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ABSTRACT

Zimbico, Acácio José. BAYESIAN-BASED BEAMFORMER WITH WIENER
POST-FILTER FOR ADAPTIVE PROCESSING OF ULTRASOUND IMAGE USING
COHERENT PLANE WAVE COMPOUNDING. 107 f. Thesis – Graduate Program
in Electrical and Computer Engineering, Federal University of Technology - Paraná.
Curitiba, 2018.

Conventional Ultrasound (US) scanners still implement the non-adaptive Delay and
Sum (DAS) technique due to easy implementation and low processing time, but it
provides low resolution and image contrast. Adaptive techniques allow obtaining high
resolution and high contrast at the cost of complex implementation and high processing
time. In this work we suggest the implementation of a Bayesian Minimum Variance
(MV-BY) beamformer combined with the Wiener post-filter (WPF) to form the MV-
BY-WPF beamformer. The MV-BY-WPF results in a combination of the proposed
Bayesian-based Minimum Variance (MV-BY) beamformer with the WPF for adaptive
beamforming of US image using Coherent Plane Wave Compounding (CPWC). The
CPWC imaging has low Signal-to-noise Ratio (SNR) due to the lack of focusing on
the pulse emission. Different adaptive methods such Coherence Factor (CF) or WPF
beamformer have been suggested to overcome such limitation, however they still
present limitations. In this study, we have introduced the MV-BY beamformer which
takes subtle advantages over the Minimum Variance (MV) beamformer by applying a
Bayesian-based post-filter which improves the performance of the MV. The proposed
MV-BY is combined with the WPF to form the MV-BY-WPF which outperforms the MV-
WPF. The MV-BY-WPF provides better contrast while retaining the imaging brightness
at comparable spatial resolution when compared to the beamformers such as the
traditional MV-WPF. Using our proposed methods, improvements have been introduced
in CPWC imaging with comparable computational complexity with the MV beamformer.
The performance evaluation of the proposed techniques includes spatial resolution,
contrast, and speckle statistics. Particular to our proposed methodology, we have
found that approximately 5 emissions using available data for research in US imaging,
we have reconstructed an image with quality comparable to that obtained when using
a total amount of 75 emissions with DAS beamformer. The reconstructions using
simulation, phantom, and in-vivo dataset reveal the effectiveness of our proposed
beamformer in terms of array noise suppression abilities. For example, using human
in-vivo data, when DAS is compared to the MV-BY/MV-BY-WPF values in percentage
(%) of 9.34/17.65 and 16.18/31.79 for Contrast Ratio (CR) and Contrast-to-noise Ratio
(CNR), were obtained. Additionally, the MV-BY-WPF better retains the speckle when
compared to MV-WPF. This means that our proposed methodology can improve the
imaging system, and is suggested for real applications.

Keywords: Minimum variance. Ultrasound imaging. Plane-wave compounding.
Adaptive processing. Bayesian beamformer. Wiener post-filter.



RESUMO

Zimbico, Acácio José. BEAMFORMER BASEADO EM ABORDAGEM BAYESIANA
COM O PÓS-FILTRO DE WIENER PARA PROCESSAMENTO ADAPTATIVO DE
IMAGEM DE ULTRASSOM USANDO O MÉTODO DE ONDA PLANA COM
COMPOSIÇÃO COERENTE. 107 f. Tese – Programa de Pós-Graduação em
Engenharia Elétrica e Informática Industrial, Universidade Tecnológica Federal do
Paraná. Curitiba, 2018.

Os escaneres de Ultrassom (US) convencionais ainda implementam a técnica Delay

and Sum (DAS) devido à fácil implementação e baixo tempo de processamento,
mas oferecem imagem de baixa resolução e contraste. As técnicas adaptativas
permitem a obtenção de imagem de alta resolução e Contraste (CR) em troca
de implementação complexa e custo de processamento elevado. Neste trabalho,
sugere-se o método Wiener Post-filter (WPF) combinado com uma a técnica Minimum

Variance (MV) com abordagem Bayesiana (i.e., MV-BY-WPF), que resulta em uma
combinação do método proposto MV-BY com WPF para beamforming adaptativo
de US usando a técnica Coherent Plane Wave Compounding (CPWC). A técnica
CPWC é afetada por baixa SNR devido à ausência de foco na emissão de pulso.
Diferentes beamformers adaptativos tais como, os baseados em Coherence Factor

(CF) ou WPF foram sugeridos para superar tal limitação, entretanto limitações ainda
persistem. Neste estudo, introduziu-se o MV-BY que mostra vantagens sutis sobre
o MV através da aplicação de um pós-filtro baseado na abordagem Bayesiana que
melhora o desempenho do MV. Combinou-se o método proposto, MV-BY com o WPF
para formar o MV-BY-WPF, que supera MV-WPF. De acordo com os resultados, MV-BY-
WPF oferece melhor CR enquanto retém o brilho de imagem na resolução comparada
à oferecida por MV-WPF. Usando os métodos propostos, foram introduzidas melhorias
em imagem usando CPWC com custo computacional comparável à do MV. A avaliação
de desempenho das técnicas inclui a Resolução espacial, CR e as estatı́sticas de
speckle. Em particular à metodologia proposta, verificou-se que com a excitação de
cerca de 5 emissões, foi possı́vel reconstruir uma imagem com qualidade comparável
àquela obtida com um total de 75 emissões com o DAS. A reconstrução usando dados
de simulação, Phantom e humanos in-vivo disponı́veis na plataforma de US revelam
a eficácia do beamformer proposto em termos de habilidades de supressão de ruı́do
presente nos dados coletados. Por exemplo, usando dados humanos in-vivo, quando
o DAS é comparado aos beamformers MV-BY/MV-BY-WPF, valores percentuais (%) de
9,34/17,65 e 16,18/31,79 para CR e a sua razão foram respectivamente obtidos. Além
disso, as respostas produzidas por MV-BY-WPF mostram uma melhor preservação do
speckle quando comparado com MV-WPF. Isso significa que a metodologia proposta
pode melhorar o sistema de imagem sendo assim, sugerida para aplicações reais.

Palavras-chave: Variância mı́nima. Imagem de ultrassom. Composicão de onda
plana. Processamento adaptativo. Beamformer Bayesiano. Pós-filtro de Wiener.
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1 INTRODUCTION

The high-resolution multi-modalities medical imaging such as ultrasound is

of great importance by making the basis for the development of different imaging

applications.

In recent years the impact introduced by improvements in diagnosis using

ultrasound image of high quality has gained significant visibility (MEHDIZADEH et al.,

2012; NGUYEN; PRAGER, 2016a).

The high-quality ultrasound image is considered as a propedeutic method

for evaluation of different structures and has been increasing (HEDRICK et al.,

2005). This fact is mainly due to the technological development of real-time

instrumentation, equipped with high-frequency transducers with optimal spatial

resolution and development of new imaging applications (HEDRICK et al., 2005).

The beamforming techniques represent one of the primary step implemented

by the commercially available scanners and serves as reference for comparing the

image quality for different applications (HEDRICK et al., 2005).

1.1 RELATED WORKS

Medical ultrasonic imaging is a noninvasive and low-cost technology widely

used for diagnosis (SZABO, 2004b). Research in ultrasound plane-wave imaging is

gaining special attention in recent years due to the fact it represents a proper method

for realization of high imaging frame rate Garcia et al. (2013), Cheng and Lu (2006)

which benefits several imaging applications (TANTER; FINK, 2014; SANDRIN et al.,

2002).

In practice, the high imaging frame rate of single plane wave firing element

is performed at the cost of a poorer imaging quality if compared with the standard

sequential line-by-line scanning procedure. One reason is that in plane wave imaging

there is a lack of focusing in the beam transmission process (MONTALDO et al., 2009).

However, several signals are collected with different steering angles representing a set

of low-resolution images are used to compose a synthesized image with equivalent
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imaging quality compared to the line-by-line mode.

The process of combining different signals collected with different steering

angles is named as Coherent Plane Wave Compounding (CPWC) (TANTER; FINK,

2014; MONTALDO et al., 2009).

In order to enhance the imaging quality of the single plane wave firing element,

one alternative resides on the application of adaptive processing over the collected

dataset.

Adaptive processing differs from the traditional Delay-and-sum (DAS)

beamformer, which uses a fixed window for array signal summation, by computing

a set of data-dependent weight functions which are then combined with the input data

to achieve a narrower main lobe and reduced side lobe energy.

Adaptive processing has been applied to ultrasound imaging. Its validation

was due to its abilities in enhancing the imaging quality in terms of spatial resolution

and contrast. This motivated the attempt of implementing the adaptive beamforming

involving practical platforms for real-time imaging system (ÅSEN, 2014).

Among the main categories of adaptive beamformers the Minimum Variance

(MV) based beamformers Synnevag et al. (2007), Holfort et al. (2009), Synnevag

et al. (2009), Asl and Mahloojifar (2010) and the Coherence Factor (CF) based

beamformers Li and Li (2003), Wang and Li (2009), Nilsen and Holm (2010) have

been the most popularized for medical ultrasound imaging and recently have gained a

different version, resulted from a special combination that explores their advantages.

The aim of the MV beamformer which was originally introduced by Capon in

1969 Capon (1969) is to minimize the output energy while keeping the desired signal

undistorted. In the MV based beamformers the Covariance Matrix (CM) plays an

important role in determining the performance of the algorithm (SYNNEVAG et al.,

2007; HOLFORT et al., 2009; SYNNEVAG et al., 2009; ASL; MAHLOOJIFAR, 2010;

LI; LI, 2003; WANG; LI, 2009; NILSEN; HOLM, 2010).

In the field of adaptive processing using the MV principle, different approaches

have been suggested such as the Random Matrix Theory (RTM) whose principle

consists of improving the array noise suppression abilities. In this method, the

moments the eigenvalues and eigenvectors of the data CM are subject to spectral

decomposition (MESTRE; LAGUNAS, 2008, 2008; YI et al., 2015).

In Beam-space (BS) based adaptive beamformers data is converted from array
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space(which is larger) to beam-space (which is reduced by a specific factor) for further

processing. The most interesting outcome of beam-space processing is achieving

similar or high performance compared to array-space while reducing significantly the

amount of time required for data processing (NILSEN; HAFIZOVIC, 2009; ZENG et al.,

2013; DEYLAMI; ASL, 2017; ZIMBICO et al., 2017).

The Rank-reduced adaptive beamformers explore the eigen-decomposition

of data CM in order to determine the signal and noise subspace. The Eigenspace

Minimum Variance (EMV) Mehdizadeh et al. (2012), the Dominant Mode Rejection

(DMR) Tracey et al. (2014), Cox and Pitre (1997), Zimbico et al. (2019) and the

Eigenspace Generalized Sidelobe Canceller (EGSC) beamformers are the most

representative beamformers and therefore, have been largely applied in the field of

array signal processing and medical ultrasound imaging.

The EGSC however, is formulated using the Generalized Sidelobe Canceller

(GSC) beamformer which corresponds to an improved representation of MV

beamformer for array signal processing (GRIFFITHS; JIM, 1982; APPLEBAUM;

CHAPMAN, 1976; YU; YEH, 1995; LI et al., 2016; WANG et al., 2017; ZIMBICO et

al., 2017, 2018).

The Pixel-based beamformers have gained special attention in the field of

ultrasound imaging, and have improved significantly the performance of the MV

beamformer (NGUYEN; PRAGER, 2016a, 2017, 2016b).

The Wiener post-filter beamformers have been suggested to overcome the

limitations of the CF-based approach in terms of SNR and have improved significantly

the accuracy of the estimated signals compared to CF based approach (NILSEN;

HOLM, 2010; WANG; LI, 2014; ZHAO et al., 2016).

The Spatial coherence together with the Bayesian beamformers belongs to

class of adaptive beamformers which make the scope of this work.

Regarding the Bayesian based beamformers, two approaches have been

commonly implemented in the field of array signal processing such as the Minimum

Mean Squired Error (MMSE) principle and the Maximum a posteriori (MAP) (MAGILL,

1965; BELL et al., 1996, 2000; LAM; SINGER, 2006).

Efforts have been made in order to improve the performance of the MV

beamformer by introducing different procedures on data CM estimation such as the

spatial smoothing and diagonal loading (SYNNEVAG et al., 2007).
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By definition, the CF based method represents the ratio between the coherent

sum and the incoherent sum which has been interpreted as an assessment of the

focusing quality Li and Li (2003) and is suggested to isolate the off-axis (additive noise)

signal leading to the suppression of the noise and side lobes. The CF definition has

been expanded by Li and Li (2003) which proposed the Generalized Coherence Factor

(GCF).

Several studies have exploited the combination of the CF weighting with the

MV-based beamformers resulting in improvements introduced in spatial resolution and

contrast (ASL; MAHLOOJIFAR, 2009). A theoretical framework has been proposed by

Nilsen and Holm (2010) to establish the link between the CF and the Wiener post-filter.

Additionally, a Wiener post-filter could be used to modify the performance of MV based

beamformer (NILSEN; HOLM, 2010; ZENG et al., 2012).

Zeng et al. have connected the Wiener beamformer with a version of MV

beamformer and demonstrated its improvement in imaging resolution, contrast (ZENG

et al., 2012).

The CF and Wiener post-filter is known to be effective in terms of sidelobe

reduction but they also attenuate the signal power, which may originate the imaging

artifacts or image degradation due to the on-axis (desired signal) signal cancellation

(NILSEN; HOLM, 2010; ZENG et al., 2012). Another difficulty is that the output noise

power in the Wiener post-filter is hard to estimate.

Different adaptive beamformers applicable to ultrasound plane wave imaging

introduce improvements in terms of spatial resolution and contrast but their

performances still impose a challenge to the research community.

Among different factors affecting the plane wave imaging performance, the

low SNR originated from the lack of focusing on the pulse emission is pinpointed as

representing the most impacting factor for the poorer imaging performance (ZHAO et

al., 2015). As result, a poor signal coherence associated with low SNR of collected

echo data degrades the image quality produced by the ultrasound plane wave imaging

systems (ZHAO et al., 2016).

In the area of array signal processing, however, the Bayesian-based

beamformer has shown to be accurate in signal estimation in different SNR scenarios

(BELL et al., 1997a, 1996, 2000).

We believe that by combining the Bayesian-based beamformer with the



19

WPF we can introduce benefits in designing a version of Wiener post-filter based

beamformer in order to improve the imaging performance.

By using Bayesian-based beamformer we expect to improve the imaging

quality in terms of artifacts reduction by signal cancellation effect at low SNR while

avoiding image degradation by signal self-cancellation effect at high SNR.

With the Bayesian-based beamformer, we expect improvements in image

quality in terms of spatial resolution and contrast while preserving the weak image

details such as the speckle pattern produced by the adaptive processing.

The Bayesian beamformer represents a post-filter method based on the a

posteriori probability density function (pdf) coefficients obtained from dataset. These

coefficients are combined with the MV beamformer output (BELL et al., 2000). An

interesting aspect is that the Bayesian-based beamformer in the present formulation

has never been presented in the area of ultrasound imaging.

In this work, we suggest a combination of the proposed Bayesian-based

beamformer Bell et al. (2000) with the standard Wiener post-filter for adaptive

processing using the MV beamformer as the reference in order to overcome the

limitation of the MV, the MV-CF and the MV-WPF beamformers in terms of spatial

resolution, contrast and brightness of reconstructed images.

1.2 OBJECTIVES

The general objective of this work is to propose and evaluate the performance

of adaptive beamforming techniques with application in the reconstruction of

Ultrasound-based medical images. In the evaluation of the performance of

beamforming techniques the following methods are used: the Full Width at Half

Maximum (FWHM), Contrast (CR), Contrast to Noise Ratio (CNR) and the speckle

statistics.

To accomplish the main goal outlined above, the following specific objectives

have been defined:

• Propose and implement the Bayesian-based post-filter beamformer with the

Wiener post-filter based beamformer.

• Evaluate the performance of the proposed method by means of FWHM, CR,
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CNR, and the speckle statistics. The evaluation is performed using simulation

and experimental data collected on laboratory and simulation, experimental and

human in-vivo data available in Plane Wave Challenge in Medical Ultrasound

Imaging (PICMUS) platform and;

• Human in-vivo data available on PICMUS platform.

1.3 THESIS OUTLINES

The thesis is organized as follows:

Chapter 2 presents the basics of ultrasound, the background where the entire

data acquiring and signal model is presented as well as the beamforming techniques,

and the evaluation metrics of the proposed methods.

In this Chapter 2, different beamformers are presented and the MV

beamformer is highlighted by representing the core of all adaptive processing. A

description of the Bayesian-based beamformer for adaptive processing using an

arbitrary array is presented.

In Chapter 3, the MV-BY beamformer is proposed to US imaging. Later, the

MV-BY is combined with the WPF approach to form the MV-BY-WPF beamformer. Also,

Chapter 3 presents the methods applied for quantitative evaluation of the performance

of the proposed beamformers. Both, the data acquiring process for simulation and

phantom data as well as the assessment of the simulation, phantom, and human in-

vivo dataset available in the research Plane Wave Challenge in Medical Ultrasound

(PICMUS) Imaging platform are described.

Particular to the simulation, data was acquired using Verasonics system

(Verasonics Ltd, Kirkland-WA, USA) working on simulation mode while for the rest

of simulation data were generated using Field II simulation program and was made

available on the PICMUS platform. Additionally, the complementary phantom data was

acquired using a Verasonics’s system. The performance evaluation of the proposed

techniques is performed using the spatial resolution with the Full Width at Half

Maximum (FWHM), Contrast (CR) or Contrast-to-noise Ratio (CNR) and the speckle

statistics in ultrasound imaging.

Chapter 4 presents the simulation, where phantom experimental and human

in-vivo results are obtained, and quantitative and qualitative assessment of the
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proposed beamformers are presented.

The Bayesian Minimum Variance (MV-BY) and the Bayesian Minimum

Variance with the Wiener Post-filter (MV-BY-WPF) results are presented and also

compared with different beamformers with spetial attention given to the DAS

beamformer. Additionally, it is shown that MV-BY and the MV-BY-WPF outperform MV

and MV-WPF, and, it is demonstrated that MV-BY-WPF achieves better contrast while

retaining the imaging brightness without degrading the spatial resolution compared to

the MV-WPF.

Chapter 5 presents a discussion of the most relevant results obtained from

the evaluation of the proposed beamformers. Besides the spatial resolution, contrast,

speckle statistics results, the computational complexity for different beamformers is

also discussed.

Chapter 6 describes in summary the proposed methods, the results and closes

the study.
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2 THEORETICAL FRAMEWORK

This chapter presents a brief overview of medical Ultrasound (US) ultrasound

imaging fundamentals. The acoustic wave propagation and wave-tissue interaction are

described. The basic principles such as acoustic impedance, scattering, attenuation,

and ultrasound transducer configuration are presented. The basis of conventional

imaging in terms of scanning modes as well as the plane wave imaging are provided.

Additionally, the basic steps of image formation and visualization are also included.

2.1 ULTRASOUND WAVE PROPAGATION

In accordance with Fig. 1, a longitudinal pressure wave is emitted into the

tissue medium (i.e., region of interest) by a specific acoustic source. The wave

propagates from source in a predefined direction. This propagation originates an

oscillating motion of the medium particles which is parallel to the wave direction as

presented in Fig. 1.

Figure 1: The representation of zones of compression and rarefaction created in a medium

due to the propagation of a longitudinal acoustic waves. Adapted from (LØVSTAKKEN, 2007).
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In practice, as the wave crosses the medium, zones of compression and

rarefaction which are created corresponding to the peaks and troughs of the pressure

wave. Such zones are separated by a wavelength.

Let the density of the medium be ρ and the compressibility of the medium kc.

The speed of acoustic propagation c of the longitudinal wave will be dependent on ρ

and kc as in Eq. (1) (SHUNG, 2006).

c =
√

1/(ρkc) (1)

In Eq. (1) we see that less compressible mediums present higher propagation

speeds. For example, the human tissue has an acoustic speed representing an

adoption employed by different Ultrasound (US) devices, which is almost 1540 ms−1

as can be seen in Table 1 (SZABO, 2004b). Different values of the sound speed for

different materials are presented in Table 1 (SZABO, 2004b).

Table 1: Speed of ultrasound c, acoustic impedance Z, and attenuation coefficients α for

different materials (SZABO, 2004b).

Material c(m/s) z( kg

m2s2 )10−4 α = (dB/cm at 1 MHz)

Air 330 0.0004 12

Water 1480 1.48 0.0022

Fat 1450-1460 1.34-1.38 0.52

Brain 1560 1.55 0.85

Liver 1555-1570 1.65 0.96

Kidney 1560 1.62 1.0

Spleen 1570 1.64 1.0

Blood 1550-1560 1.61-1.65 0.17

Muscle 1550-1600 1.62-1.71 1.2

Lens of eye 1620 1.85 2.0

Skull bone 3360-4080 6.0-7.8 11.3

2.1.1 ACOUSTIC IMPEDANCE

The acoustic impedance represents the resistance of a material to the passage

of an incident pressure wave, and it plays an important role in the ultrasound basis

definition by determining the amount of energy involved in the imaging process.
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The value of acostic impedance of the medium, zm, is expressed by the product

of the speed of acoustic propagation, c, and the density of the medium, ρ, given by Eq.

(2) (SZABO, 2004a). Examples of acoustic impedance values for specific materials are

presented in Table 1.

zm = cρ (2)

The scattering at the interface between two objects of different acoustic

impedance depends on the size of the scattering object when compared to the

wavelength of the incident wave. Additionally, the scattering depends on the difference

in acoustic impedance across the boundary (EVANS et al., 2000).

2.1.2 ULTRASOUND WAVE AND MEDIUM INTERACTION

Scattering encompasses a loss of energy from a specific wave and therefore

describes the deviation of a wave from the original direction of transmission. Absorption

represents the conversion of motion energy of the acoustic wave into thermal energy,

mostly due to a relaxation process of tissue insonation (SHUNG, 2006).

In an ultrasound wave and medium interaction, the size of an object in the

medium varies its behavior according to the incident wavelength. Depending on the

context it may affect or influence the scattering which can be described in three major

modes of tissue interaction: As depicted in Fig. 2 (a), Fig. 2 (b) and Fig. 2 (c),

they are named, respectively, as specular reflection, diffusive scattering and diffractive

scattering. Those tissue interaction types are discussed in the following manner:

Specular reflections as shown in Fig. 2 (a) are supposed to occur when the US

wavelength is smaller than the dimensions of the object in the medium. The specular

reflection as shown in Fig.2 (b) results in part of the incident beam being reflected and

another part being refracted at a boundary of differing acoustic impedance.

Eq. (3) and Eq. (4) present the reflection (Rc) and the transmission (Tc)

coefficients (EVANS et al., 2000).

Rc =
Ztcosθi −Zicosθt

Ztcosθi +Zicosθt

(3)

Tc =
2Ztcosθi

Ztcosθi +Zicosθt

(4)
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where, Zi and Zt represent the impedance measures of the tissue medium before

(incident) and after (refracted) the tissue boundary, θi represents the angle at which

the incident wave approaches the tissue boundary, and θt and θr represent the angles

at which the refracted and reflected waves departs from the boundary, respectively.

Additionally, the refracted energy portion of the beam deviates as it crosses

the boundary (SHUNG, 2006).

However, diffusive scattering results of emitting US wavelengths longer than

the dimensions of the inhomogeneity in the tissue. In such a context, the reflection

spreads out in all different directions as shown in Fig. 2 (b), for which a part of the

signal returns to the transducer (EVANS et al., 2000).

The diffractive scattering depicted in Fig. 2 (c) originates from the scattering

object of a size roughly equal to the wavelength. This results in the continuation of the

US propagating in a continuous direction (SHUNG, 2006). These fundamentals are

directly involved in ultrasound data acquiring.

Figure 2: Representation of the three major modes of scattering in tissue: (a) for specular

reflection and, (b) for diffusive scattering and, (c) for diffractive scattering. Adapted from

(RITENOUR, 1990; JENSEN, 1996a)

2.1.3 ATTENUATION

The energy loss is involved in acoustic wave propagation through a

heterogeneous medium. Among other factors, the scattering and absorptions are two

major determinants for attenuation (SHUNG, 2006).

In practice, the acoustic energy loss in the received signal is revealed through

attenuation and can be expressed as a function of distance traveled or depth in the

medium as of the emitted central frequency as in Eq. (5).
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I(z, f0) = I0e−α f0z (5)

The Eq. (5) describes the characteristics of the attenuation in tissue, where I

represents the amplitude of intensity of the propagating wave, z is the depth and f0 is

the emitted frequency, respectively.

The amplitude of initial intensity of the propagating wave I0 is the initial intensity

of the wave at emission and α represents the attenuation coefficient. Notably, there is

an exponential decrease in the initial signal amplitude as a wave propagates further

into the tissue (SHUNG, 2006).

Typically, data acquisitions of deep anatomy structures use central frequencies

ranging from 1 to 3 MHz and data acquiring involving more superficial structures is

performed with central frequencies ranging from 5 to 10 MHz, which allows enough

signal reception even with the frequency dependent effects of attenuation in such

situations (RITENOUR, 1990).

2.2 BASICS OF ULTRASOUND IMAGE ACQUISITION

In US data acquisitions, a transducer emits a pressure wave into a target which

can either be a mimicking phantom or tissue medium using a pulse-echo technique.

In this context, the characteristics of the transducer, the transducer structure

and, the beam it creates have an effect on the resulting images mainly on visualization

of the anatomical structures. These characteristics can be described with reference to

their effect on image quality.

2.2.1 ULTRASOUND TRANSDUCER

In a US imaging system, the purpose of a US transducer is to emit and receive

waves. Among different components, one of the main transducer components is the

piezo-electric (PZT) elements which are contained within the transducer housing. This

material has the ability to act as a bridge between electrical and mechanical energy by

imposing a source of vibration on a PZT material. This results in the production of an

electrical signal from US waves received in the transducer.

The reverse process, based on the same effect, is achieved by applying a
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transient electrical signal to originate a vibration in the form of a source of ultrasonic

pressure wave employed during transmission (SHUNG, 2006).

Among different transducer abilities, the element may emit a signal at a

particular central frequency in the range of transmitted frequencies, termed as

transducer bandwidth (BUSHBERG; BOONE, 2011). The transducer bandwidth is an

important characteristic and has important implications for imaging as it determines the

imaging resolution. For example, the improved image resolution can be achieved by

transmitting shorter pulses, which imply on a larger pulse bandwidth, constrained by

the limits of the bandwidth of the transducer (BUSHBERG; BOONE, 2011).

The transducer array is composed of multiple sensor elements. Fig. 3 presents

the configuration of these elements. Each PZT element is separated from each other

by a distance referred to as the kerf and the distance between element centers is

referred to as pitch. These dimensions are of capital importance in this work since

they provide all the lateral distances used to appropriately calculate the delays required

for beamforming (SHUNG, 2006).

Figure 3: The configuration and orientation with all the basic elements of a transducer array.

Adapted from (SWILLENS, 2010).

In order to define the orientation of the two-dimensional (2D) plane of an image

with respect to the transducer, the terms axial direction z[mm] and lateral direction

x[mm] are used. While the former is in-line with the beam direction and orthogonal to

the surface of the transducer, the later runs along the length of the probe over all sensor

elements, perpendicular to the beam direction. The elevation direction represents the

width of the probe and is orthogonal to the image plane (SHUNG, 2006). Among

different types of multi-element transducer arrays, the two most popular types of probes

are the linear array and phased array transducers.

These types of transducers can excite the medium with multiple focused beams
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corresponding to scan-lines of echo data or with oriented plane wavefronts. The main

difference between the two transducer types is the active region excited to produce

each beam Shung (2006), shown in Fig. 4.

The conventional scanning modes of two common transducer formats: Fig. 4

(a) is the phased array transducer and Fig. 4 (b) is the linear array transducer. The

horizontally dashed arrows in both panels show the course of the scan along the lateral

direction. The vertical dashed lines indicate the plane wave transmission orientation

while the horizontal indicates the plane wavefronts for both cases: Fig. 4 (c) for the

phased array transducer and, Fig. 4 (d) for the linear array transducer.

Figure 4: The conventional scanning modes of two common transducer formats: (a) is the

phased array transducer and (b) is the linear array transducer. The dashed arrows in both

panels show the course of the scan. The vertical dashed lines indicate the plane wave

transmission orientation while the horizontal indicates the plane wavefronts for both cases: (c)

for the phased array transducer and, (d) for the linear array transducer. Adapted from (DORT

et al., 2012; SZASZ, 2016)

In US image formation with a phased array, all elements are activated for each
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beam. Subsequently, a sequence of beams is emitted using a specific steering in order

to cover the region of interest which forms a scan sector while emitting a set of waves

in line-by-line scanning mode.

The linear array transducer elements are stimulated in groups called aperture

where subsequent beams are formed by moving the aperture across the transducer

(DORT et al., 2012). Only the linear array transducer operating in plane wave

transmission has been applied in this work.

2.2.2 THE BEAM ORIENTATION

In acoustic wave emission, the US beam orientation is related to the transducer

geometry and the system wavelength. For an unfocused or plane-wave multi-element

beam which is the case of this work, the occurrence of the interaction and interference

patterns among the diffracted waves of each transducer element is observed, and the

wave field can be found by collectively combining the diffracted wave pattern of each

of the elements (BUSHBERG; BOONE, 2011).

In practice, for focused beamforming as illustrated in Fig. 5, the acoustic field

shows two regions separated by a zone for which the beam has a minimum cross-

section due to inherent convergence referred to as diffractive focusing. The diffractive

focal zone devides the imaging area in two regions which are termed as the near

field (or Fresnel zone) and the far field (or Fraunhofer zone) as shown in Fig. 5

(BUSHBERG; BOONE, 2011).

In this context, an important parameter can be defined, the Fn F-number. The

F-number is directly related to the image quality by means of spatial (lateral) resolution.

The F-number represents the ratio of focal ditance to aperture length as in Eq. (6).

Given a certain F-number, the beam width, Db, can be obtained as in Eq. (7).

Fn = D f /Dap (6)

Db = λFn (7)

where Db and D f represent the focal beam and focal distance. Additionally, the λ , is

the wavelength.
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Figure 5: Profile of focused ultrasound beam exhibiting a focal zone. Adapted from (DORT et

al., 2012)

In spite of diffractive focusing which in general occurs beyond the desired depth

for medical imaging, electronic delays can be applied to each element which in turn act

in order to focus a beam. In standard imaging systems, it involves the application

of electronic delays prescribed to each element, which act to focus the beam more

sharply at the desired direction or at a specific depth from the transducer. The curved

apertures or lenses are also used. The concept of electronic delay focusing is depicted

in Fig. 6.
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Figure 6: The beamforming applying electronic delays to produce (a) for a flat planar-wave and,

(b) for an oriented planar-wave and, (c) for a focused beam, and (d) for an oriented focused

beam. Adapted from (LØVSTAKKEN, 2007)

Electronic delays consist of transmitting pulses at variable time delays where

each element will emit a pulse at different time (or instant) (BUSHBERG; BOONE,

2011). This concept is essential for plane wave compounding imaging by allowing

transmit plane wave sequences with different steering angles.

2.2.3 PLANE-WAVE ULTRASOUND EMISSION

The Plane-wave US imaging has interested the research community mainly

due to its ability to provide elevated frame-rates which exceed those of other high

frame-rate techniques. It belongs to a set of the parallel beamforming scheme in which

all elements are kept active and therefore can transmit pulses simultaneously. Such

ability to transmit and receive waves simultaneously has a great potential for very high

frame rate imaging.

In the sequel, due to technological advances, ultrasound systems have been

equipped with plane-wave capabilities, as well as the processing and manipulation of

large datasets which can be done more efficiently at high frame rate (DORT et al.,

2012).

The ability to excite all of the transducer elements at the same time with an

identically shaped pulse produces a planar wave-front which is shown in Fig. 7 (a).

Applying the electronic delays principle, the transducer elements may be stimulated

with a linear delay in accordance with the transducer array geometry to tilt the planar

wavefront, which allows for an angled acquisition, as depicted in Fig. 7 (b) (SZASZ,

2016).
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program Jensen (1996b). All the theoretical principles presented in this work are

involved in this process.

The image data acquisition starts with the excitation of the transducer, through

the interaction between the acoustic waves with the particles in the medium. The

procedure is then followed by the raw channel data formation.

The scanning process includes an important step, which consists of

determining the imaging regions either for phantom experimental data acquisition or

the in-vivo data, after the reception of the raw channel data.

Thus, different uniformly weighted Delay-and Sum (DAS) beamforming

approaches or adaptive beamformers can be applied to raw channel data to form the

beamformed data.

While the former set of methods provides the best trade-off between side-lobe

level and the width of the main lobe (e.g., Fig. 8), the latter combines both abilities

providing improved performance in terms of spatial resolution and contrast.

Moreover, adaptive beamforming is the core of this work. The next Section

Figure 8: Radiation the pattern for fixed weighting windows: (a) apply boxcar apodization and

(c) the normalized Magnitude in (dB) as well as the normalized Frequency for each sample.

Similarly, (b)-(d) apply Hamming apodization.
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presents different categories of adaptive beamformers.

In order to finalize the image formation process, the beamformed images are

then converted into B (brightness) mode images, using conventional post-processing

techniques such as envelope detection, logarithmic compression, and scan conversion

(SZASZ, 2016).

Generally, B Mode images are commonly displayed in Dynamic Range (DR) of

60 dB.

Figure 9: The basic and general US image scanning process and image visualization. The B

mode image in the diagram was generated using Field II program (JENSEN, 1996b).

2.3 BEAMFORMING THEORETICAL BACKGROUND

2.3.1 COHERENT PLANE WAVE COMPOUNDING

In order to implement Coherent Plane Wave Compounding (CPWC), a single

plane wave can be used to represent a typical configuration of plane wave ultrasound

imaging systems.

Typically, a linear array made of 128 transducers is put directly or closely in

contact with the medium of interest and the corresponding lateral direction of the

imaging region (i.e., rectangular) is parallel to the array while the axial direction is

perpendicular the array surface.
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Since the ultrafast imaging aims to obtain an image frame simultaneously from

a single transmitted acoustic pulse with parallel processing, it illuminates the medium

by transmitting a large beam of a single pulsed plane wave (MONTALDO et al., 2009).

In plane wave imaging we do not have any focusing for the transmitted

beam, only parallel processing during the reception contributes for image resolution

(MONTALDO et al., 2009).

To overcome the effect of poor resolution, the above-mentioned transmission is

performed using steering angles, shown in Fig. 10 for each transmitting event in order

to cover a specific region of interest (DORT et al., 2012).

Hence, the coherent summation in the spatial compounding process of images

obtained from plane wave transmissions must take into account the steered angles

applied in transmission (MONTALDO et al., 2009).

By performing spatial compounding the image quality gets significantly

improved. This achievement is accomplished by adding coherently the sequenced

echoes coming from the same scatter. By doing so, a set of low-resolution images are

combined to form a high quality synthesized image (ZHAO et al., 2015).
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Figure 10: High-resolution Image (HRI) formation from a set of low-resolution images (LRI) in

CPWC. It represents the imaging principle in parallel processing mode for emission of plane

waves. For individual emission using all transducer elements, all transducer elements receive

signals to yield LRIs. The LRIs are therefore combined to compound a HRI. Modified from

(SZABO, 2004a, 2004b).

In CPWC, the aim is obtaining the High-resolution Image (HRI) from a set of

Low-resolution Images (LRI) obtained from a set of steered plane waves. The final

image is obtained by summing accordingly a set of successive frames as depicted in

Fig. 10.

In Montaldo et al. (2009), an important comparison was derived between the

plane-wave compounding approach and a traditional multi-focus imaging. In such

comparison it was demonstrated that the plane-wave compounding approach can

reach the traditional multi-focus image quality using a small number of plane wave

transmissions while preserving high frame rates.

In CPWC, the signal in (x,z) is a linear combination of impulse response

between the plane waves and the receiving elements. In Eq. (8), h jr is the signal
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received by element r when plane wave j is emitted. From Fig. 11, the signal (x,z) is

obtained as in Eq. (8) (RODRIGUEZ-MOLARES et al., 2015),

xCPWC(x,z) =
M

∑
r=1

u(xr)
N

∑
j=1

w(α j)h jr

(

D j +Dr

c

)

(8)

where r is the receiving element, c the speed of sound in the medium, M the number

of elements in the transducer, N is the number of Plane Wave Emissions (PWE),

~u a vector representing the receive apodization window and, ~w is a vector angular

apodization. Let λ be the wavelength of the imaging system and A the probe aperture,

the distances D j in Eq. (9), Dr in Eq. (10) and the angle sequence α j in Eq. (11), are

formulated as follows (RODRIGUEZ-MOLARES et al., 2015):

Figure 11: Geometric representation of plane wave emission and signal reception in coherent

plane wave compounding.

D j = zcosα j − xsinα j, j = 1, · · · ,N (9)

Dr =
√

z2 +(x− xr)2 (10)

α j =

(

1−
N +1

2

)

λ

A
(11)

Signals in Eq. (8) provide a bidimentional (2D) echo data matrix representation

as in Eq. (12) at time step k.
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where (•)T is the transpose and x
j
r(k) = [x

j
1(k),x

j
2(k), · · · ,x

j
M(k)]T , represents the array

echo data after time delay calculation of the jth wave emission.

The coherent compounding method averages the echoes to get the signal

output as in Eq. (13).

z(k) =
1

MN

M

∑
i

N

∑
j

x
j
i (k) (13)

2.3.2 MINIMUM VARIANCE BEAMFORMER

In Minimum variance (MV), the output of a beamformer is a combination

between a set of adaptive weights and the input data as in Eq. (14),

z(k) = ~wH~x(k), (14)

where k is the time index,~x(k) is the input data,~x(k) = [x1(k),x2(k), · · · ,xM(k)]T , w(k) is a

vector of beamforming weights, ~w = [w1,w2, · · · ,wM]T , (•)T denotes the transpose and

(•)H the Hermitian, respectively. Each collum of the array of data samples in Eq. (12)

can be expressed in terms of Desired Signal (DS) samples and noise components of

zero mean and, Gaussian random process as in Eq. (15):

~x(k) = sd~a(k)+~n(k) (15)

where sd is the source signal, ~n(k) is a vector of additive noise samples.

The weight of the MV beamformer is found by minimizing the power of the

output
{

P = E
{

|z(k)|2
}

= ~wHE
{

x(k)x(k)H
}

~w = ~wHR~w
}

subject to the the constraints as

in Eq. (16):

~w0 = argmin~w
{

~wHR~w
}

subject to ~wH~a = 1 (16)

where E is the expectation operator, ~a = 1Mx1, ~a is the array steering vector, ~w1xM, ~w is

the weight vector and, R = E
{

x(k)x(k)H
}

= |sd|
2~a~aH +E

{

n(k)n(k)H
}

. R represents the

Covariance Matrix (CM). The solution of the minimization problem using the Lagrangian

multipliers as presented in Appendix A is given by Eq. (17):
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~w =
R−1

MxM~aMx1

~aH
Mx1R−1

MxM~aMx1

(17)

where ~w is the weight vector, (•)−1 stands for inverse operation, R is the data CM. As

presented in Eq. (16) the aim of MV beamformer is to minimize the output power of

the estimated signal while keeping it undistorted. For such purpose, the directional

constraints are set to be unitary in order to guarantee that the signals arriving in the

array sensors are coming from broadside.

For full adaptive array processing (i.e., if subarray averaging is not applied), the

beamformer output can be formulated as in Eq. (18).

zMV (k) = ~wH~x(k), (18)

When the CM in Eq. (17) is replaced with an identity matrix corresponding to

the CM for spatially white noise, it becomes a uniformly weighted DAS beamformer

which averages over M array elements as in Eq. (19).

~wDAS =
I−1
MxM

~11xM

~1H
1xMI−1

MxM
~11xM

=
1

M
~11xM (19)

However, for adaptive processing, the data CM R is obtained from the data.

In order to decorrelate the coherence between input echo signals and provide data

CM stability, the subarray averaging and diagonal loading (DL) techniques are applied

as in Eq. (20) (LI et al., 2016). While the former consists of dividing the dataset in

overlapped vectors Xl whose length is limited to (L ≤ M/2), the latter represents an

addition of controlled white noise to data CM.

R =
1

D

1

S

D

∑
k=−T

S

∑
l=1

Xl(k)Xl(k)
H +µDL (20)

where D = 2K + 1 and S = M − L + 1. D denotes the number of temporal samples

and S the number of subarrays used in CM estimation, µDL = 1
∆∗L

tr
{

R
}

I, ~Xl =

[xl(k),xl+1(k), · · · ,xl+L−1(k)]
T and ∆, L are respectively the DL factor and subarray

length, while tr stands for trace. Xl represents the data submatrices used in data

subarray averaging (LI et al., 2016). In the other words, the term µDL can be considered

as the regularization term of the data CM.

Taking into account the effects of subarray averaging, the length of the

estimated weight vector and the length of input data have their dimension in
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accordance with the subarray length. The beamformer output can be formulated as

in Eq. (21).

zMV (k) =
1

S

S

∑
l=1

~w(k)H~Xl(k) (21)

Figure 12 depicts a subarray structure. In Fig. 12 the subarray averaging (i.e.,

spatial smoothing) process is represented. The subarray averaging is performed in

order to decorrelate the DS with interference and noise. The example shows an array

consisting of 8 sensors (i.e., array elements) which form a total of S=5 subarrays of

L=4 sensors using formula S = M − L+ 1. Right-most, a set of highlighted blocks of

the data covariance matrix corresponding to each subarray (on the right) is presented.

There are 5 covariance matrices corresponding to 5 subarrays.

However, this is just an example because in practice we have M=128 sensor

elements and the adaptive processing is done taking into account a subarray of L=38

sensor elements as will be presented in Section 3.2.

Figure 12: A relatively larger array is divided into (overlapping) subarrays of length L so that

the spatial covariance matrices of the subarrays are averaged in order to decorrelate the array

signals. The example shows an array consisting of 8 sensors which form a total of 5 subarrays

of 4 sensors using formula S = M −L+ 1. Right-most, a set of highlighted blocks of the data

covariance matrix corresponding to each subarray (on the right) is presented. There are 5

covariance matrices corresponding to 5 subarrays. Adapted from (SZASZ, 2016; VOROBYOV,

2014).

The MV beamformer diagram in Fig. 13 can well be represented based on
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space data dimensionality reduced used to represent the spatial smoothing process in

Fig. 12. In Fig. 13 the array data summation procedure using the MV beamformer to

US imaging is represented.

At one hand, from Fig. 13 the array data X(k) consisting of k samples of N

emissions of M array sensors as presented in Eq. (12) are labeled as (1) and, serve

as input data to the MV estimator (2) which generates a set of adaptive weight vectors

wMV for each emission as in label (3). On the other hand, the array data in label

(1) is divided into subarrays consisting of a set overlapped vectors Xl(k) which are then

averaged in label (4) so that a set of adaptively calculated weight vectors are combined

with the subarray averaged data producing the desired signal zMV (k) for each emission

as presented in label (5).

From Fig. 13, the weight vectors in the label (3) and the corresponding

subarray averaged data in the label (4) are combined to form a beamformer output

as in label (5) for each imaging point as presented in Eq. (21). This procedure is

repeated for each emission and, in order to form the imaging point, the beamformed

data for each emission are synthesized in accordance with the CPWC principle.

Figure 13: The MV beamformer diagram to medical US imaging. The array data summation

procedure using the MV beamformer to US imaging.

2.3.3 THE COHERENCE FACTOR BEAMFORMING

The Coherence Factor (CF) is defined as the ratio between the coherent and

incoherent sums across the array.

The CF has improved the spatial resolution and contrast at the cost of

suppressing image details which originates imaging artifacts when SNR is low.
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In accordance with Eq.(22), the CF ∈ [0,1] is obtained taking into account the

Coherent Sum (CS) and Incoherent Sum (IS) signal energy. The CF is used as a metric

of focusing quality (HOLLMAN et al., 1999; MALLART; FINK, 1994; LI; LI, 2003).

CF =
CS

IS
=

|∑M−1
m=0 xm(k)|

2

M ∑
M−1
m=0 |xm(k)|2

(22)

The beamformer output which can be either DAS beamformer or the MV

beamformer can be formulated as in Eq. (23):

zCF(k) =CFz(k) =CF~wH~x(k) (23)

2.3.4 THE WIENER POST-FILTER BEAMFORMING

The Wienner post-filter (WPF) has been introduced in order to improve the

image quality. The WPF has improved the shortcomings of traditional CF based

method (NILSEN; HOLM, 2010). The WPF produces an output signal which is the

Minimum Mean Squared Error (MMSE) estimate of the signal of interest (for the

adaptive or nonadaptive beamformer output).

In this context we believe that it could provide an image of improved quality

under different SNR scenarios but it works based on estimation of DS power or the

noise signal power which are hard to estimate (NILSEN; HOLM, 2010).

In order to obtain the WPF solution, the following optimization problem Eq. (24)

needs to be solved in order to obtain the beamformer weights (NILSEN; HOLM, 2010).

~wWiener = argminw E
{

|sd −~wH~x|2
}

(24)

The solution to the optimization problem which is presented as in Eq. (25) can

be found in Appendix B.

~wWiener = |sd|
2R−1~a (25)

where ~wWiener is avector containing the Wiener beamformer and ~a =~1.

The data covariance matrix components can be expressed as in Eq. (26)

(NILSEN; HOLM, 2010).

R = |sd|
2~a~aH +E

{

nnH
}

= |sd|
2~a~aH +Rn (26)
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In order to accurately invert the CM in Eq. (26), the matrix inversion Lemma

(i.e., the Woodbury matrix identity) is applied. Based on Eq. (25) which is shown in

Appendix C, the solution of Eq. (27) is obtained,

~wWiener =
|sd|

2

|sd|2 +~wHRn~w
~w =

σ2
s

σ2
s +σ2

n

~w (27)

where ~wWiener (i.e., ~wWiener = HWiener~w) is the Wiener beamformer and HWiener represents

the Wiener post-filter (i.e., HWiener ∈ [0,1]). σ2
s and σ2

n are respectively the DS and noise

plus interference Power components.

The WPF beamformer output can be obtained as in Eq. (28)

zWiener(k) = ~wH
Wiener~x(k) = HWiener~w

H~x(k) (28)

In the WPF beamformer formulation, the DS, sd represents a beamformer

output which can either be adaptive or nonadaptive. In this work, we apply the WPF

whose DS is obtained by the MV principle as in Eq. (27).

From Eq. (15) we can see that the Noise Plus Interference Covariance Matrix

(NPICM) could be found from subtracting the DS of interest (DSI) from the collected

data, however, in practical situations the DS of interest is unknown and, the best

alternative for the present study should be the MV beamformer.

In accordance with Eq. (26), we can represent the data CM as R = |sd|
2~a~aH +

Rn. It means that Rn = R − |sd|
2~a~aH which could be inserted in standard data CM

estimator used in MV beamformer (NILSEN; HOLM, 2010).

For such purpose, an estimate of the NPICM component Rn can then be

obtained based on inserting the MV beamformer output zMV on Eq. (29) to the common

covariance matrix R estimator, given by Eq. (20) in order to obtain the estimator Rn as

presented in Eq. (29).

Rn =
1

D

1

S

D

∑
k=−T

S

∑
l=1

(

~Xl(k)− zMV (k)
)(

~Xl(k)− zMV (k)
)H

. (29)

In accordance with Eq. (27), for MV beamformer, the WPF can be formulated

as in Eq. (30).

HMV -WPF =
~wH

MV R~wMV

~wH
MV R~wMV +~wH

MV Rn~wMV

(30)

where HMV -WPF is the WPF applied to MV beamformer.
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The weight vector and the beamformer can be formulated as in Eq. (31) and

Eq. (32), respectively.

~wMV -WPF = HMV -WPF~wMV (31)

where ~wMV -WPF is the MV-WPF weight vector.

zMV -WPF(k) = ~wH
MV -WPF~x(k) (32)

where zMV -WPF is the MV-WPF beamformer output.

2.4 THE BAYESIAN-BASED BEAMFORMER FOR ARBITRARY ARRAY ADAPTIVE
SIGNAL PROCESSING

The Bayesian based beamformer formulation takes into consideration that the

presented general signal model in Eq. (15) is assumed to be composed of source (i.e.,

the desired signal) and noise (i.e., we refer to as the noise plus interference and other

incoherent noise sources) waveforms samples as functions of zero-mean Gaussian

random process (BELL et al., 1997b, 2000; LAM; SINGER, 2006).

zMV -BY (k) =
Lk

∑
i=1

p(θi|x)s(k) =
Lk

∑
i=1

p(θi|x)~w
H
MV~x(k)

i = 1, · · · ,Lk (33)

where Lk is a set of points corresponding to the measurement grid in the imaging

region in axial direction, s is the desired signal which in Eq. (33) is assumed to be the

MV beamformer output.

The θi represents the source direction in degrees for the array steering vector

which traditionally is set to be a vector of ones, (i.e., ~a(θi) =~a(θ0) =~a1xM) (SYNNEVAG

et al., 2007, 2009).

In the formulation of Bayesian-based method, the MV output is combined with

the a posteriori Probability density function, pd f to form the zMV−BY .

The beamforming output which is presented by Eq. (33) is formed by weighting

the approximate a posteriori pdf, p(θi|x) with the desired signal s (BELL et al., 1997a,

2000; LAM; SINGER, 2006). The a posteriori pdf estimate is formulated using the
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Bayes rule as in Eq. (34) (BELL et al., 2000).

p(θi|x) =
p(θi)p(x|θi)

∑
Lk

j=1 p(θ j)p(x|θ j)
(34)

where p(θi) is a priori pdf which provides the parameter statistical description and

p(x|θ j) is a likelihood function of the parameter given data (BELL et al., 2000; LAM;

SINGER, 2006).

The observed data samples are supposed to be independent and identically

distributed with a priori uniform distribution of p(θi) = 1/Lk (BELL et al., 2000). The a

posteriori pdf estimate is formulated as in (BELL et al., 2000). In Eq. (35), the θi is the

source direction in degrees for the array steering vector which traditionally is set to be

a vector of ones, (i.e., ~a(θi) =~a(θ0) =~aMx1) (SYNNEVAG et al., 2007, 2009).

p(θi|x) = cp(θi)exp
{

γK(~a(θi)
HR−1~a(θi))

−1
}

(35)

where c (the denominator of Eq. (34) is a normalization factor ensuring that the a

posteriori pdf sums one, K is the number of temporal samples used in CM estimation

Eq. (20) whereas, γ is the ratio applied in the DS Power component in the exponent

while estimating the a posteriori pdf. Traditionally, in simulation involving experiments

for array signal processing γ factor is set to be 0.3 (BELL et al., 2000; LAM; SINGER,

2006).

Based on Eq. (33), the weight vector of the Bayesian based beamformer is

expressed as in Eq. (36).

~wMV -BY (k) =
Lk

∑
i=1

p(θi|x)~wMV (k) (36)

The main idea of the Bayesian-based beamformer is combining the MV weight

with the a posterior pdf to form the beamforming output zMV -BY (k) as in Eq. (37).

zMV -BY (k) = ~wMV -BY (k)
H~x(k) (37)

The motivation of choosing the MV as the core of adaptive processing is that

it represents a distortionless beamformer and therefore it does not affect the signal

amplitude power while minimizing the corresponding noise power (NILSEN; HOLM,

2010).



46

In order to improve the performance of US imaging using adaptive processing,

we propose the implementation of MV-BY beamformer expressed in accordance with

the Eqs. (36) and (37), respectively, as presented in Chapter 3.

The MV-BY beamformer is then combined with the Eq. (27) in order to design

an effective WPF Eq. (42) for adaptive processing of ultrasound imaging using CPWC.

The effectiveness of the proposed method for spatial resolution and image

contrast is demonstrated using simulation, phantom experiment, and invivo experiment

dataset.
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3 THE PROPOSED METHOD

The Bayesian-based beamformer for adaptive array processing of medical

ultrasound imaging is suggested in accordance with Section 2.4.

This method is formulated by weighting the a posteriori pdf with the MV

beamformer output (BELL et al., 2000; LAM; SINGER, 2006).

Additionaly, this beamformer was implemented by Bell et al. (2000) and Lam

and Singer (2006) as formulated in Eq. (41).

Plane wave imaging is low SNR due to the lack of focusing in the pulse

emission Wang and Li (2014), Zhao et al. (2015) and the Bayesian beamformer has

improved the signal estimation accuracy over different scenarios of SNR Bell et al.

(2000), Lam and Singer (2006) and therefore, we believe that it should introduce

improvements in image quality.

An interesting aspect is that the Bayesian-based beamformer results to US

imaging have never been presented in the area of ultrasound imaging and, therefore

we suggest the first implementation.

This beamformer represents a post-filter to MV beamformer and is suggested

to improve the array noise suppression abilities. We believe that it can improve the

ultrasound image quality in CPWC imaging.

In practice, the Bayesian-based beamformer introduces improvements in the

estimation of desired signal sd. This beamformer is obtained by combining (i.e.,

weighting) the MV beamformer output with a post-filter (i.e., the a posteriori pdf p(θi|x)

estimated from data in accordance with the Eq. (38) (BELL et al., 2000; LAM; SINGER,

2006).

Therefore, for implementation in the field of US umaging, the array data

processing is performed taking into account a subarray structure adopted for adaptive

processing of US image so that a subarray steering vector of ~a(θi) =~aLx1 is adopted.

In accordance with Eq. (34), data samples are uniformly distributed with a

priori p(θi) distribution of p(θi) = 1/Lk (i.e., Lk represents the amount of temporary

samples in the imaging measurement grid). The a posteriori pdf estimate is formulated
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as in Eq. (38).

p(θi|x) = cp(θi)exp
{

γSNRD(~a(θi)
HR−1~a(θi)

−1)
}

(38)

where c is a normalization factor ensuring that the a posteriori pdf sums one.

Recall that D denotes the number of temporal samples used in CM estimation

Eq. (20) whereas, γSNR ∈ (0,1) is the function of signal to noise ratio (SNR) which in

this work is data-dependent obtained from the components σ2
s and σ2

n of Eq. (27) and

is formulated as in Eq. (39).

γSNR =
σ2

n

σ2
s

=
~wH

MV Rn~wMV

~wH
MV R~wMV

(39)

From Eq. (36) and Eq. (40) we can represent the weight vector of MV-BY

beamformer ~wMV -BY as in Eq. (40) as well as the beamformer output Eq. (41).

~wMV -BY (k) =
Lk

∑
i=1

p(θi|x)~wMV (k) (40)

zMV -BY (k) = ~wMV -BY (k)
H~x(k) (41)

The a posteriori pdf is combined with the MV beamformer resulting in MV-BY

beamformer. Additionaly, the MV-BY beamformer method is combined with the WPF

approach to formulate the MV-BY-WPF beamformer which is presented in Eq. (42).

In complement to Table 2, Fig. 14 presents the diagram of the proposed

methodology.
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Figure 14: The Bayesian based post-filter scheme which is used for designing the MV-BY-

WPF beamformer. The upper branch dashed in blue represents the a posteriori pdf coefficients

calculation.

In Fig. 14, the highlighted steps can be described as follows: Label (1)

presents samples of collected data X for N emmissions and M array sensors as

in Eq (12), Label (2) presents the MV estimator, Label (3) presents a set of MV

weight vectors wMV for each emission, Label (4) presents the Power output (estimator),

Label (5) presents the DS Power output values of DS, P for each emission which are

combined with the steering vector to derive the Label (6) (the pdf estimator).

Additionally, Label (7) presents the a posteriori pdf coefficients, p for each

emission which are combined with the MV weight vector, to form the MV-BY

beamformer, Label (8) presents a set of MV-BY weight vectors, wMV−BY and Label (9)

presents the subarray averaged dataset Xl which is combined either with a set of MV

weight vectors wMV , Label (3) or a set of MV-BY weight vectors wMV−BY , Label (8) to

form the beamformer output Label (10), as indicated by symbols a and b, respectively.
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In labels (3) and (8), the symbols a and b are used to represent the combination

between the adaptive weights using the MV and the MV-BY beamformers, respectively.

The difference between Fig. 14 and the diagram shown in Fig. 13, is that this

diagram presents additional elements (i.e., the upper branch dashed in blue) which

represents the a posteriori pdf coefficients calculation.

3.1 THE MV-BY-WPF IMPLEMENTATION PROCEDURE

The key steps for implementation procedures of the proposed beamformers

are summarized in Table 2. For the sake of clarity, the performance of the proposed

methods (BY, MV-BY and MV-BY-WPF) is ranked together with the following methods:

DAS, MV, CF, MV-CF, and MV-WPF, respectively.

Table 2: The Bayesian minimum variance (MV-BY) beamformer algorithm

A: For each emission, the raw data xCPWC Eq. (8) are collected based on the

superposition principle. For each imaging point, the time delay is calculated

and then combined with the corresponding signal. A collection of signals in

Eq. (8) are grouped in order to form a 2-D data matrix as in Eq. (12).

B: Obtain the estimate the data covariance matrix (CM) R Eq. (20) and, apply the

diagonal loading (DL) method Eq. (20).

C: Calculate the minimum variance (MV) beamformer weight Eq. (17) using the

CM estimate and the steering vector.

D: Estimate the a posteriori pdf p(θi|x) Eq. (35) using the power of desired signal

and the a priori pdf p(θi).

E: Calculate the Bayesian minimum variance (MV-BY) beamformer output

zMV−BY (k) as in Eq. (37).

F: Calculate the Rn using Eq. (29) taking into consideration the signal zMV−BY (k)

as the coherent energy component.

G: Calculate the (MV-BY-WPF) beamformer using Eq. (42).

The MV-BY-WPF can be formulated in analogy to Eq. (27) and Eq. (30) and is

presented in Eq. (42).

zMV -BY -WPF =
~wH

MV -BY R~wMV -BY

~wH
MV -BY R~wMV -BY +~wH

MV -BY Rn~wMV -BY

=
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=
|zMV -BY -WPF |

2

|zMV -BY -WPF |2 +~wH
MV -BY Rn~wMV -BY

(42)

The weight vector and the beamformer output can be formulated as in Eq. (43)

and Eq. (44), respectively.

~wMV -BY -WPF = HMV -BY -WPF~wMV -BY (43)

zMV -BY -WPF(k) = ~wH
MV -BY -WPF~x(k) (44)

The estimate of Rn in Eq. (42) is obtained based on inserting the MV-BY

beamformer output Eq. (44) to the covariance matrix estimator R in Eq. (29).

After following all the procedures described in Table 2, we form the image pixel

using MV-BY. Additional, we place the obtained weigh vector in Eq. (27) into Eq. (30)

to form the MV-BY-WPF. The process is repeated for each imaging point to get the final

beamformed image which is displayed in the Dynamic Range (DR) of 60 dB.

3.2 EVALUATION PROCEDURES

3.2.1 DATASET

Evaluation procedures will be performed in accordance with the available

dataset in the following order:

3.2.1.1 SIMULATION AND PHANTOM DATA ACQUIRED ON LABORATORY

Figures 15 represent the experimental data acquiring infrastructure camposed

by (a) the Verasonics US system, (b) the phantom model 84-317, (c) The linear array

transducer model L11-4v and (d), the phantom model 040GSE.

Figure 16 represents the scanning regions for both phantoms used for

experimental data acquiring. In (a) for multipurpose phantom model-84-317 and, (b),

the phantom 040GSE.

Figure 17 represents the scanning regions covered by the linear transducer

array. (a) scanning region for data simulation using the Verasonics US system (SIMU),

(b) the hypoechoic target, (c) the anechoic cyst, (d) a set of hypoechoic targets and,
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Figure 15: The experimental data acquiring infrastructure campused by (a) the Verasonics US

system, (b) the phantom model 84-317, (c) the linear array transducer model L11-4v and (d),

the phantom model 040GSE.

Figure 16: The scanning regions for (a) multipurpose phantom 84-317 and (b) 040GSE

phantom used for experimental data acquiring.
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(e) a set of anechoic cysts.

Figure 17: The scanning regions covered by the linear transducer array. (a) Scanning region

for data simulation using the Verasonics US system, (b) the hypoechoic target, (c) the anechoic

cyst, (d) a set of hypoechoic targets and, (e) a set of anechoic cysts.

3.2.1.2 SIMULATION AND PHANTOM DATA AVAILABLE ON PICMUS PLATFORM

To evaluate the performance of the proposed method we use the simulation

and phantom datasets.

3.2.1.3 HUMAN IN-VIVO DATA AVAILABLE ON PICMUS PLATFORM

To evaluate the performance of the proposed method we use the human in-

vivo datasets available. A complete description is given in Table 3. In total, an amount

of 75 plane wave sequences were acquired for each case.

The highlighted regions in Fig. 18 were used for evaluation of the performance

of the proposed methods while the regions in red in S1 show the points reflectors used

for spatial resolution (axial or lateral) evaluation.
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Table 3: Dataset presentation for evaluation of the proposed methodology

I: The simulated dataset available in PICMUS: Dataset from simulated
phantom reflector for spatial resolution evaluation and anechoic cyst phantom
with several anechoic cysts for contrast speckle analysis were made available
in PICMUS (LIEBGOTT et al., 2016). Such data were acquired using Field II
(JENSEN, 1996b). The corresponding images are presented in Fig. 18 (a) and
Fig. 18 (b).

II: The phantom dataset available in PICMUS: Such dataset include both
resolution and contrast was recorded using CIRS Multi-Purpose Ultrasound
Phantom (Model 040GSE). The data acquiring was performed with a scan
region with anechoic cyst, hypo-echoic target and a point reflector. The
corresponding images are presented in Fig. 18 (c) and Fig. 18 (d).

III: The phantom dataset acquired in UTFPR-Brasil Lab: Both the contrast
speckle dataset and the resolution distortion dataset were experimentally
acquired using a Fluke Multi-Purpose ultrasound phantom model 84-317 Fig.
?? (b) and Fig. ?? (c) and the CIRS Multi-purpose ultrasound phantom (Model
040GSE) Fig. ?? (d) and Fig. ?? (e) available in Ultrasound Laboratory of
UTFPR-Brazil. The corresponding scan regions, among anechoic cysts, hypo-
echoic targets contains several point reflectors instead of that collected from
Verasonics working at simulation mode (SIMU) as depicted in Fig. ?? (a). The
corresponding images are presented in Fig. ??.

IV: The human in-vivo dataset available in PICMUS: The proposed methods
are examined on two in-vivo datasets of a carotid artery (CA) i.e., cross
sectional CA and longitudinal CA, respectively. This allows for more practical
and realist analysis either in terms of qualitative or quantitative assessment of
the proposed methodology. The corresponding images are presented in Fig.
18 (e) and Fig. 18 (f).

The highlighted anechoic regions in S2 were used for contrast evaluation while

the regions in blue were used for speckle evaluation.

In PH1, only the spatial resolution was evaluated while in PH2, the contrast,

In H1 and H2 both contrast (green box leftmost and red box) and speckle have been

evaluated in order to test the abilities of our proposed methodology.

3.2.2 COMPARISON BETWEEN DIFFERENT BEAMFORMERS

In order to examine the performance of the proposed beamformers, we used

PICMUS dataset for qualitative and quantitative analysis. The PICMUS dataset

includes simulation, phantom and human in-vivo dataset. Additionally, we have

acquired phantom data using Verasonics ultrasound imaging system in UTFPR-Brazil

Laboratory for qualitative analysis. The performance of MV-BY and MV-BY-WPF is
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Figure 18: Dataset from PICMUS for a total amount of 5 plane wave elements: (a) Simulation

phantom data for point reflector (S1) (b) Simulation data phantom data for speckle contrast

(S2),(c) Phantom experimental data (PH1), (d) Phantom experimental data for contrast speckle

(PH2), (e) Human in-vivo data for cross-sectional CA (H1) , (f) Human in-vivo data for

longitudinal CA (H2), respectively.

compared to the following methods:

1. The DAS beamformer as in Eq. (19);

2. The MV beamformer Eq. (18) which represents the core of adaptive beamforming

in this study;

3. The CF-based method is a post-filter beamformer Eq. (22) and is suggested in

order to provide support in terms of the theoretical framework of the proposed

methods. In this context, the CF weights are combined with the DAS beamformer

output;

4. The BY beamformer Eq. (34) and Eq. (35) was implemented in order to test the

weighting abilities of the a posteriori pdf coefficients (i.e., the post-filter) when

directly applied to the time-delayed version of received data. The a posteriori pdf
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post-filter has been combined with Eq. (19) to form BY beamformer;

5. The MV-CF beamformer was suggested in order to compare the MV beamformer

when combined with the CF-based post-filter designed for adaptive processing.

In this context, the CF for adaptive processing weights the MV beamformer output

and,

6. The MV-WPF beamformer Eq. (30) which was suggested in order to provide a

fair comparison with the proposed (i.e., MV-BY-WPF) in Eq. (42).

The MV-BY-WPF beamformer is compared with the MV and MV-BY with

particular importance.

The main difference between the MV and the MV-BY is that the MV-BY

beamformer has been combined with the a posteriori pdf coefficients which represent

a post-filter applied to MV beamformer. Likewise, the difference between the MV-BY-

WPF beamformer with the MV-WPF beamformer is that the former has been designed

using an input signal of interest the MV-BY beamformer output while the latter has

applied the standard MV output.

3.2.3 DETAILS FOR ADAPTIVE PROCESSING

Table 4 presents the most important parameters used for adaptive processing

in this work.

Table 4: Important parameters for simulated and experimental (real phantom and in-vivo) for

acquisition and data processing.

Imaging parameters Simulation Experimental/human in-vivo

Central, Sampling frequencies 5.2 MHz, 20.8 MHz 5.2 MHz, 20.8 MHz
Transducer model L11-4v L11-4v
Number of Elements (NE) 128 128
NE for emission, reception 128, 128 128, 128
Subarray length (L) 30%128 ≈ 38 30%128 ≈ 38
Sound speed 1540 m/s 1540 m/s
Fractional bandwidth 60 % 60 %
pich 0.3 mm 0.3 mm
F-Number 1.75 1.75
Range, angles -16◦ to 16◦, 75 -16◦ to 16◦, 75
Data acquiring from Field II 040GSE/84-317
Diagonal loading ∆ = 20 ∆ = 10
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All the beamformers applied in this work were implemented and evaluated

using Matlab R2016b (Mathworks Inc. Natick, MA, USA) on a desktop PC (Windows

10, 64-bit system, Intel T6600 with 2.2 GHz, and 6 GB Memory).

3.2.4 EXPERIMENTAL EVALUATION SETUP

All the simulation, phantom, and human in-vivo dataset are acquired with a 128

element probe and central transducer frequency of 5.2 MHz. Additional information can

be found in Table 4 or accessed on the PICMUS website.

All the image data acquisition (simulated, phantom and human in-vivo)

includes transmission of 75 plane wave firing elements with steering angles spaced

uniformly between −16◦ to 16◦ with a gap of 0.5◦. All the acquisition has been

performed with am F-Number of 1.75.

In accordance with Table 4, for adaptive processing, a subarray of 30% of

128 elements is approximately 38 array elements used for each update step while

computing the adaptive weights.

Either in transmit or the receive no apodization was applied.

3.3 EVALUATION METRICS

Figures 19 and 20 were generated using Field II together with the DAS method.

In Fig. 19 its presented an example of imaging regions where the spatial

resolution, contrast and speckle pattern measures are performed: In Fig. 19 (a), the

central circular anechoic cyst shows the region inside cyst, region outside cyst for CR

and CNR evaluation using Eq. (45) and Eq. (46).

The blue box shows the highlighted region for background speckle pattern

evaluation. In Fig. 19 (b) the point scatterers and the highlighted region in red box

shows an example of point reflector examined in order present the lateral profile whose

plots were presented in Fig. 19 (c).

3.3.1 SPATIAL RESOLUTION

The spatial resolution evaluation is done by computing full width at half

maximum (FWHM) of point spread function in the axial and lateral directions. The
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Figure 19: Example of imaging regions where the spatial resolution, contrast and speckle

pattern measures are performed: (a) The central circular anechoic cyst shows the region inside

cyst, region outside cyst for CR and CNR evaluation using Eq. (45) and Eq. (46). The blue box

shows the highlighted region for background speckle pattern evaluation; (b) shows the point

scarters and the highlighted region in red box shows an example of point reflector examined in

order present the lateral profile whose plots were presented in (c).

FWHM defines the beam width of the main lobe at -6 dB. Figure 19 (b) and (c)

respectively, shows the point reflector (i.e., in red) and the equivalent lateral profile.

3.3.2 CONTRAST

For contrast evaluation and speckle statistics assessment, the CR and CNR

are formulated as in Eq. (45 ) and Eq. (46 ), respectively (ZHAO et al., 2016).

CR =
∣

∣ϕcyct −ϕbck

∣

∣ (45)

CNR =

∣

∣ϕcyct −ϕbck

∣

∣

√

σ2
cyst +σ2

bck

(46)

where ϕcyst , is the mean intensity (before log-compression) in the cyst and ϕbck, is the

mean intensity in the speckle, σ2
cyst is the variance of intensitie inside cyst and, σ2

bck is

the variance of intensitie in the background, respectively (HVERVEN et al., 2017). For

illustration, the corresponding regions are shown as an example in Fig. 19 (a).

3.3.3 SPECKLE STATISTICS

In order to compare the effect of MV-BY and MV-BY-WPF and other

interference suppression methods on speckle, we evaluated the speckle in a specific

area within the images obtained by different methods. The corresponding areas are
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highlighted in Fig. 18.

All the regions subject to speckle pattern evaluation are highlighted in

rectangular boxes and have been independently evaluated to ensure that the follow

the Rayleigh Distribution (RD).

In such context, it is examined if the speckle pattern of the beamformed data

follows the RD by performing the hypothesis test (ks-test 5% significance) and, the

test is decided when the computed p-value is compared with the indicated value in the

pre-defined significance interval 2016.

The corresponding results are presented in Fig. 30. In order to quantify the

similarity, the speckle region of the DAS image has been adopted as a reference

and calculates the percentage of the rest of the speckle pattern produced by different

adaptive beamformers.

The SNR which represents the measure of image speckle can be expressed

as in Eq. (47) (HVERVEN et al., 2017).

SNR =
ϕbck

σbck

(47)

Additionally, the Rayleigh probability density function (pdf) of envelope

detected data of a beamformer can be used as complement of speckle evaluation of a

specific image region is formulated as in Eq. (48).

Generally, the envelope detected data for DAS beamformer show SNR of

1.91 and the corresponding pdf is expressed as in Eq. (48) and, follows closely the

Theoretical Rayleigh Distribution (TRD) (SZABO, 2004b; ZHAO et al., 2016).

p(ϕbck) =

(

2ϕbck

ϕbck
2

)

exp

(

−ϕbck

ϕbck
2

)

(48)

where ϕbck
2 is the mean of the squared amplitude. Since the adaptive processing

introduce significant changes in the speckle statistics of beamformed data, in this

work we have examined the beamformed data to ensure that it follows the Rayleigh

Distribution (RD) using the hypothesis test (ks-test 5% significance) which allows

decide if the computed p-value are in accordance with the significance interval (ZHAO

et al., 2016).

Figure 20 was obtained from envelope detected data in blue box of Fig. 19 (a).
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It presents and compares the TRD with the RD obtained using DAS beamformer for

simulated data acquired from Field II simulation program in a DR of 60 dB.

The RD can show the normalized intensity distribution as well as their

probabilities for beamformed data.

Figure 20: Illustration of theoretical pdf for speckle assessment.

For data processing, we used only 5 plane wave sequences centered at

zero degree. We only used a total amount of sequences for comparison in order to

demonstrate the benefits of our proposed methodology.

In Fig. 18 the highlighted regions were used for evaluation of the performance

of the proposed methods. In S1 the highlighted regions in red illustrate that all the

points reflectors were used for spatial resolution (axial or lateral) evaluation.

In S2 the highlighted anechoic regions were used for contrast evaluation while

the highlighted in blue were used for speckle evaluation.
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4 RESULTS

Different point targets and circular anechoic cysts were generated in a

simulated media to test the capabilities of our proposed beamformers. Additionaly,

data captured using the available in US system on Laboratory and phantom together

with the in-vivo data are applied.

4.1 RESULTS FOR SIMULATION PHANTOM DATA FOR POINT REFLECTORS (S1)

Figure 21: Images of simulated point-reflector phantom S1 obtained by: (a)DAS, (b)MV, (c)CF,

(d) BY, (e)MV-CF, (f)MV-WPF and, (g)MV-BY-WPF. All the images are displayed with a DR of

60 dB. The lateral profiles are presented Fig. 22.
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Table 5: Spatial resolution (FWHMax, FWHMlat) for simulated S1.

Beamformer FWHMax [mm] FWHMlat [mm]

DAS 0.43 0.55

MV 0.42 0.53

CF 0.41 0.52

BY 0.40 0.51

MV-CF 0.41 0.51

MV-BY 0.42 0.53

MV-WPF 0.41 0.51

MV-BY-WPF 0.41 0.51

Figure 22: The lateral profiles of the displayed images in Fig. 21 at different imaging depths:

(a) The lateral profile through 20 mm depth and (b) The lateral profile through 40 mm depth,

respectively.

Table 5 presents the average of FWHMax in axial direction and FWHMlat

in lateral direction for simulated point targets. The results of the average of
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FWHMax/FWHMlat in the highlighted region in S1 provided the following values in [mm]

(0.43, 0.42, 0.41, 0.40, 0.41, 0.42, 0.41, 0.41)/(0.55, 0.53, 0.52, 0.51, 0.51, 0.53, 0.51,

0.51).

Taking DAS as reference, the FWHM reduction in percentage using Eq. (49)

in both directions (i.e., FWHMax/FWHMlat) for MV, CF,BY,MV-CF, MV-BY, MV-WPF and

MV-BY-WPF showed respectively the following values (0.94, 3.76, 6.10, 3.76, 1.88,

3.52, 4.93)/(3.67, 5.50, 6.97, 5.69, 3.67, 6.61, 5.87).

∆FWHM(%) =
FWHM−FWHMre f

FWHMre f

x100 (49)

where re f stands for re f erence, and ∆FWHM(%) represents either FWHMax or FWHMlat

in percentage taking DAS as reference. In the other words, we can say that the average

of width of the main lobe at -6 dB have reduced for different beamformers compared to

the DAS beamformer.

Following the above mentioned results, we notice that, all the point reflector

showed an improved difinition for different beamformers compared to DAS beamformer.

Additionaly, among different adaptive beamformers, the CF, MV-CF and MV-WPF

presented the well defined point reflectors.

We can notice that the spatial resolution has subtle improvement represented

by a slight reduction of the average of the main lobe in both directions. Among the

adaptive BF, the FWHMax and FWHMlat improvements are present despite being

apparently subtle.

However, the array noise suppression abilities are clearly visible so that in

lateral profile presented in Fig. 22, the CF-based adaptive methods appear to suppress

more noise than their counterparties.

This behavior allows suppressing noise in both directions while preserving the

main lobe. However, it is expected that the array noise suppression abilities occur

while keeping the most relevant data preserved. The CF-based beamformer for point

reflector show enhanced spatial resolution compared to MV and MV-BY at the cost of

significant side lobe energy reduction. In this context, the weak image details can also

be suppressed which can degrade the image brightness.

However, the WPF beamforming methods show more enhanced resolution

mainly when imaging the isolated point reflectors, but the sidelobe reduction was not as

much as in CF based beamformers. Furthermore, the most improved lateral side lobe
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energy reduction was achieved by MV-BY in comparison with the different beamforming

techniques. Fig. 22 show the Beam Responses (BR) using different beamforming

techniques for point targets.

4.2 RESULTS FOR SIMULATION DATA FOR ANECHOIC CYST (S2)

The displayed images in Fig. 23 show the responses of beamformed images

using different beamformers.

Table 6 presents the average of CR/CNR of the highligted circular anechoic

cysts in Fig. 18.

All the adaptive beamformers (MV-CF, BY, MV-CF, MV-BY MV-WPF and MV-

BY-WPF) outperformed DAS in terms of CR/CNR.

In accordance with the results obtained from tests, the CR/CNR values were

computed in percentage using Eq. (50) and taking DAS as reference values of: (10.49,

64.89, 94.91, 80.57, 14.89, 77.62 and 89.41) / (19.23, 15.71, 19.23, 41.99, 22.44,

42.31 and 51.60) were observed.

∆CR/CNR(%) =
CR/CNR−CR/CNRre f

CR/CNRre f

x100 (50)

where re f stands for re f erence and ∆CR/CNR(%) represents either CR or CNR in

percentage taking DAS as reference.

Improvements introduced by MV-BY over MV in terms of CR/CNR in

percentage were of 3.97/2.68 whereas, MV-BY-WPF over MV-WPF in terms of

CR/CNR in percentage were of 6.63/6.53.

Additioanally, in complement to the displayed images and the results presented

in Table 6, Fig. 24 presents the lateral profiles of the beamformed images.

For CR and CNR evaluation Eq. (45) and Eq. (46) were used for phantom data

while for speckle background evaluation, SNR is complemented by the Rayleigh pdf as

presented in Fig. 30 (a), Fig. 30 (b) and Fig. 30 (c).

The corresponding imaging regions for simulated and in-vivo data are

presented in Fig. 29.
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Figure 23: Images of simulated anechoic cyst phantom S2 obtained by: (a) DAS, (b)MV, (c)CF,

(d)BY, (e)MV-CF, (f)MV-WPF and, (g)MV-BY-WPF. All the images are displayed with a DR of 60

dB. The corresponding lateral profiles are presented in Fig. 24

Table 6: Contrast CR and CNR for simulated S2 data.

Beamformer CR [dB] CNR [dB]

DAS 20.02 3.12

MV 22.12 3.72

CF 33.01 3.61

BY 39.02 3.72

MV-CF 36.15 4.43

MV-BY 24.02 3.82

MV-WPF 35.36 4.44

MV-BY-WPF 38.92 4.61
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Figure 24: The lateral profiles using simulation data for S2 correspond to the displayed images

in Fig. 23 for different beamformers at different imaging depths: (a) the lateral profile through

20 mm and (b) the lateral profile through 41 mm, respectively.

4.3 RESULTS FOR PHANTOM DATA PH1

The displayed images in Fig. 25 show the beamformed responses of different

beamformers using phantom data.

Table 7 presents the spatial resolution (FWHMax, FWHMlat). In order to

evaluate the performance of the proposed beamformers, Table 7 presents results for

spatial resolution evaluation.

Fig. 25 show the BR using different beamforming techniques for point targets.
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Figure 25: Beamformed images of phantom data PH1 containing hypoechoic cyst with point-

reflectors obtained by: (a)DAS, (b)MV, (c)CF, (d)BY, (e)MV-CF, (f)MV-WPF and, (g)MV-BY-WPF.

All the images are displayed with a DR of 60 dB.

Table 7: Spatial resolution (FWHMax, FWHMlat) for phantom data PH1

Beamformer FWHMax [mm] FWHMlat [mm]

DAS 0.57 0.66

MV 0.54 0.62

CF 0.52 0.61

BY 0.53 0.62

MV-CF 0.51 0.62

MV-BY 0.51 0.61

MV-WPF 0.52 0.62

MV-BY-WPF 0.52 0.61

In accordance with the simulation data, the improvements introduced by

adaptive beamformers are visible in terms of the spatial resolution presented in Table
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7.

Results of the average of FWHMax/FWHMlat in the highlighted region in PH1

were computed using Eq. (49) provided the following values in [mm] (0.57, 0.54, 0.52,

0.53, 0.51, 0.51, 0.52, 0.52)/(0.66, 0.62, 0.61, 0.62, 0.62, .61, 0.62, 0.61).

Taking DAS as reference, the FWHM reduction in percentage in both directions

(i.e., FWHMax/FWHMlat) for MV, CF, BY, MV-CF, MV-BY, MV-WPF and MV-BY-

WPF showed respectively the following values (5.26, 8.77, 7.01, 10.52, 10.52, 8.77,

8.77)/(6.06, 7.57, 6.06, 6.06, 7.57, 6.06, 7.57).

The spatial resolution has subtle improvement represented by a slight

reduction of the average of the main lobe in both directions. Additionally, we can see

that among the adaptive BF, the FWHMax and FWHMlat improvements are present but

they are subtle.

The array noise suppression abilities provided by adaptive beamformer over

DAS beamformer are clearly visible so that in displayed images, the CF-based adaptive

methods appear to suppress more noise than their counterparts.

This behavior allows suppressing noise in both directions while preserving the

main lobe. This behavior can be seen in displayed images in different methods for point

targets. The CF, BY, MV-BY and the MV-WPF methods have the produced the point

reflectors with an improved definition.

However, it is expected that the array noise suppression abilities occur while

keeping the most relevant data preserved.

The CF-based beamformer show for point reflector show enhanced spatial

resolution compared to MV and MV-BY by at the cost of the side lobe energy reduction.

However, the WPF beamformer methods show more enhanced resolution mainly when

imaging the isolated point reflectors, but the sidelobe reduction was not as much as in

CF based beamformers.

Furthermore, the most improved lateral side lobe energy reduction was

achieved by MV-BY in comparison with the different BF techniques.
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4.4 RESULTS FOR PHANTOM DATA (PH2) AND 84-317

In order to examine the performance of the proposed BFs, the phantom data

with circular anechoic cyst PH2 and the multiporpose phantom model and 84-317 were

used.

4.4.1 RESULTS FOR PHANTOM DATA (PH2)

As illustrated in Fig 18 (b), a simulated phantom containing a total of 9 circular

anechoic cysts was tested and the displayed images are shown in Fig. 26 show the

beamformed images.

Values of CR, CNR were computed in accordance with the red boxes in Fig.

18 (e) and Fig. 18 (f) chosen to be the reference for respectively the intensity in the

background and the cyst for intensity inside the cyst using the formulas Eq. (45) and

Eq. (46). The beamformed images are displayed in Fig. 26 with a dynamic range of

60dB.
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Figure 26: Beamformed images of anechoic cyst phantom data PH2 obtained by: (a)DAS,

(b)MV, (c)CF, (d)BY, (e)MV-CF, (f)MV-WPF and, (g) MV-BY-WPF. All the images are displayed

with a DR of 60 dB.

Table 8: Spatial resolution (FWHMax, FWHMlat) for phantom data PH2

Beamformer CR [dB] CNR [dB]

DAS 20.03 2.21

MV 21.02 2.27

CF 23.13 2.35

BY 24.05 2.36

MV-CF 24.03 3.91

MV-BY 22.03 2.32

MV-WPF 24.14 2.79

MV-BY-WPF 25.48 2.88

On observing the displayed images, we can notice that the DAS exhibited a

poor contrast among all the adaptive beamformers. The CF beamformer and the BY
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exhibited more improved contrast compared to the MV and the MV-BY but the more

improved contrast was showed by the MV-WPF which appeared to outperform slightly

the BY beamformer.

However, MV-BY-WPF outperformed slightly the MV-BY which can be

observed in the displayed images in Fig. 26. In order to quantify contrast performance,

we used the CR and CNR as formulated in Eq. (45) and Eq. (46), respectively.

In accordance with Table 8, all the adaptive beamformers (with the sequence

presented in Fig. 26 legend) outperformed the DAS beamformer in terms of CRCNR.

The results for PH2 in terms of CR/CNR were provided in terms of percentage

using Eq. (50) provided the following results: (4.94, 15.47, 20.06, 19.97, 9.98,

20.51 and 27.20)/ (2.71, 6.33, 6.78, 27.14, 4.97, 26.24 and 30.31) respectively. We

have noticed improvements introduced by MV-BY over MV in terms of CR/CNR in

percentage were of 4.8/2.2 while for MV-BY-WPF over MV-WPF were of 5.6/3.2,

respectively.

4.4.2 RESULTS FOR PHANTOM DATA ACQUIRED ON LABORATORY USING
PHANTOM MODEL 84-317

We have examined phantom data (i.e., the anechoic cyst Fig. ?? (c)) collected

on Verasonics Ultrasound Imaging System of UTFPR ultrasound laboratory with the

following phantom models 84-317 and 040GSE, respectively. We only decided to

display the images produced by DAS and the MV-BY-WPF to show improvements

in terms of the quality of the displayed images using the proposed method for both

phantoms.

Analogously to the phantom PH02, Table 9 presents results obtained using

phantom 84-317 collected in US Lab. Using Eq. (50) to compute the CR/CNR in

percentage. The collected data provided the following CR/CNR results (2.35, 3.48,

8.80, 10.26, 3.53, 13.33 and 17.66)/(5.57, 12.74, 16.33, 13.54, 4.78, 20.31 and 25.89),

respectively. Improvements introduced by MV-BY over MV in terms of CR/CNR in

percentage were of 1.15/3.77 while for MV-BY-WPF over MV-WPF were of 3.8/4.6,

respectively.
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Table 9: Contrast (CR, CNR) for phantom data acuired using phantom 84-317

Beamformer CR [dB] CNR [dB]

DAS 21.23 2.51

MV 21.33 2.55

CF 21.42 2.83

BY 23.1 2.92

MV-CF 23.41 2.85

MV-BY 21.58 2.63

MV-WPF 24.06 3.02

MV-BY-WPF 24.98 3.16

4.5 RESULTS FOR HUMAN IN-VIVO DATA (H1) AND (H2)

The human in-vivo data has been tested in order to evaluate the performance

of our proposed beamformers. The displayed images in Fig. 28 and Fig. 27 show the

beam responses produced by the proposed beamformers using human in-vivo data for

both cases.

In accordance with Table 10 values of CR/CNR results for different

beamformers are presented. The achived results in terms of CR/CNR for in-vivo

showed values in percentage computed in accordance with Eq. (50).

For human in-vivo data H1, values of (2.29, 3.12, 5.20, 15.72, 4.58, 19.78 and

24.36)/(3.86, 6.76, 7.72, 13.04, 6.76, 10.62 and 14.97) were found while for H2 values

of (2.47, 2.91, 9.34, 10.97, 5.24, 13.79 and 17.65)/(13.29, 13.87, 16.18, 16.18, 19.07,

23.69 and 31.79) were computed.
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Figure 27: Beamformed images of human in-vivo cross sectional of a CA data H1 obtained

by: (a)DAS, (b)MV, (c)CF, (d)BY, (e)MV-CF, (f)MV-WPF and, (g)MV-BY-WPF. All the images are

displayed with a DR of 60 dB.

Improvements introduced by MV-BY over MV in terms of CR/CNR in

percentage were of 2.23/2.79 for H1 and 2.70/5.10 for H2 whereas, improvements

introduced by MV-BY-WPF over MV-WPF were respectively of 3.82/3.93 for H1,

3.38/6.54 for H2, respectively.
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Figure 28: Beamformed images of human in-vivo longitudinal a CA data H2 obtained by:

(a)DAS, (b)MV, (c)CF, (d) BY, (e)MV-CF, (f)MV-WPF and, (g)MV-BY-WPF. All the images are

displayed with a DR of 60 dB.

Adaptive processing, mainly based on CF procedures and another post-filter

method traditionally degrade the speckle background at the cost of increasing the

imaging contrast. For a rigorous evaluation procedure, the speckle pattern produced

by different beamformer methods should be taken into account.

In both cases (i.e., Fig. 27 and Fig. 28) we can observe that in the displayed

images for different adaptive beamformers present improvements in terms of contrast

however, some of them did not perform well in terms of image brightness preservation

compared with the DAS beamformer.

In order to evaluate the speckle pattern of the proposed beamformers, all the

beamformed data undergo the ks test/evaluation in order to evaluate if they follow the

Rayleigh distribution.

In this study, we decided to select three cases in accordance with the plots

of speckle pattern which is presented in Fig. 18 (a) for simulated contrast speckle
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phantom data and Fig. 18 (e) and Fig. 18 (f) for experimental human in-vivo data for

longitudinal CA and cross-sectional CA, respectively.

For CR and CNR evaluation Eq. (45) and Eq. (46) were used for phantom data

while for speckle background evaluation, SNR is complemented by the Rayleigh pdf

as presented in Fig. 30 (a), Fig. 30 (b) and Fig. 30 (c). The corresponding imaging

regions for simulated and in-vivo data are respectively presented in Fig 18 and Fig. 29.

Table 10: Contrast (CR) and Contrast to noise ratio (CNR) for in-vivo data

Human in-vivo data

in-vivo data

Cross CA Longitudinal CA

Beamformer

CR CNR CR CNR

[dB] [dB] [dB] [dB]

DAS 19.21 2.07 20.32 1.73

MV 19.55 2.15 20.42 1.96

CF 19.61 2.21 20.51 1.97

BY 20.21 2.23 22.11 2.01

MV-CF 22.23 2.34 22.44 2.01

MV-BY 19.79 2.21 21.01 2.11

MV-WPF 23.01 2.29 23.01 2.14

MV-BY-WPF 23,89 2,38 23,79 2,32

In order to demonstrate the benefits of our proposed method, all the images

displayed in Fig 31, Fig.32, Fig.33, Fig.34 and, Fig.35 were compared at the following

form: (a) represent the beamformed data for DAS beamforming for 75 acquisitions, (b)

represent the beamformed data using DAS for 5 acquisitions while in (c) the MV-BY-

WPF beamformer was performed with 5 acquisitions.

For speckle pattern evaluation, the imaging region has been selected in a

different manner for all the beamformed images with 256x256 pixels. For simulated

data we have considered all the selected backgrounds for each anechoic cyst while for

human in-vivo data, the blue boxes the region outside the human in-vivo CA.

In Fig. 18 (a) all the imaging points were considered for spatial resolution

evaluation (i.e., FWHMax and FWHMlat).

In Fig. 18 (b) the highlighted regions in circles have been used as the reference
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for imaging contrast evaluation (i.e., CR and CNR) however, for speckle evaluation,

the four highlighted regions with blue boxes have been considered for speckle pattern

evaluation.

Each evaluation region has been subject to ks test (5% significance interval) to

ensure that the envelope detected from beamformed data follows Rayleigh distribution.

In Fig. 18 (c), the highlighted regions undergo the spatial resolution evaluation in order

to test the performance of the proposed adaptive beamformers using FWHMax and

FWHMlat .

The corresponding results are presented in Table 7. In Fig. 18 (d), the

highlighted regions undergo contrast evaluation in order to test the performance of

the proposed adaptive beamformers using CR and CNR.

The corresponding results are presented in Table ??. Results of CR/CNR for

phantom data (i.e., the phantom PH2) can be obtained at the top of Table 8 while for

human in-vivo data (i.e., the Longitudinal CA and the Cross-sectional CA) the CR/CNR

results can be seen further down Table 10.

Either in Fig. 18 (e) and Fig. 18 (f) or in Fig. 29 (b) and Fig. 29 (c), the

human in-vivo data are presented and, the highlighted regions are used to compute the

imaging contrast. Additionally, the regions highlighted out the borders of the Carotid

artery only one is used for imaging contrast evaluation but all of them are used as the

references for speckle pattern evaluation.

Each evaluation region has been subject to ks test (5% significance interval)

to ensure that the envelope detected from beamformed data follows the Rayleigh

distribution. The corresponding results for contrast can be found in Table 10. Results of

speckle-pattern evaluation are well presented in Fig. 30 and their corresponding SNR

values to each beamformer are also included in Fig. 30 legend.

From Table 12 we can see values of CR/CNR using different PWE for different

adaptive beamformers. We have noticed that the MV-BY-WPF produced CR/CNR of

36.62/4.57 which was almost of that provided by DAS with 75 PWE, i.e., 37.45/4.76. In

such a context, the selected contrast values were compared to that produced by DAS

with 75 PWE as presented in Table 12.
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Table 11: CR and CNR for different Plane Wave Emissions (PWE) using S2

PWE 1 3 5 7 11 17 21

Beamformer CR[dB]

DAS 17.02 19.21 20.02 21.24 22.43 23.21 23.86
MV 20.38 20.05 24.12 22.27 23.13 23.41 24.05
CF 23.98 21.32 33.01 23.91 23.95 24.01 25.80
BY 23.98 25.72 40.024 24.11 24.22 25.01 25.95
MV-CF 21.59 23.42 36.15 23.90 25.53 25.91 26.12
MV-BY 21.55 24.75 26.02 27.01 29.03 29.96 31.56
MV-WPF 23.68 26.42 35.86 35.91 36.03 37.12 38.02
MV-BY-WPF 24.98 28.67 36.62 37.21 36.27 37.76 38.46

CNR[dB]

DAS 1.64 2.45 3.12 3.44 4.23 4.31 5.02
MV 2 1.84 2.48 3.92 3.47 4.36 4.86 5.12
CF 2.01 2.55 3.61 3.93 4.45 4.93 5.56
BY 2.31 2.71 3.94 3.24 4.23 5.02 5.62
MV-CF 2.02 2.68 3.94 3.73 4.33 5.16 5.75
MV-BY 2.03 2.73 3.75 3.80 4.33 5.24 5.82
MV-WPF 2.11 3.32 4.53 3.38 4.75 5.03 6.24
MV-BY-WPF 2.31 3.57 4.57 4.61 4.83 5.27 6.48

Table 12: The CR and CNR for DAS beamformer 75, DAS beamformer 5 and MV-BY

beamformer 5 for phantom and in-vivo data

Phantom/in-vivo

Phantom dataset in-vivo dataset

040GSE 84-317 Cross CA Longitudinal CA

Beamformer
CR CNR CR CNR CR CNR CR CNR

[dB] [dB] [dB] [dB] [dB] [dB] [dB] [dB]

DAS, 75 26.3 2.19 23.3 2.57 24.2 2.43 24.1 2.37
DAS, 5 20 2.21 21.2 2.51 19.21 2.07 20.32 1.73
MV-BY-WPF, 5 25.5 2.88 25.0 3.16 23.89 2.38 23.79 2.32
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4.6 SPECKLE STATISTICS

We evaluated the speckle pattern produced by different beamformers. All the

proposed beamformers undergo the ks test with 5% significance to ensure if they follow

the Raleigh distribution. In this study, we decided to select three cases for evaluation

which include the simulated data S2 and human in-vivo data H1 and H2, respectively.

4.6.1 SPECKLE STATISTICS FOR S2

Traditional CF based beam-formers and Wiener post-filter based beamformers

traditionally provide increased spatial resolution at the cost of reduced speckle-pattern

while increasing the imaging contrast.

On observing the beamformed images using adaptive processing in Fig. 8, CF,

BY, MV-CF and the MV-WPF show an improved image contrast. The CF, MV-CF and

MV-WPF, in spite of apparently degraded speckle background, the imaging contrast

has increased significantly. Figure 30 (a) present plots of speckle pattern of simulated

phantom data.

For speckle pattern evaluation, the TRD has fit to DAS beamformer as the

reference, due to the fact that it follows strictly the Rayleigh distribution. In terms of

RD, the MV beamformer showed values closer to that presented by DAS beamformer,

which agrees with a closer SNR as can be seen in Fig. 30 (a) or Table 13. In

BY method, the displayed image darkened as can be seen in Fig. 23 (d) and, is

in agreement with the low SNR value exhibited in Table 13. The MV, MV-CF and

MV-BY better preserved speckle which is complemented by an increased SNR value as

presented Table 13. The RD curves are also closer one another and are in agreement

with the corresponding SNR values.

Figure 29 represents the scanning regions (highlighted) used for speckle

pattern evaluation using different beamformers. In Fig. 29 (a), the upper left-most

scanning regions was adopted to generate the Rayleigh pdf curves as presented in

Fig. 30 (a).

Additionally, results of speckle statistics were computed taking as reference

Fig. 18 (b) blue box their results are presented in Fig. 30 (a) and also complemented

by the SNR in Table 13. While performing the hypothesis tests we have noticed different

results for each beamformer.



79

The test results are highlighted as PASS (i.e., one (1)) or FAIL (i.e., (0)). The

hypothesis test results show which of the selected scanning regions of a beamformed

image their speckle pattern followed the Rayleigh distribution.

4.6.2 SPECKLE STATISTICS FOR H1 AND H2

In order to evaluate the quality of the speckle pattern produced by different

adaptive beamformers the ks text has been performed in all the selected imaging

regions in accordance with, Fig. 23 (b), Fig. 18 (e) and, Fig. 18 (f) respectively.

For simplicity, the H1 and H2 scanning regions for in-vivo data are shown in Fig. 29 (b)

and Fig. 29 (c), respectively.

Figure 29: The scanning regions (highlighted) used for speckle pattern evaluation. (a), (b) and

(c), respectively.

Similarly to the simulated data, for both cases (i.e., H1 and H2) the results

of beamformed images using in-vivo data show that CF based beamformers showed

reduced amplitude in their backgrounds including in that regions selected for speckle

pattern evaluation. In this context, the reduction in amplitude background imply

on speckle pattern degradation but the imaging contrast has increased significantly

as presented in Table 10. Notice that the imaging contrast increases at the cost

of suppressing some imaging details which lead to a poor image quality despite

enhancing the visibility of image borders.

Figure 30 (b) and 30 (c) present plots of speckle pattern of experimental in-vivo

data. Similarly to the simulated data using Fig. 30 (a), the speckle pattern has been

evaluated taking as reference the TRD which is fit to DAS beamformer due to the fact
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that the corresponding histogram intensities of envelope-detected data follow closely

the Rayleigh distribution.

Table 13 show the speckle assessment of different beamformers. The plots of

the RD in Fig. 30 is also complemented by the SNR results shown within the legend of

Fig. 30 for S2, H1 and H2 data.

The RD for MV and MV-BY beamformer showed values closer to that

presented by DAS beamformer and agrees with the SNR values presented in Table

13 as well as in Figs. 30 (b) and (c) legends. In BY method for both cases (i.e., H1

and H2), the image darkened as can be seen in Fig. 8 (d), Fig. 27 (d) and, Fig. 28

(d) respectively, implying in an agreement with the low SNR value exhibited within the

legend as well as in Table 13.

Table 13: The SNR for different beamformer using S2, H1 and H2 dataset

Beamformer S2 H1 H2

DAS 1.75 1.66 1.64

MV 1.69 1.57 1.57

CF 1.61 1.59 1.56

BY 0.94 0.86 0.86

MV-CF 1.57 1.49 1.42

MV-BY 1.69 1.57 1.57

MV-WPF 1.33 1.21 1.14

MV-BY-WPF 1.44 1.31 1.25

In Figs. 28 (b),(f) and 28 (b),(f) for respectively MV, and MV-BY beamformers

better preserved the speckle which is complemented by an increased SNR value

presented in Figs. 30 (a), (b) and (c), respectively.

Figure 29 represents the scanning regions (highlighted) used for speckle

pattern evaluation using different beamformers. In Fig. 29 (b)-(c), all the upper left-

most scanning regions were used to generate the Rayleigh pdf curves as presented in

Fig. 30 (b)-(c).

The results of speckle statistics were computed taking as reference Fig. 29 (b)

and Fig. 29 (c) red boxes for both cases and their results are presented in Fig. 30 (b)

and Fig. 30 (c) and also complemented by the SNR values. Similarly to the simulated
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data, while performing the hypothesis tests we have noticed different results for each

beamformer.

Similarly to the simulated data we highlighted the ks test results as PASS (i.e.,

one (1)) or FAIL (i.e., (0)) in order to evaluate which of selected scanning regions of a

beamformed images their speckle pattern followed the Rayleigh distribution.

Figure 30: Images of simulated data and human in-vivo data for cross-sectional H1 and

longitudinal H2 CA: (a) Represents the evaluation results of the first speckle region (i.e., the

leftmost) of S2, (b) represents the evaluation results of the first speckle region (i.e., the leftmost)

of H1 and (c) represents the evaluation results of the first speckle region (i.e., the leftmost) of

H2, respectively.

The SNR produced by different adaptive beamformers is presented in Fig. 30

and also complemented by Table 14 which presents the results of speckle produced by

different adaptive beamformers in percentage (%) taking DAS as the reference. The
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results were computed using Eq. (51).

∆SNR(%) =
SNR

SNRre f

100 (51)

where re f stands for re f erence , and ∆SNR(%) represents SNR in percentage taking DAS

as reference.

Table 14: Speckle pattern produced by different adaptive beamformers taking DAS as

reference

Beamformer S2 H1 H2

MV 97.14 95.18 95.73

CF 92.57 95.78 95.12

BY 53.71 51.80 52.43

MV-CF 89.71 90.36 87.19

MV-BY 97.14 95.18 95.73

MV-WPF 76.57 72.89 69.51

MV-BY-WPF 76.57 72.89 76.21

Table 15 was obtained from Fig. 30 in terms of representation of the peaks of

Rayleigh distribution and Normalized intensity in dB. This Table is complementary in

terms of the peaks of Normalized intensity in dB produced by different beamformers.

At one hand, we notice that the BY method degraded significantly the image

brightness by presenting the Normalized intensity in dB with lower values at the other

hand, the MV-BY-WPF exhibited values closer compared with that obtained by DAS

which is in agrees either in terms of the displayed images, RD curves and the SNR

values presented in Table 13.
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Table 15: The peaks of Rayleigh pdf and Normalized intensity in dB for differente beamformers.

Beamformer S2, [dB] H1, [dB] H2, [dB]

DAS -8.0 -10.0 -7.2

MV -7.8 -12.5 -7.0

CF -11.0 -10.0 -7.1

BY -14.0 -16.0 -16.4

MV-CF -7.9 -12.5 -12.1

MV-BY -8.1 -13.1 -8.0

MV-WPF -15.0 -13.0 -13.2

MV-BY-WPF -8.2 -10.0 -7.0

4.6.3 QUALITATIVE EVALUATION USING DISPLAYED IMAGES: DATA FROM
PICMUS PLATFORM

In order to highlight the improvements introduced by MV-BY-WPF among the

basic results obtained from PICMUS dataset we have displayed the beamformed

images using the standard DAS, 75 followed by DAS, 5 and the MV-BY-WPF, 5.

The last comparison was suggested in such a manner to show qualitatively the

abilities of our proposed methodology in terms of array noise suppression which results

in a high image quality.

Regarding the amount (i.e., at about the average) of the plane wave firing

elements involved in comparison was performed to show how much number of

transmission we could reduce while attaining the image quality comparable to that

obtained with a larger number of plane wave transmission.

The corresponding images were displayed in Fig. 31 for simulated anechoic

cyst phantom: (a) DAS, 75 plane waves, (b) DAS, 5 plane waves and (c) MV-BY-WPF,

5.

Likewise, Fig. 32, Fig. 33, Fig. 34 and Fig. 35 present the displayed images

of the phantom data PH1, the phantom data PH2, the in-vivo human data H1 of

longitudinal CA and, the in-vivo human data H2 of cross-sectional CA, respectively.
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Figure 31: Images of simulated anechoic cyst phantom: (a) DAS, 75, (b) DAS, 5 and (c) MV-

BY-WPF, 5, respectively.

Figure 32: Displayed images of phantom data PH1: (a) DAS, 75, (b) DAS, 5 and (c) MV-BY-

WPF, 5, respectively.

Figure 33: Images of phantom data PH2: (a) DAS, 75, (b) DAS, 5 and (c) MV-BY-WPF, 5,

respectively.
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Figure 34: Images of human in-vivo human data H1 of longitudinal CA: (a) DAS, 75, (b) DAS,

5 and (c) MV-BY-WPF, 5, respectively.

Figure 35: Images of human in-vivo data H2 of cross-sectional CA: (a) DAS, 75, (b) DAS, 5

and (c) MV-BY-WPF, 5, respectively.

4.6.4 QUALITATIVE EVALUATION USING DISPLAYED IMAGES: DATASET
COLLECTED ON US LABORATORY.

In Fig. 36, the top row presents images acquired from Verasonics Imaging

System for 75 plane wave emissions and beamformed with DAS: (a) simulation data

from SIMU, (b) Hypo-echoic target from 84-314, (c) Anechoic cyst from 84-314,

(d) and (e) phantom data from 040GSE, respectively, while the midle row presents

images acquired from Verasonics Imaging System for only 5 plane wave emissions and

beamformed with DAS with the abovementioned sequence. Analogously, the last row

presents images acquired from Verasonics Imaging System for 5 plane wave emissions

and beamformed with MV-BY-WPF following the the abovementioned sequence.
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We can notice that the image quality produced by our proposed method with

5 plane wave emissions is comparable to the quality of DAS with 75 plane wave

emissions. Rather than synthesizing an amount of 75 plane wave emissions we need

only 5 plane wave emissions to produce an equivalent image quality.

Figure 36: The top row presents images acquired from Verasonics Imaging System for 75 plane

wave emissions and beamformed with DAS: (a) simulation data from SIMU, (b) Hypo-echoic

target from 84-314, (c) Anechoic cyst from 84-314, (d) and (e) phantom data from 040GSE,

respectively, while the midle row presents images acquired from Verasonics Imaging System for

only 5 plane wave emissions and beamformed with DAS with the abovementioned sequence.

Analogously, the last row presents images acquired from Verasonics Imaging System for 5

plane wave emissions and beamformed with MV-BY-WPF following the the abovementioned

sequence.
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5 DISCUSSION

We have implemented the MV-BY beamformer to US imaging. The MV-

BY beamformer represents a combination between the MV beamformer with thea

posteriori pdf coefficients. The MV-BY outperforms the MV in terms of spatial resolution

and contrast.

We have combined the MV-BY with the WPF beamformer in order to obtain

a more robust WPF. As result, we have noticed improvements introduced in image

quality mainly in terms of contrast while retaining the speckle pattern. In terms of

imaging resolution, improvements were subtle.

The Bayesian-based post-filter (i.e., the pdf coefficients) which was combined

with the MV beamformer resulted in MV-BY which was used as input or desired signal

in the WPF. As result, the MV-BY-WPF was formulated based on MV-BY. Regarding

the MV-BY beamformer is formulated combining the a posteriori pdf coefficients with

the MV beamformer.

We have noticed that the a posteriori pdf coefficients have the ability to improve

the signal coherence which is one of the problems of traditional adaptive beamformers.

In accordance with the obtained results, we see that the statistics of image

intensity distribution along the imaging region appeared to be altered which we believe

is due to the signal coherence added by applying this factor (i.e., the pdf coefficients).

Different works published in the literature present and discuss improvements

introduced by the MV based beamformers and other adaptive methods.

In Qi et al. (2018) a joint transmit-receive beamformer was designed for the

plane wave in the US and outperforms different MV approaches. However, this was

accomplished at high computational complexity despite benefits in terms of resolution

and contrast were limited.

In Polichetti et al. (2018) a nonlinear beamformer is proposed in order to

improve the performance of traditional Delay Multiply and Sum (DMAS) method for

the plane wave the US, however, to attain the performance provided by the DAS 75,

an amount of 11 emissions was required in spite of less preservation of the image
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brightness.

In Ozkan et al. (2018) a beamformer using MAP approach was implemented

whose background was supported on the basis of the inverse problem involving a signal

mode accounting for the white noise assumption. The obtained results for contrast and

resolution were satisfactory but, the beamformer need be highly iterated in order to

achieve an optimal to obtain a high-quality image.

An interesting publication by Chernyakova et al. (2018) has been suggested for

US imaging in CPWC. In this work, a comparison with different CF based methods is

performed with special emphasis to the amount of plane wave emissions which should

be reduced in order to reconstruct an image with the quality equivalent of that obtained

with a total amount (i.e., of 75) of plane wave sequences provided in the PICMUS

website.

In their work, could successfully represent an image quality of 75 plane wave

emission with only 13 plane wave emissions using their proposed method termed as

(Iterative) Maximum a posteriori (iMAP) beamformer (CHERNYAKOVA et al., 2018).

In our proposed method, using the PICMUS data, with an amount of 5 plane

wave emissions with MV-BY-WPF we have reconstructed an image with quality in terms

of contrast and speckle pattern comparable to that obtained when using a total amount

of 75 plane wave emissions at computational complexity similar to that provided by the

MV beamformer without degrading the spatial resolution.

We have summarized the outcomes of this our in terms of spatial resolution,

contrast, Speckle statistics and, the Computational complexity evaluation.

5.1 SPATIAL RESOLUTION

In terms of resolution, all the adaptive beamformers presented improvements

compared to DAS. The results in terms of beamformed images are presented in Fig.

21 complemented by lateral profiles of the PSF of different point reflectors at different

imaging depths.

In Fig. 21 we can notice that the MV beamformer has a narrower main lobe and

lower side lobe levels meaning that it was superior to DAS in resolving the simulated

point reflectors.

We notice that the FWHMax and FWHMlat from Table 5 show that BY, MV-CF
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and MV-BY were superior to MV beamformer by providing a narrower FWHMax and

FWHMlat.

We believe that the improvements of BY over MV are due to signal coherence

introduced by the a posterior pdf (i.e., the pdf coefficients). However in terms of MV-

CF improvements were introduced due to the effects of CF which acts as weighting

factor to improve the local intensity, while the improvements of the MV-BY are due to

the signal coherence introduced by the a posterior pdf over the MV beamformer.

Improvements of WPF over MV are explained in terms of the MV-WPF

implementation using the MV principle which represents an MMSE of the desired

signal.

This ability allows WPF preserving the abilities of MV which is a distortionless

beamformer by keeping the main lobe unchanged at broadside while suppressing noise

and interferences at other directions. However, the improvements of MV-BY-WPF over

MV-WPF can be seen as a different behavior of WPF when the desired signal is of

different statistics.

In such a context, we associate such improvements to the robustness of the

MV-BY over different SNR scenarios. The MV-BY is used as the desired signal in WPF

design. In general, improvements in terms of the spatial resolution were subtle.

However, CF, MV-CF, and MV-WPF appear to present the most resolved

scatterers compared to the MV beamformers. Such improvements in spatial resolution

are complemented by the lateral profiles depicted in Fig. 22.

In Fig. 22 we can notice that the improvements are complemented by

enhancing the ability to suppress sidelobe energy in the imaging background.

In terms of sidelobe energy, we can see that the lateral profiles presented by

the MV-WPF and MV-BY-WPF were somewhat similar but the former appears to be

more effective in terms of sidelobe suppression abilities than the letter.

It can be seen in the displayed images, the lateral profiles and the Tables 5 and

7 that the MV-WPF and MV-BY-WPF beamformer were almost similar, but the lateral

profiles of the former together with the displayed images show that the brightness in

the image background appearers to be highly reduced.

Similarly to the simulated data, Fig. 7 presents the displayed images of

phantom experiments data PH1 for spatial resolution evaluation. No lateral profiles
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were provided, but the array noise abilities presented by the proposed beamformers in

the simulation scenario were maintained in accordance with the displayed images.

In general, the performance of the proposed beamformer was in agreement

with that obtained in simulation data. Regarding adaptive beamformers, we believe

that improvements of MV-BY over MV in terms of the spatial resolution were due to the

enhanced signal coherence introduce by the a posterior pdf which is comparable with

a post-filter combined with the MV beamformer.

5.2 CR AND CNR

In terms of CR and CNR, all the adaptive beamformers presented

improvements in imaging performance compared to DAS. The displayed images Fig.

23, Fig. 26, Fig. 28 and Fig. 27 show improvement introduced by adaptive beamformer

over the DAS beamformer.

Particular to Fig. 23, the lateral profiles Fig. 24 of different beamformers

were depicted in order to complement the results provided by the displayed images

in Fig. 23. We believe that these results apply to different scenarios of CR and CNR

in this study. We have computed CR and CNR using formulas Eq. (45) and Eq. (46),

respectively.

The computed values od CR and CNR are presented in Table 6 for simulated

data and Table 8 for human in-vivo data.

In Table 10 for different scenarios. Improvements of MV-BY over MV were due

to the signal coherence introduced by the posterior pdf coefficients. In this context, the

a posterior pdf coefficients are applied to the MV beamformer and improve the signal

coherence.

The MV-WPF has improved the CR and CNR of MV as expected from

simulated results where the MV-WPF is seen as providing solution approaching the

MMSE (NILSEN; HOLM, 2010). The WPF for adaptive processing using the MV

beamformer (i.e., MV principle) does not affect the signal amplitude power while

minimizing the noise power (NILSEN; HOLM, 2010).

However, the MV-BY-WPF provides more improved contrast by taking into

consideration the desired signal obtained from a most robust beamformer (i.e., the

MV-BY beamformer).
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While the simulated data for point reflectors provided improvements in terms

of spatial resolution using BY method, the contrast by BY beamformer also improved

significantly but, predominantly the signal intensity in the imaging background was

reduced meaning that an apparent suppression of image details has occurred. It

can be interpreted to as resulted in speckle pattern severely degraded which will be

analyzed next subsection.

5.3 SPECKLE STATISTICS

The speckle pattern produced by different beamformers was assessed in terms

of signal to noise ratio (SNR) and the Raleigh probability density function analysis

(HVERVEN et al., 2017) of the beamformed data.

The SNR values and the Rayleigh probability function of envelope-detected

data were respectively computed using the formulas Eq. (47) and Eq. (48),

respectively. All the adaptive beamformers which presented more improvements in

imaging resolution and contrast presented the much more speckle reduction by taking

DAS beamformer as the reference.

This behavior can be observed from the displayed images or in the computed

SNR values. We can see that the MV beamformer compared to DAS produced

a slightly reduced SNR which leads to the speckle reduction and also can be

complemented by the displayed images.

In order to deepen the speckle assessment in the highlighted regions (i.e., the

blue and red boxes) of Fig. 18 (b), Fig. 18 (e) and Fig. 18 (f) we have displayed the

speckle assessment Fig. 30 (a), Fig. 30 (b) and Fig. 30 (c) produced by different

beamformers in terms of their intensity histogram in accordance with the Rayleigh

probability density function.

In Fig. 30 we decided to show the SNR values particular to specific

beamformer and the corresponding result of ks test. The k-test with 5% significance

was performed to ensure if a specific imaging region of a beamformer output follows

the Rayleigh distribution.

For simplicity, we have labeled each test corresponding to specific imaging

Region as PASS (i.e., (1)) or FAIL (i.e., (0)), respectively. From Fig. 30 (a), 30 (b),

and 30 (c) we notice that the MV, MV-BY and sometimes MV-CF better preserved
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the speckle and were closer each other. The MV-BY-WPF preserved better speckle

compared to MV-WPF. These results can be explained following the computed values

of SNR for each beamformer.

Regarding to ks test, different adaptive beamformers showed their selected

regions for ks test following the RD with PASS however, as can be seen in Fig. 30

(a), 30 (b) , and 30 (c) some imaging regions had severe speckle degradation from

adaptive processing and did not retain the speckle pattern at acceptable limits in

terms of allowed statistics despite they exhibited more improved spatial resolution they

FAILED the ks text evaluation.

5.4 COMPUTATIONAL COMPLEXITY EVALUATION

On evaluating the computational complexity in CPWC imaging the number of

plane wave firing elements (i.e., N = 5) must be taken into account. The main goal of

CPWC is reducing the Computational Complexity (CC) aiming to increase the frame

rate of the imaging system that is the reason why the analysis of the CC plays an

important role.

The require CC by uniformly weighted DAS beamformer is of an order of O(M)

where M is the array length set to be 128 hence, it will take O(NM) floating operations.

However, in adaptive beamforming, the CC occurs in the inversion operation of the CM.

In MV beamformer, the CM inversion require 2/3L3 Floating Operations (FO)

when applying Gauss-Jordan eliminations (ZHAO et al., 2015; ZENG et al., 2013).

In addition, for adaptive processing, we used a subarray of 30% of the full array

size (i.e., L = 0.3x128 = 38) elements and therefore, the MV will need O(N(2/3L3)) FO.

The WPF formulation is similar to CF by applying the coherent sum and

incoherent sum components in order to compute the focusing indices.

In terms of WPF, the coherent sum and incoherent sum components are

expressed in terms of output power of desired signal and noise plus interference

power as presented in Eq. (24) or Eq. (25). While computing the WPF it’s expected

to consume a similar amount of time. For computing the WPF the time consuming

required is as similar as that required to compute the CF.

For CF computation in Eq. (22) an additional computational load lead to the

computation of the coherent and incoherent energy of L2 which is neglected (ZHAO et
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al., 2016).

In this work, the computation of CM in Eq. (20) and the NPICM CM in Eq. (29)

undergo the spatial smoothing and temporal averaging effects that have subtle impact

in the CC (BUSKENES et al., 2017, 2015; ZHAO et al., 2016).

According to Bell et al., (BELL et al., 2000) the MV-BY will need an amount of

FO almost that is required for MV weight computation for weight vector update. That is

because it uses the already computed inverted covariance matrix used for MV weight

(BELL et al., 2000).

As mentioned by Bell et al., the additional time needed to compute the a

posteriori pdf will be neglected. In such context, the MV-BY and MV should present

similar computational complexity of O(N(2/3L3)) FO.

In total the time consumption by WPF is about O(N(2/3L3) + L2)) which is

almost O(N(2/3L3))(ZHAO et al., 2016). It means that similarly to the MV beamformer

the most computationally demanding step for MV-WPF and MV-BY-WPF is still the CM

inversion among different steps in adaptive processing.

In general, all the adaptive beamformers are computationally intense

compared to DAS and prohibitive for real-time implementation. However, for real-

time application the complexity can be decreased by applying the recursive updating

Mehdizadeh et al. (2012) combined with the Graphics Unit Processing (GPU) (ZHAO

et al., 2015).

In general, we can conclude that the improvements in terms of image quality

were obtained at an extra CC compared to DAS, but at CC similar to that of MV

beamformer.
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6 CONCLUSIONS AND REMARKS

6.1 CONCLUSIONS

We have successfully proposed and implemented the Bayesian-based

beamformer (MV-BY) with the Wiener post-filter (WPF) based (i.e., MV-BY-WPF) for

adaptive beamforming of ultrasound image using coherent plane wave compounding

(CPWC).

The CPWC imaging is low SNR due to the lack of focusing on pulse

emission. Different adaptive methods such CF based beamformer or Wiener post-

filter beamformer have been suggested to overcome such limitation however they still

present limitations.

In this study, we have introduced the MV-BY beamformer which takes subtle

advantages over the MV beamformer by applying a Bayesian-based post-filter (i.e., the

pdf coefficients) which add robustness to MV beamformer. We combined the proposed

MV-BY with the WPF to formulate the MV-BY-WPF which takes advantages compared

to MV-WPF.

Our proposed beamformer appears to provide the best trade-off between

robustness and performance which lead to an improved contrast. Additionaly, the

image brightness was retained without degrading the spatial resolution compared to

the traditional MV-WPF and other CF based methods.

The WPF for adaptive processing using distortion-less beamformer (e.g., MV

principle) does not affect the signal amplitude power while minimizing the noise power

(NILSEN; HOLM, 2010).

Using our proposed method, improvements have been introduced in CPWC

imaging system at comparable computational complexity to MV beamformer.

Particular to our proposed methodology we have found that an amount of

approximately 5 emissions (i.e., the first 5 central datasets in a total of 75) using the

PICMUS data available of the platform, we have reconstructed an image with quality

comparable to that obtained when using a total amount of 75 emissions with DAS

beamformer.
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The reconstruction using simulation, phantom and human in-vivo dataset

available on PICMUS reveal the effectiveness of our proposed beamformer in terms

of array noise suppression abilities.

For simulation data S2, when DAS is compared to the MV-BY/MV-BY-WPF

values in percentage (%) of 20.06/27.20 and 6.78/30.31 for CR and CNR, were

respectively obtained. For phantom data PH02, 8.80/17.66 and 16.33/25.89 while for

human in-vivo data H1, the obtained values were of 5.20/24.36 and 7.72/14.97.

An interesting outcome was observed when evaluating the human in-vivo data

H2, where values of 9.34/17.65 and 16.18/31.79 were respectively obtained.

Additionally, the beamformed responses produced by MV-BY-WPF retains the

speckle when compared to MV-WPF. It means that our proposed methodology can

improve the imaging system is suggested for real applications.

6.2 FUTURE WORKS

A possible continuity with the research of the proposed methods would

still be feasible. There is a wide range of works that can be investigated using

adaptive beamforming methods in different US imaging modalities such as synthetic

aperture imaging (SAI), photostatic imaging (PAI) and Diverging Wave Imaging (DWI)

(HASEGAWA; KANAI, 2011; PAPADACCI et al., 2014, 2014).

In addition to beamforming using Plane Wave Imaging (PWI), there is

the possibility of evaluating the effectiveness of the proposed method for other

beamforming modality such as DWI.

The DWI has attracted the research community by allowing the real-time

assessment of cardiac ultrasound data and also make possible their acquisition at a

very high frame rate at the cost of highly reduced image quality (PAPADACCI et al.,

2014).
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APPENDIX A -- THE MV BEAMFORMER SOLUTION

In this appendix, the solution of the optimization problem to Minimum Variance

(MV) beamformer or, simply, the Capon method is demonstrated. The power of a

beamformer output can be expressed as in Eq. (A1).

f (~w) = ~wHR~w (A1)

where R represents a real-valued symmetric matrix (i.e., the data CM). The function

f (~w) which represents a real-valued component is subject to the constraint given by

Eq. (A2).

~wH~a = b (A2)

In this context, the optimization problem can be formulated using the function f (~w)

constrained to the equality ( ~wH~a = b) representing g(~w), as in Eq. (A3) and Eq. (A4):

f (~w,~wH) = ~wHR~w (A3)

g(~w,~wH) = ~w~aH +~wH~a−2b (A4)

in this context, g is a dual function of f . The Lagrangian L (•) can be expressed as in

Eq. (A5).

L (~w,~wH ,λo) = f (~w,~wH)−λog(~w,~wH) (A5)

where λo denotes the Lagrangian multiplier.

Inserting f (~w) and g(~w) into the Eq. (A5) we obtain Eq. (A6):

L (~w,~wH ,λo) = ~wHR~w−λo(~w~a
H +~wH~a−2b) (A6)
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Therefore, taking the gradient of Eq. (A6) with respect to ~w we obtain Eq. (A7):

∇(L ) = ~wH
0 R−λo~a = 0T (A7)

where ∇(•) is the Gradient operator. The solution to the optimization problem can be

represented as in Eq. (A8):

~w0 = λoR−1~a (A8)

Performing appropriate substitution we obtain Eq. (A9)

λo(~a
HR−1~a) = b (A9)

which yields the solution to the optimization problem given by Eq. (A10)

~w0 =
bR−1~a

~aHR−1~a
(A10)

If the directional constraints are set to be unitary(i.e., b = 1) then, the solution

to the optimization problem is given by Eq. (A11):

~w0 =
R−1~a

~aHR−1~a
(A11)
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APPENDIX B -- THE WIENER BEAMFORMER SOLUTION

In this appendix, we demonstrate the Wiener solution. In this work, it is

assumed that the data is represented in terms of the Desired Signal (DS) and the

additive noise plus interference components as follows (~x =~asd +~n). In order to obtain

the Wiener post-filter (WPF) solution, the optimization problem of Eq. (B1) is solved in

order to obtain the WPF beamformer weights as in Eq. (B1) (NILSEN; HOLM, 2010).

~wWiener = argminw E
{

|sd −~wH~x|2
}

(B1)

Using the Minimum Mean Squared Error (MMSE) criterion, the optimization

problem finds the solution that minimizes cost function given by Eq. (B1) as in Eq.

(B2):

MSE = ~wHR~w−2sd~w
Hsd~a+ |sd|

2 (B2)

The solution Eq. (B3), can be obtained by taking the gradient of Mean Squared

Error (MSE) to zero with respect to ~w. This is known as the Wiener method:

~w = |sd|
2R−1~a (B3)

The MSE solution of Eq. (B3) which is extended in appendix C, defines the

Wiener beamformer.
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APPENDIX C -- THE EXTENDED WIENER BEAMFORMER SOLUTION

In this appendix, we present the application of the Woodbury matrix in order to

formulate the extended Wiener post-filter beamformer. The data Covariance Matrix

(CM) components can be represented in terms of DS power and the Noise Plus

Interference CM (NPICM) component as in Eq. (C1):

R = |sd|
2~a~aH +E

{

nnH
}

= |sd|
2~a~aH +Rn (C1)

In Eq. (C2), the terms A, B, C and D (i.e., the factor BCD) represent the real

values of an arbitrary matrix. The Woodbury matrix identity Eq. (C2), can be applied in

order to accurately represent the inverted matrix

(A+BCD)−1 = A−1 −A−1B(DA−1B+C−1)−1DA−1 (C2)

Analogously, the data CM can be formulated as in Eq. (C3):

R−1 = (|sd|
2~a~aH +Rn)

−1 = R−1
n −R−1

n |sd|
2(~aR−1

n +~a−1)−1~aHR−1
n =

= R−1
n −

R−1
n ~a~aHR−1

n

~aHR−1
n ~a+ |sd|−2

(C3)

The terms of the CM, R can be inserted into the solution of the Wiener

beamformer which is presented in appendix B formulated as in Eq. (B3). The Eq.

(C4) and Eq. (C5) present the Wiener beamformer solution.

~wWiener = |sd|
2R−1~a (C4)

~wWiener = |sd|
2

(

R−1
n −

R−1
n ~a~aHR−1

n

~aHR−1
n ~a+ |sd|−2

)

~a (C5)
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which results in Eq. (C6):

~wWiener =
R−1

n ~a

|sd|2 +~aHR−1
n ~a

(C6)

In appendix A it was demonstrated that the MV beamformer solution is given

by Eq. (C7):

~w0 = ~wMV =
R−1

n ~a

~aHR−1
n ~a

(C7)

where Rn can be used to represent R. Combining both solutions (i.e., Eq. (C6) and Eq.

(C7) ) we obtain Eq. (C8):

~wWiener =
|sd|

2

|sd|2 +~aHR−1
n ~a

~wMV (C8)

The MV output Power ~aHR−1
n ~a, is expressed in accordance with a predifined

steering vector with directional constraints commonly set to be unitary, however,

appropriate tranformations can be performed in order to obtain the MV output Power in

terms of adaptive (i.e., the MV) weight vector as demonstrated in Eq. (C9):

~aHR−1
n ~a =~aH 1

Rn

~a =

(

1

~aH

R−1
n ~a

R−1
n ~a

)H
1

Rn

(

1

~aH

R−1
n ~a

R−1
n ~a

)

= ~wH
MV Rn~wMV (C9)

where the factor in blue R−1
n ~a, represents a vector which is inserted in order to perform

the transformations.

The wiener beamformer in Eq. (C10) can be represented in accordance with a

set of adaptive weights ~w as follows:

~wWiener =
|sd|

2

|sd|2 +~wH
MV Rn~wMV

~wMV (C10)


