to many

false negatives (high precision, low recall) or 2) commit to many false positives (low precision,

high recall).

Also, the correlation between f1-score and dataset size was calculated. F1-score is 82%

correlated with size for Complete Fine-tuning and 88% correlated for BitFit fine-tuning. This rein-

forces the fact that BitFit usually performs better on smaller datasets.

In terms of energy consumption, BitFit doesn’t seen to have major gains when compared

to other fine-tuning strategies as backpropagation has a dependency on the gradient calculation

of previous (or following, as it is a backward pass) parameters, thus requiring that they are

calculated even though they aren’t being updated (NIELSEN, 2018).

Energy consumption results for complete and BitFit fine-tuning experiments with seed 42

in dataset version 5 can be observed in Figure 21.

Figure 21 – GPU Energy Consumption

Source: Own Authorship (2022).

BitFit, then, slightly improves model performance, specially in cases of fine-tuning data

noise. Also, it sometimes (3 out of 5, considering average f1-score) can be better than complete

fine-tuning for small datasets.
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Table 1 – All Experiments Re-
sults

fine-tune dataset version seed precision recall f1
Full Fine-tuning 14 40 0.8669 0.8673 0.8669
Full Fine-tuning 14 41 0.8679 0.8667 0.8667
Full Fine-tuning 14 42 0.8692 0.8693 0.8689
Full Fine-tuning 15 40 0.8706 0.8723 0.8704
Full Fine-tuning 15 41 0.8666 0.8679 0.8663
Full Fine-tuning 15 42 0.8683 0.8696 0.8685
Full Fine-tuning 16 40 0.8699 0.8707 0.87
Full Fine-tuning 16 41 0.8701 0.8702 0.8698
Full Fine-tuning 16 42 0.877 0.8772 0.8765
Full Fine-tuning 17 40 0.8646 0.8647 0.8644
Full Fine-tuning 17 41 0.8723 0.8734 0.8726
Full Fine-tuning 17 42 0.8677 0.8691 0.8679
Full Fine-tuning 18 40 0.8811 0.8813 0.881
Full Fine-tuning 18 41 0.8787 0.8792 0.8787
Full Fine-tuning 18 42 0.8819 0.8819 0.8818
BitFit 14 40 0.8694 0.8689 0.8688
BitFit 14 41 0.8668 0.8673 0.8665
BitFit 14 42 0.8659 0.8658 0.8656
BitFit 15 40 0.8685 0.8695 0.8685
BitFit 15 41 0.8689 0.87 0.8688
BitFit 15 42 0.8703 0.8717 0.8703
BitFit 16 40 0.87 0.8704 0.8699
BitFit 16 41 0.8691 0.8702 0.8692
BitFit 16 42 0.8712 0.8699 0.8696
BitFit 17 40 0.8696 0.8696 0.8691
BitFit 17 41 0.8716 0.8725 0.8716
BitFit 17 42 0.8679 0.8686 0.8679
BitFit 18 40 0.8789 0.8793 0.8789
BitFit 18 41 0.8817 0.8815 0.8814
BitFit 18 42 0.8818 0.8822 0.8818

Source: Own Authourship
(2022).

The Complete fine-tuned model was also validated by the Legal community, as it was

presented by this research contractor’s company to the Federal Court of Audits (Tribunal de

Contas da União, from Portuguese), and they were interested in following this project researches.

It is possible that that will become one of this model users, along with a large brazillian bank

which name cannot be disclosed.
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5 CONCLUSION

This work resulted from the efforts to classify legal documents in order to serve a big

demand of text analysis, which would need many hours of work to be done by humans. More

specifically, this work is an attempt to improve results obtained with complete fine-tuning, con-

sidering the smaller-than-usual Portuguese dataset for this work fine-tuning purposes.

For thus, a PELT method was leveraged, namely BitFit. It was used in order to achieve

better performance in the dataset built in parallel by another team in the project research group.

PELT methods optimize just a subset of model parameters in order to more efficiently store

model parameters for each task. BitFit, for example, optimizes 0.08% of total model parameters

and keeps 99.02% untouched. Although only a subset of parameters is optimized, BitFit energy

consumption is the same as complete fine-tuning, as backpropagation must calculate the partial

derivatives for all parameters, and not only those being optimized.

Although this property is useful for deploying LLMs, for the purpose of this work, the

most important BitFit feature is that it surpassed complete fine-tuning results in some cases, for

small datasets. This paves road to experiment with it in order to improve complete fine-tuning

performance in small datasets.

Experiments results went accordingly to BitFit paper results, maintaining competitive re-

sults and even surpassing complete fine-tuning for a small dataset. Dataset size was more cor-

related to BitFit average metrics than with full fine-tuning, as well.

An unexpected relation came up during experiment runs: BitFit is much more resistant

to fine-tuning data noise than complete fine-tuning. This went further, and it is perhaps capable

of mitigating effects of Catastrophic Learning. That is a hypothesis that may be worth further

investigation, in future work.

BitFit is surprisingly good at optimizing a very small subset of model parameters and

achieving great performance. Applying it to achieve better performance allowed this work to

more effectively classify legal documents given annotated data constraints, as well as validating

this strategy to further improve model performance when only smaller datasets are available. If

any company is going to annotate its own data, models trained on early dataset versions might

usually benefit from using BitFit, earning the company some performance points.

Other PELT methods exist, which are not as trivial as BitFit, which achieves very good

results given its simplicity. Some of them have solid results, and some preliminary experiments

using unipelt (MAO et al., 2021) were done during this work, although they weren’t promising. In

further work, it might be worth to give a look at other PELT strategies.

It is important to disclose that the company sponsoring this work team presented this

model to the Federal Court of Audits, earning their attention to this project, and thus the legal

community initial approval. Also, lawyers and engineers working at the company sponsoring

this work are already discussing deployment and integration into their automatic legal document

generation product.
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The project goals were achieved. With just a very small subset of parameters (0.08%),

BitFit achieved results not only competitive, but which surpassed those of fine-tuning. Also, it

has shown to be robust to fine-tuning data noise, which makes it a great resort for future dataset

versions that might present problems.

Lastly, for future works, the first suggestion is to further improve model performance with

other pelt methods, such as those cited by and proposed on Mao et al. (2021), and the second

is to formalize and further investigate whether BitFit solves catastrophic forgetting or not.
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