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ABSTRACT

BORGES, Fabio Galvão. Gaussian Adaptive PID Control with Robust Parameters Considering
Plant Parameter Variation With Optimization Based on Bioinspired Metaheuristics. 2019. 75 p.
Dissertation (Master’s Degree in Electrical Engineering) – Federal University of Technology – Parana.
Ponta Grossa, 2019.

The purpose of this work is to compare a linear PID to the Gaussian Adaptive PID control (GAPID)
regarding their robustness to changes and variation on two different plants. The first one is the second
order plant DC-DC Buck converter used as a study plant an analyzed through simulation. The second
plant is a DC motor with a beam attached to it. An experimental prototype was built for this second
plant to test the GAPID in a a real experiment. The Gaussian function has as adjustment parameters its
convavity and the lower and upper bound of the gains. It is a smooth function with smooth derivatives.
As a result, it helps avoid problems related to abrupt gains transition, commonly found in other adaptive
methods. Because there is no mathematical methodology to set these parameters, two bio-inspired
optimization algorithms were used, the Genetic Algorithm (GA) and the Particle Swarm Optimization
(PSO). Functions to evaluate the results, called fitness functions, are necessary for the algorithms
and were also used as performance comparison. A new variation to the fitness is proposed and the
results demonstrate an improvement regarding the overshoot. Results also prove the robustness of
the GAPID compared to the linear PID by load and gain sweep tests, achieving fast response (low
settling time) and minimal variation, which is not possible to achieve when using the linear PID.

Keywords: Adaptive Control. GAPID. Genetic Algorithm. PSO.



RESUMO

BORGES, Fabio Galvão. Controle PID Adaptativo Gaussiano com Parâmetros Robustos
Considerando Variação dos Parâmetros da Planta com Otimização Baseada em
Metaheurísticas Bioinspiradas. 2019. 67 f. Dissertação (Mestrado em Engenharia Elétrica) –
Universidade Tecnológica Federal do Paraná. Ponta Grossa, 2019.

O objetivo deste trabalho é comparar um PID linear ao controle PID Adaptativo Gaussiano (GAPID)
quanto à sua robustez a mudanças e variações em duas plantas diferentes. A primeira é o conver-
sor DC-DC Buck de segunda ordem utilizado como planta de estudo e analisado por simulação. A
segunda planta é um motor de corrente contínua com uma viga ligada a ele. Um protótipo exper-
imental foi construído para esta segunda planta para testar o GAPID em um experimento real. A
função gaussiana tem ganhos de limite inferior e superior e concavidade como parâmetros. É uma
função suave com derivadas suaves. Como resultado, ajuda a evitar problemas relacionados à tran-
sição abrupta de ganhos, comumente encontrados em outros métodos adaptativos. Como não há
metodologia matemática para definir esses parâmetros, foram utilizados dois algoritmos de otimiza-
ção bio-inspirados, o Algoritmo Genético (GA) e o por Enxame de Partículas (PSO). Funções para
avaliar os resultados, chamadas de funções de adequação (fitness), são necessárias para os algorit-
mos e também foram usadas como comparação de desempenho. Uma nova variação para a função
fitness é proposta e os resultados provam uma melhoria em relação ao overshoot. Os resultados
também comprovam a robustez do GAPID em relação ao PID linear por testes de varredura de carga
e ganho, obtendo resposta rápida (baixo tempo de estabilização) e variação mínima, o que não é
possível atingir usando o PID linear.

Palavras-chave: Controle adaptativo. GAPID. Algoritmo Genético. PSO.
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1 INTRODUCTION

Most engineers and scientists are being acquainted with automatic control due to its impor-

tance and even being intrinsic to many systems, such as space vehicles, robotics, manufacturing, and

most system that require control of temperature, pressure, position, flow etc. Automatic control sys-

tems introduced some advantages, for instance, response time and precision. More than half of the

automatic controllers in industry use the Proportional Integral Derivative (PID) technique or modifica-

tions of it, because of its simplicity, well known design procedures and only three parameters to be

tuned, working well in most systems and becoming well established (OGATA, 2010; NISE, 2007).

Despite working well on most systems, the PID controller has its limitations, showing poor

performance when controlling plants with resonances, integrators, long time delay or unstable transfer

functions. It also has no strategies regarding changes on the plant. Although still being able to con-

trol the system, it is not optimal and it may decrease performance significantly depending on these

changes. As a result, significant interest arised from industry to improve the robustness of PID con-

trollers. Adaptive controllers emerged as possible solutions (SUNG; LEE, 1996; ATHERTON D. P

; MAJHI, 1999).

There was extensive adaptive control research during the 1950s to design autopilots for

high-performance aircraft. Constant gain linear feedback control could work well on one operating

condition but not the entire flight. Therefore, a controller that could work on a wide range of operating

conditions was needed. According to Åström K. J. ; Wittenmark (2013), “an adaptive controller is a

controller with adjustable parameters and a mechanism for adjusting the parameters” (ÅSTRÖM K. J.

; WITTENMARK, 2013).

Some authors proposed methods of adaptive control using a set of constant gains that

change according to some operating conditions (ALEXANDROV, 1999; SINGH; KUMAR, 2015;

WANG; ZHANG, 2016). Albeit simple and efficient, those techniques rely on gain transitions that

could be abrupt and cause unexpected and undesirable effects. Some others used adaptive continu-

ous functions (XIAO et al., 2010; JIMENEZ-URIBE et al., 2015).

Because of its wide employment, some companies refuse the possibility to replace their PID

control system to a more complex and costly one. For this reason, some authors proposed adaptive

strategies linked to the PID. Rifai (2009) developed a methodology for Lyapunov-based adaptive PID

control for different non linearly-parameterized series and parallel PID. Xiong e Fan (2007) proposed

an algorithm that combines PID control scheme and model reference adaptive control (MRAC) to self
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tune the PID controller parameters in real time when system performances change and applied to

control a DC electromotor drive.

Kaster et al. (2011) proposed the use of Gaussian functions applied to a PID to improve the

control of a DC-DC Buck converter. Later on, Puchta et al. (2016b) further improved the Gaussian

adaptive control by using bio-inspired optimization algorithms to find the Gaussian function parame-

ters. In this work, no parameter variation of the plant was considered.

Nature-inspired algorithms (NIAs), as the name suggests, are algorithms whose source of in-

spiration is nature. NIAs can further be classified into algorithms based on Swarm Intelligence (SI), like

Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO), and Biological Phenomena. The

other classification is called Bio-inspired (BI), like Genetic Algorithms (GA) and Simulated Annealing

(SA). SI based algorithms are called intelligent because they are known to learn and improve their per-

formance by observing the output on previous moves made by them. NIAs provide an efficient solution

to many real-world optimization problems which are categorized to be hard or complex problems. The

GA usual areas of application are Resource Scheduling, Airlines Revenue Management, Artificial Cre-

ativity, Bioinformatics, Clustering, Multi-modal Optimization and Multidimensional Systems. The PSO

is mostly applied to Resource scheduling, Travelling Salesman Problem (TSP), Clustering methods,

network generation methods, multidimensional and industrial optimization methods (KAPUR, 2015;

JR et al., 2013).

Swiech, Oroski e Arruda used Genetic Algorithms (GA) to tune decoupled Proportional Inte-

gral Derivative (PID) controllers for distillation columns, instead of the classic tuning methods largely

applied in industry like Ziegler Nichols and Biggest Log Modulus. In their work, two PID controllers

were responsible for manipulating the re-flux mass flow rate and the flow of steam to control the com-

position of the bottom and top products. So the Genetic Algorithm found 6 optimal values of gains

Kp, Ki and Kd for each controller. Although not an adaptive control, a bio-inspired algorithm like the

Genetic Algorithm was applied to tune two linear PIDs and results proved it was efficient in achieving

solutions that controlled well the output products.

The main advantage of the GA as a tuning method is that the two controllers could be tuned

in a unified way to solve a multiobjective problem, which can be a challenging task to engineers in

industry (SWIECH; OROSKI; ARRUDA, 2005).

Despite previous works explored the GAPID as an adaptive method to improve the PID

controller, none analyzed the behavior of the controller when parameters of the plant are changed

or created a method to guarantee the adaptive PID to maintain optimal performance even with those

changes.
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This work proposes a robust Gaussian Adaptive PID control, applied to control the output

voltage of a DC-DC Buck converter, with robust parameters found and optimized by two nature-

inspired algorithms, the GA and the PSO, by simulating variations on the Buck. This new control

method ought to maintain close to optimal performance despite the plant variations.

The Buck converter is a relatively simple converter present on most low voltage power sup-

plies, and represents a typical second-order plant. Its model is straightforwardly obtained by employing

Kirchoff laws. So, it represents a good model to test the proposed control strategy without unpredicted

model issues. It must be clearly stated that such model was used on simulations only. But it is advis-

able to test the control strategy in a different plant, preferably in real-world conditions. Then, a motor

with distinct beams attached to it was used, and a National-based controller programmed in Labview

language, very common in industry, was utilized. As every physical prototype, inherent noises and

component imperfections arise. The proposed control technique must survive and give the expected

responses in order to demonstrate its effectiveness.This is the case of the proposed GAPID, which

results are presented in the following chapters.

1.1 OBJECTIVES

1.1.1 General Objective

The main objective of this work is develop a Gaussian Adaptive PID control (GAPID) opti-

mized by bio-inspired methauristic algorithms for a computer simulation model of a second order study

plant DC-DC Buck converter and for a real prototype plant of a DC motor using a PLC (Programmable

Logic Controller to control the rotation speed and test its performance by applying load variation.

1.1.2 Specific Objectives

• Extract the mathematical model of the DC-DC Buck converter

• Develop a computation model of the converter to be used in simulations

• Build the GA and PSO algorithms for the application

• Run and test the algorithms with a load sweep variation and compare the results to demonstrate

the GAPID adaptation on the plant

• Compare their performance to the linear PID
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• Develop a simulation model to the DC motor plant

• Choose the best algorithm between the GA and PSO to develop the GAPID.

• Run and test the optimized GAPID with a load sweep for the DC motor by using metal beams

of different mass.

• Apply the GAPID on the real prototype plant and compare to a linear PID

1.2 STRUCTURE

This work is structured as follows: chapter 2 describes three aspects: (i) the application

circuit, a DC-DC buck converter, its mathematical model and transfer function; (ii) a brief discussion

about the traditional PID control; (iii) and its nonlinear version: the Gaussian Adaptive PID control,

which is the main control technique analyzed in this work. It also presents the optimization tools,

based on bio-inspired metaheuristics, for finding the proper parameters for the GAPID controller. Two

algorithms are employed: the Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). Some

variants of the algorithms are also inspected, in order to compare their performances.

Chapter 3 presents the development of this work, how the simulation and experimental mod-

els were built, how the GAPID is applied to the system and how the algorithms find its parameters. In

addition, this chapter presents which output results were captured, and how they were analyzed and

compared.

Chapter 4 presents the obtained results. A comparison between the performance of the GA

and PSO to optimize teh GAPID. The results of a load sweep are presented, using the best algorithm

chosen and how the GAPID improves over the PID. To better understand the GAPID enhancement

over PID, an analysis about the control signal saturation is performed.

After that, the validation of the simulation model of the experimental plant, the DC motor, is

presented by comparing their speed output behavior with three metal beams of different mass (load

sweep). Then, the output speed controlled by a PID is presented for the 3 beams. And at last, the

output when controlled by the GAPID tuned by the optimization algorithm for each of the beams. The

PID and GAPID results are then compared.

Finally, Chapter 5 presents the conclusions, interpreting and analyzing the results and their

effects.
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2 CONTROL STRATEGY APPLICATION

2.1 INTRODUCTION

This chapter will present the circuit application, a Buck converter, a typical second-order

plant, which is widely used in low voltage switched power supplies, its working principle, its mathemat-

ical model and transfer function. Some comments about the traditional PID controllers, that is much

employed in industry and can be applied to stabilize the voltage output of the converter, are included,

as well as a discussion about its performance limitations, that can be overcomed by applying nonlin-

ear controllers instead. The Gaussian Adaptive PID (GAPID) is one such controller, that will also be

presented. It is also presented the limit control by using the sliding mode control technique. Here, this

technique is used as a reference for the best control possible. It is compared to the GAPID and the

PID to show how close they are to the optimal control.

2.2 STUDY CIRCUIT PLANT: STEP-DOWN DC-DC CONVERTER

The buck converter is a DC-to-DC power converter which steps down voltage (while stepping

up current) from its input (supply) to its output (load). It can be highly efficient, making it useful for

applications such as the majority of low voltage power supplies used in electronic devices or as part

of electric/electronic equipment like USB, DRAM and the CPU (1.8 V or less) (JULIAN et al., 1997).

The Buck converter was also used in some studies to cell phones and other portable

applications. (XIAO et al., 2004; LIOU; YEH; KUO, 2008; MAITY et al., 2011). Rodriguez et al. (2010)

made use of it for envelope tracking applications in radio frequency to improve the efficiency in

wireless communication transmitters.

The step-down converter is presented in Fig. 1.

Graph 1 – Schematics of the Buck converter

source: own autorship
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The converter operates in two states, one when the switch is on (Fig. ??(a) and the other

when its off (Fig. ??(b)),

Figure 1 – Buck Converter States

source: own autorship

where:

d(t) is the state of the switch (1 is on, 0 is off);

vi is the input DC voltage;

iL is the current in the inductor;

io is the current in the load;

iC is the current in the capacitor;

L is the inductance value;

C is the capacitance value;

R is the load resistance value;

vo is the output voltage on the load.

Through nodal analysis, it is possible to relate the inductor current with the current going

through the capacitor and the load as in eq.(1):

iL(t) = ic(t) + io(t) (1)

Through mesh analysis, is possible to relate the input voltage to the voltages of the inductor

and capacitor as in eq.(2):

d(t)Vi = vL(t) + vc(t) (2)
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From eq.(2), the input voltage on the inductor and capacitor are zero if the switch is off (d =

0). The discrete function d(t) can be referred as a continuous limited function u(t) that represents the

mean of d(t) in one switching period of PWM.

The system can be described by the state-space Eq.s (3) and (4).

L
diL(t)

dt
=− vc(t) + u(t)Vi (3)

C
dvc(t)

dt
=iL(t)− 1

R
vc(t) (4)

The step-down converter is a linear second-order, single input, single output system. So, a

possible useful analysis tool is the Laplace transform (ROWLEY; BATTEN, 2008). Hence the control

input-to-voltage output transfer function is written as in eq.(5).

Vc(s)

U(s)
=

Vi

LCs2 +
L

R
s+ 1

(5)

To assure the converter to work properly, a closed loop control is necessary to stabilize the

output voltage to a desired value, which is the main purpose of the converter: to serve as a low-voltage

power supply.

The most commonly used type of controller is the Proportional-Integral-Derivative (PID) con-

troller, reaching around 95% of usage as control mesh in Industries all over the world. Even if new

technology advances were made in new control techniques, the PID is still largely used in many in-

dustrial processes for its simplicity, easy application and performance (ÅSTRÖM K. J. ; HÄGGLUND,

1995).

The goal of automatic controllers, like the PID, is to maintain the values of the controlled

variables in a specific, or close enough, value called set-point by acting and changing the manipulated

variables (CORNETTI, 2014). In case of the Buck converter, one of the controlled variables is the

output voltage and the manipulating variable is the opening and closing of the switch (changing the

duty cycle). A typical closed-loop PID control diagram is shown in Fig. 2.

The output signal is measured by a sensor and then compared to the set-point or reference,

this is the error analyzed by the PID controller so it can calculate whether the switch has to stay on

longer or not. This on and off signal is sent to the switch through a pulse width modulator (PWM)

generating the output response and closing the loop (ASTRÖM K. J. ; HÄGGLUND, 2004).
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Figure 2 – PID closed-loop diagram

source: own autorship

The control signal u(t) is the output sent by the controller and it is represented in eq.(6)

u(t) = Kp

e(t) +
1

Ti

t∫
0

e(τ)dτ + Td
de(t)

dt

 (6)

In eq.(6) the output control signal u(t) depends on the error signal e(t) which is the the

difference between the set-point and the system output. u(t) is also the sum of three parts composed

of one proportional to the error signal, a second proportional to the integral of the error and a third

proportional to the derivative of the error (CORNETTI, 2014). The proportional deal acts directly over

the system gain, the integral deal is related to the precision of the output response and the derivative

deal anticipates the error and tries to correct it in advance (SWIECH; OROSKI; ARRUDA, 2005).

Although widely used, the PID has its downsides just like other linear controllers. It has

limited robustness and is sensitive to changes on the plant and the system in overall. For instance, the

system may change over time, like some parts may get rusty or gears may get looser in a mechanical

production line. Another disadvantage is that it is designed to function on specific loads. Taking a

conveyor belt as an example, a heavier box may change the control response, pulling it out of an

optimal operating condition. It could result in an energy waste or slowing down the belt.

One of the main disadvantages is the natural limitations of a linear controller: the gains are

fixed and it poses performance limitations. It is known that a high proportional gain can speed-up the

controller response but cause a higher overshoot, which is commonly an undesirable behavior in most

systems. The derivative gain is also able to speed-up the controller response with lower overshoot but

is very turns the controller very sensible to noise. In several cases, the derivative component is not

employed due to this sensitivity.

Nonlinear controllers can overcome these limitations. An adaptive PID represents a modi-

fication of the traditional PID that can perform far better, achieving excellent performances with low
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overshoot and adapting the noise sensitivity as the controlled output approaches the setting-point. But

the the design methodology of such controllers is much harder.

In section 2.4, an adaptive PID based on Gaussian functions (reference) is presented. This

controller was proposed by (KASTER et al., 2016) and is the subject under study in this work. The

linked parameters design methodology has the advantage of using the designed PID parameters into

account and derive the Gaussian parameters by using an optimization tool.

2.3 EXPERIMENTAL PLANT: DC MOTOR

The experimental plant built for this thesis consists of controlling the rotation speed of a DC

motor with a metal beam attached to its rotation axis shaft. The DC motor is an actuator that converts

continuous electric current to rotating mechanical power, known as torque. There are several types of

DC motors, and in this thesis, the DC motor type used is the fixed field or permanent magnet. This type

of motor is often used because of its easy speed and angular position control. The control of these

motors is achieved by determining suitably the voltage to be applied to the motor armature (DORF;

BISHOP, 2001).

Considering that the magnetic field generated by the permanent magnet is fixed, it is possible

to write the torque generated by the engine as shown in Eq. (7)

T = Kt.ia (7)

where:

T = torque

Kt = torque constant

ia = armature current

The counter electromotive force generated by the motor, can be described as proportional

to the angular speed of the motor shaft θ
′
, as showed in Eq. (8).

e = Kb.θ̇ (8)

where:

e = electromotive force
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Kb = electromotive force constant

θ̇ = angular speed

By applying the Newton’s second law, the behavior of the motor mechanical motion is de-

scribed by the following Eq. (9)

Jθ̈ + bθ̇ = Kt.ia (9)

where:

J = the sum of the moments of inertia from the beam

b = viscous friction from the moving parts of the motor

Kt = torque constant

ia = armature current

θ̇ = angular speed

θ̈ = angular acceleration

Applying the Kirchhoff’s voltage law to the electric system, the behavior of the electric system

of the motor is obtained as shown in Eq..

L
dia
dt

+R.ia = Vi −Kb.θ̇ (10)

where:

L = armature inductance

R = armature resistance

Vi = input voltage

Eq.s (9) and (10) together represent the mathematical model of the DC motor. Both Eq.s are

coupled through the electric current and angular speed.

With the beams attached, the system is influenced by the drag force, which is a force oppos-

ing the torque. Eq. (11) represents the drag force (JANZEN et al., 2014).

Fd = ρ.A.Cd.(
V

2
)2 (11)



22

where:

Fd = drag force

ρ = air density

Cd = drag coefficient

V = linear speed

2.4 GAUSSIAN ADAPTIVE PID CONTROLLER

The Gaussian Adaptive PID controller (GAPID), is based on a linear PID controller, but takes

into account variable gains instead of fixed gains, which gives to the GAPID the characteristic of

adaptive. This controller considers Gaussian functions of the input error given by Eq. (12)

f(σ) = k1 − (k1 − k0)e−q.σ
2

(12)

Figure 3 demonstrates the behavior of an example of the Gaussian function

Figure 3 – Gaussian Function

source: own autorship

where:

σ is the error;

q defines the openness of the Gaussian function;

k0 and k1 are the bottom and upper limits. Depending on the error signal, the gain will vary between

the limits defined by those values.
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The Gaussian is a smooth function with smooth derivatives, making the gain change grad-

ually as the error approaches zero, thus preventing abrupt changes that could damage the physical

system. The parameter q affects this smooth transition, the bigger the value, the less opened is the

function, turning the transition from the lower to upper limits steeper.

In Fig. (3) (a), the concavity is downwards, because k0 > k1. If k0 < k1, alternatively the

concavity is upwards as in Fig.(3) (b).

Each branch of the controller, the proportional, the derivative and the integral, has its own

Gaussian function with its own set of gains. That means there would be nine parameters: kp0, kp1, qp,

ki0, ki1, qi, kd0, kd1 and qd. But to prevent noise issues there should be no derivative gain when the

system reaches the steady state and the controllers acts as a PI, meaning that the Gaussian function

for the derivative branch ought to be upwards (kd1 > kd0) and kd0 = 0. Therefore the function for the

derivative branch is simplified as shown in Eq. (13)

fd(σ) = kd1(1− e−qd.σ
2

) (13)

consequently there are actually 8 parameters to be set.

The gaussian for the derivative gain is typically upwards and for the integral gain downwards.

The proportional gaussian tends to be upwards, but it can be downwards in some cases. In the Buck

converter, the function with concavity upwards is applied to the proportional and derivative branches,

as the gain must be higher when the error is also high and drops as the error approaches zero. This

assures a faster response time, and as the error drops, so does the proportional and derivative gains

in order to prevent the signal to surpass the target value (overshoot). Whereas this should not be the

case for the integral branch, where this could increase the settling time, delaying the response. For

this reason low initial integral gain helps achieving a faster response, while high integral gain during

the steady state assures faster convergence to a null error.

The 8 parameters to be set, the 5 gains and 3 q will be called free “parameters” from now

on. There is another method to find those parameters. This alternate method makes use of the linear

gains of the PID and links them to the GAPID’s with a relation of k0 = x.kP ID k1 = 1
x
kP ID. All

relations are provided in Eq. (14)

kp0 = x.kpP ID; kp1 = 1
x
.kpP ID

ki0 = y.kiP ID; ki1 = 1
y
.kiP ID

kd1 = z.kdP ID

(14)

As a result this “linked parameters” method provides 6 parameters to be set: x, y, z, qp, qi,

qd, compared to 8 from the free parameters. This linked method has an advantage as it can use the
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same gains from an already tuned linear PID, thus enhancing its performance so it could just be added

to an implemented controller in an industry, for example.

There is no mathematical method to obtain the appropriate values of these parameters yet.

Optimization tools, like bio-inspired algorithms, are a good choice to find these parameters, and are

explained in chapter 3.

2.5 LIMIT CONTROL

The limit control refers to the best control possible for achieving the best performance re-

garding the controlled variables. Normally, the maximum and minimum levels of the control signal are

used, in specific intervals chosen carefully in order to match the setpoint in the minimum time possible,

so there is no way to perform better.

The limit control is used in this work as a reference to see how far other control strategies

can approach the limit.

It can be derived from sliding mode control (SMC), a technique developed by Utkin (1978),

where the designer can set a control law capable of making that all trajectories of this system

converge to a determined surface called sliding surface. The engineer must choose this sliding

surface to guarantee that all trajectories on it converge to the target operation value (set-point)

(AGOSTINHO, 2009; OLIVEIRA, 2014). Fig. (4) shows in red the sliding surface for this work.

Figure 4 – Sliding mode control: Equilibrium points (green); sliding surface (red); trajectory of system states
(blue).

source: own autorship

An ideal switching surface can achieve global stability, good large-signal operation, and fast
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dynamics. After the trajectory reaches the inside of the sliding surface, it is said that the system is

operating in sliding mode. When the system is in sliding mode, it is insensitive to parametric variations

and external disturbances. This property ensures robustness to the SMC. However, due to the depen-

dence of the output voltage ripple on the relative magnitudes of the input and output voltages, and

load power, the sliding mode control is largely operated at a high variable switching frequency called

chattering and also at high control gains. This will make the design of the filter components difficult in

some applications (AGOSTINHO, 2009; YAN et al., 2009).

In Fig. (4) the steady state is reached considering only two switching states. It is an ON and

OFF switching states with an exact duration of both that results in the fastest possible transient of

the controlled variable (output voltage). It appears in the state-space by following the ON-state path,

touching the switching surface and then following the OFF-state path that hits exactly the set-point.

As a result, the sliding mode control is used here as the limit control (reference), where we can find

the fastest possible startup transient for the controlled variable. Graph (2) shows the resulting output

voltage.

Graph 2 – Output Voltage using SMC

source: own autorship

The output voltage on Graph (2) represents the best performance it can reach, by the appli-

cation of the limit control, with a minimum settling-time of 0.327 ms. This minimum setling-time will be

used as a reference that indicates the maximum performance possible which is very useful to measure

the margin still left for enhancement of any other controller solution, like the GAPID used in this work.

Figure 3 shows the corresponding inductor current.

There is a high peak inductor current during the transient period. Although undesirable in
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Graph 3 – Inductor current

source: own autorship

real applications, it is not being considered because this work aims at the minimum settling-time of the

controlled variable (output voltage).

2.6 PERFORMANCE EVALUATION METHOD

There must be an evaluation method to compare the different control strategies. In this case,

a function must evaluate the performance of the controller by measuring the output voltage signal of

the buck converter. Fig.(4) is an example of an output voltage signal.

In figure 4 there is an example two common variables used to assess performance: over-

shoot and settling time of a step response. A controller is designed to minimize the settling time while

containing the overshoot of the signal within acceptable limits, for this reason both values are com-

monly used as design requirements and can be used to compare controllers. The lower these two

values, the better is the overall control (TAY; MAREELS; MOORE, 1997).

There are other methods that express performance as function of the error, which implicitly

considers both setling-time and overshoot in a single function. The definition of the error signal is

represented in eq. (15)

σ(t) = P − Vo(t) (15)

where σ(t) is the error, P is the set point value and Vo(t) is the output voltage. Puchta et al. (2016b)

compared four methods of evaluation and demonstrated that the Integral Absolute Error (IAE) function
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Graph 4 – Output Signal Example

source: own autorship

was the one that presented the best consistent results. It is defined in eq. (16).

IAE =

∫
|σ(t)|dt (16)

This function represents the area formed by the absolute value of the error signal, thus the

output of this function is a positive number. An example can be seen in Fig.(5).

Graph 5 – Area corresponding to the IAE

source: own autorship

The lower the overshoot and the faster the output signal takes to reach the set point (Os and

Ts), the smaller is the area, the better is the controller. Hence, the IAE function can be considered a
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cost function, that must be minimized. Instead of using the IAE function directly to be minimized by

the algorithm, an alternate function will be used, called fitness function (Fit), that must be maximized.

Eq. (17) represents the normalyzed Fitness function (assuming values ranging from 0 to 1).

Fit =
1

1 + IAE
(17)

One problem with this equation is that it does not consider the overshoot and settling time

separately and the algorithm could force a fast response but with high overshoots. An alternative is

to change the Fitness equation applying a weighting (α) to the overshoot (Os) in addition to the IAE.

When the maximum voltage value surpasses the voltage target value SP, it is saved and added to IAE.

Eq.(18) is the new fitness function.

Os = Vmax − SP

Fit =
1

1 + (IAE + αOs)

(18)

The fitness Eq. (eq.(18)) scales the fitness value between 0 and 1 and is the opposite from

the IAE + αOs. On one hand, a low IAE and overshoot turns the fitness close to 1, on the other

hand, a high IAE and overshoot turns the fitness close to 0. Consequently, higher values for the fitness

function denote better performance.

2.7 METAHEURISTICS

2.7.1 Introduction

Where finding an optimal solution may be impossible or impractical, heuristic techniques

can be used to speed up the process of finding a satisfactory one (IPPOLITI, 2014). Metaheuristic is

defined, in computer science, as a high-level heuristic designed to find, generate or select a search

algorithm that could provide some sufficient possible solutions (BIANCHI et al., 2009).

Genetic Algorithm(GA) and Particle Swarm Optimization(PSO) are both part of optimization

search algorithms, used when the sample search space is too large for a traditional “blind” search

(COLEY, 1999). In this work the two search algorithms strategies are used and compared to find

possible optimal parameters of the GAPID, previously explained in section 2.4.
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2.7.2 Genetic Algorithm

Genetic algorithm (GA) is a robust and efficient search technique that has been used to

many engineering applications since it was introduced. The popularity of this method is based on sim-

ply solving multidimensional and multi-modal optimization problems without requiring any additional

information such as the gradient of an objective function (CHEN; YIN, 2012).

GA was invented by John Holland, his students and colleagues at University of Michigan in

the 1960s based on Darwin’s theory of evolution. His original goal was to study the phenomenon of

adaptation as it happens in nature and develop ways to import them to computer systems. Holland’s

GA consists on a method of moving from a generation of chromosomes to a new, more adapted one

by applying a sort of “natural selection”, crossover and mutation operations (MITCHELL, 1998). Fig.

(5) shows the flowchart logic of implementing a GA.

Figure 5 – Flowchart of GA

source: own autorship

2.7.2.1 Initialization

In the first step a initial population is randomly generated with a set number of chromosomes.

Each chromosome possess a group of genes, in case of this work these genes are the 8 parameters

of the GAPID (kp0, kp1, qp, ki0, ki1, qi, kd1, qd), using the free parameters method, or 6 (x, y, z, qp,

qi, dd), using the linked parameters.

2.7.2.2 Fitness Evaluation

The goal of the GA is to optimize the values of the GAPID parameters in order to improve the

controller. For that to happen, there must be a way to evaluate how “adapt” a chromosome is, or how

good it is compared to the others. After the initial step, and every successive loop, each chromosome
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of the randomly generated population must be evaluated and given a rating. The evaluation is usually

done by a function which should be minimized or maximized. In this case, the fitness function in Eq.

(17) presented in section 2.6 is used by the genetic algorithm as a fitness evaluation.

2.7.2.3 Selection

After the initial step and during each successive generation, a portion of the existing pop-

ulation is selected to breed a new generation. The selection is based on the fitness values, where

fitter solutions are more likely to be selected (SCHMITT, 2001). The selection operation determines

which solutions are to be preserved for reproduction and which ones are to die out during the iter-

ated optimization process of GA (LU et al., 2013). Two selection methods were employed: the fitness

proportionate selection, also known as roulette wheel selection, and the tournament selection.

In the fitness proportionate selection or roulette wheel, the fitness value is used to asso-

ciate a probability of selection with each individual chromosome. Eq.(19) presents the probability of

selection.

pi =
Fiti∑N
i=1 Fiti

(19)

where i is an individual chromosome, Fiti is the fitness value of that chromosome and N is the

number of chromosomes of the population (LIPOWSKI; LIPOWSKA, 2012). The probability can be

compared to a roulette wheel, hence the name, like in Fig.(6).

Figure 6 – Roulette wheel

source: own autorship

The roulette corresponds to the sum of probabilities. The fitter the chromosome, more space

it fills in the roulette, consequently greater is its chance to be selected to pass on its genes to the
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next generation. Although the fittest chromosome is unlikely not to be selected and “die”, it can still

occur without a method of elitism in the algorithm, which guarantees the fittest chromosome never

dies (LIPOWSKI; LIPOWSKA, 2012).

The roulette spins and where the arrow is pointing when it stops indicates the selected

chromosome (Random selection based on fitness). Taking fig.(6) just to illustrate, chromosome D has

the highest fitness of the group, as a result there is a higher chance the roulette will stop pointing to

its area. If it does so, D is selected for crossover and pass on its genes. Usually half the population is

selected. For instance, in a population of 20 chromosomes, 10 will be selected based on the fitness

to participate on the crossover. It is so because 10 chromosomes will breed a new population of 20,

maintaining the population’s size.

It is important to point out that this process of higher probability of selection of the fitter chro-

mosomes is what makes the algorithm converge faster to a more suitable solution, as they are more

likely to pass on better genes to the next population. But as the process is dealing with probabilities

it is still random and not so fit chromosomes can still pass on their genes. This chance is important

to ensure variety to future generations and a chance to find other fitter solutions (GOLDBERG, 2002).

That is also the goal of the mutation operation which will be explained further.

The second method of selection is the Tournament. It involves running several "tournaments"

among some chromosomes chosen at random from the population. The winner of each tournament

(the one with the better fitness between the two) is selected for crossover (MILLER; GOLDBERG et

al., 1995).

Figure 7 – Example of Tournament

source: own autorship
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In the example of fig(7) two random chromosomes are selected to compete on the first tour-

nament and the fitter one is selected. Another two chromosomes are randomly selected to compete

and once again the fitter one is selected. This process is repeated until half the population is selected

for reproduction.

The tournament selection has a variation known as sudden death tournament. On the origi-

nal tournament, a chromosome that “lost” goes back to the pool and can be randomly chosen to face

another chromosome, getting a chance to be selected for the crossover. On the death tournament,

however, the losing chromosome is immediately eliminated and can not be chosen to compete again.

It works as an elimination tournament (MILLER; GOLDBERG et al., 1995).

2.7.2.4 Crossover

The crossover operator has been considered the main component of GAs and make them

distinctively different from other optimization and problem solver algorithms (YAMADA; NAKANO,

1995). It selects groups of genes of a pair of parent chromosomes and mix then to create a new

offspring, mimicking biological recombination between two single chromosome organisms (SHARMA;

SINHA, 2014). In case of this work the genes are the parameters of the GAPID.

There are different methods of crossover and the simplest one is the single-point crossover.

Fig.(8) illustrates this method (GWIAZDA, 2006).

Figure 8 – Single-point crossover

source: own autorship

In the two-point crossover, two points are picked randomly from the parents as in fig.(9)
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Figure 9 – Two-point crossover

source: own autorship

There is also the uniform crossover exemplified in fig.(10), in which the single segments

are exchange individually and randomly from the parents, so there is no bias in two close segments

always coming from the same parent (GWIAZDA, 2006).

Figure 10 – Uniform crossover

source: own autorship

The crossover method influences how fast and accurate the algorithm will converge to optima

solutions (GWIAZDA, 2006).

2.7.2.5 Mutation

Mutation is a genetic operator used to maintain genetic diversity from one generation of a

population of genetic algorithm chromosomes to the next. It is analogous to biological mutation.

Mutation alters one or more gene values in a chromosome from its initial state. In it, the
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solution may change entirely from the previous solution. Hence GA can come to a better solution.

It occurs during evolution according to a user-definable mutation probability. This probability should

be set low. If it is set too high, the search will turn into a primitive random search. It can also prevent

the algorithm to be stuck in a local optimal (PEZZELLA; MORGANTI; CIASCHETTI, 2008). Fig (11)

shows a simple example of a mutation.

Figure 11 – Example of mutation

source: own autorship

2.7.3 Particle Swarm Optimization

The Particle Swarm Optimization (PSO) is a swarm-based computing technique developed

by Kennedy and Eberhart, which was inspired in the social behavior of groups of animals, like flocks

of birds and schools of fishes (KENNEDY, 1995). The hypothesis of sociobiologist E. 0. Wilson refer-

encing fish schooling was fundamental to the development of their PSO algorithm.

In his hypothesis Wilson claims that, “in theory at least, individual members of the school

can profit from the discoveries and previous experience of all other members of the school during the

search for food. This advantage can become decisive, outweighing the disadvantages of competition

for food items, whenever the resource is unpredictably distributed in patches.” (WILSON, 1975). He

suggests that social sharing of information among members of the same specie offers an evolutionary

advantage. So the main characteristic of the PSO is that simple agents, when working together, can

arise a collective intelligence conduct, respecting simple rules.

Each particle presents a position and a velocity. The current position corresponds to a point

in the search space, or a candidate solution. The initial swarm positions and velocities are random

generated, limited by the search-space size. The initial fitness is calculated, setting the first personal

position (pbest) and population global best (gbest), before starting the iterations. At each iteration, the

particles’ velocity and position vectors are updated by Equations (20) and (21) respectively, based on
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the previous information of pbest and gbest (CLERC; KENNEDY, 2002).

vi(t+ 1) = vi(t) + r1c1(pbesti(t)−xi(t)) + r2c2(gbest(t)−xi(t)) (20)

xi(t+ 1) = xi(t) + vi(t+ 1) (21)

where:

i = Index of the particle

vi(t) = Velocity of particle i at instant t;

r1 and r2 = Random supply numbers between 0 and 1;

c1 = Personal acceleration factor;

c2 = Social acceleration factor;

pbest = Best known personal position;

gbest = Best known global position;

xi(t) = Position of the particle i at instant t.

Each term of the velocity equation serves a purpose. The term r1c1(pbesti(t) − xi(t)) is

called the cognitive component and acts as the particle’s memory, causing it to tend to return to

the regions of the search space in which it has experienced high individual fitness. The personal

acceleration factor c1 affects the size of the step the particle takes toward its individual best solution

achieved so far. (BLONDIN, 2009)(SHI; EBERHART, 1998a)

The term r2c2(gbest(t)−xi(t)), called the social component, causes the particle to move

to the best region the whole swarm has found until that instant. The Social acceleration factor c2

represents the size of the step the particle takes toward the global best candidate solution gbest. The

random values r1 and r2 cause each particle to move in a semi-random manner heavily influenced

in the directions of the personal best solution and global best solution of the swarm. (BLONDIN,

2009)(SHI; EBERHART, 1998a)

In other words, the velocity vector of a particle will change on the influence of the best

particular position it has achieved so far (pbest) and the best current position of the whole group (gbest).

The new vector will be the resultant of all these vectors, changing the position of the particle. That

happens to all particles of the population at each iteration. Every time a particle finds a new better

spot, its pbest is updated, it also happens when one of them finds a new better global spot (gbest).

To better understand how the particle swarm algorithm works, it can be compared to a fish

schooling like sociobiologist E. 0. Wilson referred. The whole fish school is looking for food and their
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position is defined by x, y and z in a three dimensional space underwater. They can sense how close

they are to food (fitness) and they communicate with each other. When one of the fish comes closer

to food, it sends a message to the school like: “I got closer, my position is the new gbest.” The others

than change the direction they were heading to a new one, turning closer towards the new global best

position. But this turning also depends on the best position closer to food that the fish remembers it

has passed, so it also has its own local search.

To define the best solution at each iteration, the fitness must be calculated. To this problem

of the optimization of the GAPID, the fitness evaluation process is the same as the genetic algorithm,

explained in section 2.7.2.2 and uses the same fitness equation (17). In case of the fish schooling, is

easy to picture the school converging to an optimal location in a three dimensional space (updating

x, y and z), but in the case of the GAPID the parameters are not x, y and z, but the 8 or 6 gain

parameters explained in section 2.4. So it is like the algorithm is moving in a 8 or 6 dimensional space,

looking for a better combination of controller parameters.

The general steps of the original PSO are summarized in a flowchart in Fig. (12). The

termination criteria can be the maximum number of iterations or the given precision parameter of the

best swarm fitness, whichever comes first (CLERC; KENNEDY, 2002).

One main difference between the GA and the PSO is that the PSO is more dynamic, while

the GA is more static. On the first, every new iteration or generation, is a new group of individuals

that carry the genes from their parents a generation before. Therefore, the children can represent a

location further away from their parents, in one iteration the particles can “jump” to a new location. On

the PSO, there is no breeding, the particles have velocity, taking steps and changing their own position

every iteration.

In the PSO algorithm the definition of a topology is mandatory. This information determines

how the particles exchange their position information (and fitness) at each iteration. In this investigation

we address two proposals, global and ring topologies. It can strongly influence the search capability

(KENNEDY; MENDES, 2002).

In the global topology, the position of each particle is shared with the entire swarm. In this

work, the best fitness (g best ) is related to the particle that present a set of parameters which leads to

the best performance of the controller (PUCHTA et al., 2016a). On the other hand, the ring topology

uses a communication between the neighbors of the current particle, in order to set a local best

position. It compares the fitness between groups of three successive particles, the current one and

the immediate predecessor and successor (CASTRO, 2006). Figure (13) presents the two main PSO
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Figure 12 – PSO Flowchart

source: own autorship

topologies.

It is possible to see from Figure (13) that while in the ring topology, the particles only com-

municate to the adjacent ones, on the global topology there is communication between all of them.

The best position g best is saved in an auxiliary variable. It is important to remark that the algorithm

structure utilized for both topologies can be the same.
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Figure 13 – PSO topologies

source: own autorship
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3 METHODOLOGY

3.1 INTRODUCTION

This chapter will present the development of this work, how the simulation models for both

the study and experimental plants were set up and how the optimization algorithms were applied to

tune the GAPID for both cases. The process of building the experimental prototype plant will also be

stated, along the PLC programming for the PID and GAPID. How and which results were captured for

further analyses and how those analyses and results were measured and compared are included as

well. The results and comparisons are presented in the next chapter Results.

3.2 DEVELOPMENT OF STUDY SIMULATION PLANT (DC-DC CONVERTER)

At first, a simulation model for the DC-DC Buck converter was developed based on its

mathematical model explained in section 2.2. Fig. (14) presents this simulation model where the input

is a pulse width modulation signal which controls how much power is delivered to the system from the

constant input Voltage Vi.

Figure 14 – DC-DC converter simulation model

source: own autorship

In Table (1) are all the chosen parameter values of the converter.

A model of the GAPID was developed, alongside with a PID. They are responsible to set a

duty cycle to the pwm, as a result, controlling the output voltage. Fig. (15) shows how the simulation
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Table 1 – Buck parameters

Parameter Value

Input voltage (Vi) 48 V
Capacitance (C) 10 µF
Inductance (L) 3 mH

Load resistance (R) 55 Ω
PWM frequency (fpwm) 50 kHz

Set-point voltage (target value) 30 V

source: own autorship

model of the GAPID was built.

Figure 15 – GAPID block

source: own autorship

The Gauss block contains the three Gauss functions for each branch of the PID (proportional,

integral and derivative) represented by fKp, fKi and fKd respectively as follows in Eq.s (22),(23) and

(24).

fKp(σ) = kp1 − (kp1 − kp0)e−qp.σ
2

(22)

fKi(σ) = ki1 − (ki1 − ki0)e−qi.σ
2

(23)

fKd(σ) = kd1(1− e−qd.σ
2

) (24)

The result of each function is multiplied by the error, the error derivative and its integral

signal, all summed up to finally generate the control output signal u. The GAPID or the PID are linked

to a pwm signal generator block and the Buck converter model to result in the overall closed-loop
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simulation model shown in the following Fig. (16).

Figure 16 – Complete simulation block of the Buck converter

source: own autorship

The GAPID and the PID do not run simultaneously. Which control method is currently being

used can be chosen by a manual switch. The controlled output voltage (Vce) is subtracted from the

set point to generate the error signal for the controller, closing the loop. A scope captures the output

Voltage signal. Both Genetic Algorithm and PSO are in charge of finding the parameters values of the

three Gauss functions. To do so, every iteration of the algorithms run the simulation model for 4ms.

The output Voltage signal from the scope for this 4ms duration is used to calculate the fitness of these

set of gauss function parameters rating how good they are. Six variants of the Genetic algorithm were

tested using the test simulation model. These six variants were:

• GA 1: Original GA using roulette wheel with 70% of crossover rate.

• GA 2: Same as GA 1 but the crossover rate is 100% (always happens).

• GA 3: The selection used was the no death binary tournament.

• GA 4: Here, the “death tournament” was performed as selection.

• GA 5: A variation of GA 2, the roulette is applied after the mutation.
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• GA 6: Same as GA 5, but the tournament is used instead of the roulette.

All variants had a population of 50 individuals and a maximum of 50 iterations. The best one is chosen

by the average fitness given from a boxplot graphic. Another six variants were tested, but now of the

PSO. They were divided in two main groups, one using the global topology and the other using the

ring topology. They were developed as follows:

• PSO 1: This is the original proposal from Kennedy and Eberhart (KENNEDY, 1995), the one

which uses Eq. (20) to calculate the velocity. The global topology is addressed.

• PSO 2: Another proposal which uses the global topology. In this PSO variant, a fixed inertial

weight (ω) multiplies the previous velocity vi in Eq. (20), generating Eq. (25) (EBERHART; SHI,

2000). The inertial value is a real value in the range between 0 and 1 (VESTERSTROM; THOM-

SEN, 2004). For a global fitness searching, large values of inertia are effective. Small values

are should be utilized for local search (KHAN et al., 2012). This variable ensure a controllable

particle’s velocity, limiting its movement.

vi(t+ 1) = ωvi(t) + r1c1(pbesti(t)−xi(t)) + r2c2(gbest(t)−xi(t)) (25)

• PSO 3: In this case, the inertial value decreases linearly at each iteration, from a maximum

(w max ) to a minimum value (w min ), according to Eq. (26). This procedure provides a more

efficient way for converging to a solution by limiting the particle’s movement at each iteration

(SHI; EBERHART, 1998b). Again, the global topology is addressed.

ω = ωmax − k
(ωmax − ωmin)

itemax
(26)

where ωmax = Maximum inertial weight value; ωmin = Minimum inertial weight value; itemax =

Maximum number of iterations; k = Index of iteration.

• PSO 4: This variant uses the same idea of the PSO 1, but utilizes the ring topology. Therefore,

it does not have inertial weight to limit the velocity (CASTRO, 2006).

• PSO 5: The fixed inertial weight strategy is applied on this methodology, but using the ring

topology. It is similar to the PSO 2 (EBERHART; SHI, 2000).

• PSO 6: Now addressing the ring topology, once again the linear inertial weight decreasing

strategy is used, as in PSO 3 (SHI; EBERHART, 1998b).



43

Just like the GA, the PSO variants are evaluated by their average fitness from its boxplot graph.

The results of tests with both optimization algorithms are compared to a linear PID. The best

variant of the better of the two algorithms is selected for the load sweep variation test.

In the load sweep, instead of running for a single load, the algorithm calculates the fitness

of a specific set of parameters for 10 different loads ranging from 10 to 100 Ohms in steps of 10. The

fitness for each load is summed up and divided by 10 (mean) as shown in Eq. (27).

Fitness =
1

10

10∑
i=1

Fit1 + Fit2 + Fit3 + ...+ Fit10
10

(27)

It is calculated for each individual of the algorithm, which represents a set of gauss parame-

ters. As a result, the algorithms reaches a possible optimal robust solution. After this solution is found,

it is tested and compared to the linear PID. For each load an output voltage result is registered. As

the PID controller is not developed with any sort of adaptation method, it is expected the GAPID to

achieve better results.

The controller must send a duty cycle as signal and for that it is between 0 and 1. Values

beyond this range is not interpreted by the pwm and it ends up sending 1 or 0 anyway. This effect is

control saturation. Next step was to apply a saturation sweep test.

In order to test and analyze this control saturation for the GAPID, it was put through a gain

sweep. The optimization algorithm found the GAPID parameters for each gain and the sweep was

done increasing its value by 10 every step, for 20 steps. A graph for each step is registered.

To measure how much the signal saturates, a saturation index was calculated similar to the

IAE. The area inside the range between 0 and 1 was stripped, leaving only the saturation area graph.

The saturation index is the IAE of each of these stripped curves and then turned into a fitness as in

Eq. (17).

The linear PID is also put through the same gain sweep test and the fitness of each of the

20 stripped curves is calculated. With the 20 fitness from the GAPID algorithm and PID a graph with

the ratio GAPID/PID Fitness is drawn

to demonstrate how the GAPID compares to PID as it comes close to saturation.

3.3 DEVELOPMENT OF THE EXPERIMENTAL PLANT (DC MOTOR)

The experimental plant was built with a DC Motor powered by a controlled voltage source

passing through the a Pololu Dual VNH5019 motor driver shield module. This module is a compact

breakout board for ST’s high-power motor driver IC, a fully integrated H-bridge to control the speed
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of a single brushed DC motor (POLOLU, 2019). The motor is connect to an encoder to measure its

rotation speed. Fig. (1) presents the image of both the motor drive module and the encoder used and

Fig. (2) is the picture of the Motor with the encoder attached.

Photograph 1 – Encoder and DC motor drive module

source: own autorship

Photograph 2 – DC motor

source: own autorship
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Data from the encoder is sent to a PLC from national instruments, the CompactRIO system

with a multi function series C module. This system consists of a controller with a microprocessor and a

FPGA programmable by the user. The module with analog and digital inputs and outputs connect the

sensors to the PLC, in this case, the signal from the encoder as a digital input and the pwm signal to

control the motor speed as an analog output (INSTRUMENTS, 2019). Fig. (3) illustrates the PLC used.

Photograph 3 – Programmable Logic Controller (PLC)

source: own autorship

Fig. (4) shows the system with the carbon steel beam attached to the rotation axis.

Photograph 4 – DC motor system

source: own autorship

Following the same steps from the study plant, a simulation model for the DC motor was

developed based on its mathematical expression as present in section 2.3 by Eq. (9) and Eq. (10).
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Fig. (17) presents this model.

Figure 17 – DC Motor simulation model

source: own autorship

The input is the PWM signal with an input voltage of 11 V . The output and controlled

variable is the rotation speed in rad/s. Table 2 presents the values used for the simulation and

correspond to the experimental model as well. The blocks after the Integrator1 block represents the

drag force given by Eq. (11) in section 2.3.

Table 2 – DC Motor parameters

Parameter Value Unit

R 4.57 Ω
L 0.0032 H

Ke 0.23309
N.m

A

Kt 0.23309
N.m

A

B 1.405(10−3)
N.m.s

rad
Vi 11 V

source: own autorship

The value of inertia (J ) changes depending on the beam attached to the system and function

as a load. In this work, three different beams were used and all of them have the same surface

area. These values of inertia for each beam is in table 3. Fig. (5) is a picture of these three beams used.
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Table 3 – Inertia values of the beams

Beam Inertia value (J ) Unit

Light slim aluminum 0.0035
kg.m2Carbon steel beam 0.0077

Heavy thick aluminum beam 0.008

source: own autorship

Photograph 5 – Metal beams

source: own autorship

Although the input voltage could be set close to 90 V, for safety reasons the voltage input

was kept at a maximum of 11 V due to the rotation speed it generates in open loop with the beams

attached. The next step was to validate the simulation model. The system was tested without any load

and with each of the 3 beams attached.

Without load and for the light slim aluminum beam, the input voltage was 11 V. For the other

two beams the input voltage was 5 V to prevent any harm or damage caused by a fast rotation speed

of the heavy beams.

After the validation of the model, a PID and a GAPID were develop and added to the

simulation system. The GAPID was built the same way as for the study plant, the DC-DC Buck

converter, as shown in Fig. (14) previously. As for the PID a simulink block was used. Fig. (18) shows

the overall modeled system.

The output speed is subtracted from the set point, both given in rad per second, to produce

an error signal used by both the GAPID and the PID. The control method is selected by a manual

switch. The controller generates a control signal (from 0 to 1) and is transformed into a pulse width

modulation signal to deliver the power to rotate the motor. The output signal is captured by the output

scope.
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Figure 18 – DC Motor simulation system

source: own autorship

Similar to the study plant, the optimization algorithm is in charge of finding the parameters

values of the three Gauss functions for the GAPID by calculating the fitness from the output curve

captured in the out scope every iteration.

Finished the simulations processes, the best parameters were applied to the PLC program

for the experimental plant. Figures from 19 to 23 present the program develop inside the PLC to run

both PID and GAPID.

Fig. (19) is the interactive front panel of the program. This is where the values of gain for the

PID and the GAPID are put. There is also a switch to select between open loop (manual) or closed

loop (automatic) control. The automatic control can be switched from the PID and the GAPID. The

manual value is a range from 0 to 1000 and represents the pwm output signal. A value of 600, for

instance, indicates an on state of the pwm for 60% and an off time of 40%. It is basically a duty cycle

of 0.6. The GAPIDgains block shows in real time the corresponding values of proportional, derivative

and integral gain of the GAPID.

Fig. (20) is the background loop program for the encoder signal. The digital input signal from

the encoder is captured and compared to the last signal. Because it is a digital signal, if it is higher

than the last, it represents a rising edge, meaning the encoder just counted a pulse. In other words, it

works as a rising edge detection. When a rise is detected, the condition box subtracts the current time

monitored by the clock block from the last time a rising edge was detected (time taken between two

pulses from the encoder). The encoder pulses 1024 times per rotation. As a result, the angle rotation

of one pulse θ in rad can be calculated by Eq. (28).

θ =
2π

1024
∼= 0.00613 (28)

The clock time is given in milliseconds (ms), to change it to seconds (s) it is multiplied by
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Figure 19 – Program front panel

source: own autorship

1.10−6. The rotation of one pulse (θ ∼= 0.00613) is divided by the time between pulses in seconds.

As a result, the output of the whole block is rotation speed (rad/s). Therefore this loop program turns

the signal from the encoder into rotation speed.

Figure 20 – Encoder programming

source: own autorship

Fig. (21) is the PID control loop program. The switch button from the front panel chooses
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between the PID and GAPID. The speed output information from the encoder loop is transformed

to fixed point and goes to the PID block along side the set point. The switch button from manual to

automatic is also seen here. When in automatic, the control output represents the high (on) pwm

signal and it is scaled from 0 to 1000. When in 800, for example, the high value is 800 and the low

value is 1000 − 800 = 200. So it delivers 80% of power of the input voltage 11V . It is important to

note that this loop repeats every 1 ms, it is the controller clock. It is the same step time used for the

simulation model.

Figure 21 – PID control program

source: own autorship

Fig (22) is the GAPID control program. This loop is the gauss functions of the Eq.s (22),

(23) and (24) depending on the error. The error (set point minus the measured value) is squared and

multiplied by −q then turned into a exponential to be multiplied by k1 − (k1 − k0). Then the value is

transferred to a GAPID block.

Finally, Fig. (23) is the pwm generator program. In this loop program a high (1) output signal

is sent to the digital output of the PLC for the amount of time specified by the High variable coming

from the control signal. After that it changes to low (0) output by the NOT logic port and this output

is sent for the amount of time specified by the Low variable, generating a pwm signal to control the

motor speed.
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Figure 22 – GAPID control program

source: own autorship

Figure 23 – PWM generator program

source: own autorship

The controllers were tested for the three beams. A change of the set point from 0 to 5 was

done to capture the behavior of the controllers in order to compare them.
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4 RESULTS

4.1 INTRODUCTION

This chapter presents the results for both plants. First, is presented the results comparing six

variants of the Genetic Algorithm (GA) and six variants of the Particle Swarm Optimization (PSO) used

to optimize the GAPID with the link parameters method for the first plant, the DC-DC converter. Then,

the best variant of each algorithm is compared in a addition to a linear PID. The best algorithm is used

for the other tests, a load sweep test and a saturation test. At last, a comparison of the computer model

and the real experimental model of the DC motor is shown to validate the computer model developed

with each of the three beams attached. This model is used to run the best algorithm of the two (GA and

PSO) to find the parameters of the GAPID. The parameters are applied to the real prototype model

and a comparison between the GAPID and a linear PID with all three beams is shown.

4.2 GA VS PSO

The six variants of Genetic algorithms were tested as explained in section 3.2. The variants

are changes on the selection method, crossover rate and the order of selection, mutation and

crossover. Tests were done through simulations of the GAPID and the buck converter on the Matlab®

software using the first simple IAE fitness function in eq. (17) as presented in sub-section 2.7.2.2. The

GA variants 3, 4 and 6 achieved the best results (best fitness) using the tournament selection. Table

4 shows the best single fitness achieved by each variant.

Table 4 – Best fitness of each GA variant

GA Model Fitness Ranking

GA 1 0.993574 5
GA 2 0.993661 4
GA 3 0.993898 2
GA 4 0.993680 3
GA 5 0.993432 6
GA 6 0.993999 1

source: own autorship

A box plot of the fitness of all six variants is shown in Fig.(24)

Analyzing the box plot, GA variants 3 and 6 achieved the best results. Although variant 6



53

Figure 24 – Fitness box plot of GAs

source: own autorship

found the best single result, GA variant 3 average fitness is the best (represented by the red line in

the box plot).

Graph 6 – GA 3 Fitness progression

source: own autorship

Figure 6 is GA 3 fitness progression and shows it converged quickly and maintained a high

average fitness, probably due to the initial condition parameters.

For all those reasons, the GA 3 variant which uses the tournament selection and 100%

crossover rate was used in this work and compared to the PSO.

A similar method comparing six variants of PSO was also done and tested as explained in
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section. The differences between the variants are the topology and addition of inertial coefficients.

The testing method follows the exact same procedure of the previous test regarding the GA. PSO

variants 1, 2 and 3 achieved the best results as presented in table 5.

Table 5 – PSO variants average performance

PSO Average fitness Ranking

1 0.99353502 3
2 0.99355904 2
3 0.99358206 1
4 0.99327403 4
5 0.99176691 5
6 0.99141938 6

source: own autorship

The box plot in Fig.(25) of all variants provides further analysis to the results.

Figure 25 – Fitness box plot of PSOs

source: own autorship

The three variants 1, 2 and 3 presented good results and all could be used as they would

achieve similar results. PSO 3 was chosen in this study due to addition of a decreasing inertial

coefficient ω to the velocity equation (20). Figure shows the PSO 3 fitness progression.

The addition of a decreasing inertial weight provides a more efficient way for converging to

a solution by limiting the particle’s movement at each iteration (SHI; EBERHART, 1998c).

Table 6 contains the values used for the coeficients in equation (25).

The inertial value is a real value ranging between 0 and 1 and it decreases linearly at each

iteration, from a maximum (ωmax) to a minimum value (ωmin), according to eq.(26) explained in section
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Graph 7 – PSO 3 Fitness progression

source: own autorship

Table 6 – PSO coefficient values

Coefficient Value

c1and c2 2.05
Population 30

Maximum number of iterations 50
Search-space 100

ωmax 0.9
ωmin 0.4

source: own autorship

3.2

The simulation values of the parameters of the Buck converter as in Fig.(14) are in table 1.

The output voltage of previously works, despite having good fitness values, presented high overshoot

as shown in Fig.(8).

A reason would be because the IAE calculation is a combination of both overshoot and set-

tling time. Consequently the algorithm possibly “overlooked” the overshoot and decreased the settling

time to improve the fitness. It is due to the usage of equation 17. Taking it into consideration, the fit-

ness calculation was changed to the new one as in equation 18. When the maximum voltage value

surpasses the voltage target value 30 V it is saved and added to the IAE.

The previously chosen GA and PSO were compared on this simulation. The linked param-

eters method was used to relate the GAPID gains to the PID gains Kp = 0.004455, Ki = 45, and
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Graph 8 – GA and PSO output voltage

source: own autorship

Kd = 1.9845 10−6. Fig.(9) is a comparison graph from the best controlled output voltage by both

methods and the PID.

Graph 9 – GA vs PSO voltage output

source: own autorship

Figure 7 is a table with the fitness that comes from the IAE of the 4 curves data from Figure 9.



57

Table 7 – Best Fitness comparison

Control Fitness Ranking

Boundary Control 0.995232 1
GAPID with PSO 0.993866 2
GAPID with GA 0.992935 3
Traditional PID 0.986303 4

source: own autorship

Compared to the boundary control, the GAPID with PSO was the better of the 3 controllers

achieving a best fitness of 0.993866 while GA’s achieved 0.992935 and the PID fitness was 0.986303.

Both optimization algorithms ran 30 times resulting in 30 different set of GAPID gains and fitness.

Fig.(26) is a box plot of these 30 fitness.

Figure 26 – GA vs PSO fitness box plot

source: own autorship

It is noticeable the better average fitness of the PSO over GA’s.

4.3 LOAD SWEEP TEST

Next step was to do a load sweep to test the robustness of the GAPID compared to the PID.

Fig.(10) shows a poles and zeros map of the Buck considering a load sweep from 10Ω to 100Ω.

The open loop poles of the Buck approaches the y axis which means the real part decreases

and the imaginary part gets higher, increasing oscillation.
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Graph 10 – Poles and zeros map for the Buck

source: own autorship

Fig.(11) is the output voltage graph comparison. The PSO algorithm was run 10 times

adding 10Ω every step to find a single set of gains best suitable to all loads.

Graph 11 – Robust GAPID with PSO

source: own autorship
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Graph in Fig.(11) proves the adaptability over the PID in maintaing a better responses. As

the linear PID was tuned to a load of 55Ω, it clearly starts to lower its control capability when the

load increases or deacreases. The GAPID output, on the other hand, barely changed. The GAPID

optimized by the PSO was 4.25 times faster than the PID in average.

Parameters for each specific load configuration was found as well and a box plot in Fig.(27)

shows the parameters tendencies.

Figure 27 – Boxplot of each linked parameter

source: own autorship

In Fig.(27) it was expected to express a traceable tendency of the parameters in order to find

a possible method to set and adjust the Gaussian variables without the aid of optimization algorithms.

However it was not possible conclude due to the behavior of the parameters.

4.4 CONTROL SATURATION TEST BY GAIN SWEEP

In order to test and analyze the control saturation for the GAPID, it was put through a gain

sweep to the PID it is linked. The PSO found the GAPID parameters for each gain and the sweep was

done increasing it’s value by 10 every step, for 20 steps. Fig.(12a) shows the GAPID control signal as

a whole without limiting the y axis, while Fig.(12b) limits the y axis from 0 to 1 to give an idea of the
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saturation.

Graph 12 – GAPID control signal

source: own autorship

The control saturates during the beginning but settles later on. Also, the saturation gets

higher as the gain increases.

To measure how much the signal saturates, a saturation index was calculated similar to the
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IAE. In Fig.(13) The area inside the range between 0 and 1 was stripped, leaving only the saturation

area graph. The saturation index is the IAE of each curve.

Graph 13 – GAPID control signal “stripped”

source: own autorship

A ratio of the fitness from GAPID over PID was done and ilustrated in Fig.(14)

Graph 14 – GAPID over PID saturation ratio

source: own autorship

When the PID gain is low the fitness of the PID is slightly worse than the GAPID, coming

close to a 1 to 1 ratio. However, as the gain approaches the tuned PID value, the GAPID fitness
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gets better until it reaches a value where the GAPID presents no further improvement over the PID

controller, reaching the maximum value of 1.28 ratio.

4.5 VALIDATION OF THE SIMULATION MODEL OF THE DC MOTOR PLANT

The validation of the simulation model for the DC motor was done by comparing the output

graphs in open loop with the experimental prototype. Fig. (15) presents the graph without any beam

attached.

Graph 15 – Open loop models without load

source: own autorship

The input voltage is 11 V . The rotation speed of both models show similar behavior and

is enough to validate the simulation model without any load attached to the system. Next, Fig. (16)

shows the graphs with the first light aluminum beam attached.

In Fig. (16) is also noticeable that both outputs graphs behave similarly. A difference from

the output without any load is that the beam vibrates. Consequently, the experimental curve (in red)

presents a behavior similar to a distortion or noise in the y axis (speed). One may also note that

because of the addition of the beam as a load, even with the input voltage of 11 V , the maximum

speed is approximately 33 rad/s, lower than the 42 rad/s of the system without any load.
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Graph 16 – Open loop models with the lightest beam

source: own autorship

The outputs from the following Fig. (17) were captured with the thick aluminum beam.

Graph 17 – Open loop models with thick aluminum beam

source: own autorship

In Fig. (17), once again, the behavior of the output of both models is the same. The input
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voltage to test the model with this thick aluminum beam was 5 V instead of 11 V . It was chosen so to

safety reasons, preventing any harm or damage from the rotation speed with a heavier beam attached.

Due to its heavier mass, and the slower rotation speed, the thick aluminum vibrates less.

Fig. (18) presents the outputs for the metal steel beam as load. A input voltage of 5V was

applied for the same safety reasons. Both curves match enough again to validate the model.

Graph 18 – Open loop models with the steel carbon beam

source: own autorship

Comparing the models from their rotation speed output in open loop with each of the three

metal bems attached, the simulation model corresponds to the experimental prototype model and is

validated.

4.6 LINEAR PID VS GAPID COMPARISON FOR THE DC MOTOR PLANT

A PI controller was developed for the DC motor plant with the light aluminum beam attached.

the absence of a derivative gain was chosen to prevent issues caused from noise. The values of gain

were 0.2578 for the proportional gain kp and 0.0625 for the integral gain ki. the output response for

each of the three beams is in Fig. (19).

The set point was 5 rad/s. In Fig. (19) the speed output kept an overshoot under 5% and a

settling time under 2 seconds with the light aluminum beam it was projected for. In contrast, for the
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Graph 19 – PID control for all the beams

source: own autorship

two other beams, it could not maintain a low overshoot and took longer to stabilize. The system was

not unstable, the PID was still able to control, but not with the same performance.

The GAPID parameters found by the PSO are on table (8). The output speed for all three

beams with the GAPID control are in Fig. (20).

Table 8 – GAPID parameters for the DC motor

Proportional Integral Derivative

kp0 = 0.2 ki0 = 0.0637
kp1 = 100 ki1 = 0.071 kd1 = 14
qp = 0.9 qi = 0.9 qd = 0.001

In Fig. (20), although the slower settling time close to 4 seconds, the overshoot was under

5% for all the three beams. It is noticeable that the output response behave similarly even with the

load mass variation in comparison to the performance of the PID.
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Graph 20 – GAPID control for all the beams

source: own autorship
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5 CONCLUSIONS

The new fitness calculation in equation (18), that imposes a penalty to high overshoot, proved

to be an improvement over the fitness in equation (17), reducing the overshoot without sacrificing the

response speed (keeping a low settling time) for the study plant while keeping a lower overshoot than

the PID for the experimental plant but increasing the settling time.

The bio-inspired optimization algorithms served as efficient methods to tune the GAPID,

specially the Particle Swarm Optimization algorithm, which achieved better results than the Genetic

algorithm and was used for the other tests as a result. Although, it possibly happened because the

limited number of 50 generations was not enough for the GA to converge, as it is averagely slower

than the PSO. Only two optimization algorithms were tested. Therefore, other optimization algorithms

could possibly achieve even better results.

From the load sweep test, the robustness and adaptive characteristic of the GAPID was

validated through simulation. It proved to be efficient even with changes on the load, a characteristic

the linear PID does not share, as it loses efficiency as the load changes from the one when it was

tuned. Unfortunately, it was not possible to trace the changing behavior of the GAPID parameters with

the load sweep, discarding the chance to develop a method to tune the GAPID without the aid of

optimization algorithms.

Despite being efficient, the GAPID presented saturation, even if it was for a short time during

the transient state and should be considered if it would cause any damage to a physical system.

The GAPID improves upon the PID controller, as long as the gain stays near to the projected one. It

improves no further otherwise, due to the saturation increase.

In the experimental plant, the GAPID provided a slower response compared to the PID,

but it proves its adaptability by maintaining the same output behavior even with the load variation

caused by the different beams. The PID, on the other hand, although robust, could not keep the same

performance when variation on the plant occurs.

The control method of the GAPID was demonstrated to be applied to different plants with

different dynamics. It was possible to apply it to a real system using a PLC and achieve better results

than a traditional PID.

Finally, the GAPID is a robust adaptive controller that could improve and optimize the PID

controllers used in Industry without causing much nuisance, due to the fact that it uses an already

tuned PID and links to it, possibly only requiring some adaptation to the controller programming.
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For further studies, new optimization algorithms could be tested to tune the GAPID. This

new adaptive controller could also be applied to other plants with different dynamics to analyze the

influence of the Gaussian adaptive method.
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