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ABSTRACT 

 

MENDES, Eduardo Michailu. Contributions in CAN-based systems: prototypes 
and tests. 2019. Total pages: 93. Thesis (Master in Computer Science) – Federal 
University of Technology - Paraná. Ponta Grossa, 2019. 
 

 

The CAN network is used to connect microcontrollers exclusively through a metal bus 
and broadcast messages. In versions 2.0A and 2.0B the CAN frame payload carries 
up to 8 bytes of data. To send larger data it is necessary to use more than one frame. 
This paper presents a CAN network prototype using six Arduino cards that generate 
and consume different types of signals connected through the MCP2515 CAN module. 
The library used to enable the MCP2515 CAN module organizes the 8 bytes of CAN 
frame payload into an 8-position array, each with 1 byte. Taking advantage of this 
feature, besides demonstrating how to use this device, some proposals for 
improvement in the CAN network will also be presented. The first of these is a form of 
treatment of periodic and aperiodic signs. CAN frame and communication bus 
utilization has been optimized by sending multiple signals within a single frame, 
carrying one signal at each position of the vector. Mapping values to intervals 
compatible with the available space at each vector position allowed the transport of 
values larger than 8 bits within the vector positions. Transmission latency was 
calculated using the mills() method and a CAN gateway was implemented to reduce 
the broadcast domain of messages. 

 

Keywords:  Microcontroller. CAN Network. Periodic and periodic signs. Signal 
mapping. Bus optimization. 

 

 

 

 

 

 

 

 

 

 

 



 
 

RESUMO 

 

MENDES, Eduardo Michailu. Contribuições em sistemas baseados em CAN: 
protótipos e testes. 2019. Total de páginas: 93. Dissertação (Mestrado em Ciência 
da Computação) – Universidade Tecnológica Federal - Paraná. Ponta Grossa, 2019. 
 

 

A rede CAN é usada para conectar exclusivamente microcontroladores através de um 
barramento metálico e mensagens em broadcast. Nas versões 2.0A e 2.0B, a carga 
útil do quadro CAN carrega até 8 bytes de dados. Para enviar dados maiores, é 
necessário usar mais de um quadro. Este artigo apresenta um protótipo de rede CAN 
usando seis placas Arduino que geram e consomem diferentes tipos de sinais 
conectados através do módulo CAN MCP2515. A biblioteca usada para ativar o 
módulo CAN MCP2515 organiza os 8 bytes de carga útil do quadro CAN em uma 
matriz de 8 posições, cada uma com 1 byte. Aproveitando esse recurso, além de 
demonstrar como usar este dispositivo, também serão apresentadas algumas 
propostas de melhoria na rede CAN. O primeiro deles é uma forma de tratamento de 
sinais periódicos e aperiódicos. A utilização do quadro CAN e do barramento de 
comunicação foi otimizada enviando vários sinais em um único quadro, transportando 
um sinal em cada posição do vetor. O mapeamento de valores para intervalos 
compatíveis com o espaço disponível em cada posição do vetor permitiu o transporte 
de valores maiores que 8 bits dentro das posições do vetor. A latência de transmissão 
foi calculada usando o método mills() e um gateway CAN foi implementado para 
reduzir o domínio de broadcast para a transmissão das mensagens. 

 

Keywords:  Microcontroladores. Rede CAN. Sinais periódicos e aperiódicos. 
Mapeamento de sinal. Otimização de barramento. 
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1 INTRODUCTION 

We live in a time where data streaming processes are becoming more common 

in many different segments. This process seeks to share data and increasingly 

optimize the use of physical transmission media and other devices. 

The growing technology embedded in the automotive industry is made 

possible by microcontroller-type computer systems. Typically, a microcontroller is 

connected via point-to-point connections with a set of sensors and actuators for 

managing a vehicle segment. Through the CAN bus, data managed by a 

microcontroller can be shared with other microcontrollers, allowing the optimization of 

physical media and the integration between these computer systems. 

Data generated by the most diverse device types is shared with a multitude of 

device types, characterizing the data entry process that will be consumed by computer 

systems. This sharing is done through also shared physical means. By consuming this 

data, computer systems generate output signals to devices on the same or other 

networks. Network protocols in turn are responsible for generating and interpreting 

signals carried over a shared physical medium. 

This mechanism of data exchange between computer systems, standardized 

by protocols, began to be used by the Brazilian automotive industry in the 90's. Until 

then, the signals generated by sensors, and actuator states were brought to the control 

devices through point systems. to the point. Therefore, from the mentioned period, the 

concept of data sharing between automotive computer systems began to be used. 

Another factor that led to the use of communication networks in automotive 

systems, besides the sharing of resources, was the economy and optimization of 

physical means of communication, which led to a consequent reduction in the weight 

generated by the larger number of cables needed for point systems. to the point, that 

as mentioned below can reach 90kg. Among other advantages, weight reduction 

assists in fuel economy. 

The harness weighting reaches more than 91kg depending on the vehicle, is 

several kilometers long and the third expensive and heaviest component of a car (VAN 

RENSBURG and FERREIRA, 2003) 

As a solution to reduce the large number of cables used in automotive 

communications, we used the Controller Area Network (CAN), developed in the late 
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1980s by Bosch. Different parts of vehicles have computer systems to control and 

monitor their variables, and signals from this segment are available to other segments 

through the CAN bus. 

All the electrical system nodes inside the bus vehicle are attached to the CAN 

bus through their own respective CAN transceiver, CAN controller and SBC 

(SALUNKHE, KAMBLE and JADHAV, 2016). 

For example, the motor run controller provides frames containing variable data 

on the CAN shared bus. These frames are propagated in broadcast. The other 

controllers can decide whether or not to use the data contained in that frame through 

a data identification field that it loads. Thus, for example, data generated by the engine 

controller can be used by the dashboard controller to display variable values such as 

engine temperature, lubricant pressure, fuel level, diagnostic messages, etc. 

With the evolution of automotive and industrial technologies and the need for 

interaction not only between computer systems, but with the external environment and 

people, the current CAN network needs upgrades to satisfactorily support growing data 

traffic on the network. State of the Art E/E-Architectures tend to integrate additional 

Electronic Control Units (ECUs) with a direct connection to the necessary sensors and 

actuators for optional functionality (BRUNNER et al, 2017). 

Characteristics of current CAN networks make the problem of increasing data 

volume more evident. Some of these features include broadcast messages. This often 

causes a controller to receive a message from which it is not a recipient and needs to 

delete it. Computation time is consumed before the message is parsed before being 

deleted. 

There are some solutions that propose major improvements in the CAN 

network to address the considerable increase in data generated by the different 

segments of the automotive network is the integration between new services and 

features and the CAN protocol. Firstly, we can cite a new approach to the CAN 

network, which will come into use from 2019 on some vehicles, called CAN-FD. In 

addition, another approach under development provides redundant mechanisms for 

the CAN network. This approach is called FlexCAN. 

These new implementations should deliver signals that carry important data 

on the functioning of automotive devices (Vehicle System), as well as data that will 

generate actions on Vehicle System regarding the environment where vehicles will be 

inserted (Automotive Perception System) at intervals. deterministic and acceptable 
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time limits for the correct functioning of the system. These questions are related to 

autonomous vehicles, which will be the area of application of this research. In relation 

to this work, these new approaches will be treated as future work. 

Especially autonomous driving requires timing and data rate to be strictly 

guaranteed by the in-car network (STEINBACH et al, 2015). 

 

1.1 OBJECTIVES 

The work in question, which documents the research to be carried out and 

addresses the concepts involved and necessary for the development of the research. 

The general and specific objectives in accordance with the topics covered are 

described below. 

 

1.1.1 General Objective 

The work in question seeks as a general objective: 

 Present contributions and improvements to current CAN networks. 

 

1.1.2 Specific Objectives 

Specifically the overall goal will be achieved as follows: 

 Understand the characteristics and properties of CAN; 
 Create a prototype for experiments and to understand how the Arduino 

controller works along with the CAN MCP 2515 interface; 

 Implement data transmission larger than the CAN frame data field; 

 Implement multiple signal transmission within a single CAN frame; 

 Implement a CAN gateway to reduce the broadcast domain of messages 

on the network. 
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1.2 JUSTIFICATION 

Given the current scenario of system integration and the increasing 

development of technology for the automotive sector, new solutions, as long as viable 

are always necessary. In automotive embedded electronic systems, when it comes to 

feasibility, properties such as determinism, efficiency and cost are involved. 

Thus, it would need only a possible update to the standards of automotive 

networks already existing and widely used without the great work of implementing a 

new technology, such as FlexRay for example, from the beginning. The feasibility of 

the research in question is the fact that there will be an update on a technology already 

established in the industry and low cost, to meet the new demands on communication 

in the automotive sector and may also be applied to the industrial sector. 

 

1.3 RESEARCH DELIMITATION 

In the work in question will be addressed themes that have relationship with 

what is described in the general objective. The research will be limited to the 

development of a method to implement improvements in the CAN network that aim to 

optimize the use of the shared bus. A prototype of a network formed by microcontrollers 

responsible for the generation and consumption of signals similar to those used in 

automotive networks will be built, where the characteristics described in the specific 

objectives will be implemented. 

 

1.4 STATE OF ART 

There are currently several automotive communication network technologies 

available that can be used according to design requirements such as data rate, traffic 

prioritization, meeting time demands, size of data transported, resource availability, 

etc. The CAN protocol itself has some variants associated with the factors mentioned. 

The differences between these variants are mainly in the network data rate. 

Low Speed CAN, known as LS-CAN, currently standardized to ISO 11898-3: 

2006 has a data rate of 40 to 125 Kbits / sec. This is a low value today, but this version 
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of the protocol has the advantage of being fault tolerant. In the event of a bus failure, 

connected devices continue to communicate, as in this pattern each device on the 

network has its own termination. 

This simple, low standard meets communication systems where speed is not 

important, such as lighting systems, window actuation, lock actuation, air conditioning 

systems, etc. 

High Speed CAN, known as HS-CAN, has a higher data rate from 40 Kbit / s 

to 1 Mbit / sec. It is the standard most used today in automotive networks due to its low 

cost, robustness and high speed. Due to this high speed you need 120 ohm resistors 

at each end of the network. Standardized by ISO 11898, it is the basis for SAE J1939. 

In 2012, Bosh created a new version of the CAN protocol called CAN-FD 

(Controller Area Network - Flexible Data Rate). This new version brought important 

changes as the larger 64-byte frame data field counts 8 bytes in previous versions and 

higher data rate, now reaching 8 Mbit / sec (in previous versions it was 1 Mbit / sec). 

This higher data rate is used in the data transmission phase. The arbitration phase is 

still running at 1 Mbit / sec. 

 

1.4.1 Flex Ray 

FlexRay is characterized by its high level of determinism and security in the 

transmission of information, as well as high data rate (10 mbps). It also allows 

members to be organized into several different topologies and may also use hybrid 

topologies. By contrast, it is too expensive and complex an architecture. 

FlexRay can use one or two wires as a physical transmission medium. Using 

two wires is a way of creating redundancy for fault-tolerance transmission media. The 

use of one or two wires can be applied to various topologies. There are several ways 

to design the FlexRay cluster. It can be configured as a single-channel or dual-channel 

bus network, a single-channel or dual-channel star network, or in various hybrid 

combinations of bus and star topologies (MAKOWITZ; TEMPLE, 2006). 

FlexRay also allows several different topologies, which can be related to using 

one or two wires for transmission. Figure 1 shows the passive topology, similar to the 

bus topology, where a network member can be connected to one or both 

communication channels. 
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Figure 1 - FlexRay passive bus topology 

 
Source: MAKOWITZ; TEMPLE (2006) 

 

Another possible topology is shown in figure 2, called active star topology, 

where a network member acts as a concentrating device, receiving the frames and 

redirecting them to their destination. This topology can use single or dual channels of 

communication and can be configured in many different ways. 

 
Figure 2 – FlexRay dual channel single star configuration 

 
Source: MAKOWITZ; TEMPLE (2006) 

 

Figure 3 below illustrates a composite star topology. This topology aims to increase 

the physical distance between network members and optimize physical means of 

communication. 
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Figure 3 – FlexRay single channel cascaded star configuration 

 
Source: MAKOWITZ; TEMPLE (2006) 

 

The topology used by FlexRay can also be hybrid, as shown below: 
 

Figure 4 - FlexRay single channel hybrid topology 

 
Source: MAKOWITZ; TEMPLE (2006) 

 

For managing multiple bus accesses, FlexRay uses the well-known TDMA, 

where each member of the network is synchronized with each other and waits for their 

time period to perform a transmission. In addition, the architecture still reserves a 

space in time for dynamic frames to be transmitted, thus meeting the two paradigms 

of access to the physical transmission medium, making the design of a protocol-based 

network somewhat complex. 
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1.4.2 Automotive Ethernet 

Ethernet is a widely used architecture in corporate computer networks. It is a 

communication technology that has caught the attention of automakers due to the fact 

that it achieves high data transmission rates through twisted pair metal cables and in 

some fiber optic versions. Another advantage is that it uses multiple physical media for 

transmission and reception, allowing network nodes to operate in full duplex mode. 

One of the challenges of using Ethernet in automotive networks is the fact that 

it is a network sensitive to various types of external interference on the transmission 

medium, in which case failures in transmission and reception of data. Because there 

is no synchronization between nodes, there are multiple devices transmitting at the 

same time. This leads to a scenario of lack of temporal determinism and latency that 

may be excessive when transmitting a critical signal from a sensor to a controller. 

There are working groups that are addressing these issues to enable the use 

of Ethernet architecture in automotive systems. One is the IEEE 802.1 group (TSN 

task group), which features several implementations in the Ethernet architecture to 

meet certain time demands required in automotive communication systems. 

Another working group seeks to address the issue of noise that may impair 

transmission over the Ethernet network that originates in automotive systems such as 

ignition coils and alternators. These are changes made to the physical layer, initially 

designed by Broadcom, initially called BroadR-Reach, and then standardized by IEEE, 

group 802.3bw, and then called 100BASE-T1. It operates with 100 Mbps data rate that 

uses a single pair for transmission and reception, being made by overlapping signals. 

 

1.4.3 LIN (Local Interconnect Network) 

LIN is a serial communication protocol that uses bus and broadcast topology. 

It is a communication protocol of the master / slave type. For this reason, it does not 

need mechanisms to detect bus collisions. The bus consists of a single wire, can be 

up to 40 meters long and allows speeds of up to 20 kbps. It is considered a low speed 

network, but also in extremely low-cost compensation. The frame data field has 

variable sizes, which can be 2, 4 or 8 bytes. 
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It emerged in 1999, in its version 1.0 through a consortium between several 

car makers and Motorola. It went through updates until it reached its 2.2A version in 

2010 and was standardized by SAE as J2602. In 2016, the CiA (CAN in Automation) 

group standardized it as ISO 17897. 

The LIN network can be used as a complement to the CAN network and can 

be used as well as CAN-LS in systems where transmission speed is not important. A 

LIN Master can operate as a gateway between the LIN network and the CAN network. 

Its operation is relatively simple. The master node requests information from 

slaves, who send a response with their data when requested. This is done by sending 

the master a frame called a header that contains a 14-bit field that marks the beginning 

of the frame, an 8-bit field used for synchronization, and an identification field that has 

6 bits. The identification field is used to identify the slave that must respond and the 

requested data. The requested slave responds with a frame called response, which 

contains only the 16 to 64-bit data field and a checksum field. 

 

1.4.4 MOST 

MOST stands for Media Oriented Systems Transport. It emerged in 1997. It is 

a synchronous automotive network where a master provides the clock for all other 

devices on the network. It is designed to synchronously carry video, voice, audio and 

control signals through optical fibers or metallic means. Because it operates 

synchronously for data streaming and uses fiber optics, it is a highly deterministic 

network. Network specifications are maintained by a consortium of some of the world's 

largest automakers. 

The network topology can be daisy-chain or ring (more frequent). Regarding 

the OSI model, the MOST network implements services at all layers. As a result it 

offers various implementation and maintenance facilities. These features include plug 

& play functionality, which facilitates the process of inserting or removing devices on 

the network. It also has network health testing and diagnostic tools. 

There are three generations of the MOST network, the first being called 

MOST25, which uses optical fiber as the physical medium and operates at up to 25 

Mbps. The second generation, called MOST50 uses optical fiber or UTP metallic cable. 
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Operates at data rates of 25 to 50 Mbps. MOST150 is the third generation and operates 

data rates up to 150 Mbps using fiber optic or UTP wire. 

MOST network is a strong competitor of automotive Ethernet for use in 

perception systems. Their use for data transmission in automotive systems such as 

Power Train or Engine Control bumps into issues such as CAN, Flex-Ray or LIN being 

major paradigms of the automotive industry. Another fact is that there is a huge 

technological difference between the current sensors and actuators used in automotive 

networks and the MOST network. Transporting data from these sensors and actuators 

to the MOST network would require the use of transceivers and gateways, and today's 

automotive networks are now closer to these devices. 

 

1.5 THESIS STRUCTURE 

This paper is organized in 5 chapters. Chapter 1 presents a general 

introduction to what will be worked on, objectives, justifications and delimitation of the 

area to be researched. 

Chapter 2 presents the bibliographical theoretical framework used in the work, 

as well as a description of the steps performed and the systematic literature review 

methodology used to select the portfolio to support the research. It also presents all 

the concepts that are part of the area that will be researched, such as computer 

systems, communication networks, communication network paradigms, devices used 

in assembling the prototype, etc. 

Chapter 3 presents the methodology used in the research development, as 

well as describes the steps taken to develop the integration between different 

communication network technologies. 

Chapter 4 presents a description of the scenarios and experiments used and 

an analysis of the results obtained through the tests performed on the created 

prototype. 

Chapter 5 presents the conclusions, presenting the contributions of the work 

to the area of study and suggestions for future work. 
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2 THEORETICAL REFERENCE 

This chapter gives an overview of the elements that are related to the research 

performed. 

Section 2.1 presents the methodological steps of the systematic literature 

review used. Section 2.2 presents concepts on autonomous driving. Section 2.3 

presents concepts related to equipment and protocols that are applied to the project, 

and finally Section 2.4 presents concepts about embedded systems used in critical and 

safety applications. Section 2.5 presents concepts about communication networks and 

subsection 2.5.1 presents communication paradigms related to the researched area. 

Section 2.6 and subsection 2.6.1 present fundamentals about CAN networks and their 

variants.  

 

2.1 SYSTEMATIC LITERATURE REVIEW 

Quality scientific research demands after choosing the theme of a solid 

theoretical basis, which aims to provide the researcher with necessary knowledge in 

the area investigated, state of the art construction and identification of gaps in the area 

to be investigated. 

This material is made up of articles from journals, congresses, book chapters, 

etc., that are related to the area investigated, and should be selected according to the 

research theme and subthemes, keywords, etc. One of the difficulties encountered by 

researchers in this step is to correctly select the materials, because when performing 

searches in databases, usually many papers are returned. 

This initial task can be complex and exhausting, requiring a large amount of 

time from researchers (BARHAM et al, 2014). 

Thus, it is recommended to use some systematic literature review tool, which 

will help the researcher to organize his theoretical basis for research development and 

the creation of the state of the art of the subject to be investigated. The amount of 

material available and current communication technologies contribute to a 

considerable amount of work available to the researcher. 
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This results in an increase in the global scientific literature as a whole, with 

materials found in various databases available to researchers (BHUPATIRAJU et al, 

2012). 

The use of a tool that organizes these works in a qualitative manner is 

essential. The number of scientific publications and the number of journals has 

increased considerably in recent years (PAGANI, KOVALESKI and RESENDE, 2015). 

This wide range of jobs requires the selection of those that are most significant 

to make up the portfolio (SMALL et a, 2014). 

To assemble the portfolio of articles for theoretical basis and state-of-the-art 

construction regarding the theme and objectives of the work, the methodology 

developed at UTFPR, called Methodi Ordinatio, was chosen, although with some 

adaptations. For example, to search the IEEE Xplore database were considered 

papers presented in congresses, because in this modality there are relevant works 

related to the area of study. 

Methodi Ordinatio is a Multi-Criteria Decision Aid (MCDA) methodology in the 

selection of scientific articles for the composition of a bibliographic portfolio (PAGANI, 

KOVALESKI and RESENDE, 2015). 

The methodology will order these works by their relevance in the area of study. 

The methodology consists of nine phases, which for the research work in question will 

be described below. 

After defining the research theme and tapering it to a certain area, the next 

and natural step for the development of the work is the construction of a portfolio of 

related works to assemble the state of the art of the chosen theme. 

The work in question will discuss analysis, implementation improvements, 

prototyping and testing on a CAN-based automotive communication network. As 

theoretical basis will be addressed concepts about Embedded Systems, 

Communication Networks and CAN Networks. 

The choice of this theme corresponds to phase 1 of the methodology chosen 

to create the work portfolio for theoretical basis of the research. The search to 

assemble the work portfolio will be carried out on digital and technical bases. In 

general, for all axes, works published between 2010 and 2018 will be selected, with 

some exceptions from older relevant works.  
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This is a reasonable time for good groundwork not to be discarded, and works 

that point to new advances in research will be selected. The basis used for drafting the 

state is IEEE Xplore. 

Searches will be performed in the base above using their keywords or 

combinations so that the search returns the works quantitatively and qualitatively. 

In phase 2, a preliminary exploratory search was performed, which allows a 

relative evaluation of the keywords and the quantity and quality of works returned within 

the defined time interval. 

In this phase searches will be performed in the selected base (IEEE Xplore), 

using the keywords and combinations between them through Boolean operators. 

The terms searched in the databases were combinations between the 

following items: 

 Communications networks; 

 Automotive communication networks; 

 Periodic and aperiodic signs; 

 CAN (Controller Area Network). 

 

Stage 3 of the methodology is to determine which keywords are used and their 

combinations to perform the database searches. 

In stage 4, searches are performed and their results exported to a reference 

manager application. For this we used the Mendeley Desktop reference manager. 

In stage 5, the articles were organized by area and research base (keywords) 

within Mendeley Desktop. A manual filtering procedure was also performed, based on 

the keywords, relating them to the titles and abstracts of the articles, leaving 33 papers. 

Some duplicate works were eliminated and at this point there was a change in 

the review protocol defined by the chosen methodology. Papers considered relevant 

to the research, something detected through title and summary analysis were included 

in the portfolio. 

As this type of work has no impact factor, they were classified differently from 

the one proposed by the methodology. 

In stage 6 were identified the impact factors, year of publication and number 

of citations of the works through the Google Scholar platform. 
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In stage 7, the formula suggested by the methodology for ranking works within 

a spreadsheet, already created with all references obtained in the previous steps, was 

applied. 

Although they do not have an impact factor, which is considered for ranking 

papers published in journals, the conference papers were also applied the formula, 

based on the number of citations of the papers, information obtained from the Google 

Scholar tool. 

Some articles have been added to the portfolio manually because they have 

been published in very recent congresses and have titles directly linked to the theme 

and objectives of the paper or papers published at conferences. 

From the spreadsheet generated with all the information cited above, it is easily 

possible to apply several types of filter to classify the works published in journals or 

conferences to read, based on the order in which they were classified by the 

methodology formula. 

The spreadsheet was used to filter papers by the areas described above and 

sort them for reading. 

 

2.2 EMBEDDED SYSTEMS 

An Embedded System is a microcontrolled electronic computer system that is 

dedicated to controlling a single system. Being a computer system, it is made up of 

hardware and software. All hardware is encapsulated in a silicon wafer containing 

processing core, volatile and nonvolatile memories, internal communication buses, 

communication ports, and I / O devices. It differs from common electronic systems 

because it has computational intelligence, discussed below: 

The software, or Operating System, which in this case is known as firmware, 

in turn is a set of instructions that control the operation of hardware and are responsible 

for the computational intelligence of this type of system. Basically a firmware can be 

divided into two parts. 

One that configures computer system hardware parameters and others that 

run cyclically on input data, generating output data, all for an external system to 

function properly, such as a traffic light, an industrial plant, automotive systems, among 

others. 
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These are usually computer systems dedicated to coordinating the actions 

performed by a very specific system, unlike microprocessor systems that are generic 

computer systems. In short, they are small-scale computers, dedicated to controlling 

some kind of process, such as traffic controllers, industrial machines, automotive 

devices, appliances, etc.  

Even very small programs may contain highly sophisticated algorithms, 

requiring a deep understanding of the domain and of supporting technologies, such as 

signal processing (LEE, 2000). 

Figure 6 illustrates in simplified form an embedded computer system. 

 
Figure 5 - Embedded System 

 
Source: Adapted from Al-Hashimi (2006) 

  

An embedded system is a type of small-scale computational system, so it is 

made up of several parts as illustrated in the previous figure. The central item, called 

Programmable embedded systems has the processor and coprocessor, responsible 

for executing the instructions contained in the firmware, which in turn is stored in a 

nonvolatile memory area in the memory subsystem. 

An embedded system also has interfaces that use data generated by events 

external to the Programmable embedded system, which are the inputs. These inputs 

can use both analog and digital signals from external sensors that monitor process 

variables and take this data to be consumed by the computer system. 
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Consuming data means executing on them the instructions contained in the 

firmware used, generating output signals to digital or analog interfaces to generate 

external events resulting from the processing performed on input data. 

Embedded computer systems have different types of constraints, which 

depend on the purpose of the system. For example, there are systems that must be 

low cost, systems with high security, systems with high availability, systems with 

deterministic response times, etc. 

Regarding the computer system with time constraints, they are divided into 

hard real time system and soft real time system. Hard real time systems have strict 

time constraints, while soft real time systems have some flexibility in their response 

times. 

This operation is possible thanks to the operating system used in these 

systems, which are called Real time operating system (RTOS). These systems are 

designed to service all deadlines through task schedulers that ensure that tasks 

perform concurrently and meet their time constraints. 

In other words, it is a system that generates time-deterministic outputs, 

regardless of disturbances, computational load, resource sharing or other factors that 

may cause delays in output signal generation. These delays can have serious 

consequences if the system is in control and interacting with critical processes such as 

chemical plants, boilers, medical equipment, safety systems, etc. 

Embedded systems are used in a dedicated way to control real-world 

processes, capturing environmental information through sensors or receiving signals 

through devices deliberately triggered by a user (thus characterizing computer system 

input processes). A microcontrolled computer system consumes the generated data, 

processing it and generating output signals for actuators. 

As the microcontrollers used in this type of system are systems dedicated to a 

certain function, they are low cost systems with few computational resources. Slow 

computers, such as microcontrollers, and timing precision, predictability, and 

repeatability may be far more important than speed (LEE, 2017). 

In obtaining data from the variables involved in the controlled process, the 

embedded system processor executes software-based instructions to generate 

outputs by performing calculations, comparisons, selections, repetitions, and other 

computational operations, with the purpose of generating data and output or response 
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actions, which they can make information appear to an operator, trigger from some 

kind of actuator or even generate a PWM signal, for example. 

This type of computer system, due to its low cost and possibility of operation 

based on several types of restrictions, is widely used in the automotive industry to 

control vehicle subsystems such as engine, brakes, airbags, comfort and 

entertainment devices, etc. 

The systems that control the processes mentioned do not work in isolation. 

They are connected to a communication network to share resources and exchange 

information with each other, in order to optimize physical means of transmission and 

integration between the different processes they control, and the possibility of 

interaction with larger networks such as the Internet, allowing that are controlled and 

monitored remotely. 

 

2.4 SAFETY CRITICAL EMBEDDED COMPUTING SYSTEMS 

Safety Critical Embedded Computing Systems are computer systems that 

control, monitor and manage systems where safety and functionality are absolutely 

essential factors. In fail-safe systems, hardware, software, or an operator detects a 

failure and modifies effector output so that the system enters a safe, generally 

nonoperating state (DUNN, 2003). 

They are systems in which if there is any kind of failure in its correct functioning 

or even a malfunction or degraded functioning, the result will be catastrophic. The 

consequences of a possible failure of such a system include loss of human life, 

damage to human and animal health, damage to external and remote environments or 

the environment in which the system is inserted, environmental damage, damage to 

the system itself. system, etc. 

In Safety Critical Embedded Computing Systems, in addition to considering 

the hardware, which must be robust and functional, the issue of the software used is 

also essential, especially regarding cyber security. Software failures can also lead to 

disastrous consequences. In this regard, there are many techniques available for 

developing efficient applications, such as modeling tools, formalization, software 

engineering techniques, and algorithm design and analysis techniques.  
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In this last item, algorithms will define which actions should be performed and 

can be mathematically modeled and analyzed, in order to develop increasingly efficient 

solutions in terms of computational resource consumption and response time. 

The common approach among all functional safety standards is to identify 

possible hazards that are caused by malfunctioning of the embedded system and 

classify the criticality of such a malfunctioning (BAUMGART et al, 2014). 

The general view of safety assurance is to minimize the risk that may lead to 

accidents. In this view, not only the computer and software products have to be 

evaluated for safety, but also the tools used to develop this hardware and software 

(KORNECKI and ZALEWSKI, 2008). 

Generally speaking, if a failure occurs that leads to serious consequences 

such as those mentioned above, the system can be considered as Safety Critical 

Embedded Computing Systems. We can cite some examples of various levels of 

Safety Critical Embedded Computing Systems. A passenger plane has a Safety 

Critical Embedded Computing Systems, as a crash could result in a crash and the 

consequences of such an event would be disastrous. 

An example of a system used in aviation is the fly-by-wire, where a set of three 

computers called the primary fly controller (PFC) receives pilot commands through 

buttons and generates signals that will trigger electric or hydraulic actuators that will 

move flaps, for example, and these movements are still limited by design. 

As a matter of fact, the DbW systems enhance the safety of the vehicle 

occupants. This is done by making the conditioning of the driving commands easible, 

by allowing more accurate maneuvers thanks to the use of closed-loop controlled 

electric drives, and by increasing the car’s efficiency, since they utilize electrical 

equipment with much less losses (PIMENTEL, 2003).  

Some automotive systems may also be classified as safety critical systems. 

As an example, we can mention the ABS brake system or airbag systems. The concept 

of autonomous vehicles will also need systems with these restrictions, as they will 

serve for monitoring of traffic lanes and for safe distance control in relation to people, 

objects and other vehicles. 

There are still systems that, if operated improperly or erroneously, can have 

serious consequences, such as engineering applications for design drawings, 

structural analysis applications, etc. These systems must be correctly matched to the 

purpose they serve. Safety-critical systems exist in a certain application context. 
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Certainly, the details of safety critical aerospace systems are different from those of 

the space shuttle, process control, or automotive (PIMENTEL, 2003). 

Another relevant issue is the security of these systems. Because they have 

the characteristic of safety critical systems, if the repositories where they are stored 

are invaded and controlled by malicious people, the consequences would be 

disastrous. Security is an essential component in safety-critical embedded systems to 

ensure the required level of safety given the ever-increasing level of connectivity of 

these systems (MORENO and FISCHMEISTER, 2017). 

There are formal methods for identifying, developing and operating this type of 

system. Functional safety standards like IEC 61508 or the automotive standard ISO 

26262 provide a set of requirements and process steps to identify critical functions and 

classify their criticality (BAUMGART, 2014). 

 

2.5 COMMUNICATION NETWORKS BETWEEN COMPUTER SYSTEMS 

With the increasing use of computer systems of various types for the 

management of various types of processes, the need arose to share physical and 

logical resources between these computer systems. Due to the increasing number of 

variables and processes to be controlled, peer-to-peer systems became unviable. 

Sharing data, computing resources and transmission media has generated 

what we know today through communication networks. The integration between 

computer systems through communication networks has made control systems more 

interactive, intelligent, versatile and has made better use of both the physical media 

and data generated by these systems. 

Data communication is data exchanges between two devices through some 

kind of transmission medium, such as a wire cable. The communication system must 

be made up of the media and protocols (WETHERALL and TANENBAUM, 2011). 

By replacing the old peer-to-peer systems with digital communication 

networks, there has been savings and optimization of physical means of transmission, 

formerly dedicated only to carrying signals that carry data generated by a single system 

and consumed by a single control system. 

Sharing a physical transmission medium also allows data to be shared and 

used by computer systems that are different or distant from the systems that generated 
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these signals, thereby optimizing the use of the physical medium and reducing the 

amount of material needed to construct that medium physicist. 

A network enables the concept of data streaming, where data used by one 

system is not only isolated on the system itself, but is available so that other computer 

systems can use that data. When data is exposed to different computer systems 

through a communication network, different approaches can be made about them 

through different applications, such as exposure to artificial intelligence algorithms in 

order to mine the data, for example. 

For two or more computer systems to exchange information, there must be a 

network protocol in addition to some physical medium. A protocol is a formal language 

for creating messages that will be encapsulated within frames. To be able to 

communicate directly, machines on the network must know the same protocol. 

It is still possible for two machines using different protocols to communicate. 

In this case it is necessary to use another system, called a gateway. A gateway must 

know the different protocols involved in the network and translate the signal received 

from one protocol to another protocol. 

In a digital network between computer systems, many different types of 

constraints are involved, such as cost, synchronization, data rate, security, 

determinism, etc., providing a very large environment for research and development of 

solutions best suited to today's demands. 

The Open Systems Interconnection (OSI) Model serves as a reference model 

for communication network design. It was created by ISO in 1971 and formalized in 

1983. As a reference model only, there is no architecture or network protocol assigned 

to the model. 

The OSI Model defines only tasks performed by network devices to 

communicate between two stations. These tasks are called layers, and according to 

the OSI Model to have end-to-end communication between two stations seven steps 

(layers) are required, which are shown in the following figure: 
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Figure 6 - OSI Reference Model and TCP / IP Fact Model 

 
Source: Adapted from cisco.ct.utfpr.edu.br (2019) 

 

The figure shows the reference model and a de facto model in use, which is 

TCP / IP. The TCP / IP model is similar to the OSI model, with some layers less, 

however. The model has capabilities to encapsulate the data to be transmitted and 

also the control information for forwarding frames between intermediate devices until 

message delivery to the device. of final destination. 

The CAN network, dealt with in this work and other field networks, usually only 

use layers 1, 2 and 7. At layer 7 is where data is generated, layer 2 defines frame 

format according to the protocol used and layer 1 transmits the encoded frame in a 

format compatible with the medium used (metallic, wireless or fiber optic). In this type 

of network the services of the other layers are not used. 

 

2.5.1 Communication Network Paradigms – Event Triggered and Time Triggered 

In a real-time systems communication network with limited shared resources 

(there are fewer message paths than there are messages to be transmitted), as a 

physical means of transmission, there must be some way to ensure that all devices 

can transmit your messages to other devices on the network. 

In other words, network architectures and protocols need to ensure that there 

is no monopoly on the use of network resources by any device or service. This is done 
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through scheduling services, which are responsible for giving flow to data generated 

at end points across the network. In this sense, there are two architectures that provide 

this type of service, called Event Triggered architecture and Time Triggered 

architecture. 

Event-oriented architecture consists of having a frame transmitted by the bus 

as soon as possible, depending on the conditions of use of this feature. 

The event triggered architecture consists of program modules that respond 

external inputs or communication messages immediately. The time-triggered 

architecture consists of program modules that respond them periodically (ITAMI, 

ISHIGOOKA and YOKOYAMA, 2008). 

In time-oriented architecture, there are predetermined time slots for 

participants to transmit their frames within those slots. 

To provide organized bus access in distributed real-time networks, time-

triggered communication is mainly used. Thereby, each bus participant is granted bus 

access during defined time slots (EINSPIELER and STEINWENDER, 2018). 

 

2.5.1.1 Event triggered architecture 

In Event Triggered architecture the transmission of the generated messages 

is done immediately, whenever possible. Whenever possible, it means that resources 

are available to transmit the frame, such as backbone, for example. If this does not 

occur, the message is buffered and awaits the release of the transmission channel. 

In this approach as members do not have predetermined transmission times, 

collisions may occur and protocols must be in place to treat possible collisions. 

The event triggered architecture consists of program modules that respond 

external inputs or communication messages immediately (ITAMI, ISHIGOOKA and 

YOKOYAMA, 2018). 

This architecture, despite having a more dynamic behavior regarding the use 

of shared resources, ends up creating a scenario of non-determinism response time 

for requests. This means that the device that has made a request and is waiting for a 

response is unsure how soon it will respond. 

Event-triggered systems have the advantage of being much more Flexible and, 

thus, are much more handy when dealing with changing requirements or uncertain 
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knowledge (aperiodic events for instance as their period is not known) (SCHELER and 

SCHRÖDER-PREIKSCHAT, 2010). 

This is because as messages are being transmitted over any given time 

interval, and as they are generated, frames can be formed on either backbones, 

buffers, transmission media or concentrating devices, causing bottlenecks and non-

zero sources. determinism. Although there are services that deal with frames that are 

primarily in layers above the link, the computational time spent for this analysis of which 

frame is a priority also becomes a source of non-determinism. 

This architecture is used in corporate networks without time restriction and in 

some cases in automotive networks for the transmission of aperiodic signals or in case 

of frames without temporal restriction, as a signal generated by the processor that 

controls the ABS system of an automotive network, for example. In this case, priority 

issues in transmissions are observed. 

It is not recommended for communication between safety critical systems due 

to non-temporal determinism and the possibility of very high jitters. As a disadvantage 

of event-based networks, one can cite the fact that they are non-deterministic networks 

temporally, since as stations have autonomy to start transmissions, they first need to 

check the availability of the physical medium, and will only transmit if there are resource 

availability. In case of more than one station trying to transmit, there may be a dispute 

for access to the backbone, which will generate temporal non-determinism. This queue 

can make the transmission time of a message unpredictable. 

  Nevertheless, this approach has some advantages. One of them is its 

versatility and dynamism in relation to the autonomy that participants have to start 

transmitting their frames. Another advantage is the ease of adding and removing 

devices on the network. Since participants have autonomy to perform transmissions, 

no media access settings need to be made.  

 

2.5.1.2 Time triggered architecture 

In Time Triggered Architecture, hub devices and physical media are shared 

temporarily through a technique called Time Division Multiple Access (TDMA), where 

devices transmit their frames across the backbone at predetermined and distinct time 
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intervals. As a result, the possibility of conflicts or collisions because more than one 

member of the network emits a signal in the physical environment is very small. 

In time-triggered networks, the possibility of a collision on the shared medium 

is minimized by granting every access member only for distinct time slots 

(EINSPIELER, STEINWENDER and ELMENREICH, 2018). 

This environment is more suitable for real-time systems, since due to the fact 

that members use distinct and periodic time intervals, it defines what is known as a 

deterministic network. In this scenario, members know what time intervals to transmit 

and know what time intervals they will receive data. 

The time-triggered architecture is more suitable than the event-triggered 

architecture for hard real-time systems because of its predictable behavior (ITAMI, 

ISHIGOOKA and YOKOYAMA, 2018). 

With the increasing use of computer systems and the consequent growth of 

these communication networks, some challenges have emerged. For this architecture 

one of the challenges is how to handle messages that carry aperiodic signals, that is, 

sporadically generated signals that are outside the context of network time 

synchronization. 

The disadvantage of this approach is its own lack of dynamism and flexibility 

in network configuration. Because all clocks must be in sync, adding or removing a 

device from the network will re-sync all participants. This time-based transmission also 

generates low utilization of the physical transmission medium. 

The advantages of using this type of network are the temporal guarantees of 

frame delivery (determinism), low jitter and predictable behavior. Another important 

factor is the ability to handle frames as a priority, since access to the backbone for 

transmission is by time intervals and this access rule can be applied. 

 In this architecture there is a need for synchronization of the transmitter member 

with the receivers. This can be done from a global network clock, by distributing 

transmission times and periods or from a central network member. This technique is 

known as synchronous transmission. 
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2.6 FUNDAMENTALS OF CAN 

The increasing number of functionalities in modern vehicles with real-time 

communication constraints demands higher data transmission rates than those 

currently available from the dominant Controller Area Network (CAN) standard. 

The Controller Area Network (CAN) is a serial field bus system with a 

message-based protocol. The protocol is multi-master based. CAN was developed by 

the Robert Bosch GmbH and released in 1986 (SALUNKHE, KAMBLE and JADHAV, 

2016). 

Regarding the OSI communication model, the classic CAN and CAN-FD 

network services are related to Layers 2 (Data Link) and 1 (physical) 

Regarding the OSI communication model, the CAN and FD CAN services are 

related to layers 2 (Data Link) and 1 (physical). Figure 8 shows the relationship of 

OSI/ISO Reference Model and layer structure of CAN architecture. 

 
Figure 7 - OSI layers x Classical CAN 

 
Source: CiA - CAN in Automation (2014) 

 

The upper layers are specified by the network designer, that is, used by 

protocols for data generation and reading which CAN-based as communication 

systems to perform the transmission. 
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The data link layer is the one that uses information from the upper software 

layer and frames the frame accordingly. This layer is subdivided into two sublayers, as 

follows: 

The LLC (Logic Link Control) sublayer is responsible for ensuring the 

interoperability of any upper layer protocol with the physical medium to be used for 

transmission. 

The Media Access Control (MAC) sublayer is responsible for ensuring media 

access (CSMA / CA) operations, defining non-destructive arbitration, detecting errors, 

and creating the frame to be transmitted to the lower layer. 

This layer is also where it is treated about the priority of shared media access. 

The arbitrage field of a frame carries the message's priority along with its identification. 

The lower the value, the higher the priority, and the station gains bus access to transmit 

its frame. 

CAN is a network that uniquely connects microcontrollers, as its name 

suggests. This connection is made through twisted pair type metal cable, which can 

be shielded or not. Importantly, cable quality influences the quality of the transmitted 

signal. Microcontrollers in turn are connected to sensors and actuators via point-to-

point connections with their digital or analog communication pins.CAN also has the 

characteristic of operating with twisted pair passive metal bus and differential signal, 

which makes the signal transmission has a good immunity against external 

interference, something very relevant in automotive networks, where mainly in the 

engine there are many sources of interference. In this type of transmission, the data is 

represented by the recessive bit 1 and the dominant bit 0. To represent bit 0 the voltage 

on both channels is 2.5V, the difference being 0. For bit 1 the voltage on CAN_H is 

3.5V and 1.5V for CAN_L, generating a potential difference of 2V. 

Regarding message identification, the CAN network has a field in the 

arbitrariness phase that identifies its content. There is no explicit address in the 

messages. Instead, each message carries an identifier that controls its bus priority and 

can serve as an identification of its content (LUGLI and SANTOS, 2009).  

The CAN network was initially developed for use in the automotive industry to 

connect different embedded systems with electronic control (power train, chassis, 

body, dashboard, etc.). Currently it is also widely used in other industries such as 

industry, hail-vehicle, aircraft, marine, agricultural equipment, etc., due to its reliability 

and safety. 
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Controller Area Network (CAN) is a serial communications bus designed to 

provide simple, efficient and robust communications for in-vehicle networks (DAVIS, 

ROBERT et al, 2007). 

As with all digital communication networks, CAN's main objective is data 

sharing and physical means of transmission. Data sharing results in greater and better 

interaction between automotive computer systems with their users and even with other 

computer systems that are part of the same vehicle. The concept of data and resource 

sharing is quite explicit in a CAN network. Connecting to other microcontrollers (CAN) 

is via a bus shared with other microcontrollers that also share their data. 

Thus, a microcontroller has access to a much larger number of signals than its 

number of input and / or output pins. This distributed system allows signals to be 

harnessed by different systems, enabling new control and monitoring features to be 

implemented. 

With a CAN network a network can be divided into smaller subsystems, thus 

not having a single point of failure (gateway). Even if the gateway fails, even in a 

degraded manner the subsystems will continue to operate interacting with each other. 

The following shows the operation of three variants of the CAN network. The 

differences are in baud rates and data frame size as described below: 

The CAN 2.0A version (ISO 11519), also known as Standard CAN, has an 11-

bit identifier, 8-byte payload and a maximum bit rate of 250Kbps. 

Figure 9 below illustrates the CAN 2.0A standard frame: 

 
Figure 8 - Frame CAN 2.0A 
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Source: Adapted from CORRIGAN (2002) 

 
The CAN 2.0B version (ISO 11898), also known as full CAN, has a 29-bit 

identifier field, 8-byte payload, and a maximum bit rate of 1Mbps. 

Figure 10 below illustrates the 2.0B standard chart: 
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Figure 9 - Frame CAN 2.0B 

S
O
F

11 bit 
identifier

S
R
R

I
D
E

r 0 DLC 0...8 bytes data CRC ACK
E
O
F

I
F
S

18 bit 
identifier

R
T
R

r 1

 
Source: Adapted from CORRIGAN (2002) 

 

The CAN-FD (CAN with Flexible Data Rate) version also has a 29-bit identifier 

field, a 0 to 64 byte payload, and a data rate of up to 8Mbps (depending on the quality 

of the transmission medium). 

Figure 11 below illustrates the CAN-FD standard frame and the CAN standard 

frame for comparison: 

 
Figure 10 - Frame CAN 2.0B vs CAN-FD 

 
Source: Vector E-Learning (2018) 

 

The differences between CAN 2.0 and CAN-FD networks are in data rate and frame 

payload size. The following is a comparative table between CAN 2.0 and CAN-FD 

networks: 

 
Board 1 - Comparative board - CAN x CANFD 

Property LS-CAN HS-CAN CAN2.0A / 2.0B CAN-FD 

Data-rate 40Kbps to 

125Kbps 

40Kbps to 

1Mbps 

20Kbps to 

1Mbps 

Up to 8Mbps (data field) 

Payload Max 8b Max 8b Max 8b 12, 16, 20, 24, 32, 48 or 

64b 

Identifier field size 11 bits 11 bits 11 bits 2.0A 

29 bits 2.0B 

29 bits 
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Property LS-CAN HS-CAN CAN2.0A / 2.0B CAN-FD 

Messages on the 

network 

2048 2048 2048 >5x108 

Messages on the 

network 

2048 2048 2048 >5x108 

Media access control Event-

triggered 

Event-

triggered 

Event-triggered Event-triggered 

Signals by payload One One One Several 

Source: Self Authorship 

 

Below are some of the reasons that make the CAN network so popular and widely 

used in many sectors: 

 Low cost: ECUs can communicate via a single CAN interface, i.e. not 

direct analogue signal lines, reducing errors, weight and costs; 

 Centralized: The CAN bus system allows for central error diagnosis and 

configuration across all ECUs; 

 Robust: The system is robust towards failure of subsystems and 

electromagnetic interference, making it ideal for e.g. vehicles; 

 Efficient: CAN frames are prioritized by IDs - the top priority gets bus 

access, yet frames are not interrupted; 

 Flexible: Each ECU connected to CAN bus can receive all transmitted 

messages. It decides relevance and acts accordingly - this allows easy 

modification and inclusion of additional nodes (e.g. CAN bus data 

loggers). 

 

Further Advantages of CAN Bus 

 Fast & deterministic; 

 Suitable for hard real-time systems; 

 In contrast to the Ethernet protocol, with non-deterministic collision 

detection and backoffs; 

 Highest priority message gets immediate access once the bus is free; 

 Ethernet packets often need to wait even if the bus is free. 
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2.6.1 Controller Area Network With Flexible Data-Rate (CAN-FD) 

The Controller Area Network with Flexible Data Rate (CAN-FD) is an 

improvement on the CAN 2.0 protocol as defined in the ISO 11898-1 standard 

(HARTWICH, 2012).  

It presents new features that enable higher speeds than traditional CAN when 

transmitting the data part, but is designed to be backward compatible.  

The CAN FD maintains the major features of the CAN for overriding the existing 

CAN network bus into CAN FD preparing the next generation in-vehicle network 

system (OH, WI and LEE, 2017). 

The physical and data link layers can be shared by the message formats of 

both protocols in such a way that any CAN-FD node can receive messages sent from 

a CAN node. This property allows for a smooth transition from CAN to CAN-FD 

networks. 

The CAN-FD frame allows the transmission of payloads up to 64 bytes, as 

opposed to the maximum 8 bytes of CAN and an increased baud rate of up to 8 Mbit/s 

for the bits following the arbitration stage (the message identifier). 

To use large payloads in CAN-FD efficiently, it is therefore needed to pack 

multiple messages and signals in one single frame (BORDOLOI and SAMII, 2014). 

Figure 2.5 shows a comparison of transmission times for the old CAN frame 

and the new CAN-FD frame, in which the data transmission is shorter thanks to a 

higher bit rate. The example shows the identifier field in the arbitration phase 

transmitted at 1Mbps, and data phase transmitted at 4Mbps in CAN-FD. 

However, the opportunity of a larger payload can be exploited Figure 12. In 

CAN FD, the data field phase is shortened by switching from a lower to a higher bit 

rate. The arbitration phase remains the same. only by redesigning (entirely or in part) 

the message set. 
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Figure 11 - Frame CAN 2.0B vs CAN-FD 

 
Source: DE ANDRADE et al (2018) 

 

Finding a new packing of signals into CAN-FD frames is not a trivial problem, 

indeed, it is an instance of a variable size bin-packing problem (BORDOLOI, SAMII, 

2014). 

The Controller Area Network with Flexible Data Rate works with two bit rates: 

one for the arbitration field and the other for the data field. The arbitration bit rate, also 

called normal bit rate, is applied until the BRS bit (included) and after the CRC delimiter 

bit (excluded, the frame format is shown in figure 2). The data bit rate starts from the 

ESI field up to the CRC delimiter and allows up to 8 Mbits/s, instead of the 1 Mbit/s of 

the standard CAN. 

Three new bits are added in the arbitration field: the EDL (Extended Data 

Length), the BRS (Bit-Rate Switch), and the ESI (Error State Indicator). The EDL field 

defines the data length with the highest bit at zero if the message size is 0 to 8 bites 

(0000 to 1000) and using the remaining 7 combinations with the highest bit at 1 to 

encode the lengths 8, 12, 16, 20, 24, 32, 48, and 64 (1000 to 1111). The BRS bit 

determines whether the message is transmitted with the normal rate (up to 1 Mbps) or 

with the increased one (up to 8 Mbaud).  

The ESI bit is transmitted dominant by error active nodes, recessive by error 

passive nodes (HARTWICH, 2012). Figure 2.6 shows the frame structure of CAN FD, 

with the standard and extended frames. In terms of format, the new frame does not 

differ from CAN 2.0 with Start of Frame (SOF), Arbitration, Control, Data, CRC, 

Acknowledgment (ACK), and End of Frame (EOF) fields (HARTWICH, 2012). 

Figure 12 below illustrates the CAN-FD frame format. 
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Figure 12 - CAN-FD Frame 

 
Source: AN, JEON (2017) 

 

As in CAN, the arbitration field defines the message that wins the contention 

(lowest identifiers have highest priority). 

Similar to CAN, in CAN-FD, an opposite bit is added to the frame every time 

there is a sequence of 5 bits of the same value (bit stuffing rule). However, stuff-bits 

are only inserted in CAN-FD from the SOF until the end of the data field, leaving the 

ACK and EOF fields without stuff bits. Furthermore, the CRC is stuffed (MUTTER, 

2015).  

In addition, as CAN FD allows larger payload sizes, a new CRC formulation is 

required to retain the level of reliability of CAN 2.0 (MUTTER, 2015). 

We shall consider that the CAN_FD standard adopts different stuff rules for 

the CRC field considering it not fixed such in traditional CAN. 

For the next generation of automotive systems in application level consider 

that the traditional CAN specification has limitations with bit rate of CAN limited to 1 

Mbps and data field limited to 64 bits (8 bytes).  

Then, that has taken in motivation for CAN_FD in order to increased demand 

for bandwidth in automotive communication systems, large gap between the CAN (max 

1 Mbps) and FlexRay (10 Mbps), time-triggered communication is not Flexible enough, 

great effort to migrate to FlexRay/Ethernet, hardware costs and software changes.  

Therefore, the use motivating cases, not limited such as accelerate flash from 

SW in ECUs to production lines and services, increased communication demand 

between ECUs, accelerate communication in long lines and avoidance of large spacing 

in long messages. 
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First of all, we shall demonstrate the motivation and benefits which taken to 

development of CAN-FD in order to attend some of the applications that was 

demanding for new technology of communication of networks in level of increasing the 

payload and data rate. The first three examples are related to automotive application 

and the fourth is for the automation application. 

The capacity of payload for CAN-FD is increased so that it can convey more 

data and support more the transport protocols. The main application example of the 

enhancement of CAN-FD in relation to CAN is for the ECU flash programming. For the 

same SW download, with CAN-FD enables to reduce the time in 50% in order to reduce 

the time which the vehicle stands in station of flash programming in production line or 

services. 

 

3 METHODOLOGY 

The work to be developed will contribute to computing, in order to implement 

improvements in the CAN network. These improvements will be demonstrated by 

prototyping using Arduino boards connected through peer-to-peer connections to 

diverse devices, generating and consuming signals similar to those used in automotive 

systems. For sharing the generated data, these Arduino cards will be connected to 

each other using the CAN MCP2515 module. 

In the prototype created the controllers that generate signals will make these 

signals available on the CAN bus so that they can be consumed by other controllers 

also connected to the bus. Periodic signals will be used, which will be transmitted on 

the bus at each execution of the controller source code infinite loop and aperiodic 

signals, transmitted whenever an event occurs during the controller source code 

execution. 

As will be described below, the different signals used will receive an identifier. 

This identifier will be used by the MCP2515 module in the CAN network arbitration 

process performed automatically by the protocol implemented in the module to 

determine which signals have bus transmission priority and also to create the filters 

used for the controller to decide whether or not to use it. frame received. 

 



37 
 

3.1 MCP2515 CAN Module 

MCP2515 is a controller that is used to give MCUs access to the CAN network 

in version 2.0B at a speed of 1 Mb / s. Communication between the MCU and the 

MCP2515 controller is via the Serial Peripheral Interface (SPI) protocol in modes 0,0 

and 1,1. This controller has an unused MCU message filtering mechanism that is 

based on filters that are configured according to the identification of CAN network 

frames. It has two receive buffers and three transmit buffers with message prioritization 

capabilities based on their identifier. 

It includes a CAN module, which has all protocol mechanisms for message 

transmission and reception, such as error checking and message identifier analysis 

and comparison with user-defined filters. It also has a set of registers that is used to 

configure the operations performed by the module and the block responsible for the 

SPI protocol. Figure 13 below shows the internal structure of the MCP2515 module. 

The CS, SCK, SI and SO pins connect the module to the Arduino board through the 

SPI protocol. The SPI controller connects to the transmit and receive buffers, which in 

turn are connected to the module that implements the CAN protocol, which has the RX 

and TX communication interfaces connected to the TJA1050 transceiver, which 

converts the data into the electrical signals that will be transmitted. CAN bus (CANH 

and CANL). 
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Figure 13 - Block Diagram MCP2515 CAN Controller 

 
Source: microchip.com (2018) 

 

Figure 14 below gives a simplified example of a CAN network assembly 

between MCUs using the MCP2515 controller. The image shows the controller that is 

connected via point to point links with sensors and actuators and the MCP2515 module 

connected via the SPI protocol. The MCP2515 module is connected to the bus via the 

TJA1050 transceiver. 

 

Figure 14 - Example system implementation 

 
Source: microchip.com (2018) 
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4 EXPERIMENTAL RESULTS 

The validation of the proposals present in this work will be through the 

implementation of prototypes, initially using the Arduino platform. Arduino is an open 

source platform, widely used in academia for conducting experiments and developing 

research. It is a platform that has a microcontroller to perform the actions contained in 

the software created and also has additional peripheral devices, which allow its 

integration with external systems. Its more detailed description can be obtained at 

arduino.cc. 

In conjunction with the microcontroller mentioned above, a CAN BUS MCP 

2515 module was used. This module allows you to connect the microcontroller used 

or others to a CAN network and make the transmission or reception of data available 

on the bus. For integration between the communication module and Arduino the library 

“mcp_can.h” was obtained from GitHub. Figure 15 below shows the MCP2515 module 

in detail.: 
 
Figure 15 – Module MCP2515 

 
Source: electronicshub.org (2018) 

 

4.2 EXPERIMENTS AND SCENARIOS 

The first sets of experiments are based on a publication from 

eletronicshub.org. The scenario created in the publication has been enhanced with 
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redundant controller interfaces and a also redundant CAN bus to meet safety critical 

systems requirements through load balancing between transmitters and buses and 

redundant interface that comes into operation when problems occur in the interface or 

bus used. 

 

4.2.1 Scenario 1 - Single Signal 

To perform the experiment, the topology shown below was set up to meet 

reliability and availability, and the use of redundant paths to avoid congestion in frame 

transmission. In addition, as a result, a more robust network is obtained regarding CAN 

bus availability. This will be done by using redundant CAN MCP2515 modules on the 

controllers and consequently redundant communication buses between network 

members. Figure 16 below demonstrates the scenario created: 
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Figure 16 - Scenario 1 

 
Source: Self authorship 

 
 

In scenario 1 shown above, Node 1 and Node 2 have redundant CAN bus 

interfaces. These interfaces can be used in different ways to meet temporal 

transmission requirements of important data and make the network fault tolerant, and 
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these network members can be used for critical system control, for example. The 

frames generated by these devices can be sent across different interfaces, creating a 

transmission load balanced communication system and still being tolerant to failures 

that may occur at the communication interface or bus. 

The CAN bus is known to consist of two communication channels, called CAN-

H and CAN-L, where a bit is interpreted as 0 or 1 through the potential difference 

between the two channels. Due to this it is necessary to use resistors at the end of the 

bus. If this resistor is not used, when the signal reaches the end of the bus it will be 

reflected back to the channel causing collisions and impairing communication. In the 

experiment this was proven, because without the use of resistors at the end of the bus 

the reception of transmitted frames would not occur. The function of the resistor is to 

dissipate the signal at the end of the bus so that it is not reflected. Although most 

literatures recommend 120 resist resistors, in the experiment 300Ω resistors worked 

properly. 

To perform the experiment, an 8-byte frame was transmitted repeatedly from 

Node 1. Initially, the Arduino serial interface was used to analyze the transmitted data. 

With the implementation made, the transmission of an average 584 frames per minute 

was calculated. The following figure illustrates the frame transmission, always 

happening alternately between the two interfaces connected to the host, as shown in 

the figure above. 
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Figure 17 - Frame transmission 

 
Source: Self authorship 

 

The image above shows the contents of the CSPin variable that stores the 

communication pin number used for Arduino to transmit the frame to the CAN module 

used. Each “In loop - CSPin = x” line corresponds to the transmission of a frame 

through the buses used in this created network segment. 

The following figure shows the receiving device receiving the frame transmitted 

by the sender, as shown above 
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Figure 18 - Frame reception 

 
Source: Self authorship 

 

The image shows the 8-byte frame repeatedly received from the transmitter, 

as well as the received frame number, which has the id 0x43. 

The following sections describe two experiments performed to prove the 

robustness and availability of the proposed network above in the event of 

communication bus disruption or defects in the network node's CAN communication 

interface. The test basically consists of transmitting frames over a 30 second period. 

Within this time window, the communication interface will be disconnected for 5 

seconds, simulating a fault situation. The following tests show the improvement in 

network data availability and transmission in the proposed redundant bus topology 

over a common topology. 
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4.2.1.1 Scenario 1 - Experiment 1 - Single Sign 
 

In this experiment a classic topology was used, using only one communication 

bus between the network nodes. The test basically consists of disconnecting the 

transmission interface from the network for 5 seconds and counting the number of 

frames received at the destination. To prove the results, three counts of frames 

received at the destination were performed and at the end the arithmetic mean 

between the three data collections was extracted. 

The experiment described in this section is to add a CAN interface to the 

network member connected to a redundant bus connected to the main bus, thus 

creating a multipath environment for frame transmission. In this scenario, the controller 

switches the communication interface used for frame transmission through redundant 

bus, balancing data traffic between available interfaces and buses, providing multiple 

frame transmission paths. 

The tables below show data collected in a classic environment and in an 

environment where the proposed redundant interfaces and load balancing for the CAN 

network has been applied. The same frame transmission procedure was used, but this 

time a fault simulation was made, disconnecting the transmitter interface from the CAN 

network for 5 seconds. The table below illustrates the results obtained. It can be 

observed that there was an improvement of about 6% in the reception of frames, 

compared to the scenario without redundancy. The following tables illustrate the result 

obtained: 

 
Table 1 - Analysis of results obtained with single interface 

Transmitted frames Received Frames Lost Frames Percent loss 
286 244 42 15% 
289 222 67 23% 
287 232 55 19% 

Source: Self authorship 

 

The following table 2 illustrates the behavior of the above scenario, now with 

redundant communication interface on the transmitting device. Data were obtained 

with the communication interface disconnected for 5 seconds within a 30 second 

transmission period. 
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Table 2 - Analysis of results obtained with dual interface 
Transmitted frames Received Frames Lost Frames Percent loss 

296 268 31 10% 
300 261 39 13% 
294 248 46 15% 

Source: Self authorship 

 

The above tables clearly illustrate the advantage of using architecture with 

systems containing redundant resources, where it can be seen that the percentage of 

frame loss is lower. This result demonstrates that in the case of load balancing 

application, communication channels, even being redundant, cannot fail, because in 

this technique redundant channels are used to decrease the latency in the 

transmission of critical data frames. The experiment only showed a drop in the frame 

loss percentage in case of bus or interface failures. 

For the next experiments, warning messages should be implemented 

regarding the interruption in the operation of interfaces or buses, the acquisition of 

frames will be implemented so that analysis can be made about transmission times 

and network behavior with larger traffic volumes, as well as other improvements 

applied the CAN network. 

 

4.2.1.2 Scenario 1 - Experiment 2 - Single Sign 

In this experiment, redundant interfaces and buses were used, but with a 

different behavior from the previous scenario. In this scenario the redundant interface 

and bus are idle until the controller decides to use them. This decision is based on the 

interface health check, a condition that is evaluated immediately after the source code 

infinite loop begins. Upon detecting any abnormalities in the transmitting device, which 

may be the interface or bus experiencing problems, the controller will use the second 

communication interface, ensuring that frames continue to be delivered after a brief 

period of switching between interfaces. This experiment only brings robustness to the 

network. 

The methodology for the experiment is the same as described above. The 

device used as a transmitter transmits for 30 seconds and the interface is disconnected 

for 5 seconds, simulating a problem. This result will be compared to an earlier result 
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described above, which had its data collected on a classic CAN network without 

redundancies. 

The following table shows the results obtained through this experiment: 

 
Table 3 - Analysis of results obtained with dual interface 

Transmitted frames Received frames  Lost Frames Loss percentage 
274 252 22 8% 
289 273 26 6% 
284 265 19 7% 

Source: Self authorship 

 

This result demonstrates that the loss percentage is lower in the idle redundant 

interface scenario compared to the load balanced scenario. This is natural because in 

the balanced scenario the microcontroller tries to transmit across the idle bus, which is 

not the case with the redundant bus scenario, where the faulty transmission interface 

is disabled and the redundant interface goes live. 

 

4.2.2 Scenario 2 - Multiple Signals 

For this experiment a prototype with five microcontrollers connected through a 

CAN bus was assembled. Multiple signals were used, simulating an automotive 

communication system. As with this type of system, signals generated from one 

network member are used by other members for real-time information display or device 

triggering. The arbitration process performed on the CAN controller used handles the 

priorities. Each network member has the ability to decide whether or not to process a 

received frame. Initially a prototype was created with a single broadcast domain. In the 

following sections a prototype will be presented that divides the network into two 

segments. The signals used and their respective identifiers are described in the 

following board: 
 
Board 5 - Signals and Identifiers 

Signal Identifier 

Response Frame - Latency Calculation 0x42 

Temperature signal 0x43 

Discrete signal for relay drive 0x43 

Potentiometer 0x45 
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Signal Identifier 

Engine speed 0x46 

Lightness – LDR sensor 0x47 

Temperature - simulated by potentiometer 0x48 

Oil level - simulated by potentiometer 0x49 

Temperature sensor error 0x50 

Oil level sensor error 0x51 

Source: Self authorship 

 

The board above shows that two signals have the same identification within 

the CAN network, 0x43. This was purposely created as a way of proposing a solution 

to a very common problem in temporally deterministic communication networks which 

is the issue of treating aperiodic signals within periods where cyclic periodic signals 

are transmitted. The above signals will be carried in standard CAN frames, which have 

11-bit identifiers and are used in the arbitration process that determines the priorities 

for bus utilization. All signals are up to 8 bits long. 

The signals described above are not used by all network members. A feature 

of the CAN network is the ability of network members to decide to process an incoming 

or outgoing frame. This decision is made using the frame field that identifies what 

information is being carried by that frame. For this in the source code of each member 

of the network a mask has been configured, which determines which identifier bits will 

be analyzed and a filter, which is created to be compared with the identifier bits. The 

mask for each receive buffer has been set to 0x111FF on all network members. This 

means that all identifier bits will be matched against the filter, individually configured 

for each member, according to the message to be received. 

In the implementation in question, we exploited a feature of the library used in 

the project (mcp_can.h) that organizes the 8 bytes of CAN frame payload into an 8 

position array, where each position stores 8 bits (1 byte). The proposed solution is to 

use one position of the vector to carry a periodic signal and another position to carry 

the aperiodic signal. This was implemented by using a switch connected to a 

microcontroller digital input called Node 3. When changing the state of the digital input 

used, a routine that stores this state at a vector position is executed. Thus the aperiodic 

signal is carried in the same frame as the periodic signal. This signal is used to drive a 

relay on the Node 1 microcontroller. 
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Figure 19 below illustrates the scenario created with the drivers and devices 

connected in peer-to-peer mode with each other. The following sections describe in 

detail how it works. 

 
Figure 19 - Scenario 2 

Node 1 Node 2

Node 3

Node 4 Node 5

CAN L

CAN H

120Ω bus 
terminator

120Ω bus 
terminator

Relay powered by node 3 signal

Display for temperature and relay 
status

Light sensor for node 5

Potentiometer for motor 
speed on node 4

Temperature sensor

Relay drive switch on node 1

Led relay drive indicator Motor speed controlled by node 2 Display for engine speed and 
brightness indicator

CAN BUS
 

Source: Self Authorship 
 

The driver firmware shown above was developed in Arduino's own C ++ 

language. Acquisitions and treatment of signals sent and signals received through the 

implemented CAN network were made. Issues related to the lower layers were also 

implemented, such as transmission vector size, identification definition and frame 

filtering. Figure 25 below illustrates the created model compared to the OSI reference 

model. 
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Figure 20 - OSI Model x implemented scenario 
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Source: Self Authorship 

 

The following figure 21 is a real photo of the created scenario where it is 

possible to identify the controllers connected through the CAN bus. 

 
Figure 21 - Experiment picture 

 
Source: Self Authorship 

 

In the following sections follows a detailed description of each network member 

created, as well as the signals that are generated and consumed. 
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4.2.2.1 Node1 

This device only consumes signals generated by other devices and made 

available on the CAN bus. These signals are generated by N3 and when received by 

N1 are displayed on an LCD display connected to it. The signals used are of ambient 

temperature and a discrete change signal of logic change of a digital pin, transported 

in the same frame, but in different positions of the data vector. As with other network 

members, a mask and filter have been configured so that only the desired signals are 

received by the controller. 

The received temperature signal is equivalent to the actual ambient 

temperature value, measured in degrees Celsius, and is read at the first position of the 

vector sent within the frame identified by 0x43. Upon receipt of this signal the value is 

used to display the ambient temperature on an lcd display. As mentioned above, the 

mask for both receive buffers has been set to 0x111FF, causing all handle bits to be 

matched against the filter to determine whether or not the frame will be received. The 

filter has been set to 0x43. This will cause only the frame that has this identification to 

be received, and the others are discarded. 

The received discrete signal is used for logic level change of digital pin 8, 

where a relay type device is connected. This signal is recorded at the second position 

of the vector sent also within the CAN frame also identified by 0x43. Because this is a 

discrete signal, this position stores the values 0 or 1. The controller writes this digital 

value to said digital pin and automatically the relay connected to that pin is switched 

on or off. The figure below shows Node 1. 
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Figure 22 - Node 1 

 
Source: Self Authorship 

 

4.2.2.2 Node2 

This controller has a 10k potentiometer connected to its analog pin 0. This 

potentiometer causes the voltage on this analog pin to vary between 0 and 5v. Having 

an 8-bit resolution, the controller's AD converter converts the received value to a 

number between 0 and 1023, where 0 equals 0v and 1023 equals 5v voltage at said 

analog pin. The generation of this signal aims to control the speed of a DC motor 

connected to Node 4, simulating the operation of an acceleration pedal. 

This speed control will be done by generating a PWM signal. Due to the fact 

that the limit of each position of the vector transmitted through the CAN bus is 8 bits, it 

would not be possible to transmit the number 1023 for example, if the potentiometer 

was in the position with the minimum resistance. Because of this, we chose to use the 

Arduino C ++ language map method, which allows you to perform a mapping between 

two value ranges. In this case, the range from 0 to 1023 was mapped to 0 to 255 (the 

resolution of the Arduino digital pin that has the PWM function is 8 bits) before 

transmitting. This value is written to the first position of the vector and sent in a frame 

on the CAN bus with the id 0x45. 
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This controller also has an ldr-type light sensor connected to its analog input 

1. The signal received at this input varies from 0 to 1023 according to the light level on 

the sensor. The higher the brightness the higher the value. For scanning the multiple 

transmit and receive buffers of the MCP2515 controller, this signal is sent on the CAN 

bus labeled 0x47 and is used for display on the Node 5 lcd display. Due to the data 

field limit this signal is also mapped before be transmitted. Values from the range 0 to 

1023 are mapped to 0 to 255. The image below shows Node 2. 

 
Figure 23 - Node 2 

 
Source: Self Authorship 

 

4.2.2.3 Node3 

This controller is responsible for generating two signals: The first is an analog 

signal obtained through its analog pin 0 where an LM35 type ambient temperature 

sensor is connected. This sensor outputs a voltage signal that varies 0.1 volts with 

each one degree (C) change in ambient temperature. Its operating range is from -50ºC 

to 150ºC and the voltage signal emitted on the analog pin 0 of the controller will vary 

between 0 and 5v according to the measured temperature. 

As with Node 2, this signal will be converted by the Arduino AD converter to a 

number between 0 and 1023. Since this number cannot be transmitted within one of 
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the positions of the transmission vector, the value has been converted by equation to 

the quantity. temperature and transmitted in position 1 of the transmission vector 

through the CAN bus with the id 0x43. 

In addition to this analog signal, this controller receives a digital signal on its 

pin 7, which has its logic state changed to high when a switch is actuated. When this 

logic level change occurs, a routine is executed that records the digital state of said pin 

and transmits it in the second position of the transmission vector within the CAN frame 

containing the same identification. This optimizes the use of the CAN frame by 

transmitting two signals in a single frame.  

Node 3 cyclically acquires and transmits a temperature signal through the CAN 

bus. This node is also responsible for acquiring and transmitting a discrete signal 

across the bus. Because it is transmitted cyclically, the temperature signal is 

considered a periodic signal as it is transmitted on the bus every 100 ms approximately. 

The discrete logic change signal from digital pin 7 is an aperiodic signal as it is 

transmitted sporadically whenever an event occurs, in which case the switch is 

triggered. This is one of the proposals of the work in question. 

Acquisition and transmission of the generated aperiodic signal are made from 

a relatively simple algorithm, where the assembly of the frame with the periodic signal 

is not interrupted, only after the discrete signal has been loaded in the second position 

of the CAN frame. For better understanding and clarity, this process is described 

through the flowchart shown below: 
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Figure 24 - Frame data field mount flowchart 

 
Source: Self Authorship. 

 

This flowchart illustrates the assembly of frame 0x43 carrying one or two 

signals. Every time the logic state of pin 2 is high, the logical state of pin 7 is reversed. 

This function only illuminates a circuit led indicating that the relay on the remote 

controller has tripped. When this happens the logic state of pin 7 (0 or 1) is sent in CAN 

analog read Pin A0

tmp = an_read * 0.107526

tx[0] = tmp

digital read Pin 2
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est out7 = digitalRead 7
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end
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frame 0x43 at position 1 so that it is used to change the logic level of the pin where the 

relay is connected to the remote controller. If the logic state of pin 2 is 0 then CAN 

frame 0x43 will be sent carrying only the temperature signal at its 0 position. Figure 25 

below illustrates the frame data field sent through the CAN bus. 

 
Figure 25 - Frame 0x43 with multiple signals 
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Source: Self Authorship 

 

The figure below is a real photo of Node 3, where you can see the devices that 

make up this node, such as the relay trigger switch on note 1, the LM35 sensor that 

measures the ambient temperature shown on node 1 and the led which is triggered 

when the relay on node 1 is powered on. 
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Figure 26 - Node 3 

 
Source: Self Authorship 

 

4.2.2.4 Node4 

This controller consumes a signal generated by Node 2 and identified as 0x45. 

The signal in question was generated on a Node 2 analog pin and treated to be sent 

within an 8-bit transmission vector position. Node 4 then receives a value within the 

range of 0 to 255 and makes an analog write on digital pin 6 (which has PWM) which 

is where the DC motor signal pin is connected. This is convenient since the Arduino 

PWM signal generator has an 8-bit resolution, so when the received value is 0 the 

motor will be stopped, when the received value is 255 the motor will be at full speed 

(approximately 4100 rpm). 

In this network member were also configured, the mask and the filter to 

determine which frames will be processed or discarded. As with other devices, the 

mask has been set to 0x111FF, for checking all identifier bits and the filter set to 0x45, 

so that this network member receives only frames that have this signal ID. 

In addition to receiving this signal, this controller uses the signal recorded on 

the pin with PWM function to calculate the motor speed, and after that transmit the 

motor speed to be used by the Node 5 controller. This speed is recorded in the first 

position of the motor. transmission vector and transmitted over the CAN bus with the 
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id 0x46. Due to the size limit in the CAN frame data field, which is 8 bits, the maximum 

value to be transmitted is 255. Since the maximum motor speed is 4100 rpm, this value 

must be mapped before it can be transmitted in an 8 bit space. The following figure 27 

is a real image of node 4. 

 
Figure 27 - Node 4 

 
Source: Self Authorship 

 

 

4.2.2.5 Node 5 

This controller uses the signal identified by 0x46 to display on a lcd display the 

rpm speed of the DC motor connected to Node 4. This controller receives the value 

written on the Node 4 PWM pin and converts it through the mapping performed by the 

map method in a value corresponding to the engine speed. This value is then shown 

on said lcd display. In order to receive only the desired signal, it also had its mask set 

to 0x111FF and the filter set to 0x46. The following figure 28 is a real image of Node 

5, where you can see the display showing the rotation of the motor connected to node 

4 and the light signal transmitted by node 2. 
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Figure 28 - Node 5 

 
Source: Self Authorship 
 

To exploit the multiple receive buffers of the MCP2515 module, this controller 

also uses a signal identified by 0x47. This is a signal generated by a light sensor 

connected to Node 2. The signal is mapped to the range 0 to 255 so that it can be 

transmitted within an 8-bit space because the original signal is up to 10 bits in size. 

When the frame with this information arrives at Node 5 this mapping is undone and the 

signal returns to its original format, as was generated in Node 2.  

 

4.2.2.6 Description and demonstration of transmitted signals 

This section will show how the signals were generated and the result of their 

use by the target network member. The signals generated and consumed, in short, are 

an analog signal generated by a potentiometer connected to Node 2 and used by Node 

4 for speed control of a DC motor, an analog signal generated by a temperature sensor 

LM35 at Node 3 and used to display the room temperature on a Node 1 display, and 

finally a proposed solution to the problem of aperiodic frame transmission next to 
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frames that carry periodic signals, where the logic level of an Node 3 digital pin will be 

changed through an external action, and when this occurs this logic level will be 

encapsulated in the same frame that transmits the temperature signal. 

These signals were acquired using a VBS (Visual Basic Script) script that 

monitored the serial communication port between the computer and Arduino during the 

test period. The script generates a txt file with the values transmitted through the serial 

port of the Arduino board. After that this data is entered into a graphing application. 

The values received after performing conversions will be compared with the 

mathematical equations that define these conversions to prove the accuracy of the 

values used by the controllers. 

 

4.2.2.6.1 Dc motor speed control 

The signal for speed control of this motor connected to Node 4 is generated 

by a potentiometer connected to an analog input at N2. This potentiometer makes the 

voltage at this input range between 0v and 5v. The end result is that when the input is 

0v the motor will be stopped at N4, for the 2.5v input the motor will be at half its speed, 

for the 5v input the motor will be at full speed, and so on. . 

The AD converter of the controller used has a 10-bit resolution, so it will convert 

this input voltage to a digital value between 0 and 1023 (210 = 1024). For example, 

when the voltage is 0v, the converted value will be 0, when the voltage is 2.5v, the 

converted value will be 511, and so on. The mathematical equation representing this 

conversion will be shown below, where v is the voltage present at the analog input of 

the controller: 

 

 푐푛푣 = 푣 × 1023	÷ 5  (1) 

 

For an A/D conversion, if we have 2.5v of voltage at the analog input, replacing 

variable v in the formula above we have: 

 

푐푛푣 = 2,5 × 1023	÷ 5 

푐푛푣 = 511,5 
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Due to the size available at each position of the vector transmitted within the 

frame on the CAN bus, which is 8 bits, the result of converting the signal received at 

the controller's analog input, which is from 0 to 1023, had to be turned into a value 

within from 0 to 255. This is appropriate as the motor speed will be controlled by pwm, 

and the resolution of the pin that has this function in the controller is 8 bits. The 

mathematical equations that represent this conversion, initially put in the patterns of a 

rule of 3, will be shown below: 

 

 255												1023 

푝푤푚													푥 

 (2) 

 

When calculating this rule of three we will have the equation shown below, 

where x is the value resulting from the AD conversion: 

 

 푝푤푚 = 0,249266862170088	× 푥 (3) 

 

Applying the resulting A/D conversion value found above, which is 511,5 in the 

formula to determine pwm we have: 

푝푤푚 = 0,249266862170088	× 511,5 

 

푝푤푚 = 127,5 

 

This is the mathematical representation of the conversion of a signal whose 

values range from 0 to 1023 to values ranging from 0 to 255. The C ++ programming 

language used in the Arduino IDE has the map method, which automatically converts 

as following example: 

 

 푥 = 푚푎푝(푦, 0, 1023, 0, 255) (4) 

 

In this statement, x is the variable that will receive the value converted through 

the map function, which has as parameters the variable y, whose value ranges from 0 

to 1023, in a number within the specified range, in this case between 0 and 255. Thus, 

y = 0 will have x = 0, y = 511 will have x = 127, and so on. In this case, the variable x 

has the duty cycle that will be used for motor speed control through pwm. This variable 
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is inserted at position 0 of the vector transmitted within the frame through the CAN bus 

with the id 0x45. 

Motor speed will be measured by the relationship between the PWM signal 

and the maximum motor speed when the average output voltage is 5V. The maximum 

speed for this engine using these parameters is 4100 rpm. This value was found with 

a rule calculation of three, where the maximum speed with 12V, according to the 

engine manufacturer's manual is 10000rpm. 

Figure 29 below shows the comparison chart between the value of the AD 

conversion obtained using a VBS script that captures data from the serial port and the 

value obtained through the calculation performed with the equation described above. 

It can be observed that the values are very close, and the difference is the fractional 

part of the obtained number. 
 
 
Figure 29 - Graphic AD conversion 

 
Source: Self authorship. 
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Figure 30 below shows the value that will be used as a PWM signal for motor 

speed control, comparing the values obtained through the equation with the value 

obtained through the map method described above. Also in this case it can be 

observed that the values are very close. 

 
Figure 30 - Graphic Convertion to PWM signal 

 
Source: Author (2019). 

 

Figure 31 below shows the motor speed relative to the pwm signal. 
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Figure 31 - Graphic Engine speed relative to PWM 

 
Source: Self authorship 

 

4.2.2.6.2 Ambient temperature measurement 

Node 3 has a temperature sensor type LM35, which works at temperatures 

between -55ºC and 110ºC connected to one of its analog inputs. This sensor reads the 

ambient temperature and outputs an analog voltage signal on one of its pins, which 

varies linearly with the measured temperature. The sensor changes the input voltage 

by 10mV for each grade C read. As with the signal described above, the Arduino AD 

converter will convert this voltage to a number between 0 and 1023, due to the 10-bit 

resolution of the converter. This value is not interesting as it does not show the 

temperature clearly, so you should convert it to the measured temperature. This is 

easily done by using a simple 3 rule as follows: 

 

 				110												1023 

푡푚푝													푥 

(5) 
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When calculating this rule of three we will have the equation shown below, where x is 

the value resulting from the AD conversion: 

 

 푡푚푝 = 0,10752688172043	× 푥 (6) 

 

For a value resulting from A/D conversion of 420, applying in the formula above 

we have: 

 

푡푚푝 = 0,10752688172043	× 420 

푡푚푝 = 45,1612 

 

This temperature value will be sent over the CAN bus for Node 1 display. This 

frame will be labeled 0x43. Figure 32 below shows the comparison between the 

temperature value obtained by using the VBS script that captures data from the serial 

port and the value obtained by the calculation performed with the equation described 

above. It can be observed that the values are very close, and the difference is the 

fractional part of the obtained number. 
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Figure 32 - Graphic Comparation between temperature obtained and calculated 

 
Source: Self authorship 

 

Figure 33 below shows the measured temperature relative to the analog signal 

converted by the controller AD converter. 

 

 

 

 

 

 

 

 

 

 



67 
 

Figure 33 - Graphic Comparation between temperature and value resulting from ad 
conversion 

 
Source: Self authorship 

 

4.2.2.6.3 Light sensor signal 

This signal is detected by a Light Dependent Resistor (LDR) sensor. It is a 

device that varies its resistance according to the luminosity that affects it. This sensor 

was connected to Node 2 analog input 1. According to the brightness detected in the 

environment, the Arduino board's AD converter generates a value between 0 and 1023 

(10-bit AD converter), the higher the brightness on the sensor, the higher the value 

read.  

This experiment was used to present a solution for a specific objective 

mentioned at the beginning of the work. As already mentioned, the library used to 

activate the MCP2515 CAN interface sends an 8-position vector with 8 bits at each 

position. This solution consists of carrying a signal larger than 8 bits within a vector 

position. When a value larger than the CAN frame data field needs to be transported, 

the solution implemented is to split the data into two or more frames. In the proposed 
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solution, only one frame is used. This was implemented using the Arduino language 

map method. This method maps values to larger or smaller ranges. 

In the experiment, the signal generated by the LDR sensor ranges from 0 to 

1023, because the Arduino AD converter is 10 bits. In order to be transmitted, this 

signal has been mapped to a range between 0 and 255 (8 bits), recorded at one of the 

transmission vector positions and transmitted over the CAN bus. Upon arriving at the 

destination, the opposite mapping was done. The signal within the range 0 to 255 has 

been mapped to the range 0 to 1023. 

The equation below, obtained from a rule of three, mathematically describes 

how this mapping is calculated. 

 

 푚푎푝푝푒푑	푣푎푙푢푒 = 0,249266862170088	푥	푎푛_푟푒푎푑 (7) 

 

For the value resulting from the A / D conversion of 511, applying the formula 

above we have: 

 

푚푎푝푝푒푑	푣푎푙푢푒 = 0,249266862170088	푥	511 

푚푎푝푝푒푑	푣푎푙푢푒 = 127 

 

In this case the received signal value of 511 will be converted to 127 to be 

carried within the 8 bit field. 

Upon arrival at the destination, the value mapped within the 8-bit space returns 

to its original format through the equation (obtained by a rule of three): 

 

 푚푎푝푝푒푑	푣푎푙푢푒 = 4,011	푥	푎푛_푟푒푎푑 (8) 

 

Reversing the mapping we have: 

 

푚푎푝푝푒푑	푣푎푙푢푒 = 4,011	푥	127 

푚푎푝푝푒푑	푣푎푙푢푒 = 509 

 

Because of the fractional parts in the equations, the destination values vary 

slightly. In this case the original value of 511 after mappings resulted in 509, an 

irrelevant difference of 0.391%. 
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The table below shows some values acquired through the Arduino serial 

interface on the transmitter and receiver. The values were placed side by side for easy 

comparison between the generated signal and the received signal after mapping and 

mapping reversal. The difference in each case was calculated and the average 

difference for the collected data. 

 
Table 4 – Reverse luminance signal mapping analysis 

Signal at source Signal at destination  % difference 
697 694 0,430% 
769 766 0,390% 
797 794 0,376% 
796 794 0,251% 
822 818 0,487% 
841 838 0,357% 
832 830 0,240% 
832 830 0,240% 
836 834 0,239% 
839 838 0,119% 

Fonte: Self authorship 

 

The figure 34 below shows the comparison between the brightness signal 

acquired on Node 2 and the signal received on Node 5 after the mapping reversal. As 

mentioned above, this mapping allows a signal to be transmitted within a frame smaller 

than its size. As in other cases this signal was acquired by running a script in VBS that 

monitors the serial port where the Arduino card is connected. 
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Figure 34 - Graphic Mapped signal 

 
Source: Self authorship 

 

4.2.2.6.4 Scenario 2 - Experiment 1 - Aperiodic Signal Transmission 

All signals described above that are being handled in the prototype are periodic 

signals, transmitted at each run of the infinite loop running on the controllers. This 

section presents a proposal for the transmission of aperiodic signals within the tasks 

performed by microcontrollers during their operation, where periodic signals are being 

generated and where they are being transmitted. 

For the demonstration, a discrete signal generated by a push button connected 

to a digital pin configured as input on Node 3 is being used. This push button changes 

the logical level of that pin. Then this new logic level is stored in a variable and then 

transmitted over the CAN network. Node 3 periodically transmits a temperature signal 

that is used by Node 1 for display. This temperature signal is stored at position 1 of the 

char vector transmitted over the CAN network. Said discrete signal is stored in position 

2 of the vector whenever the logical level of the pin to which the push button is 

connected is changed. 
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Thus, a frame is transmitted over the CAN network with identifier 0x43, which 

carries two signals: At position 1 the temperature signal read by the LM35 sensor and 

at position 2 the discrete signal (0 or 1) that is used by Node 1 to activation of a relay 

connected to one of its digital pins.  

 

4.2.2.7 Latency 

The signal transmission latency of the described scenario was calculated by 

implementing a return message from the destination controller of a transmission. To 

find the transmission time of a message we used the micros () method, which is part 

of the Arduino C ++ language object set. This method returns the amount of 

microseconds passed since the Arduino board was powered on. The methodology 

used to measure network latency with this method is relatively simple. 

The transmitter Arduino board's operating time was written to an unsigned long 

variable called time1 just before frame transmission occurred. The transmission of a 

response signal, an 8-bit frame, was implemented at the signal receiver. To avoid 

compromising latency measurement with CAN network arbitration this signal has the 

id 0x42, thus being the smallest identifier of the scenario. This response frame was 

transmitted on the CAN bus immediately upon receipt of the signal by the destination 

controller. 

Immediately upon receipt of this response frame by the signal source 

controller, the Arduino board's runtime was written to an unsigned long variable called 

time2 using the micros () method. Thus, there is the time before the signal transmission 

and the time after the reception of the response signal, being roughly considered as 

network latency the difference between time2 and time1. The latency measurement 

test was performed between Node 3 (discrete signal and temperature transmitter) and 

Node 1 (discrete signal and temperature receiver) and Node 2 (potentiometer signal 

transmitter) and Node 4 (motor speed controller). 

For purposes of analysis and verification of the results of the experiment, 

initially the controller operating times were recorded in time1 and time2 without 

receiving the response frame on the transmitting node. In sequence, the reception of 

the response frame on the transmitting node was activated and the operating times 

were recorded in time1 and time2. Test results with latency measured in microseconds 
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will be shown below. One notices a difference in the latency of the first test compared 

to the second, obviously resulting from the reception time of the response frame. 

The first test was performed with Nodes 3 and 1. Node 3 was assigned to the 

unsigned long time1 variable called the micros method that returns the amount of 

microseconds the Arduino board has run immediately before the sendMsgBuf method 

call that transmits the frame with ID 0x43 (temperature signal and discrete signal). On 

Node 1 immediately after receiving the frame through the readMsgBuf method, the 

response frame was transmitted to Node 3 with the id 0x42. Immediately after receiving 

this frame in Node 3 (confirmed by printing the value received on the serial interface 

of the Arduino board), the unsigned long time 2 variable was called the micros method, 

resulting in the difference between time2 and time1 a. approximate latency of 

transmission. 

The average latency obtained between Node 1 and Node 3 transmissions after 

approximately 500 frames were transmitted between the two devices was 413 µs and 

a 6.5% difference from the time taken without response frame reception. The latency 

obtained between Nodes 2 and 4 was approximately 395 µs for the same number of 

frames, being the time difference between the test without receiving the response 

frame and receiving this frame of 16%. 

 

4.2.3 Scenario 3 

This test scenario is an update of scenario 2. In addition to the signals used in 

scenario 2, two more were implemented. A simulated temperature signal from a 

potentiometer connected to Node 2 and an oil level signal simulated from a 

potentiometer connected to Node 4. These signals have been implemented to simulate 

sensor failure situations, as will be shown below. 
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Another implementation made in the scenario was the use of a new Arduino 

board with two CAN interfaces, dividing the scenario into two domains, one called 

Power Train and the other Dashboard, simulating real automotive communication 

systems. The purpose of this mechanism in the scenario is to reduce the size of the 

CAN network broadcast domain by creating two network segments. The new node 

added will act as a bridge, allowing only the frames used on the other bus, thus 

reducing unnecessary network traffic and the consumption of computational resources 

on CAN interfaces to decide whether or not to process a received frame. Frame 

forwarding from one segment to another is based on its identification. 

When a frame is received by interface 1, connected to the Power Train 

segment, it will only be forwarded to the Dashboard segment through interface 2 if the 

signal carried on the frame is required for any microcontroller in that segment. 

Otherwise this frame will be discarded. The same process happens if a frame is 

received by interface 2. In the example in question, the temperature signal and the 

discrete signal generated on node 3 will not be forwarded to the Dashboard segment, 

since in this segment no controller uses this signal. Figure 35 below illustrates this 

scenario. 
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Figure 35 - Scenario 3 
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Source: Self authorship 

 

Image 36 below is a real photo of the created scenario: 
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Figure 36 - Scenario 3 

 
Source: Self authorship 

 

4.2.3.1 Gateway CAN 

The CAN gateway was implemented using two MCP2515 interfaces 

connected to an Arduino board. For operation of both interfaces, in the source code of 

the gateway were created instances CAN0 and CAN1, associated with digital pins 9 

and 10 of the Arduino board, respectively. The CAN0 instance was used by the 

segment named Power Train and the CAN1 instance by the segment named 

Dashboard. The configured filters followed the same pattern as the other experiments. 

Mask set to 0x111FF and filters to receive only frames that will be sent by the second 

interface to the other bus. 

When receiving frames with the identifications 0x47, 0x48 and 0x49 (light 

signal, temperature simulated signal and oil level simulated signal, respectively) on the 

CAN0 interface (digital pin 9) the controller forwards the same ID to the CAN1 interface. 

(digital pin 10), connected to the dashboard. The luminance values and the simulated 

temperature and oil level values are displayed on the displays at nodes 5 and 6. In the 

work in question no frame of the dashboard segment is used in the power train 

segment. Frame transmission from CAN1 interface to CAN0 interface was 

implemented only in the latency test, where a frame with id 0x42 is transmitted from 
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Figure 37 - Gateway CAN 

the frame's target node. The image below is a real photo of the CAN gateway 

implemented in the prototype. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Source: Self authorship 

 

The following image shows all the signals used in the prototype in their 

respective controllers. It also describes which signals are discarded by the gateway 

and which are forwarded for use in segment 2 controllers, called a dashboard. 
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Figure 38 - Controllers and signals 
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Source: Self authorship 

 

The following figure illustrates a graph of temporal analysis of the transmission 

of the 0x47 signal (luminance signal) and the 0x48 signal (simulated temperature 

signal), both from node 2, since the acquisition. The signals arrive at the gateway, 

which forwards them to segment 2 and is destined for nodes 6 and 5, respectively, 

which displays them on a liquid crystal display, simulating a vehicle's instrument panel. 

The times were obtained using the mills () method of the C ++ language of the Arduino 

platform. 
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Figure 39 - Temporal analysis of the transmission of signals 0x47 and 0x48 
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4.2.3.2 Simulated temperature signal 

This signal is generated by a potentiometer connected to analog pin 2 of node 

2. The purpose of this mechanism is by adjusting the potentiometer signal to simulate 

the operation of linear temperature signal sensor to the input voltage on the pin. The 

simulated temperature signal ranges from 0 to 140º, linearly to the voltage of 1 to 4v 

injected in the pin 2 of the controller by adjusting the potentiometer. Voltages less than 

1v or greater than 4v are interpreted as error in reading the signal. If the value resulting 

from the pin 2 read conversion d is less than 205 or greater than 819 (less than 1v or 

greater than 4v, respectively), a faulty reading frame of the temperature reading 0x50 

is transmitted on the network. This signal is relayed by the CAN gateway to the 

dashboard segment, where node 5 displays a read error message and triggers a digital 

output that has a red led attached to it, generating a visual alert of readout on the 

temperature sensor. 

If the voltage value read on pin 2 is within the values considered in the 

simulation to be normal according to the read temperature, the value resulting from the 

ad conversion is mapped to a range between 0 and 255 so that it can be transmitted 

within the range. 8 bits of CAN frame. This signal is transmitted on the network with 

the ID 0x48 for display on node 5. As node 5 is in the dashboard segment, this signal 
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is received by the gateway through the interface connected to the power train segment 

and relayed to the dashboard segment for display. When received on node 5 the 8-bit 

value is converted by equation to the simulated temperature value within the range 

between 0 and 140ºC and displayed on that node's display. 

 

4.2.3.3 Simulated oil level signal 

This signal is generated by a potentiometer connected to analog pin 0 of node 

4. The purpose of this mechanism is by adjusting the potentiometer signal to simulate 

the sensor operation of a linear oil level signal to the input voltage on the pin. The 

simulated oil level signal ranges from 0 to 100%, linearly to the 1 to 4v voltage injected 

into pin 0 of the controller by adjusting the potentiometer. Voltages less than 1v or 

greater than 4v are interpreted as error in reading the signal. If the value resulting from 

the pin 2 read conversion ad is less than 205 or greater than 819 (less than 1v or 

greater than 4v, respectively), a temperature reading failure frame with the 

identification 0x51 is transmitted on the network. This signal is relayed by the CAN 

gateway to the dashboard segment, where node 5 displays a read error message and 

triggers a digital output that has a red led connected to it, generating a visual readout 

alert on the level sensor oil. 

If the voltage value read from pin 0 is within the values considered in the 

simulation to be normal according to the oil level, the value resulting from the ad 

conversion is mapped to a range between 0 and 255 so that it can be transmitted within 

space. 8-bit CAN frame. This signal is transmitted on the network with the id 0x49 for 

display on node 5. As node 5 is in the dashboard segment, this signal is received by 

the gateway through the interface connected to the power train segment and relayed 

to the dashboard segment for display. When received on node 5 the 8-bit value is 

converted by equation to the simulated oil level value, which varies from 0 to 100% 

and displayed on that node's display. 
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4.2.4 Scenario 4 

This scenario is an update from scenario 3. This update proposes to use a 

second CAN bus in the Power Train segment. This second bus aims to eliminate a 

known problem in starvation computing. In CAN networks this problem causes one 

node on the network to monopolize bus usage and prevent other nodes from 

transmitting their frames. This is a likely problem in the created scenario, where the 

relay remote trigger aperiod signal is triggered by a sporadic event. Precisely because 

it has this characteristic, if this event occurs repeatedly, the frame containing this signal 

will be transmitted repeatedly on the network, preventing lower priority signals from 

using the bus. Figure 38 below illustrates this scenario. 

 
Figure 40 - Scenario 4 
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Source: Self authorship 
 

The proposed solution to the problem of monopolizing bus use by an aperiodic 

signal was to implement a second CAN interface on nodes 1 and 3. This second 

interface is connected to a second bus, called CAN BUS 2. In the source code of nodes 

involved in this process, CAN0 and CAN1 instances associated with digital pins 9 and 
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10 and connected to bus CAN 1 and CAN 2, respectively, were implemented. On node 

3, when transmitting the aperiodic signal, within the signal generation routine, the 

CAN1 instance selection was implemented to use the CAN 2 bus. On node 1, inside 

the infinite loop the secondary interface buffer is read for verification. of the arrival of 

the frame with the aperiodic sign. 
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5 CONCLUSION 

It has been shown that with the suggested implementations, the optimization 

of the CAN frame data field as well as the optimization of the CAN bus has been 

achieved, as the work in question demonstrates a way to transport several signals 

within the same frame at a cost computationally low, since the routine that stores the 

aperiodic signal in the vector to be transmitted consumes only one assignment and 

one comparison at best (when the logical level is not changed), and five basic 

operations (assignments and comparisons) at worst, which this is when an event 

occurs and the signal needs to be stored in the vector that will be transmitted over the 

CAN network. 

This way, a better use can be made in using the frame transported through the 

bus. In the prototype in question only two bytes were used, one for each signal, but the 

concept shows that all positions of the vector can be filled and the frame sent with up 

to eight signals. This is one of the characteristics of the new CAN approach, called 

CAN-FD, but in the present work a similar result was obtained with the use of the 

classic CAN network. 

In terms of numbers two factors can be cited. Considering the 1-byte signal 

transmission and the maximum capacity of the CAN frame, which is 8 bytes, to carry 

both signals, 25% of the total payload is used, compared to 12.5% of use for 

transporting one signal only. 100% utilization of the frame data field is achieved if the 

vector to be transmitted is created with only 2 bytes, which is the one implemented in 

this case. In this case there is still the fact that smaller frames can be transmitted. 

Smaller frames will be transmitted in a shorter time and will consume less bus. 

Considering this with respect to the total size of a CAN frame, which is 128 bits 

for CAN 2.0A, for transmitting a 1 byte signal, only 6% of the frame is payload. When 

carrying multiple signals this number can improve to 50% payload in a frame. It can 

also be mentioned the fact of the ratio of 1 signal to 128 bits, with a common 

implementation for 8 signals to 128 bits using the proposal. 

The proposed signal mapping, as shown in the graphs, also proved to be 

efficient for the case of the need to transmit signals that are more than 8 bits long, in 

this case the signal used for dc motor speed control, the speed signal. of the dc motor 
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and the luminance signal, all larger than 8 bits were adequately adapted to be 

transmitted and after transmission were very close to the original analog value. 

The implementation of the CAN gateway has also proved to be an efficient 

solution for reducing the CAN bus and reducing the consumption of computational 

resources used by the controllers to make a decision whether or not to process a 

frame. The data shown above also shows that the increase in latency as a result of 

frames passing through the gateway was only 4%. 

 

5.1 FUTURE WORKS 

Future work can be developed using CAN FD-compliant interfaces, because 

in this new version of the CAN network up to 64 bytes of data can be transmitted and 

the way of organization of this data field proposed in the work proved to be very efficient 

and low computational cost. 

Dynamic identification of frames transmitted over the CAN network is also an 

interesting research option. In this case it will be necessary to develop an algorithm 

that identifies when information is required within the network. The controller that 

generates this signal may temporarily change its identification and send it over the 

network with an identification that makes it a priority over other signals used. 

Flex CAN is also an interesting proposition for proposing the use of redundant 

controllers and buses, as well as meeting temporal requirements at the application 

layer. 

The MCP2515 controller, according to its data sheet has the clock source 

function for other devices. In the future this controller property will be exploited to 

associate the ability to send multiple signals in a single frame to a temporally 

deterministic network. 
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