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ABSTRACT

Engine Knock poses a significant threat to the integrity and performance of spark ignition
engines, leading to decreased efficiency, power, and overall performance. Traditional
control strategies utilize knock sensors to identify and mitigate these adverse effects,
although these may not always provide accurate or timely responses. This presents
an innovative model-based approach to knock control, utilizing Artificial Intelligence
(AI) techniques. Specifically, we propose a time-series Artificial Neural Network (ANN)
model designed to simulate SI Engine Cylinder block vibrations. This study investi-
gates transformer models, Long Short-Term Memory (LSTM), and Convolutional Neural
Network (CNN) models. These models are trained using vibrational data from engine
blocks, thereby developing a comprehensive understanding of the unique behaviors of
the engine. Among the models, the Attention LSTM model showed slightly superior per-
formance, outperforming the other two models across the full range of engine vibration
conditions. Despite promising results, further refinement and tuning of these models
are required for real-world implementation. The proposed AI model offers a promising
direction for advancements in knock control technology, with potential implications for
enhancing engine durability, performance, and fuel efficiency.

Keywords: model-based knock control; engine control unit calibration; artificial neural
networks; attention models.



RESUMO

A Detonação do Motor representa uma ameaça significativa para a integridade e o
desempenho dos motores de ignição por faísca, levando a uma diminuição da eficiência,
potência e desempenho geral. As estratégias de controle tradicionais utilizam sensores
de detonação para identificar e mitigar esses efeitos adversos, embora estes nem
sempre possam fornecer respostas precisas ou oportunas. Este trabalho apresenta uma
abordagem inovadora baseada em modelos para o controle de detonação, utilizando
técnicas de Inteligência Artificial. Especificamente, propomos um modelo de Rede
Neural Artificial de séries temporais projetado para simular as vibrações do bloco do
cilindro do motor de Ignição por Faísca. Este estudo investiga modelos baseados em
mecanismos de atenção, Long Short Term Memory (LSTM), e modelos de Rede Neural
Convolucional. Esses modelos são treinados usando dados vibracionais de blocos de
motores, desenvolvendo assim uma compreensão abrangente dos comportamentos
únicos do motor. Entre os modelos, o modelo LSTM com mecanismos de atenção
apresentou um desempenho ligeiramente superior, superando os outros dois modelos
em toda a gama de condições de vibração do motor. Apesar dos resultados promissores,
são necessários mais aprimoramentos e ajustes desses modelos para a implementação
no mundo real. O modelo de IA proposto oferece uma direção promissora para avanços
na tecnologia de controle de detonação, com implicações potenciais para melhorar a
durabilidade, o desempenho e a eficiência de combustível.

Palavras-chave: controle de detonação baseado em modelo; calibração da unidade de
controle do motor; redes neurais artificiais; mecanismos de atenção.
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1 INTRODUCTION

The world has become increasingly aware of the pressing need for environmental

sustainability, and the transition to electrification of our transportation systems has

been gaining momentum. Nonetheless, a significant portion of the global transport

infrastructure is still powered by internal combustion engines (REITZ et al., 2020). Hence,

enhancing combustion engine efficiency and reducing fossil fuel dependence are crucial

research areas due to their significant impact on our environment and economy.

Spark Ignition (SI) Engines are intricate machines whose efficiency and perfor-

mance rely on controlling numerous parameters. Control parameter values, typically

stored in lookup tables and adjusted across the engine’s operational range, are set via

test bench mapping. Occasionally, a feedback control strategy is employed to optimize

these values and enhance engine performance (CORTI; MORO, 2007; DIAS et al.,

2018).

Figure 1 – Control Structure of the Spark Ignition Engine.

Source: Guzzella and Onder (2009)

According to Guzzella and Onder (GUZZELLA; ONDER, 2009), one can con-

ceive a simplified control-oriented model for an SI engine, as depicted in Fig. 1. The

model comprises significant components such as the fuel and air paths, which are

denoted as 𝑃𝜑 and 𝑃𝛼, respectively. These paths primarily define the mixture entering

the cylinder. Additionally, the combustion block 𝑃𝜒 is responsible for determining the

torque produced by the engine.



14

Other critical outputs include the knock signal 𝑦𝜁 and the engine-out air/fuel ratio

𝑦𝜆, which are measured by a knock sensor 𝑃𝜁 and a 𝜆 sensor 𝑃𝜆 respectively. These

sensors are ideally positioned as close as possible to the exhaust valves. The engine

speed 𝜔𝑒 is produced by the block 𝑃Θ, which incorporates the engine’s rotational inertia

and is influenced by the engine torque 𝑇𝑒 and the load torque 𝑇𝑙 .

Significant control loops in the model, as indicated in Fig. 1, include the fuel-

injection feedforward loop, the air/fuel ratio feedback loop, the ignition angle feedforward

loop, and the knock feedback loop. Many engine systems also incorporate other feedfor-

ward or feedback loops, such as idle and cruise speed control, exhaust gas recirculation

for emission reduction during a cold start or for lean-burn engines, secondary air injec-

tion for faster catalyst light-off, and canister purge management to prevent hydrocarbon

evaporation.

The calibration of internal combustion engines (ICE) is an essential part of engine

optimization, as it involves finding the best settings for various adjustable parameters

such as the air-to-fuel ratio AFR, spark advance, and variable valve timings (VVT) (YU et

al., 2022). This calibration maximizes output power while minimizing fuel consumption,

pollutant emissions, and noise. The process is complex as it necessitates attention to

several intricate engine systems, such as the combustion and gas exchange systems,

and their interactions.

A widely used tool in this process is the dynamometer (dyno), which enables

engine performance evaluation during the engine development process, leading to the

calibration of engines before they reach the customers. The traditional calibration method

involves manual test bench-based dynamometer calibration, which resembles a grid

search for optimization. This method involves dividing the parameter space into a grid for

each operating condition/operating point and manually measuring engine performance

at different grid knots. The grid knot yielding the optimal engine performance is selected

for the current operating point, and this process is repeated for all operating points

defined by a specific driving cycle.

In essence, the engine calibration process can be likened to a problem-solving

task to find the most effective correlation or mapping function 𝑚 : 𝑋 → 𝑌 . Here,

𝑋 represents all the conceivable situations that an engine could encounter during

operation, while 𝑌 illustrates all the achievable adjustments that can be made to the

engine’s parameters. The task is to establish the optimal connection between these
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two realms. Considering the time-consuming nature of engine performance evaluation

on dyno, calibration can be a costly optimization problem. With the rise in adjustable

engine parameters due to advances in engine technology and increasingly stringent fuel

economy and emissions regulations, the complexity of engine calibration problems has

increased (YU et al., 2022).

The Design of Experiment (DoE) concept has been widely used in off-board

calibration to increase efficiency. This procedure involves selecting a limited number of

test points for evaluation on dyno, and these evaluated test points are used for model-

based calibration (MBC). This method saves the calibration budget compared to the

traditional manual method, which evaluates all points on dyno.

However, certain variables pose a challenge to model due to their inherent

complexity, unpredictability, and insufficient theoretical knowledge about them (TOSSO

et al., 2022). One such example is the Knock model, which presents significant difficulties

to researchers worldwide.

Engine knock is a crucial phenomenon for the engine development and cal-

ibration process. For combustion chamber design during engine development, it is

imperative to ensure resilience against knocking combustion, especially for engine op-

eration with a wide range of fuels. Likewise, during the engine production stage, the

engine control system must be tuned to enable non-knocking combustion across various

operating conditions.

Knocking reduces engine performance and efficiency in SI engines, restricting

the maximum compression ratio. Beyond these challenges, engine knock can also

lead to engine damage when severe, and being a noise source, it is commonly viewed

as a drivability issue. Therefore, investigating engine knock is of utmost importance

(MAURYA; MAURYA, 2019).

In the following sections, we will delve deeper into the phenomenon of engine

knock and explore the potential of machine learning techniques for time-series modeling

in Spark Ignition engines.

1.1 Engine knock

Knock in SI engines is attributed to an anomalous combustion phenomenon

that, if prolonged, can result in detrimental effects such as piston ring breakage, cylinder
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head erosion, piston crown and top land erosion, piston melting, restricted engine

compression ratio, or vehicle acceleration performance, elevated air pollution, reduced

engine efficiency, significant increase in engine-specific fuel consumption, potential

structural damage to the engine over an extended period, and noise generation (ZHEN

et al., 2012).

The challenges associated with comprehending knock stem from the cyclical

variability of the knock phenomenon. Specifically, the timing of knock onset within each

cycle, as well as the rate of energy release and changes in pressure upon its occurrence,

contribute to the complexity of this phenomenon (CHUN; HEYWOOD, 1989).

Cyclic pressure fluctuations and other unobservable factors, such as residual

mass variations or temperature hot spots, cause the unpredictable nature of knocking

combustion in reciprocating engines. As a result, accurately predicting engine knocking

is nearly impossible for practical applications. To address this issue, current knock

control algorithms utilize a combination of open-loop control actions and stochastic rules,

which adapt engine operation based on previous knock detection events. Accurate

knock detection is crucial for conventional controller performance, as failure to detect

knock can result in engine damage, while false detection can reduce engine efficiency

(MAURYA; MAURYA, 2019).

Various techniques currently exist for knock detection, including auto-ignition

detection, ion current detection, in-cylinder combustion pressure detection, engine

block vibration detection, and combustion noise detection. In particular, in-cylinder

combustion pressure detection is widely used in laboratory settings for accurate knock

detection in individual cylinders due to its high signal-to-noise ratio and sensitivity

despite its high cost. The literature categorizes these knock detection methods into

direct and indirect approaches, as indicated in Fig. 2. Direct methods rely on in-cylinder

pressure measurements to detect the high-frequency knock signature related to the

resonant frequencies of the combustion chamber generated by radial or circumferential

vibration modes. These frequencies depend on the speed of sound in the combustion

chamber and cylinder bore. On the other hand, indirect methods involve advanced

signal processing techniques utilizing the cylinder block vibration signals gathered by

accelerometers, which have benefits such as affordability, excellent durability, and

sensitivity. As such, they are increasingly adopted as practical solutions for mass-

produced engines. However, detecting cycle-by-cycle and cylinder-by-cylinder knock
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conditions is crucial for their application in on-board control systems, while identifying

optimal sensor locations, particularly for multi-cylinder engines, requires careful attention

(SIANO; BOZZA, 2013).

Figure 2 – Knock detection methods

Source: Adapted from Maurya and Maurya (2019)

In the present works, we delve into the application of Convolutional Neural

Networks (CNN), Long Short-Term Memory (LSTM), and Attention Model architectures

for modeling knock noises (cylinder blocks vibration) in spark ignition engines. The an-

ticipated benefits of this exploration are multifold. Not only does this approach potentially

enhance the predictability of engine knock, but it also provides a robust mathematical

representation of the knock phenomenon. This predictive modeling could allow for

real-time estimation of knock likelihood under current operating conditions, enabling

a proactive approach to knock control. As a result, this approach could facilitate real-

time fine-tuning of engine operation, prevent knock occurrence, and ensure the engine

operates near its maximum efficiency point. Furthermore, integrating such a model

into the engine control unit (ECU) could pave the way for developing advanced control

algorithms, thereby improving engine performance, efficiency, and durability.

1.2 Machine Learning for Time-Series Modeling in SI Engines

Advancements in Machine Learning (ML) offer promising avenues for the cre-

ation of robust, predictive models in a variety of fields, including the automotive industry

(FU et al., 2022; TURKSON et al., 2016; GÖLCÜ et al., 2005; BHATT; SHRIVASTAVA,

2022). Specifically, ML algorithms show high potential in time-series modeling, which

is increasingly relevant to SI engines (XIE et al., 2023; OFNER et al., 2022; SIANO;

PANZA; D’AGOSTINO, 2015).
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The fundamental characteristic of time-series data, its sequential nature, makes

it suitable for applying ML techniques. In the context of SI engines, data points are a

sequence of measurements taken over time, capturing the dynamic behavior of various

engine parameters. Machine Learning offers powerful tools capable of handling complex

temporal dependencies. Techniques such as Transformers, LSTM networks, and CNNs

are particularly well-suited for this task (MITTELMAN, 2015; ABBASIMEHR; PAKI,

2022; KARIM et al., 2019; WEN et al., 2022; ZENG et al., 2023; AHMED et al., 2023).

These techniques can recognize patterns over various time scales, capture long-term

dependencies, and model non-linear relationships, making them exceptionally powerful

in time-series prediction.

In the context of SI engine control, these ML-driven time-series models can pre-

dict the engine’s future behavior and adapt control strategies accordingly. For instance,

predicting engine knock, a phenomenon that can cause severe engine damage, ahead

of time would allow for preemptive corrective measures. Such a proactive approach

could significantly enhance engine performance and longevity.

Moreover, creating these predictive models could enable a more in-depth under-

standing of complex phenomena like engine knocks. These models could shed light on

the underlying mechanisms driving these phenomena by identifying key features and

highlighting intricate relationships between various engine parameters. This additional

insight could prove invaluable in designing and optimizing future engine models.

Given these compelling benefits, there is a clear imperative for integrating ML

techniques into SI engine control. Developing and implementing ML-driven time-series

models could revolutionize engine calibration, enhancing efficiency, performance, and

overall engine life.

1.3 Justification

Knock is a major constraint in realizing maximum engine performance and effi-

ciency in internal combustion engines. This phenomenon not only restricts the engine’s

performance but, if not properly controlled, can also lead to severe engine damage. Thus,

an accurate knock signal is critical for successful knock control strategies. Creating a

robust Artificial Neural Network (ANN) model capable of accurately simulating the knock

noise in Spark Ignition Engines can revolutionize how engine knock is managed. The
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model will represent the knock phenomenon mathematically, facilitating more predictive

and proactive control. Current control strategies are largely reactive, responding only to

detected knock events. The predictive model developed in this research will allow for

real-time estimation of knock likelihood under the current operating conditions, enabling

a more proactive approach to knock control. This will allow for real-time fine-tuning of

engine operation, preventing knock from occurring and ensuring the engine operates

near its maximum efficiency point. Furthermore, integrating such a model into the en-

gine control unit (ECU) could pave the way for developing advanced control algorithms,

thereby improving engine performance, efficiency, and durability.

Moreover, with its significant reliance on biofuels like ethanol, the Brazilian

energy matrix presents a compelling case for continued research and development in

Internal Combustion Engine (ICE) technologies (MALAQUIAS et al., 2019). The inherent

properties of ethanol as a biofuel, coupled with the constant evolution and improvement

of ICE technologies, make this an area of significant potential. While electric vehicles

have gained much attention globally, it is important to consider the broader environmental,

social, ethical, and economic impacts they bring. In contrast, using biofuels in advanced

ICEs offers a more sustainable path for global mobility, particularly in Brazil’s energy

landscape.

1.4 Proposed Method

This research aims to devise a time-series ANN model capable of accurately

simulating the Knock Noise in Spark Ignition Engines, as illustrated in Figure 3. This

model will leverage the correlation between peak detonation pressure KP and engine

block vibrations, as detected by a piezoelectric sensor, to predict knock likelihood. The

current knock calibration process is complex and time-consuming, often requiring up to

five weeks of engine development on the test bench. The proposed model will reduce

the time necessary to calibrate the knock level, making the engine development process

more efficient and cost-effective. Ultimately, this model could be integrated into the ECU,

providing advanced, real-time knock control. This model aims to streamline the knock

calibration workflow for automobile manufacturers in São José dos Pinhais.
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Figure 3 – Knock Level and Noise Modeling Proposition

Source: Own authorship (2023)
.

1.5 Objectives

1.5.1 General Objectives

To model knock noises in spark ignition engines based on the correlation be-

tween peak detonation pressure and cylinder block vibrations in the SI engine using

artificial neural network models, specifically the 1D-CNN, Bidirectional LSTM, and Atten-

tion LSTM models.

1.5.2 Specific Objectives

• Introduce a comprehensive overview of SI engine knocking.

• Show the current strategies for modeling knock likelihood and level.

• Make the dataset acquisition of SI Engine under different operating conditions.

• Perform processing and statistical analysis of collected data.

• Train, process, and optimize the models.

• Analysis and show the advantages of the strategy.

1.6 Contributions

This research offers several significant contributions to engine development and

calibration. The primary contribution is the development of a time-series artificial neural

network (ANN) model that can effectively simulate the knock noise in Spark ignition

engines. This model can potentially reduce the time and resources required to adjust

the knock level, thereby streamlining the engine calibration process.
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Additionally, the proposed model provides a deeper understanding of the knock

phenomenon. This enhanced understanding can lead to improved engine performance

and efficiency. Furthermore, integrating this model into the ECU could pave the way for

developing advanced control algorithms, improving engine performance, efficiency, and

durability.

1.7 Thesis structure

The thesis will be structured as follows:

• Chapter 1: Introduction

• Chapter 2: Literature Review

• Chapter 3: Material and Methods

• Chapter 4: Results and Analysis

• Chapter 5: Final Considerations

Chapter 2 will comprehensively review the literature on knock detection and time-series

modeling. Chapter 3 will describe the methodology to develop the proposed model

approach. Chapter 4 will present and analyze the results. Finally, Chapter 5 will

summarize the main contributions of the thesis and provide directions for future research.
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2 LITERATURE REVIEW

In this chapter, a comprehensive review of the existing literature relevant to this

study will be conducted. This will involve a deep dive into each key theme presented in

this work. The aim is to provide a solid foundation of the concepts and definitions pertinent

to these themes and an understanding of their context and applicability. Additionally,

this section will showcase an overview of the various applications, demonstrating the

significance and diversity of approaches found within the academic literature.

The materials supporting this study have been meticulously selected from various

recognized academic research databases, including IEEE Xplore, Elsevier, and Springer.

The search was also extended to include research libraries of leading universities

worldwide using the Google Scholar search engine. The selection process initially

prioritized publications of high relevance, impact, or number of citations within the field

without any date restrictions. Subsequently, the most influential works published within

the last three years were singled out, focusing on diversifying the research perspectives.

Moreover, certain references were individually chosen owing to their affiliation with

significant organizations or providing extensive and clear insights on the subject matter.

2.1 Overview of SI Engine Knock Phenomenon.

Engine knock is a term that originates from the distinctive sound produced by

abnormal combustion within a SI engine. Figure 4 shows cylinders’ typical combustion

pressure traces. According to Towers and Hoekstra (TOWERS; HOEKSTRA, 1998),

this abnormal combustion often occurs ahead of the normal flame front, leading to a

pressure rise that is not only faster but also, at times, premature compared to the standard

combustion cycle. Under certain circumstances, this can escalate to a high-intensity

pressure spike.

The process behind this phenomenon is complex. As explained by Towers

and Hoekstra (TOWERS; HOEKSTRA, 1998), when such an abrupt pressure increase

occurs within the combustion chamber, it manifests as a pressure wave that travels

across the chamber. On hitting the chamber wall, this wave is not entirely absorbed

but is partly attenuated and then reflected across the combustion chamber as a slightly

weaker wave.
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Figure 4 – Typical combustion pressure traces.

Source: Zhi Wang, Liu, and Reitz (2017)
.

This reflection process repeats, causing the wave’s energy to dissipate into the

engine structure, thus causing vibrations or scatter throughout the gases within the

chamber. As a result, the gases within the combustion chamber start vibrating at the

resonant frequency of the chamber, which leads to the characteristic knocking sound

(TOWERS; HOEKSTRA, 1998).

Moreover, the abrupt pressure increase and subsequent vibrations can erode

vital engine components, including the piston, rings, and head gaskets. This potential for

significant engine damage underscores the importance of understanding and effectively

controlling engine knock (TOWERS; HOEKSTRA, 1998).

Knock intensity is typically characterized by the maximum peak-to-peak ampli-

tude of the knock signal, which is derived by filtering the in-cylinder pressure signal to

exclude high and low-frequency components (KALGHATGI, 2018).

Interestingly, even when engine operating conditions are carefully calibrated

to avoid knock, extremely intense knock events, informally termed as "superknock" or
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"megaknock", can occasionally occur in turbo-charged engines. According to Kalghatgi

(KALGHATGI, 2018), superknock is believed to occur due to developing detonations,

where the pressure wave ignited by autoignition is amplified by the autoignition reaction

front.

The sporadic occurrence of super-knock presents a significant challenge in

developing advanced gasoline engines. Despite pre-ignition being a prerequisite for

super-knock, it does not invariably lead to this phenomenon. Pre-ignition can result in a

range of outcomes, from super-knock and heavy knock to slight knock and non-knock,

with the knock intensity increasing if the knock onset occurs near the Top Dead Center

TDC. Rapid compression machines RCMs provide an appropriate platform to investigate

pre-ignition and super-knock under engine-like conditions, using synchronous high-

speed, high-resolution photography and pressure acquisition. RCM experiments have

confirmed that super-knock is a result of detonation, with data indicating that the transition

from pre-ignition to super-knock involves a hotspot-induced deflagration transitioning

to hotspot-induced detonation, followed by high-pressure oscillation (WANG, Z.; LIU;

REITZ, 2017).

Figure 5 – Possible signals to use to characterize the knock event.

Source: Adapted from Shahlari and Ghandhi (2012)

Knock intensity KI in engines can be evaluated through various metrics that

can be broadly categorized based on the domain of the data used for the computation,

the parameters involved, and the manner of calculation (SHAHLARI; GHANDHI, 2012).

The knock intensity can be determined using time-domain or frequency-domain data, as

depicted in Fig 5.

The parameters upon which knock intensity can be based include the pressure

signal and its derivatives or the heat release rate and its derivatives. The latter depends

on the pressure signal, among other parameters. The knock intensity metrics can be



25

calculated based on a single value like the maximum quantity value or an average or

integrated value (SHAHLARI; GHANDHI, 2012).

All time-domain knock intensity metrics are derived from a filtered pressure

trace, with high- or band-pass filtering carried out to eliminate the low-frequency content

associated with compression and standard flame propagation heat release. The specifics

of the filtering operation, such as filter type, order, and roll-off characteristics, significantly

impact the results and hence need to be explicitly specified (SHAHLARI; GHANDHI,

2012).

A criterion for assessing knock intensity is proposed in some research (RICHARD

et al., 2009). It is based on the energy discharged via spontaneous auto-ignition of the

residual fresh charge at the knock timing. This energy is normalized by the total energy

discharged through flame propagation. This criterion, denoted by 𝐾𝑛, is expressed using

the following equation:

𝐾𝑛 = 𝐾1(1 − 𝑏𝑚 𝑓 .𝑚𝑎𝑥(1,Φ)) (Π − 1) (1 − 𝜃𝑘𝑛𝑜𝑐𝑘

𝐾2
𝑁𝑒𝑛𝑔)1/2 (1)

Here, 𝑏𝑚 𝑓 represents the fuel burnt mass fraction, Π stands for the compression

ratio, Φ𝑘𝑛𝑜𝑐𝑘 symbolizes the knock phasing in the expansion stroke, 𝐾1 is a predefined

parameter utilized to adjust the global knock intensity level, 𝐾2 details the maximum

crank angle at which knock remains audible, and 𝑁𝑒𝑛𝑔 refers to the engine speed.

Using this equation, four distinct categories can be formulated to classify the

knock level:

• 𝐾𝑛 < 0.5: No knock

• 0.5 ≤ 𝐾𝑛 < 1: Trace knock

• 1 ≤ 𝐾𝑛 < 1.5: Medium knock

• 1.5 ≤ 𝐾𝑛: Strong knock

Alternatively, other studies (ZHEN et al., 2012) put forth a knock index based

on the heat release rate and cumulative heat release.

The rate of heat release 𝑅𝑂𝐻𝑅, which is determined by the in-cylinder pressure

signal, is elucidated as follows:

𝑅𝑂𝐻𝑅 = ( 𝛾

1 − 𝛾 )𝑃
𝑑𝑉

𝑑𝜃
+ ( 1

1 − 𝛾 )
𝑑𝑃

𝑑𝜃
(2)

The Cumulative Heat Release, denoted by 𝐶𝐻𝑅𝑁𝐸𝑇 , is defined by:
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𝐶𝐻𝑅𝑁𝐸𝑇 =

∫
(( 𝛾

1 − 𝛾 )𝑃
𝑑𝑉

𝑑𝜃
+ ( 1

1 − 𝛾 )𝑉
𝑑𝑃

𝑑𝜃
) (3)

In these equations, ℎ refers to the crank angle degree, 𝛾 is the ratio of specific

heats, 𝑃 is the cylinder combustion pressure, and 𝑉 is the cylinder volume.

An abrupt decline in the net cumulative heat release will likely correlate with

a substantial increase in heat losses. The parameter 𝐶𝐻𝑅𝑁𝐸𝑇 strongly connects with

knock intensity, while no relation exists with the sensor position.

Other commonly used indicators in the literature (ZHEN et al., 2012; SHAHLARI;

GHANDHI, 2012) are the Maximum Amplitude of Pressure Oscillations MAPO, the

Integral Modulus of Pressure Gradient IMPG, and the Integral Modulus of Pressure

Oscillations IMPO. MAPO is related to the peak of the pressure oscillations due to engine

knock, IMPG is related to the modulus of pressure gradient, and IMPO represents the

energy contained in the high-frequency oscillations of the cylinder pressure signal. The

following equations give these indicators based on the high-frequency analysis of cylinder

pressure data:

𝑀𝐴𝑃𝑂 = 𝑚𝑎𝑥( | 𝑝 |𝜃0+𝜁
𝜃0

) (4)

𝐼𝑀𝑃𝐺 =
1
𝑁

𝑁∑︁
1

∫ 𝜃0+𝜁

𝜃0

| 𝑑𝑝
𝑑𝜃

| 𝑑𝜃 (5)

𝐼𝑀𝑃𝑂 =
1
𝑁

𝑁∑︁
1

∫ 𝜃0+𝜁

𝜃0

| 𝑝 | 𝑑𝜃 (6)

Where 𝑁 represents the number of computed cycles, 𝜃0 is the crank angle corresponding

to the beginning of the window of calculation, 𝜁 is the value of the window of calculation,

𝑝 is the filtered in-cylinder pressure.

2.2 Knock Detection and Control Fundamentals

The following section delves into knock detection and control fundamentals

in Spark Ignition (SI) engines. It explores various knock detection methods, including

in-cylinder pressure analysis, engine block vibration analysis, exhaust gas temperature

monitoring, and chemical luminescence emissions analysis. Each method comes with
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its own advantages and limitations, and the choice often depends on cost, accuracy,

and practicality.

We will also discuss knock control strategies, which aim to balance the need for

advanced ignition timing for optimal engine performance and fuel economy with the risk

of knock occurrence. These strategies often involve complex algorithms and require

careful calibration to account for various influencing factors such as engine speed, load,

air/fuel ratio, and environmental conditions.

The section will further explore the knock intensity modeling in SI engines.

Accurate modeling is key to the design and efficacy of knock control systems. Various

modeling techniques will be discussed, ranging from parametric to machine learning

and data-driven techniques.

This comprehensive exploration of knock detection and control fundamentals

serves as a foundation for understanding the complexities of managing knock in SI

engines and the ongoing research aimed at improving these processes.

2.2.1 Knock Detection

The effectiveness of a traditional controller predominantly depends on accurate

knock detection as inaccuracies can compromise engine efficiency, with a non-detection

potentially resulting in severe damage to the engine (BARES et al., 2018).

Knock detection methods often involve analyzing in-cylinder pressure signals to

study the combustion processes influenced by a knock directly. This method, typically

used as a calibration reference for detection strategies based on sensors, identifies

the high-frequency knock signature associated with the combustion chamber resonant

frequencies excited by a rapid pressure rise. The resonant frequency of the vibration

mode can be calculated using the equation (ZHEN et al., 2012):

𝑓𝑚,𝑛 =
𝛼𝑚,𝑛𝑐𝑠

𝜋𝐵
(7)

where 𝛼𝑚,𝑛 is the wave number determined by Bessel’s equations, 𝑚 and 𝑛 represent

the numbers of radial and circumferential pressures nodes respectively, 𝑐𝑠 is the speed

of sound inside the combustion chamber (approximately 1000 m/s), and 𝐵 is the cylinder

bore.
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Despite its widespread use in experimental research, this method has significant

drawbacks. The required sensors are costly, and their direct contact with hot, high-

pressure mixtures inside the cylinder chamber can reduce their lifespan and accuracy.

Furthermore, while the sensor measurements can represent the whole combustion

chamber pressure value under non-knocking conditions, knock introduces significant

non-homogeneities, preventing the extrapolation of local data to the global domain.

Additionally, the need for a sensor set for each cylinder increases costs and necessitates

using various hardware and software (ZHEN et al., 2012).

Other knock detection methods have been developed following the method

based on in-cylinder pressure analysis. One such method is based on engine block

vibration analysis. This approach determines the occurrence of knock by measuring

the engine’s vibration level, which increases when knock creates extensive pressure

waves within the combustion chamber. These pressure waves can radiate sound within

the audible frequency range, excite engine block vibrations, and produce an audible

knock signal. Nonintrusive vibration sensors, with their excellent durability and low cost,

have made this method the most practical for mass-production car engines (ZHEN et

al., 2012).

Another method involves monitoring exhaust gas temperature, as there is a

clear correlation between engine knock and this temperature. In knocking combustion

conditions, the exhaust gas temperature is reduced, making this technique efficient for

knock detection. The signal is not affected by engine noise, making the detection pure,

and the method is quick, convenient, and applicable to all types of engines.

Chemical luminescence emissions of end-gas can also be used to analyze the

chemical reactions caused by end-gas autoignition. Spectroscopic and chemilumines-

cence measurements can identify CH, HCO, HCHO, and OH radicals as markers of

different combustion phases, enabling knock detection based on intermediate radicals

and species analysis (ZHEN et al., 2012).

In the study conducted by Lagana et al., the authors explored ion current signal

as a sensing device for identifying combustion and detonation in spark ignition (SI)

engines, potentially replacing phase and knock sensors. The researchers found that

the area under the ion current signal curve could be used to determine the cylinder

under combustion. Furthermore, they established a correlation between the energy of a

frequency band of the ion current signal and the energy of the knock sensor signal to
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monitor detonation. The study concluded that the ion current could effectively detect

combustion and detonation under various conditions, such as variations in the fuel

mixture, spark plug mileage, and spark plug electrode area size. However, the authors

noted the need for further experiments and exploration of engine conditions for practical

applications, particularly in determining the optimal DC level voltage applied to the spark

plug and identifying the boundaries within which ion currents could be used for different

types of fuels and spark plug wear (LAGANA et al., 2018).

Lastly, methods based on heat release analysis have been developed. As knock

occurs, the heat transfer of the combustion chamber increases. When knock intensities

exceed 0.2 Mpa, they influence the heat flux, and intensities above 0.6 Mpa can cause

the peak heat flux up to 2.5 times higher than in non-knocking combustion. This method

leverages that knocking combustion generates much higher wall heat fluxes than normal

combustion and that temperature variations can be further enhanced when knock occurs

(ZHEN et al., 2012).

The ignition control module’s advancement of the ignition timing within the torque

structure is a significant factor in maximizing both the output torque and the engine’s fuel

economy, as shown in Fig. 6. However, optimal spark timing often coincides with the

occurrence of knock in combustion, which can, under extreme conditions, damage the

engine. This presents a necessary trade-off in engine control between maximizing spark

advance and evading the onset of engine knock (ASHOK, B.; ASHOK, S. D.; KUMAR,

2016). Knock detection forms a crucial part of the knock control module, with various

techniques utilized to detect knock in the combustion chamber. These techniques range

from in-cylinder pressure transducers and engine block-mounted accelerometers to

ionization signals from combustion. Despite being highly effective, in-cylinder pressure

transducers are costly for production engines, prompting dedicated knock sensors -

piezoelectric acceleration sensors fastened to the engine block - in production vehicles.

Usually, one or two such sensors are used depending on the application’s requirements.

The primary role of these knock sensors is to extract knock-characteristic features that

differentiate between normal engine noises and knock (ASHOK, B.; ASHOK, S. D.;

KUMAR, 2016).
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Figure 6 – Schematic representation of the EMS control system in a
SI engine.

Source: Adapted from B Ashok, S Denis Ashok, and Kumar (2016)
.

2.2.2 Knock Control Strategies

The propensity of engine knock is influenced by numerous known and unknown

factors such as compression ratio, spark advance, speed, load, air/fuel ratio, fuel quality,

humidity, and other environmental conditions. Closed loop knock control, regulating

spark advance based on knock intensity, is typically needed to account for these variables.

Knock can cause audible annoyance at low speeds and potential engine damage at

high speeds or loads. Therefore, most knock controllers aim to regulate the incidence or

likelihood of audible or potentially damaging knock events. However, classifying knock

intensities into knocking and non-knocking cycles and correlating them to engine damage,

especially considering the variable dependencies on speed and load, poses challenges.
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One suggested method is using a cylinder pressure heat release index to calibrate knock

intensity values. A more common practice is to gradually advance the spark until the

knock is barely audible or detectable, then determine a threshold that classifies a small

percentage of cycles as responsible for the audible or "potentially damaging" knock

events. This approach requires extensive calibration efforts across different engine

speeds and load conditions. Therefore, strategies for simplified calibration or adaptive

knock threshold have been proposed, such as scaling the threshold according to the

mean non-knocking intensity, adjusting the threshold based on the variance of recently

observed cycles, or using statistical hypothesis testing to adapt the threshold to maintain

a constant knock probability or confidence value. (PEYTON JONES; SPELINA; FREY,

2014)

The conventional knock control approach gradually explores the knock limit by

incrementally adjusting the spark angle by a factor of 𝐾adv each engine cycle until a

knock event transpires. Once the knock event is detected, the spark is quickly decreased

by a significantly larger factor of 𝐾ret to ensure the engine transitions back to a secure

operating zone. Consequently, this control strategy can be mathematically represented

as follows:

𝜃 (𝑖) =


𝜃 (𝑖 − 1) − 𝐾ret if knocking

𝜃 (𝑖 − 1) + 𝐾adv Then otherwise
(8)

where 𝜃 (𝑖) represents the spark advance at cycle 𝑖 relative to the spark advance

at borderline knock.

In more basic Spark Ignition SI engine control units , Spark Advance SA typically

follows an open-loop control based on pre-calibrated lookup tables. This approach’s

drawback is its lack of a feedback signal, making knock onset susceptible to variations

in engine operating conditions, fuel quality, and other factors. Therefore, a closed-

loop knock control is usually necessary. Given its simplicity, vibration measurement is

commonly employed in the industry as a closed-loop signal for knock detection. However,

the quality of knock detection can be compromised due to noise and vibrations. Since

knock and supplies dependable data directly influence cylinder pressure, in-cylinder

pressure sensors are deemed more precise for knock detection and are predominantly

used in lab tests. A widely used reference metric for knock detection based on in-cylinder
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pressure is the Maximum Amplitude of Pressure Oscillations (MAPO), calculated by

determining the maximum absolute value of the filtered pressure signal.

2.3 SI Engine Knock Intensity Modeling

The design and efficacy of knock control systems in Spark Ignition (SI) en-

gines hinge on the accuracy and sophistication of the models used to represent the

knock process. A diverse array of models have been proposed and utilized, each with

its strengths and limitations. One of the advanced techniques employed is Computa-

tional Fluid Dynamics CFD, providing a deep physical understanding of the knocking

combustion phenomena. However, CFD models are often computationally intensive,

making them less feasible for real-time or on-board applications (PEYTON JONES;

SHAYESTEHMANESH; FREY, 2020).

Another aspect to consider is the deterministic nature of many of these models.

While this can simplify the modeling process, it limits their ability to accurately reproduce

the statistical characteristics of cyclic knock intensity data observed in experimental

conditions. This has led to a shift towards models derived from empirical data collected

from physical engine tests, which can capture the inherent randomness in engine knock

behavior.

In recent years, research has been increasing to advance the state of knock

intensity modeling. Various approaches have been explored, from parametric modeling

using dual log-normal models to machine learning and data-driven techniques. Each

method brings a different perspective and set of tools to accurately modeling knock

intensity.

This section aims to provide a comprehensive literature review of the various

knock-intensity modeling techniques.

2.3.1 Related Works

In 2017, Trimby et al. developed a unified approach for reconstructing engine

cylinder pressure using time-delay feedforward artificial neural networks, applying it

to both crank kinematics and block vibration measurements (TRIMBY et al., 2017).

This innovative method was tested on data from a three-cylinder direct injected spark
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ignition DISI engine. The authors identified several limitations with recurrent neural

networks, which have been used in previous studies for cylinder pressure reconstruction,

and they offered a solution using time-delay networks. The results obtained from the

time-delay networks presented a significant improvement in accuracy over previous

studies that utilized recurrent networks for pressure reconstruction. Furthermore, block

vibration–based reconstruction results demonstrated that cylinder pressure can be

successfully reconstructed under various engine conditions. This study presents a

significant advancement in engine cylinder pressure reconstruction, showcasing the

potential of time-delay neural networks in accurately modeling complex engine behaviors

(TRIMBY et al., 2017).

In 2020, Ricci et al. explored three machine learning approaches for predicting

an SI engine’s knock onset and intensity (RICCI et al., 2020). The study leveraged

various input parameters influencing the knock phenomenon, such as engine speed,

air-fuel ratio, maximum internal cylinder pressure, combustion timing, and physical air

conditions in the plenum, obtained from a CFD-1D engine model. This model was

calibrated using experimental data, which were then used to train the machine learning

models. The authors tested the trained models’ ability to predict outputs based on

samples not part of the training set. The predicted outputs were compared to the actual

ones to evaluate the model’s accuracy regarding Root Mean Square Error RMSE and

coefficient of determination (R2).

The study further investigated the influence of engine parameters on the knock

event by comparing different machine-learning approaches and tools, all based on the

same dataset. The goal was to develop a robust real-time neural module capable of

adjusting engine timing to prevent knock events. The high-performance SI engine used

in the study was characterized by a displacement of about 2.5 L and was supercharged

with a Gasoline Direct Injection (GDI) high-pressure system.

Ricci and his team focused on leveraging Machine Learning methods such as

Back Propagation Artificial Neural Networks BPANNs and Random Forest RF algorithms,

using MATLAB and Python to predict knock events and the corresponding knock index.

The dataset was extracted from a CFD-1D model and calibrated using experimental data.

The internal structures of the models were optimized to maximize predictive capability

while minimizing computational effort. The study found that each tool could predict

knock events accurately, with Python providing the highest number of well-predicted
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events. However, as training samples increased, MATLAB showed superior performance

regarding the percentage error rate (RICCI et al., 2020).

In 2021, Jafari et al. explored the feasibility of reconstructing in-cylinder pressure

using a structure-borne Acoustic Emission AE sensor, a more cost-efficient alternative

to in-cylinder pressure transducers (JAFARI et al., 2021). Their study leveraged the

correlation between AE indicators and in-cylinder pressure parameters in both the time

and crank angle domains. The reconstruction was performed in the crank angle domain

using the Hilbert transform of AE to mitigate the impact of engine speed fluctuations.

They utilized complex cepstrum signal processing and a feed-forward neural network

to create a reconstruction regime. Their results indicated that the pressure could be

reconstructed accurately using AE, regardless of engine load, speed, and fuel type. Their

innovative approach combined cepstrum analysis and neural networks to reconstruct

pressure, demonstrating good accuracy in estimating critical in-cylinder parameters

such as Peak Pressure PP, Peak Pressure Timing PP, and Indicated Mean Effective

Pressure IMEP. This study is a clear demonstration of the potential of low-cost AE

sensors and data-driven techniques in reconstructing in-cylinder pressure, advancing

our understanding and ability to monitor and control SI engine performance (JAFARI et

al., 2021).

In 2022, Kefalas et al. presented a novel approach for estimating combustion

parameters, which is crucial for controlling emissions, fuel consumption, and efficiency

in SI engines (KEFALAS et al., 2022). Instead of relying on intrusive pressure sensors,

which are expensive and uncertain in durability, the authors investigated the potential of

a virtual sensor based on vibration signals acquired from a knock sensor (KS). The pro-

posed method involved using Discrete Wavelet Transform DWT for signal preprocessing

and extracting informative features, which would then be used to perform regression

tasks with Extreme Gradient Boosting (XGBoost) models. This data-driven approach

was applied to data from two different single-cylinder gas engines. It was able to suc-

cessfully estimate combustion parameters, such as Peak Firing Pressure PFP, and the

crank angle CA corresponding to 50% of Mass Fraction Burned (MFB50). The study

concluded that the proposed approach can potentially replace expensive in-cylinder

pressure sensors with a low-cost knock sensor without any additional machining steps

required for mounting the sensors and without the calibration of filters. Future steps in

this line of research will involve the comparison and collection of various methods for
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in-cylinder pressure reconstruction and combustion parameters estimation using knock

sensor signals and the implementation of the approach for a closed-loop control strategy

(KEFALAS et al., 2022). This work contributes significantly to the research on knock

intensity modeling and offers potential for practical applications in SI engines.

2.4 Time Serie Forecasting using ANN

In this section, we will explore the application of ANNs, specifically focusing on

Long Short-Term Memory (LSTM) networks, Convolutional Neural Networks (CNNs),

and Transformers for time series forecasting.

We will first introduce the concept of ANNs and their basic structure, followed by

a detailed discussion on LSTM networks, a recurrent neural network capable of learning

long-term dependencies. We will then delve into the application of CNNs, widely used for

image and speech recognition tasks, for time series forecasting. Finally, we will discuss

using Transformers, a novel type of ANN that has achieved state-of-the-art results in

many machine learning tasks, for time series forecasting.

Through this section, we aim to provide a comprehensive understanding of how

these advanced ANNs can be utilized for time series forecasting and how they overcome

the limitations of traditional ANNs in handling sequence data.

2.4.1 Introduction to ANN Models

Artificial Neural Networks ANN are machine learning models inspired by the

biological neural networks that constitute animal brains. The fundamental building block

of an ANN is the artificial neuron or node, a simplified model of a biological neuron

(DREW; MONSON, 2000).

In a biological neuron, dendrites receive signals from other neurons, and if the

accumulated signal exceeds a certain threshold, the neuron fires, sending a signal down

the axon to other neurons. Similarly, in an artificial neuron, the node receives inputs

from various sources, applies a weight, and passes them through an activation function

to produce an output (DREW; MONSON, 2000).

ANNs are composed of layers of these nodes. The first layer is the input layer,

which receives the raw data, and the last is the output layer, which produces the final
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output. In between, there may be one or more hidden layers, which transform the input

into something the output layer can use (ZOU; HAN; SO, 2009).

The power of ANNs comes from their ability to learn the optimal weights for

the inputs through training. During training, the network is exposed to a dataset and

adjusts its weights based on the error of its predictions. This is typically done using

a method called backpropagation, which involves calculating the gradient of the loss

function concerning the weights and adjusting the weights in the direction that minimally

decreases the loss (ZOU; HAN; SO, 2009).

ANNs have been used in various applications, from image and speech recogni-

tion to natural language processing and even in predicting complex phenomena. They

are particularly good at handling non-linear relationships and high-dimensional data

(ISLAM, 2022; XIAO; WANG, S.; PRUCKA, 2013; DONAHUE et al., 2015).

However, traditional ANNs suffer from some limitations. For example, they

assume that all inputs and outputs are independent, which is not the case in time-series

or sequence data. This has led to the development of more advanced types of ANNs,

such as Recurrent Neural Networks RNN, Convolutional Neural Networks (CNNs), and

Transformers, designed to handle such data.

2.4.2 Time Serie Forecasting with Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) networks, a specialized form of Recurrent

Neural Networks (RNN), have been introduced to overcome the limitations of traditional

RNNs in sequence prediction tasks, such as time series forecasting. Unlike traditional

ANNs and RNNs, LSTM networks can learn long-term dependencies in sequence data

[Siami-Namini et al. 2018].

In a typical RNN, the hidden units are connected to form a directed cycle. This

enables the network to use information from previous time steps to predict future time

steps. However, RNNs have a significant limitation in that they suffer from the vanishing

and exploding gradient problem, leading to difficulties in learning long-term dependencies

in the data.

The mathematical representation of an RNN can be formulated as follows. Let’s

denote 𝑖 = (𝑖1, 𝑖2, ..., 𝑖𝑇 ) as a sequence of length T, and ℎ𝑡 as the memory state of the RNN

at time step 𝑡. An RNN updates its memory state based on (SIAMI-NAMINI; TAVAKOLI;
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NAMIN, 2019):

ℎ𝑡 = 𝜎(𝑊𝑖𝑖𝑡 +𝑊ℎℎ𝑡−1 + 𝑏𝑡) (9)

In this equation, 𝜎 represents a non-linear activation function, typically a sigmoid

or a hyperbolic tangent function. 𝑊𝑖 and 𝑊ℎ are the weight matrices that play a crucial

role in any deep learning model, influencing how much the current input 𝑖𝑡 and previous

memory state ℎ𝑡−1 affect the updated memory state ℎ𝑡. Lastly, 𝑏𝑡 is a bias term, a

constant added to the product of the weights and their respective inputs to offset the

result. This bias term 𝑏𝑡 helps make the model more flexible to fit the data.

LSTM networks, on the other hand, introduce a new structure called a memory

cell, capable of remembering a value for an arbitrary length of time. A memory cell

consists of three main components: an input gate, a forget gate, and an output gate.

The input gate determines how much of the new information should be stored in the cell,

the forget gate determines how much of the current cell state should be forgotten, and

the output gate determines how much of the current cell state should be output to the

rest of the network.

The forget gate uses a sigmoid function to decide what information to retain in

the LSTM memory based on the previous state ℎ𝑡−1 and current input 𝑥𝑡 . This output 𝑓𝑡
lies between 0 and 1, with 0 indicating complete removal of past learned values and 1

implying total preservation, calculated as:

𝑓𝑡 = 𝜎(𝑊 𝑓ℎ [ℎ𝑡−1],𝑊 𝑓𝑥 [𝑥𝑡], 𝑏 𝑓 ) (10)

The input gate decides if new information should be added to the LSTM memory.

It has a sigmoid layer deciding which values to update and a 𝑡𝑎𝑛ℎ layer creating candidate

values for addition to the LSTM memory. Their outputs 𝑖𝑡 and 𝑐𝑡 are computed as:

𝑖𝑡 = 𝜎(𝑊𝑖ℎ [ℎ𝑡−1],𝑊𝑖𝑥 [𝑥𝑡], 𝑏𝑖) (11)

𝑐𝑡 = 𝜎(𝑊𝑐ℎ [ℎ𝑡−1],𝑊𝑐𝑥 [𝑥𝑡], 𝑏𝑐) (12)

The LSTM memory is updated by forgetting the current value using the forget

gate and adding the new candidate value 𝑖𝑡 ∗ 𝑐𝑡 as:
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𝑐𝑡 = 𝑓𝑡 ∗ 𝑐𝑡−1 + 𝑖𝑡 ∗ 𝑐𝑡 (13)

The output gate uses a sigmoid layer to determine what part of the LSTM

memory contributes to the output, then maps these values between -1 and 1 using a

tanh function, and multiplies the result by the output of the sigmoid layer, as shown in:

𝑜𝑡 = 𝜎(𝑊𝑜ℎ [ℎ𝑡−1],𝑊𝑜𝑥 [𝑥𝑡], 𝑏𝑜) (14)

ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ(𝑐𝑡) (15)

These gates allow LSTM networks to effectively learn and remember information

over long sequences, making them especially suited for time series forecasting tasks.

In such tasks, it is often crucial to consider recent observations and observations from

the more distant past. LSTM networks can dynamically decide which observations to

remember and which ones to forget, leading to better forecasting performance than

traditional RNNs [Siami-Namini et al. 2018].

2.4.3 Time Serie Forecasting with Convolutional Neural Networks (CNN)

CNNs are another type of ANN that is particularly good at processing grid-like

data, such as images. They comprise one or more convolutional layers, followed by

one or more fully connected layers as in a standard multilayer neural network. This

ANN architecture can also be leveraged to model temporal dependencies in time series

data. By applying convolutional operations, 1D-CNNs can effectively extract local and

global temporal patterns within the series, making them a potentially powerful tool for

forecasting (LI, Z. et al., 2021).

The paper by Borovykh et al (BOROVYKH; BOHTE; OOSTERLEE, n.d.) explains

the operation of convolutional neural networks in time series forecasting. In CNNs,

the input is convolved with a weight matrix (or filter) at each layer to produce a feature

map. All output values in this map share the same weights, meaning they all detect the

same pattern. This characteristic of CNNs reduces the number of learnable parameters,

making training more efficient.

The input to each convolutional layer is typically three-dimensional (height, width,
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and number of channels). The first layer is convolved with M1 three-dimensional filters

to create the output feature map. For a one-dimensional input 𝑥 = (𝑥𝑡)𝑁−1
𝑡=0 of size 𝑁 with

no zero padding, the output feature map from the first layer is computed by convolving

each filter 𝑤1
ℎ

for ℎ = 1,...,𝑀1 with the input:

𝑎1(𝑖,ℎ) = (𝑤1
ℎ) ∗ 𝑥) (𝑖) =

∞∑︁
𝑗=−∞

𝑤1
ℎ ( 𝑗)𝑥(𝑖 − 𝑗) (16)

where 𝑤1
ℎ
∈ ℜ1𝑥𝑘𝑥1 and 𝑎1 ∈ ℜ1𝑥𝑁−𝑘+1𝑥𝑀1 . This output is then passed through a

non-linearity 𝑓 1 = ℎ(𝑎1).

In subsequent layers 𝑙 = 2,...,𝐿 the input feature map, 𝑓 𝑙−1 ∈ ℜ1𝑥𝑁𝑙−1𝑥𝑀𝑙−1 is

convolved with a set of 𝑀𝑙 filters 𝑤𝑙
ℎ
∈ ℜ1𝑥𝑘𝑥𝑀𝑙−1, ℎ = 1,...,𝑀𝑙 , to create a feature map

𝑎𝑙 ∈ ℜ1𝑥𝑁𝑙𝑥𝑀𝑙 :

𝑎𝑙 (𝑖,ℎ) = (𝑤𝑙ℎ) ∗ 𝑓
𝑙−1) (𝑖) =

∞∑︁
𝑗=−∞

𝑀𝑙−1∑︁
𝑚=1

𝑤𝑙ℎ ( 𝑗 ,𝑚) 𝑓
𝑙−1(𝑖 − 𝑗 ,𝑚) (17)

This output then also goes through the non-linearity to give 𝑓 1 = ℎ(𝑎1).

2.4.4 Transformers for Time Serie Forecasting

Transformers were first introduced for neural machine translation, a highly

complex task within the field of Natural Language Processing (NLP) (VASWANI et

al., 2017). Recently, however, Transformers have been employed to address various

challenges in the machine learning domain and have frequently achieved state-of-the-

art results. Their applications extend beyond traditional NLP tasks to include image

classification, object detection and segmentation, image, and language generation,

sequential decision-making in reinforcement learning, multi-modal data processing

(encompassing text, speech, and image), as well as the analysis of tabular and time-

series data (AHMED et al., 2023).

As introduced by Vaswani et al. in 2017, the original Transformer model adheres

to the encoder-decoder structure common among many advanced neural sequence

models. As depicted in Fig. 7, the encoder and decoder are built from identical units or

blocks. Each block in the encoder is comprised of a multi-head self-attention module and

a position-wise feed-forward network. Each block in the decoder is similarly composed
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but with an additional cross-attention module inserted between the multi-head self-

attention module and the position-wise feed-forward network.

Figure 7 – Transformer model architecture.

Source: Vaswani et al. (2017)
.

Unlike recurrent models like LSTMs or RNNs, Transformers do not have a recur-

rence but instead use positional encoding in the input embeddings to model sequence

information (WEN et al., 2022).

In the original Transformer model, absolute positional encoding is implemented.

For each position index t, the encoding vector is given by:
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𝑃𝐸 (𝑡)𝑖 =


𝑠𝑖𝑛(𝑤𝑖𝑡) 𝑖%2 = 0

𝑐𝑜𝑠(𝑤𝑖𝑡) 𝑖%2 = 1
(18)

where 𝑤𝑖 is the hand-crafted frequency for each dimension.

The Transformer employs a Query-Key-Value (QKV) model and utilizes the

scaled dot-product attention mechanism:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾,𝑉) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥(𝑄𝐾
𝑇

√
𝐷𝑘

)𝑉 (19)

where queries 𝑄 ∈ ℜ𝑁𝑥𝐷𝑘 , keys 𝐾 ∈ ℜ𝑀𝑥𝐷𝑘 , values keys 𝑉 ∈ ℜ𝑀𝑥𝐷𝑣 , N, M denote the

lengths of queries and keys (or values), and 𝐷𝑘 , 𝐷𝑣 denote the dimensions of keys (or

queries) and values.

It also applies multi-head attention with H different sets of learned projections:

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑𝐴𝑡𝑡𝑛(𝑄,𝐾,𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡 (ℎ𝑒𝑎𝑑1; ...; ℎ𝑒𝑎𝑑𝐻)𝑊𝑜 (20)

where ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑄

𝑖
, 𝐾𝑊𝐾

𝑖
, 𝑉𝑊𝑉

𝑖
)

In addition, the model includes a fully connected feed-forward network:

𝐹𝐹𝑁 (𝐻′) = 𝑅𝑒𝐿𝑈 (𝐻′𝑊1 + 𝑏1)𝑊2 + 𝑏2 (21)

where 𝐻′ is outputs of previous layer, 𝑊1 ∈ ℜ𝐷𝑚𝑥𝐷 𝑓 , 𝑊2 ∈ ℜ𝐷 𝑓 𝑥𝐷𝑚 , 𝑏1 ∈ ℜ𝐷 𝑓 , 𝑏2 ∈ ℜ𝐷𝑚

are trainable parameters.

In deeper modules, a residual connection module followed by a layer normaliza-

tion module is inserted around each module:

𝐻′ = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑆𝑒𝑙 𝑓 𝐴𝑡𝑡𝑛(𝑋) + 𝑋) (22)

𝐻 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝐹𝐹𝑁 (𝐻′) + 𝐻′) (23)

In our study, we have adapted the Transformer architecture to our specific task of

time-series forecasting by incorporating an Attention LSTM model. This approach, which

has been used in many studies (LI, Y. et al., 2019; KIM; KANG, 2019; ABBASIMEHR;

PAKI, 2022), combines the strength of LSTM in capturing long-term dependencies and
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the attention mechanism’s ability to focus on relevant parts of the sequence.

Our model architecture, which will be describe in the next section, consists of

an LSTM layer as the encoder, which returns the sequence and its state. An attention

mechanism is then applied to the LSTM output, which is subsequently flattened. The

softmax activation function is employed to compute the attention weights, which are

repeated and permuted. The LSTM output and the attention weights are then multiplied,

and the result is summed over time. The final output is obtained by passing through two

dense layers.

The attention mechanism in our model allows it to focus on different parts of

the input sequence when predicting a particular output, which can be especially useful

when the input sequence is long and only certain parts of the sequence are relevant for

the prediction. This is a significant advantage over traditional LSTM models, which do

not have this capability.
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3 MATERIAL AND METHODS

This chapter will delve into the methodologies employed to achieve our research

objectives. It is broken down into significant sections covering aspects like data collection,

data preprocessing, model development, training, and evaluation.

As this study involves data provided by an Original Equipment Manufacturer

(OEM) under a confidentiality agreement, it is important to note that no confidential

information has been included in this thesis. The data used has been carefully processed

and anonymized to ensure the agreement’s integrity. This has been done without

compromising the research quality or the findings’ validity. Therefore, the insights

derived from this study can be considered reliable and applicable in a broader context

while maintaining the confidentiality required by the OEM.

In the Data Collection section, we elaborate on the methods of compiling the

data from a commercial 1.0l SCE 3-cylinder Engine, followed by a detailed overview

of parameters recorded, testing conditions, and the volume of data collected. This

foundational data will power the training of our proposed Artificial Neural Network (ANN)

model.

The figures in this chapter illustrate the Knock Level and Noise signal distribution

at different rotations per minute (rpm) for a full load and with the throttle partially closed.

These distributions give us a statistical representation of our collected data under different

engine conditions, allowing us to observe patterns, trends, and outliers.

Lastly, the correlation analysis tables outline the Spearman correlation coeffi-

cients between different parameters at various rpm during both full load and partially

closed throttle conditions. This correlation analysis shows how tightly these parameters

are related and can illustrate patterns that might have been missed in the graphical

representations.

The Data Preprocessing section outlines the techniques used to clean, format,

and partition the data to feed the ANN model. Here, the data is prepared to optimize the

model’s learning process.

In Model Development, we provide an in-depth description of the construction

of our ANN model architecture, focusing on its structure, layers, nodes, and types of

activation functions utilized.

The Model Training section lays down the methodologies for training our ANN
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model, elaborating on the learning algorithms used, how the weight optimization was

achieved, and the criteria employed to prevent overfitting.

The Model Evaluation section highlights the methods used to assess the perfor-

mance of the trained model, focusing on the metrics used for performance evaluation

and how the model’s predictions are compared against actual data.

3.1 Data Collection

The data for the study was collected from a commercial 1.0l SCE 3-cylinder

Engine, with the fuel used being low-octane gasoline.

We have collected parameters such as engine rotation (rpm), engine air load

(wu), advance applied to each cylinder (°CRK), cylinder vibration signal (-), and peak

detonation pressure inside each cylinder (bar). The measurements were executed on

test benches and held at a constant engine rotation speed of 1700 rpm, 2700 rpm,

3600 rpm, and 4700 rpm, under operating conditions of full load (the throttle butterfly

completely) as well as with the throttle partially closed.

In total, a vast database of 967201 data points was accumulated. This compre-

hensive dataset, capturing various operating conditions, constitutes the building block

for training and validating the ANN model proposed in our research. The versatility of

our dataset is instrumental in ensuring a robust model capable of efficiently predicting

knock noises.

Let’s move into a more detailed exploration in the Dataset Description section

to offer more insight into the collected data. This section gives an in-depth look at

the characteristics of the collected data, as recorded under varying engine rotations

and operational conditions. We will also discuss the derived statistical parameters,

such as the average, minimum, maximum, and standard deviation of peak detonation

pressure and the cylinder vibration signals. Furthermore, we will investigate the data’s

distribution by observing trends and distinguishing outliers. Examining these attributes

will provide a thorough understanding of the variables in our dataset and establish the

context necessary for the subsequent modeling and analysis.
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3.1.1 Dataset Description

Figure 8 illustrates the distribution of the peak detonation pressure inside each

cylinder and the cylinder vibration signals, both recorded at an engine operation speed

of 1700 rpm at Full load.

On average, the peak detonation pressure inside the cylinders sits around 0.18

bar. This pressure bottoms out at a minimum value of 0.03 bar and maxes out at values

that range from 0.83 to 1.74 bar. These values suggest that the engine operation mostly

resides within a lower to medium detonation pressure range, with a few instances where

high-pressure spikes indicate severe knocking.

The cylinder vibration signals present a higher degree of variability. The mean

average is between 15.00 to 18.96, with a standard deviation ranging from 7.59 to 14.26.

The extreme ends of recorded vibrations range from a lower end of 4.00 to a significantly

higher value of 197.00. This suggests that while the engine usually operates quietly,

there are instances when a pronounced knocking noise is detected.

The histogram encapsulates a skewed distribution for both measurements with

a few high outliers, suggesting a non-normal data distribution.

Figure 9 presents distributions of the peak detonation pressure inside each

cylinder and the vibration signals at an engine speed of 2700 rpm. The data has been

collected under two distinct operational loads: with the throttle partially closed and at full

load.

When the throttle is partially closed at 2700 rpm, the peak detonation pressure

inside the cylinders has a lower mean value of around 0.08 bar. It reaches minimum

values of 0.03 bar while the maximum pressure varies from 0.62 to 1.74 bar, signifying

light to moderately strong knocking instances. The cylinder vibration signals average

from approximately 16.63 to 21.34, representing the noise generated from knocking.

They showcase some variability, with standard deviations ranging from 4.93 to 7.37.

Contrastingly, at 2700 rpm with the throttle at full load, the peak detonation

pressures have a slightly lower mean value of around 0.08 bar yet showcase higher

variability, with standard deviations of approximately 0.05 to 0.07 bar. The maximum

pressure values range from 1.03 to 1.60 bar, indicating occasional intense knocking under

full load. Cylinder vibration signals present similar mean values, reflecting increased

knocking and greater noise.
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Figure 8 – Knock Level and Noises signal distribution at 1700 rpm.

Source: Own authorship (2023)

These observations show that the engine knock behavior exhibits differences

when operated at different throttle positions - partially closed or at full load. While the

mean values seem comparable, variations and extremes showcase that throttle position

can significantly impact the intensity of knocking and its manifestation in noise.

In both operational conditions, the distributions of peak detonation pressures

exhibit right skewness or positive skewness, meaning that the tail on the right side of

the distribution is longer or fatter. The data extends more to the right. This skewness is

indicated by the mean being greater than the median (50% percentile). For instance,

under the partial throttle condition, the mean value is 0.08 bar, while the median is

slightly lower at 0.07 or 0.08 bar.
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The peak detonation pressure distributions indicate that most of the detonation

pressure values are relatively low, with a few exceptions of higher pressures. These

high-value exceptions cause the distribution to skew to the right.

The cylinder vibration signal distributions seem closer to a normal distribution,

as indicated by nearer mean and median values. For example, under throttle partially

closed operations, the mean vibration signal strength lies between 16.63 and 21.34, and

the median ranges across 16.00 and 21.00, indicating a less skewed distribution.

However, high outliers (for instance, with a maximum of up to 153.00 or 166.00

depending on load conditions) extend the tail on the right side of these distributions,

suggesting slight right skewness in this scenario as well.

In summary, both peak detonation pressures and vibration signal distributions

seem to have positive skew (right-skewed) in their representations, although the latter

depicts a histogram closer to normality

Figure 10 displays the distributions of the peak detonation pressure inside each

cylinder and the cylinder vibration signals gathered at an operational speed of 3600

rpm. The data is presented under two unique operational conditions: when the throttle

is partially closed and when the throttle is fully open (i.e., full load).

When the throttle is partially closed, the distribution of peak detonation pressure

inside the cylinders shows a somewhat symmetric behavior, skewed slightly right, indi-

cated by the slightly higher mean (0.09 to 0.10 bar) compared to the median (0.08 to

0.09 bar). The values mostly lie in the lower range, with a few high detonation pressures

(max values ranging from 1.04 to 1.80 bar), suggesting sporadic intense knocking events.

The cylinder vibration signals at this operational condition depict a mean ranging from

18.12 to 21.20. This distribution also leans slightly right, but the mean and median are

almost similar, signifying a near-normal distribution.

During the full load at 3600 rpm, the peak detonation pressures depict a slightly

higher mean of 0.10 bar, with a slightly lower median. This shows a positive skew (right

skew); the maximum values lie between 1.77 and 2.28 bar. The vibration signals appear

to be more normally distributed, with the mean and median very close. However, the

maximum values (reaching up to 224.00), reveal occasional severe knocking instances

resulting in high noise.

Both operational conditions present fairly normal distributions but with a subtle

positive skew due to an extended right tail caused by rare, high-value outliers.
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Figure 9 – Knock Level and Noises signal distribution at 2700 rpm.

Source: Own authorship (2023)

Figure 11 illustrates the distributions of peak detonation pressure inside each

cylinder and the vibration signals at an engine rotational speed of 4700 rpm. The data

is analyzed under two different operational loads: with the throttle partially closed and at

full load.

When the throttle is partially closed at 4700 rpm, the mean peak detonation

pressure ranges from 0.12 to 0.14 bar, while the median settles around 0.11 bar, indicat-

ing a right skew or positive skew. This suggests that while detonation pressures tend to

be relatively lower, there are higher pressures (evidenced by maximum values ranging

from 1.5 to 2.87 bar). The cylinder vibration signals under this condition depict a mean

value ranging between 20.12 to 24.92. The difference between the mean and median
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Figure 10 – Knock Level and Noises signal distribution at 3600 rpm.

Source: Own authorship (2023)

suggests a slight positive skew.

The mean detonation pressures grow slightly at full load from 0.14 to 0.16 bar.

This distribution exhibits a right skew, with maximum pressure values surging up to

2.40 to 3.75 bar, suggesting intense knocking when operating at full load. The vibration

signals in this scenario also have a slight positive skew, with a mean value that ranges

from 20.74 to 26.12.

To summarize, both operational conditions at 4700 rpm present distributions

with a slight positive skew due to an elongated right tail caused by sporadic instances of

high detonation pressures and subsequent noise.
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Figure 11 – Knock Level and Noises signal distribution at 4700 rpm.

Source: Own authorship (2023)

3.1.2 Correlation Analysis

In this subsection, we perform a correlation analysis to understand the relation-

ship between different engine parameters under varying operating conditions. Correlation

is a statistical measure indicating the extent to which two or more variables fluctuate. A

positive correlation indicates the extent to which those variables increase or decrease in

parallel, while a negative correlation indicates the extent to which one variable increases

as the other decreases.

In the context of the following tables, "Iga" stands for ignition advance, the

measure of the timing of the spark in the combustion process in relation to the piston’s
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position. Each number after "Iga" indicates the cylinder from which the data comes

from, for example, "Iga1" would indicate ignition advance for the first cylinder. "KP"

represents the peak detonation pressure, which is the maximum pressure reached

during the detonation process within the cylinder. Like "Iga", the numbers following

"KP" refer to the corresponding cylinder. Lastly, "Noise" symbolizes the cylinder block

vibration, which is the vibration caused by the engine’s operation, measured at each

cylinder block. As with both previous variables, the numerical suffix corresponds to the

respective cylinder from which the data was collected.

We use Spearman’s correlation coefficient, a non-parametric measure of corre-

lation that assesses how well the relationship between two variables can be described

using a monotonic function. We chose Spearman’s over Pearson’s correlation because

it can capture both linear and monotonic relationships and is less sensitive to outliers

(DE WINTER; GOSLING; POTTER, 2016).

The Spearman’s correlation coefficient is given by:

𝑟𝑠 =

∑𝑛
𝑖=1(𝑟𝑖 − 𝑟) (𝑠𝑖 − 𝑠)√︃

(∑𝑛
𝑖=1(𝑟𝑖 − 𝑟)2) (∑𝑛

𝑖=1(𝑠𝑖 − 𝑠)2)
(24)

where:

𝑟𝑠 is the Spearman’s correlation coefficient.

𝑛 is the number of observations.

𝑟𝑖 and 𝑠𝑖 are the ranks of 𝑥𝑖 and 𝑦𝑖 respectively.

𝑟 and 𝑠 are the average ranks of 𝑥𝑖 and 𝑦𝑖 respectively.

The Figures 12 to 18 presented here show the correlation coefficients between

the variables under different engine speeds, either in full load or with the throttle partially

closed. Each cell in the table presents the correlation between two variables, and

the values range between -1 and 1, inclusive. A value of 1 indicates perfect positive

correlation, -1 indicates perfect negative correlation, and 0 suggests no correlation.

At 1700 rpm in full load, the highest positive correlation observed is 0.52 between

Iga3 and KP3. This suggests that as the advance applied to the third cylinder increases,

the peak detonation pressure inside the third cylinder also increases. Furthermore,

a high positive correlation of 0.49 is noticed between KP1 and Noise1, inferring a

direct relationship between the peak detonation pressure inside the first cylinder and its

vibration signal.
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Figure 12 – Spearman’s Correlation Analysis at 1700 rpm in Full
Load.

Source: Own authorship (2023)

At 2700 rpm in Full Load, a moderate positive correlation is observed between

Iga1 and Iga3, suggesting that the advance applied to the third cylinder increases with

the increase in advance applied to the first cylinder. Another noteworthy correlation

between KP3 and Noise3 indicates a direct proportional relationship between peak

pressure and vibration for the third cylinder.

At 3600 rpm in Full Load, correlations tend to decline, suggesting a less straight-

forward relationship between variables. However, there’s a relevant positive correlation

between Iga1 and Iga2, and between Iga3 and KP3 at this speed. This suggests that

increasing the advance applied to the first cylinder is likely to increase the advance

applied to the second cylinder, and an increase in peak detonation pressure inside

cylinder 3 is likely to result in higher vibration.

At 4700 rpm in Full Load, most correlation coefficients are weak, demonstrating

that the relationship between variables is far less linear or monotonic at these higher
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Figure 13 – Spearman’s Correlation Analysis at 2700 rpm in Full
Load.

Source: Own authorship (2023)

speeds. However, a moderate correlation between Iga3 and KP1 suggests a relative

increase in the advance applied to the third cylinder as the peak detonation pressure in

the first cylinder increases.

At 2700 rpm with Throttle Partially Closed, a moderate positive correlation exists

between Iga2 and Iga3 and a more significant one between Iga3 and KP3. This indicates

that with an increase in the advance applied to the second cylinder, the advance applied

to the third correspondingly increases, as does the peak detonation pressure in the third

cylinder.

At 3600 rpm with Throttle Partially Closed, a noticeable correlation exists be-

tween Iga1 and Iga3, and between Iga3 and KP3. This suggests that with an increase

in the advance applied to the first cylinder, the advance applied to the third cylinder also

increases, as does the peak detonation pressure in the third cylinder.

At 4700 rpm with Throttle Partially Closed, there’s a weak correlation between



54

Figure 14 – Spearman’s Correlation Analysis at 3600 rpm in Full
Load.

Source: Own authorship (2023)

most variables, signaling that the relationships between variables are far less obvious

with the throttle partially closed at such high speeds. However, Iga3 and KP3 maintain

a moderate positive correlation, similar to previous states. Thus, the peak detonation

pressure in the third cylinder is expected to increase with the advance applied.

3.2 Models Architectures

In this section, we will delve into the development process of distinct types of

deep learning architectures, namely, a 1-Dimensional Convolutional Neural Network

(1-D CNN), a Bidirectional Long Short-Term Memory (Bi-LSTM) model, and an Attention

LSTM model. These architectures have been chosen due to their prowess in handling

and making predictions on time-series and sequence-based data, which perfectly align

with our research problem of engine cylinder vibration prediction.
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Figure 15 – Spearman’s Correlation Analysis at 4700 rpm in Full
Load.

Source: Own authorship (2023)

The development process will encompass the design, training, validation, op-

timization, and evaluation of each individual model. Each model will be fine-tuned

and evaluated on its predictive performance, focusing on how accurately it can predict

cylinder vibration signals based on inputs of engine rotation, load, advance applied to

each cylinder, and peak detonation pressure inside each cylinder.

The subsequent subsections will provide technical insights into the development

and functioning of each model, elucidating how each model utilizes and learns from the

data to produce accurate results.

The first subsection would deal with developing the 1-D CNN. 1-D CNNs are

extensively used in sequence data handling due to their proficiency in learning spatial

hierarchies from the input. They use filters/Kernels that scan through the sequence data

and aggregate information to form a hierarchy of spatial features. The application of

such models suits our scenario well, where spatial relationships in the form of sequence
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Figure 16 – Spearman’s Correlation Analysis at 2700 rpm with
Throttle partially closed.

Source: Own authorship (2023)

lag values can play a vital role in determining cylinder vibrations.

The second and third subsections will present the development of two types of

Recurrent Neural Networks (RNN) models - the Bidirectional Long Short-Term Memory

(Bi-LSTM) model and the Attention LSTM model. As the engine’s functioning is cyclical

and temporal, the usage of bi-directionality and attention mechanism in LSTM-based

models provides profound comprehension of the temporally spaced data. These RNN

architectures preserve information from past data points and leverage future data points,

granting them higher accuracy in capturing long-term dependencies and complexities in

the data.

In summary, this model development section presents an in-depth exploration of

various deep learning strategies and their tailored development catering to our problem

of predicting engine cylinder vibrations based on past sequences of operations data.

Careful observations from the development of these models will contribute significant
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Figure 17 – Spearman’s Correlation Analysis at 3600 rpm with
Throttle partially closed.

Source: Own authorship (2023)

insights into the best-suited model for this data. The entire model was implemented

using the Tensorflow machine learning framework.

3.2.1 1-D CNN Model Development

The architecture of the 1-D CNN model has been presented in Figure 19. The

model starts with a 1-dimensional Convolution layer, followed by a 1-dimensional Max

Pooling layer, a Flatten layer, a Dense layer, and another Dense layer. Each layer has a

specific function, and their combined interaction generates the model’s output.

Before moving on, however, we need to establish some conventions. Let’s

denote:

• 𝑋 as the input data tensor, having dimensions of (𝑁,𝑇, 𝐷), where 𝑁 is the

number of samples, 𝑇 is the number sequence length, and 𝐷 is the number
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Figure 18 – Spearman’s Correlation Analysis at 4700 rpm with
Throttle partially closed.

Source: Own authorship (2023)

of features per sequence element.

• 𝑦 as the output tensor, having the dimensions (𝑁,1).

1-Dimensional Convolution Layer: The first layer in the architecture. We

utilize this layer to detect local features in the sequence data. During its operation, a

kernel of a specified size convolves over the input data, producing multiple feature maps

as output. The activation function ReLU (Rectified Linear Units) keep the nonlinearity

intact in the network, which allows the model to learn complex patterns.

Let 𝑊 𝑓 and 𝑏 𝑓 denote the filter weights and bias, respectively. Then, the output,

𝑦𝑖, 𝑗 , for 𝑖𝑡ℎ sample and 𝑗 𝑡ℎ filter, is calculated as:

𝑦𝑖 𝑗 = ReLU
(
𝐷∑︁
𝑘=1

𝐾−1∑︁
𝑝=0

𝑊 𝑗 ,𝑘,𝑝 · 𝑥𝑖,𝑝+𝑞,𝑘 + 𝑏 𝑗

)
(25)

where 𝐾 is the kernel size and 𝑞 is the current position of the convolution.
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Pooling Layer: The layer used here is a One Dimension Max Pooling with a max

pooling window size equal to 2. It is used to down-sample the feature maps generated

by the One Dimension Convolution Layer layer by taking the maximum value over a

specified window size. This operation helps to reduce the spatial size, computationally

making the model more manageable and providing a form of translational invariance.

Flatten Layer: It is a utility layer used to flatten the output of the One Dimension

Max Pooling layer from a 2D tensor into a 1D tensor.

Dense Layers: These are fully connected layers with 50 nodes, designed to

further process the features extracted by the convolution and pooling layers. Our network

contains two such layers. The first dense layer with ReLU activation function comprises

50 units. Following that, we have another dense layer with a linear activation and 1 unit

that produces the final prediction of the model.

Figure 19 – 1D-CNN Architecture.

Source: Own authorship (2023)

In the next steps of the process, this 1-D CNN model will be trained and validated

with the engine operational data. This training will aid the model in learning effective

feature representations and mappings between the input sequence and the target engine

cylinder vibration signals.

3.2.2 Bidirectional LSTM Model Development

The architecture of the Bidirectional LSTM (Bi-LSTM) model is outlined in Fig-

ure 21. The model starts with an input layer, followed by a bidirectional LSTM layer, an
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LSTM layer, a GlobalAveragePooling1D layer, and finally, a Dense layer. Each of this

model’s layers serves a unique purpose and constructs the model’s output together.

Let’s define:

• 𝑋 as the input data tensor, having dimensions of (𝑁,𝑇, 𝐷), where 𝑁 is the

number of samples, 𝑇 is the number sequence length, and 𝐷 is the number

of features per sequence element.

• 𝑦 as the output tensor, having the dimensions (𝑁,1).

Input Layer: The model receives its sequence input in this layer. The shape of

the input matches the dimensions of the sequence data.

Bidirectional LSTM Layer: This is the foundational component in our LSTM-

based architecture. The significant feature of Bi-LSTM is that its LSTM layer runs in

both forward and backward directions. The forward LSTM layer analyses the sequence

from the past to the future time-step, and the backward LSTM layer runs from the future

to the past time-step, thus providing a broader context. Each of the units in the LSTM

layer can maintain its hidden state. A dropout of 0.2 has been implemented to the input

sequence for model regularization, preventing overfitting of the model.

The output, 𝑦𝑡 , for 𝑡𝑡ℎ time-step, is calculated as:

𝑦𝑡 = bi-LSTM(®ℎ 𝑓
𝑡−1,

®ℎ𝑏𝑡+1, 𝑥𝑡) (26)

where ℎ 𝑓
𝑡−1 and ℎ𝑏

𝑡+1 are the forward and backward hidden states respectively.

LSTM Layer: The bi-LSTM layer is followed by another LSTM layer. This layer is

responsible for further processing the context-rich, forward and backward LSTM features,

learning higher-level temporal representations.

Polling Layer: The layer used here is a 1D Global Average Pooling. This layer

aims to reduce the dimensionality of the output tensor from the LSTM layer. It takes the

average over the sequence dimension, thus preparing the output for the fully connected

layer.

Dense Layer: This is a fully connected layer. In this layer, every node is

connected to every other node in the preceding layer, and the output is transformed into

a tensor that matches the target dimension. We finish with one output unit since we aim

to have a single output predicting our target variable.
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Figure 20 – Bidirectional LSTM Model Architecture.

Source: Own authorship (2023)

3.2.3 Attention LSTM Model Development

The architecture of the LSTM model with attention is illustrated in Figure 21.

This model employs an LSTM layer, an attention mechanism, and a Dense layer. The

attention mechanism aims to identify and focus on the most informative parts of the

sequence, which is particularly beneficial when dealing with long sequences.

Input Layer: The input layer accepts the model’s input sequence. The shape

of this input corresponds to the dimensions of our sequence data.

LSTM Layer: LSTM (Long Short Term Memory) networks are a type of recurrent

neural network capable of learning order dependence in sequence prediction problems.

This is achieved through LSTM units within the network, which are designed to remember

specific parts of the input between the steps of the sequences. In this LSTM layer, we

carry state across the sequences with the number of LSTM units, learning important

sequence features.

Attention Mechanism: Post LSTM layer, an attention mechanism is employed.

The attention mechanism scores each time-step of the LSTM output sequences, identifies

the most informative time steps, and accordingly allocates more weights. It consists

of a Dense layer, Flatten layer, a 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 Activation layer, Repeat Vector layer, and a

Permute layer that collectively calculates attention weights for each time step of the

sequence.

Multiply Layer: This layer multiplies the LSTM output sequence and the atten-
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tion weights sequence, thus highlighting the most important time steps in the sequence.

Lambda Layer: The operation in this layer reduces the dimensionality by

summing up the features across timesteps, effectively giving us a feature vector that

has been attentively sum-pooled.

Dense Layer: Based on this feature vector, the final prediction is made using a

Dense layer with a single output unit.

The Attention LSTM model described above can be related to Transformers, a

type of model developed by Vaswani et al. (2017), which has recently revolutionized

natural language processing tasks. These models are composed of an encoder and

decoder part and employ a self-attention mechanism to focus on different parts of the

input and output sequences, similar to the attention mechanism utilized in our model.

In the context of our Attention LSTM model:

Encoder: The encoder part of our model comprises of an input layer and an

LSTM layer. It’s operationally similar to an encoder in a Transformer model. The encoder

mechanism aims to understand and transform the raw input data into a meaningful

representation.

In the LSTM layer, which represents the majority of our encoding mechanism,

the input sequence is processed in a time-distributed manner, creating a sequence of

LSTM hidden states sensitive to temporal dependencies in the input sequence. This

is similar to how the encoder part of a Transformer creates an internal representation

of the input sequence by learning to pay attention to different parts of the sequence

depending on the context.

Decoder: The decoder is the part of a model that transforms the encoded

information into the final output. In the Transformer architecture, the decoder uses the

output of the encoder along with its internal mechanisms to generate the sequence

output. It’s worth noting that a Transformer’s decoder also utilizes attention mechanisms

to iteratively generate an output sequence in an autoregressive manner.

In our Attention LSTM model, the attention mechanism and subsequent layers

can be seen as pseudo-decoder components. Even though they don’t explicitly generate

an output sequence, they transform the encoded sequences (from the LSTM layer), into

the final output. The attention mechanism garners the most information-rich parts of the

sequence and the Multiply, Lambda and Dense layers process these parts to generate

the final model prediction.
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In conclusion, while the structure of our Attention LSTM model does not exactly

replicate a Transformer’s architecture, we can conceptually draw parallels between

them. Both models utilize powerful sequence processing layers (LSTMs for our model

and self-attention layers for Transformers) and attention mechanisms to capture and

utilize sequence information for final output generation effectively. The LSTM layer in

our model forms the encoding mechanism, and the components post the LSTM can

be conceptually viewed as a pseudo-decoding mechanism, mirroring the foundational

encoder-decoder structure of Transformer models.

Figure 21 – Attention LSTM Model Development Architecture.

Source: Own authorship (2023)

3.3 Experiment Setup

This section details the comprehensive setup of our experimentation designed

to test exhaustively our deep learning models 1-D CNN, Bi-LSTM, and Attention LSTM

and their efficiency in predicting the engine cylinder vibration signals. The process

consists of a series of vital stages facilitating the identification of an optimized solution

to our problem. These stages include the thoughtful segregation of the dataset into

training, validation, and testing subsets; a meticulous hyperparameter grid search for

model optimization; the strategic training of the models; and a stringent evaluation of

the model performance.

Our first segment will explicate the division of our dataset into discrete subsets

for training, validation, and testing. This trifurcation ensures a clear distinction between

data used for learning, calibrating, and assessing the models.

Next, we dive into the exploration of the hyperparameters for each model. A

dedicated Grid Search technique has been deployed to meticulously inspect different
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combinations of hyperparameters, facilitating the discovery of the best set that enables

our models to learn and predict accurately.

In the subsequent stage, we elucidate the model training methodology, which

entails the specific techniques, parameters, and strategies applied to impart learning

into the models and to adjust their internal parameters.

Finally, we impart a detailed account of our model evaluation scheme. This

key step will signify the effectiveness and reliability of our models by scrutinizing their

final prediction performance on unseen data, ensuring their validity and robustness.

This strategic experiment setup provides a systematic approach to deep learning model

development, tuning, and performance evaluation in the context of predicting engine

cylinder vibration signals.

3.3.1 Data Prepocessing

Collecting data is integral, but making sense of it and preparing it for the model

to consume is equally important. In this context, the raw inputs consist of engine rotation,

load applied, advance applied to each cylinder, and peak detonation pressure inside

each engine cylinder. The targeted output is the cylinder vibration signal, which is to be

predicted.

To prepare these inputs for feeding to the sequence-to-point model, the algorithm

1 is employed. The purpose of this algorithm is to normalize the input features, extract

them into a sequence of fixed length (lag), and pair each sequence with the corresponding

target output. After these steps, we obtain tensors, which could be inputted into our

model for training. Each instance in the tensor represents a sequence of historical data

of fixed length, and each instance represents the corresponding target output.

As part of the preparation, data normalization is carried out using the MinMaxS-

caler transform, which rescales each feature or input value to the range [0,1]. The

formula is as shown above where 𝑋 represents the original feature value, 𝑋𝑚𝑖𝑛 and

𝑋𝑚𝑎𝑥 represent the minimum and maximum feature values, respectively, and 𝑋𝑠𝑐𝑎𝑙𝑒𝑑

represents the normalized feature value. Essentially, this normalization step enhances

the consistency and removes any potential bias in our dataset, ensuring each feature is

considered on equal footing when inputted into the model.
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𝑋𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑋 − 𝑋𝑚𝑖𝑛
𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛

(27)

After these preprocessing steps, the data is well-adapted to be fed into the

sequence-to-point model for subsequent prediction of the cylinder vibration signal.

Algorithm 1 – Preprocess Data for Input and Target Sequences
Require: DataFrame 𝑑𝑓 // Input DataFrame
Require: 𝑖𝑛𝑝𝑢𝑡𝑠 // List of input column names
Require: 𝑡𝑎𝑟𝑔𝑒𝑡 // List of target column names
Require: 𝑙𝑎𝑔 // Sequence length for creating time-series data
Require: 𝑠𝑐𝑎𝑙𝑒𝑟 // Scaler instance for normalizing input data
Ensure: 𝑋 and 𝑦 // Sequences for input features and target

1: Extract relevant columns from 𝑑𝑓 into 𝑑𝑎𝑡𝑎
2: Normalize 𝑖𝑛𝑝𝑢𝑡𝑠 in 𝑑𝑎𝑡𝑎 using 𝑠𝑐𝑎𝑙𝑒𝑟
3: Set 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒_𝑙𝑒𝑛𝑔𝑡ℎ equal to 𝑙𝑎𝑔
4: Initiate empty lists 𝑋 and 𝑦
5: for each index 𝑖 from 0 to length of 𝑑𝑎𝑡𝑎 - 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒_𝑙𝑒𝑛𝑔𝑡ℎ do
6: Append sequence of 𝑖𝑛𝑝𝑢𝑡𝑠 from 𝑖 to 𝑖 + 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒_𝑙𝑒𝑛𝑔𝑡ℎ to 𝑋
7: Append 𝑡𝑎𝑟𝑔𝑒𝑡 at 𝑖 + 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒_𝑙𝑒𝑛𝑔𝑡ℎ to 𝑦
8: end for
9: return 𝑋, 𝑦 as numpy arrays

Source: Own authorship (2023)

3.3.2 Hyper-parameters Grid Search

Hyperparameter tuning plays a critical role in obtaining a perfect fit for our

predictive models. A systematic approach through a grid search was incorporated to

probe for the optimal hyperparameters across a range of preset values.

The window context length, which defines the quantity of past data the models

consider, ranged within the set [10, 15, 20, 25, 30], encapsulating a substantial span of

prior engine operations data. For each span of window context, a distinct hyperparameter

search was conducted for each model.

For the 1-D CNN model, we explored the impact of different quantities of trainable

convolutional filters, which are integral for feature extraction, and distinct lengths of

kernel size that confine the scope of temporal patterns the model acknowledges. This

exploration manifested itself into a search over the quantity of convolutional filters within

the set [16, 32, 64] and kernel sizes within the set [3, 5, 7].

When tuning the Bi-LSTM model, the alteration of unit numbers in the bidi-

rectional LSTM layers was seen to impact the model’s learning capacity of both short
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and long-term dependencies. Additionally, modifying the LSTM layer’s unit numbers

influenced future predictions. A detailed search was embarked on for these parameters,

with the number of units in bidirectional and LSTM layers ranging over [16, 32, 64].

Finally, for the Attention LSTM model, hyperparameter tuning was incorporated

across the LSTM units and the densely connected layer’s neural units. We endeavored

to optimize the LSTM model with attention by searching over a range of LSTM units

within [16, 32, 64] and neural units in the dense layer within [8, 16, 32].

Each model was subjected to numerous combinations of its corresponding

hyperparameters, leading to the discernment of an optimal set of hyperparameters for

each model, minimizing the loss function effectively. This elaborate Grid Search ensured

our models were optimally configured to predict engine cylinder vibrations.

Given the many operating conditions in our study, including engine rotations

per minute (rpm) at 1700, 2700, 3600, and 4700, both under full load and partially

closed throttle, we faced a vast search space for model optimization. Given the intensive

computational resources and cost required for such exhaustive experimentation under

all operating conditions, an intelligent approach was devised. We decided to conduct

the detailed grid search-based hyperparameter tuning process at one representative

operating condition of 1700 rpm under full load in the first cylinder. This condition was

chosen since it presents a reasonable balance of engine speed and load, showing a com-

mon operational state where engine efficiency is crucial. The optimal hyperparameters

deduced from this experimental setup are assumed to generalize well across other oper-

ational states. Following the identification of the most performant hyperparameter set,

the subsequent training step will be performed under all mentioned operating conditions

using these optimized parameters. This strategy ensures the computational efficiency of

our model tuning process while still promising a robust and optimum model configuration

for effective predictive analysis across a range of operating conditions. It essentially

offers a pragmatic balance between computational cost and model optimization scope,

thereby ensuring the selection of a robust model configuration.

Moreover, this approach allows the models to take benefit from learning across

diverse engine operating states in the training phase, thereby potentially improving the

model’s adaptability to different data scenarios. Consequently, this method helps ensure

that our deep learning models are finely tuned and capable of generalizing their learning

across various operating conditions, hence ensuring their effectiveness in manifold
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real-world situations for predicting engine cylinder vibrations. Furthermore, carrying out

forthcoming experiments under this approach enables us to provide insights into the

comparative performance of the models across different operating conditions, assuring

a comprehensive understanding of our model development process.

3.3.3 Model Training

During the model training process, the dataset was appropriately divided into

training, validation, and testing sets with 65%, 20%, and 15% of total data, respectively.

This division was made to ensure an unbiased evaluation of the training, tuning, and

testing of the proposed ANN models.

All of the models were then diligently trained over a total of 100 epochs. The

training phase of the models was designed to be robust but computationally efficient. We

encapsulated this by integrating an Early Stopping mechanism. This effectively ceased

the training process if the model’s performance on the validation set didn’t improve over

20 consecutive epochs, saving computational time and cost and precluding the model

from overfitting (YING, 2019) on the training data.

The activation functions associated with various layers of each model, ReLU,

play a crucial role in introducing non-linearity to the models (BANERJEE; MUKHERJEE;

PASILIAO JR, 2019), conditioning them to learn complex mappings from the features to

the target cylinder vibration signal. The ReLU activation is defined by:

𝜎(𝑥) = 𝑚𝑎𝑥{0,𝑥} (28)

In the final nodes of each architecture, no activation function was used, permitting

the models to freely predict continuous values that align with the regression nature of

our task.

Further, the models were trained to reduce the Mean Squared Error (MSE)

loss. Measure of this loss facilitated the understanding of how far the model predictions

deviated from the actual data, to iteratively minimize this discrepancy during training.

The models were trained using the highly-regarded Adaptive Moment Estimation

(Adam) optimizer to achieve this. As delineated in Algorithm 2, Adam is an algorithm

for first-order gradient-based optimization of stochastic objective functions predicated
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on adaptive estimates of lower-order moments. This method is not only straightforward

to implement but also boasts computational efficiency, minimal memory requirements,

and invariance to diagonal rescaling of the gradients. These attributes make it an ideal

choice for our problem, which is large in terms of data and/or parameters. Additionally,

Adam’s suitability extends to non-stationary objectives and problems with very noisy

and/or sparse gradients, thus making it a widely preferred algorithm in training deep

learning models (KINGMA; BA, 2014).

Together, these considerations ensure the training of our deep learning models

while balancing performance, computational efficiency, and the prevention of overfitting.

The successful execution of this training process equips our models perfectly for the

subsequent evaluation phase, putting them through a series of robust tests to assess

their effectiveness in predicting the cylinder vibration signal.

The fundamental aim of this approach is to allow the model to learn the complex

underlying patterns in the training data and generalize this learning to unseen data. This

process helps ensure that the final models are precise, reliable, and high-performing in

predicting continuous values, fulfilling our research objective.

In conclusion, the model training process is critical in molding an adaptable

model to learn the cylinder block vibration. Given our engine data’s complexity and

continuous nature, the training process was effectively designed to equip our models

with a nuanced understanding of the data features, enabling the prediction.

Algorithm 2 – Adam Optimizer Algorithm
Require: 𝛼 (step size)
Require: 𝛽1, 𝛽2 ∈ [0, 1) (exponential decay rates for the moment estimates)
Require: 𝑓 (𝜃) (objective function with parameters 𝜃)
Require: 𝜃0 (initial parameter vector)
Ensure: 𝜃𝑡 (resulting parameters)

1: Initialize 1st and 2nd moment variables 𝑠 = 0, 𝑟 = 0
2: Initialize timestep 𝑡 = 0
3: while not converged do
4: 𝑡 = 𝑡 + 1
5: Get gradients: 𝑔𝑡 = ∇𝜃 𝑓 (𝜃𝑡−1)
6: Update biased first moment estimate: 𝑠 = 𝛽1 · 𝑠 + (1 − 𝛽1) · 𝑔𝑡
7: Update biased second raw moment estimate: 𝑟 = 𝛽2 · 𝑟 + (1 − 𝛽2) · 𝑔2

𝑡

8: Correct bias in first moment: 𝑠 = 𝑠
1−𝛽𝑡

1
9: Correct bias in second moment: 𝑟 = 𝑟

1−𝛽𝑡
2

10: Update parameters: 𝜃𝑡 = 𝜃𝑡−1 − 𝛼 · 𝑠√
𝑟+𝜀

11: end while
12: return 𝜃𝑡

Source: (KINGMA; BA, 2014)
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3.3.4 Models Evaluation

Model evaluation is essential in any machine learning pipeline to ensure effec-

tiveness and reliability. This work utilized diverse metrics to evaluate the performance of

the three described models comprehensively: 1-D CNN, Bi-LSTM, and Attention LSTM.

Using these metrics, we could ascertain the models’ predictive capability, reliability, and

validity. In this study, we utilized three primary metrics to evaluate the performance of

our models: Mean Absolute Percentage Error (MAPE), Mean Squared Error (MSE), and

Mean Absolute Error (MAE).

The MAPE measures prediction accuracy, expressing the average absolute

error as a percentage of the actual values. It is calculated using the formula:

𝑀𝐴𝑃𝐸 =
1
𝑛

𝑛∑︁
𝑖=1

���� 𝑦𝑖 − �̂�𝑖𝑦𝑖

���� × 100 (29)

where

𝑦𝑖 represents the actual values, �̂�𝑖 denotes the predicted values, and 𝑛 is the

total number of data points.

The MSE is a commonly used regression loss function that calculates the

average squared difference between the actual and predicted values. It is given by the

formula:

𝑀𝑆𝐸 =
1
𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − �̂�𝑖)2 (30)

The MAE is another measure of prediction accuracy that calculates the average

absolute difference between the actual and predicted values. It is less sensitive to

outliers compared to MSE and is computed using the formula:

𝑀𝐴𝐸 =
1
𝑛

𝑛∑︁
𝑖=1

|𝑦𝑖 − �̂�𝑖 | (31)

These metrics comprehensively evaluate the model’s performance, considering

the magnitude of the error (through MAE and MSE) and the relative error (through MAPE).

We can assess the models’ predictive capability, reliability, and validity by analyzing

these metrics.

The Coefficient of Determination, denoted as 𝑅2, is a statistical measure that
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shows the proportion of the variance in the dependent variable that is predictable from the

independent variable(s). It measures how well the regression predictions approximate

the real data points. An 𝑅2 of 1 indicates that all changes in the dependent variable

are completely explained by changes in the independent variable(s). The 𝑅2 score is

calculated as:

𝑅2 = 1 − 𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
(32)

where

𝑆𝑆𝑟𝑒𝑠 is the sum of squares of the residual errors, and is 𝑆𝑆𝑡𝑜𝑡 the total sum of

squares.

The sum of squares of residuals, also known as the residual sum of squares

(SSres), is the sum of the squares of the prediction errors. Prediction errors are the

differences between the observed and predicted values. Mathematically, it can be

represented as:

𝑆𝑆𝑟𝑒𝑠 =
𝑛∑︁
𝑖=1

(𝑦𝑖 − �̂�𝑖)2 (33)

where 𝑦𝑖 is the observed value, �̂�𝑖 is the predicted value, and 𝑛 is the total

number of observations.

The total sum of squares 𝑆𝑆𝑡𝑜𝑡 measures the total variance in the observed data.

It can be calculated as the sum of the squares of the differences between the observed

values and their mean. It is represented as:

𝑆𝑆𝑡𝑜𝑡 =
𝑛∑︁
𝑖=1

(𝑦𝑖 − �̄�)2 (34)

where 𝑦𝑖 is the observed value, �̄� is the mean of the observed values, and 𝑛 is

the total number of observations.

It is important to note that the choice of evaluation metrics should align with

the objectives of the study and the nature of the data. In this case, these metrics were

chosen for their ability to provide insights into the strength of the relationship between

the predicted and actual values.
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4 RESULTS AND ANALYSIS

In this chapter, we delve into the evaluation of our models, their comparative

performance, and the conclusions drawn from the data. The evaluation of the models:

1D-CNN, Bi-LSTM and Attention LSTM were meticulously carried out with the primary

focus of analyzing their comparative performance and drawing conclusions based on

the gathered data. We employed the MAPE, MSE, and MAE as the metrics to evaluate

the performance of these machine learning models.

The initial analysis as demonstrated in Figure 22 reveals that all the models

performed optimally at a window length of 25, corroborating the robustness of our window

selection strategy.

A performance comparison of 1D-CNN models with different combinations

of Number of Filters and Kernel Size, as presented in Table 1, shows a consistent

performance trend. The models consistently achieved a Spearman Correlation of 0.83,

indicating a strong monotonic relationship between the actual and predicted values. The

MAPE values varied between 21.03% and 22.12%, indicating a reasonable level of

accuracy. Based on this results, a configuration of 16 filters with a kernel 03 of three

was adopted during the model training across all operation conditions.

Table 1 – 1D-CNN performance per combination of Number of Filter and Kernel Size in 1700 rpm at
Full Load with Windows length of 25.

Number of Filter Kernel Size Sperman Correlation R2 MAPE (%) MSE MAE
16 3 0.83 0.64 21.03 35.12 3.82
16 5 0.83 0.64 21.07 34.82 3.83
64 7 0.83 0.62 21.11 36.08 3.87
32 5 0.83 0.62 21.14 34.99 3.83
64 5 0.83 0.61 21.15 35.81 3.88
16 7 0.83 0.61 21.18 36.10 3.88
32 7 0.83 0.65 21.30 34.59 3.79
32 3 0.83 0.62 21.50 35.32 3.86
64 3 0.83 0.64 22.12 34.30 3.80

Source: Own authorship (2023).

For Bi-LSTM model, the best combination is 32 Bi-LSTM units and 64 LSTM

layer units was adopted, as outlined in Table 2. However, across all permutations, the

Spearman correlation remained stable at 0.83, underscoring the robust reliability of

these models. The MAPE also remained consistent, oscillating around the 21% mark,

indicating a strong level of precision. Therefore, the results indicate that the Bi-LSTM
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Figure 22 – Box Plot of MAPE per Windows Length for each model in
1700 rpm at Full Load.

Source: Own authorship (2023)

models, regardless of the arrangement of layer units, were capable of maintaining

a reliable monotonic relationship between true and estimated values, signifying high

performance and precision.

The Attention LSTM model, as presented in Table 3, show a Spearman Corre-

lation of 0.83, the same as the Bi-LSTM and 1D-CNN models, exemplifying exquisite

model reliability. Likewise, the MAPE values hovered around 21%, in line with the

precision levels manifested by the other models. This indicates a relatively reasonable

discrepancy between the actual and predicted values, solidifying the model’s significant

predictive accuracy. These results reinforce the understanding that the Attention LSTM
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Table 2 – Bi-LSTM performance per combination of each Layers units in 1700 rpm at Full Load
with Windows length of 25.

Bi-LSTM Units LSTM Units Sperman Correlation R2 MAPE (%) MSE MAE
32 64 0.83 0.66 20.71 31.75 3.67
32 32 0.83 0.66 20.86 32.49 3.72
32 16 0.83 0.66 21.00 33.69 3.79
16 64 0.83 0.61 21.01 35.51 3.83
16 32 0.83 0.63 21.07 35.37 3.82
16 16 0.83 0.62 21.09 36.46 3.86

Source: Own authorship (2023).

model, with varying layer units, could provide reliable and highly accurate predictions.

Based on this results, we make use of 32 Units in LSTM Layer and 8 Units Dense Layer

for the model training across all operation conditions.

Table 3 – Attention LSTM performance per combination of each Layers units in 1700 rpm at Full
Load with Windows length of 25.

LSTM Layer Units Dense Layer Units Sperman Correlation R2 MAPE (%) MSE MAE
32 8 0.84 0.64 20.90 34.47 3.78
64 32 0.84 0.62 20.98 34.90 3.80
64 8 0.83 0.62 20.99 34.99 3.82
16 16 0.83 0.64 21.00 35.10 3.81
64 16 0.83 0.62 21.00 36.24 3.84
32 16 0.83 0.60 21.04 36.32 3.85
16 32 0.83 0.62 21.10 35.12 3.85
16 8 0.83 0.60 21.16 36.44 3.89
32 32 0.83 0.62 21.32 35.04 3.79

Source: Own authorship (2023).

Looking at the model evaluation tables 4, 5 and 6, we see a competitive perfor-

mance across the three models for different engine conditions.

The 1D-CNN Model Evaluation Table (4) reflects the trained 1D-CNN model’s

performance against speed, load, and different cylinders. For Cylinder 1, under full load

conditions, MAPE ranged from 19.44% at 2700 rpm to 25.19% at 4700 rpm, indicating

that the model’s performance dropped slightly as the speed increased. For Cylinder 2,

under full load, the best MAPE was obtained at 1700 rpm with 16.51%. However, when

the Throttle is partially closed at the same rpm (1700), the observed MAPE increased,

showing a possible nuanced throttle impact on model performance. Cylinder 3 showed

a similar trend, with the highest errors occurring at the highest rpm at both full load and

partially closed throttle.

The Bi-LSTM Model Evaluation Table (5) paints a similar picture as the 1D-CNN.

For Cylinder 1, the model got a 19.41% MAPE at 2700 rpm at full load and a 25.13%
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Table 4 – 1D-CNN Model Evaluation
MAPE (%) MSE MAE

Cylinder Load Speed
1 Full Load 1700 21.71 35.33 3.85

2700 19.44 14.12 2.77
3600 21.62 26.78 3.98
4700 25.19 47.45 5.34

Throttle partially closed 2700 19.87 17.86 3.31
3600 21.87 24.72 3.93
4700 24.10 39.29 4.86

Full Load 1700 16.51 16.67 2.67
2700 17.55 20.92 3.45
3600 19.51 29.66 4.12
4700 22.75 60.96 5.96

2 Throttle partially closed 2700 14.43 16.39 3.20
3600 22.12 37.22 4.80
4700 23.03 56.44 5.75

Full Load 1700 24.49 60.81 4.97
2700 21.23 28.38 3.68
3600 21.58 31.38 4.12
4700 26.26 62.54 6.21

3 Throttle partially closed 2700 17.51 26.16 3.88
3600 20.19 28.16 4.16
4700 24.09 48.02 5.41

Source: Own authorship (2023).

MAPE at 4700 rpm at full load. Furthermore, as the throttle position changed from

full to partially closed, the performance dropped slightly across most rpm ranges. The

performance for Cylinder 2 and 3 also followed a similar trend as for Cylinder 1.

The Attention LSTM Model Evaluation Table (6) reflects the performance of

the Attention LSTM model under various conditions. The results show that under full

load, the model delivered the best performance at 2700 rpm with an MAPE of 19.16%

for Cylinder 1. At partial throttle, the model’s performance shows a tangible decrease

across all the rpm values for the same cylinder. For Cylinders 2 and 3, a similar trend

can be observed, with performance decreasing as the engine rpm increases.

In general, all three models demonstrated varying performance levels depending

on cylinder, load, and speed. However, the common trend among all was the lack of

performance improvement as the engine’s speed increased, suggesting that model

performance might be affected by high-speed, high load engine operation conditions.

Nevertheless, it can be observed from tables that under lower speed operation,

we are consistently obtaining lower MAPE for all the model types and cylinder config-

urations. This points to the fact that given ideal operational conditions these models
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Table 5 – Bi-LSTM Model Evaluation
MAPE (%) MSE MAE

Cylinder Load Speed
1 Full Load 1700 20.71 32.43 3.72

2700 19.41 14.20 2.74
3600 21.83 27.11 4.00
4700 25.13 47.27 5.35

Throttle partially closed 2700 19.68 17.62 3.30
3600 21.92 25.13 3.96
4700 24.11 39.06 4.87

Full Load 1700 16.07 14.78 2.56
2700 17.52 20.95 3.46
3600 19.57 30.51 4.15
4700 22.78 62.22 6.02

2 Throttle partially closed 2700 14.35 16.26 3.15
3600 22.17 37.19 4.77
4700 23.04 55.90 5.72

Full Load 1700 24.31 55.39 4.84
2700 20.85 29.19 3.69
3600 21.25 30.24 4.10
4700 26.70 65.90 6.24

3 Throttle partially closed 2700 17.94 27.71 3.84
3600 20.36 28.38 4.16
4700 24.25 49.11 5.46

Source: Own authorship (2023).

Table 6 – Attention LSTM Model Evaluation
MAPE (%) MSE MAE

Cylinder Load Speed
1 Full Load 1700 20.83 32.48 3.73

2700 19.16 13.37 2.70
3600 21.85 27.14 3.97
4700 25.19 46.65 5.33

Throttle partially closed 2700 19.74 17.60 3.29
3600 21.83 24.81 3.93
4700 24.08 38.94 4.86

Full Load 1700 16.31 16.21 2.64
2700 17.34 20.09 3.41
3600 19.32 28.71 4.12
4700 22.70 60.28 5.94

2 Throttle partially closed 2700 14.41 16.56 3.21
3600 22.09 36.76 4.77
4700 23.05 55.73 5.71

Full Load 1700 24.22 56.75 4.87
2700 21.34 28.06 3.65
3600 21.32 31.71 4.11
4700 26.45 63.44 6.19

3 Throttle partially closed 2700 17.64 25.73 3.81
3600 20.34 28.67 4.17
4700 24.04 48.24 5.42

Source: Own authorship (2023).
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provide robust predictions with relatively low error rates.

It’s also essential to take note that the change in the throttle, from full load to

partially closed, doesn’t manifest a drastic shift in the model’s performance. Although

there’s a marginal increase in MAPE with throttle adjustments, the predictability of our

models remains satisfactory and within an acceptable range under different throttle

conditions.

In the case of model performance across different cylinders, the dataset doesn’t

exhibit a discernible variance. Each cylinder, under the operation conditions, registered

similar ranges of MAPE, suggesting our models have the potential to generalize well

across different cylinders.

Overall, while the evaluation of our models does show slight differences in

performance between different operation conditions, on the whole, the models have

demonstrated confidence in their predictive abilities, proving themselves to be reliable

tools for engine performance prediction.

The overall model performance comparison, depicted in Figure 23, illustrates

that the models exhibit a near equivalent performance across different speeds. This

consistency is a testament to the models’ ability to generalize and predict effectively

across different engine conditions.

Figure 23 – Comparing Models Performance per Speed.

Source: Own authorship (2023)

Lastly, the MAPE values for each model across different ranges of SI Engine

cylinder vibrations. The evaluation Table 7 displaying the Mean Absolute Percentage

Error (MAPE) for each of the models per engine vibration range offers some valuable

insights into the predictive capability of our models under varying engine conditions.
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Table 7 – MAPE (%) of each model per SI Engine cylinder vibration range in all operation condition.
Range 1D-CNN bi-LSTM Attention LSTM
4 - 14 42.43 42.17 42.09
14 - 24 17.98 17.74 17.83
24 - 34 19.40 19.58 19.37
34 - 44 30.57 30.97 30.63
44 - 54 32.04 32.48 32.20
54 - 64 29.62 29.89 29.76
64 - 74 29.34 29.01 28.81
74 - 84 26.46 26.70 26.15
84 - 94 24.53 22.77 23.18
94 - 104 26.73 26.57 24.68
104 - 114 29.04 24.06 22.50
114 - 124 14.19 9.90 5.18
124 - 134 22.01 26.28 26.61
134 - 144 35.59 39.41 32.03
144 - 154 28.17 16.77 18.90
154 - 164 23.64 19.46 15.81
164 - 174 25.65 28.75 18.75
174 - 184 28.09 27.54 16.85
184 - 194 - - -
194 - 204 32.51 21.57 18.61
204 - 214 - - -
214 - 224 - - -
224 - 234 33.58 22.06 26.49
234 - 244 - - -
244 - 254 24.67 32.78 8.11

Source: Own authorship (2023).

The 1D-CNN, Bi-LSTM, and Attention LSTM models have shown varied perfor-

mance in prediction accuracy across different vibration ranges. The trend represented

in the table indicates that the smallest prediction error (or, in other words, the highest

accuracy) is obtained in the 114.00 - 124.00 vibration range, specifically for the Attention

LSTM model, with an impressive MAPE of 5.18%, followed by the Bi-LSTM model

with a MAPE of 9.90%. Similar performance for the 1D-CNN model appeared in the

194.00 - 204.00 and 224.00 - 234.00 ranges with MAPE values of 32.51% and 33.58%,

respectively.

As evident from the MAPE values, the performance plateau is observed in the

mid-vibration ranges for all the models. For instance, the ranges from 84.00-124.00

and 154.00-184.00 exhibited a more stable and relatively lower error rate for all three

models. This could indicate the favorable operating ranges for these models where the

prediction accuracy becomes relatively robust.

Contrarily, at the extreme ends of the vibration spectrum, the performance of all
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the models tends to fluctuate with higher MAPE values. This behavior can be attributed

to the inherent complexity associated with predicting engine performance under such

high vibration ranges, which often comes with increased noise and greater variance in

the data.

Interestingly, this tabulated comparison also provides insight into the models’

comparative performance. Noticeably, the Attention LSTM model tends to outperform

the other two models in the most vibration ranges. For instance, it demonstrated notably

lower MAPE values in the 194 - 204 and 224 - 234 ranges, indicating higher predictive

accuracy.

These findings indicate that, although all three models demonstrate commend-

able predictive capabilities throughout the central engine vibration ranges, the Attention

LSTM model garners a slight edge over the others for these particular ranges of engine

operation. Importantly though, the ability of each model to predict accurately across the

entire spectrum of operation conditions suggests strong generalization capabilities and

validates the chosen model architectures and configuration parameters. It emphasizes

the efficacy of using these models for predicting engine performance across a wide

range of operating conditions.
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5 FINAL CONSIDERATIONS

The overall essence of this study revolves around the development, training,

and evaluation of Artificial Neural Network architectures. More specifically, the focal

models include 1D-CNN, Bi-LSTM, and Attention LSTM, which are employed in the

prediction of Spark Ignition Engine Cylinder Block Vibration. The primary motivation

behind this initiative is the broad vision to enhance the efficiency of engine calibration

procedures by introducing a more streamlined and cost-effective process. The intricate

correlation between knock pressure and engine block vibrations forms the core basis for

our research.

The structure of this research comprises an organized sequence of steps that

includes data collection, preprocessing, model development, model training, and perfor-

mance evaluation – all aimed at implementing systematic improvements. This framework

ensures the creation of an all-encompassing model capable of predicting knock intensi-

ties under varying operational conditions with a symbiosis of precision and accuracy.

The performance metrics achieved by each of our models provided significant

insights into their relative capacities. The MAPE values for the 1D-CNN, Bi-LSTM

and Attention LSTM models varied within a relatively narrow range, around 21%. The

consistency in these values underlines the fact that the models can be equally efficient

under most of the engine operation conditions. However, the models also demonstrated

some variance in MAPE across different engine vibration ranges, suggesting that certain

operational ranges prove to be more challenging for the models. Despite these nuances

in their predictive capabilities, the overall performance of the models was not overly

impacted.

Analyzing the performance results further, the Attention LSTM model seemed to

have a slight edge in the model comparison, outperforming the other two models when

examining the results from the full range of engine vibration conditions. This not only

indicates the robustness and reliability of the Attention LSTM model but also emphasizes

the beneficial application of attention mechanisms in machine learning models for such

complex prediction tasks.

However, it’s important to keep in mind that the models, in their current status,

still reflect an average MAPE of around 21%. While this shows promising potential

for improvement and optimization, it remains not ideal for real-world implementation
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in terms of current engineering tolerance levels. This constraint indicates that further

refinement and tuning of these models are required before they can be fully integrated

into the practical arena of engine calibration and testing.

This research, though it might appear as a niche domain, is an integral con-

stituent of the broader narrative around improving engine efficiency and performance.

The potential avenues for future work could encompass numerous directions. It could

involve refining the proposed models, exploring alternative machine learning architec-

tures, or devising methodologies for the inclusion of these models directly within the

ECU for an automated and more efficient calibration process.

Consequently, though the current suite of models may not yet be ripe for imple-

mentation, they still represent a significant progression in this complex field. We view

these results as an encouraging signal for the potential of machine learning applications

in the realm of engine calibration, and we look forward to the research advancements

that this work could stimulate.
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