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Abstract
The number of available biological sequences has increased in large amounts in past years,
due to various genomic sequencing projects, creating a huge volume of data. Consequently,
new computational methods are needed for the analysis and information extraction from
these sequences. Machine learning methods have shown broad applicability in compu-
tational biology and bioinformatics. The application of machine learning methods has
helped to extract relevant information from various biological datasets. However, there
are still several challenging problems that motivate new algorithms and pipeline pro-
posals. Therefore, this work proposes a generic machine learning pipeline for biological
sequence analysis, following two main steps: (1) feature extraction and (2) feature selec-
tion. Essentially, we focus our work on the study of dimensionality reduction and feature
extraction techniques, using metaheuristics and mathematical models. As a case study,
we analyze Long Non-Coding RNA sequences. Moreover, we divided this dissertation
into two parts, e.g., Experimental Test I (feature selection) and Experimental Test II
(feature extraction). The experimental results indicated four main contributions: (1) A
pipeline with five distinct metaheuristics, using a voting scheme and execution rounds,
to the feature selection problem in biological sequences; (2) The metaheuristic efficiency,
providing competitive classification performance; (3) A feature extraction pipeline using
nine mathematical models and (4) its generalization and robustness for distinct biological
sequence classification.

Keywords: Machine Learning; Feature Extraction; Feature Selection; Biological Sequences;
Mathematical Models; Metaheuristics; Bioinformatics.



Resumo
O número de sequências biológicas disponíveis aumentou em grandes quantidades nos
últimos anos, devido a vários projetos de sequenciamento genômico, criando um alto volume
de dados. Consequentemente, novos métodos computacionais são necessários para a análise e
extração de informações a partir dessas sequências. Métodos de aprendizado de máquina têm
apresentado ampla aplicabilidade em biologia computacional e bioinformática. A aplicação
desses métodos tem ajudado a extrair informações relevantes de vários conjuntos de dados
biológicos. No entanto, ainda existem vários problemas desafiadores que motivam novas
propostas de algoritmos e pipelines. Portanto, este trabalho propõe um pipeline genérico
de aprendizado de máquina para análise de sequência biológica, seguindo duas etapas
principais: (1) extração e (2) seleção de características. Essencialmente, concentramos
nosso trabalho no estudo de técnicas de redução de dimensionalidade e extração de
recursos, usando metaheurísticas e modelos matemáticos. Como estudo de caso, analisamos
sequências de RNAs longos não codificantes. Além disso, dividimos esta dissertação em
duas partes: Teste Experimental I (seleção de características) e Teste Experimental II
(extração de características). Os resultados experimentais indicam quatro contribuições
principais: (1) Um pipeline com 5 metaheurísticas diferentes, usando um esquema de
votação e rodadas de execução, ao problema de seleção de características em sequências
biológicas; (2) A eficiência metaheurística, proporcionando desempenho de classificação
competitiva; (3) Um pipeline de extração de recursos usando 9 modelos matemáticos e (4)
sua generalização e robustez para classificação de sequências biológicas distintas.

Palavras-chave: Aprendizado de Máquina; Extração de Características; Seleção de Carac-
terísticas; Sequências Biológicas; Modelos Matemáticos; Metaheurísticas; Bioinformática.
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1 INTRODUCTION

Biology, in particular molecular biology, is undergoing several transformations, in
which there is a growing awareness that computational and statistical models can be
used to great benefit (GENTLEMAN et al., 2004). The development of high-throughput
data acquisition technologies in the biological sciences has transformed biology into a
data-rich science (INZA et al., 2010). In recent years, due to advances in DNA sequencing,
increasing numbers of biological sequence data have been generated by thousands of
sequencing projects (LOU et al., 2019), creating vast volumes of data (BONIDIA et al.,
2019). Consequently, the ability to process and analyze biological data has advanced
significantly (CAO et al., 2018). The development of methods to analyze this large amount
of information is one of the main challenges of bioinformatics (INZA et al., 2010), in which
it involves many problems that can become Machine Learning (ML) tasks.

According to Min (2010), during the last decade, ML methods have shown broad
applicability in computational biology and bioinformatics. Tools have been widely applied
in gene networks, protein structure prediction, genomics, proteomics, protein-coding
genes detection, disease diagnosis, and drug planning (DINIZ; CANDURI, 2017; Parmezan
Bonidia et al., 2019). Fundamentally, ML investigates how computers can learn (or improve
their performance) based on the data. Moreover, it is a specialization of computer science
related to pattern recognition and artificial intelligence (JURTZ et al., 2017).

Based on this, several works have focused on the investigating of DNA, RNA, and
protein sequences. The application of ML methods in biological sequences has helped
to extract important information from various datasets to explain biological phenomena.
However, according to Min (2010); Xu and Jackson (2019), there are still several challenging
biological problems that motivated the emergence of proposals for new algorithms. Funda-
mentally, biological sequence analysis with ML presents 2 major problems: (1) Feature
Extraction (STORCHEUS; ROSTAMIZADEH; KUMAR, 2015), (2) Feature Selection
(SAEYS; INZA; LARRAÑAGA, 2007; WANG; WANG; CHANG, 2016).

Necessarily, as previously mentioned, several applications in bioinformatics apply
ML algorithms to sequence data, and as many ML algorithms can deal only with numerical
data, sequences need to be translated into sequences of numbers. Thereby, early applications
transformed each letter in the sequence to binary vector (Kwan; Arniker, 2009). These
transformations resulted in a very long sequence of sparse data, i.e., data is considered
sparse when specific values in a dataset are missing (ZITNIK et al., 2019). This difficulty
grows as the size of the sequences grows.

A more straightforward approach, adopted by most current ML applications (KONG
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et al., 2007; KANG et al., 2017; LI; ZHANG; ZHOU, 2014; NEGRI et al., 2018), extracts
relevant features from sequences. These features are based on several properties, e.g.,
physicochemical, ORF-based, usage frequency of adjoining nucleotide triplets, and sequence-
based. This approach is common in biological problems, but usually, these implementations
are often difficult to reuse or adapt to another specific problem, e.g., ORF features are
an essential guideline for distinguishing Long non-coding RNAs (lncRNA) from protein-
coding genes (BAEK et al., 2018), but not useful features for classifying lncRNA classes
(BONIDIA et al., 2019). Consequently, the feature extraction problem arises, in which
extracting a set of useful features that contain significant discriminatory information
becomes a fundamental step in building a predictive model (MUHAMMOD et al., 2019).

Also, in the feature extraction, maintaining features with meaningful information
and avoiding scarcity is extremely important (MUHAMMOD et al., 2019). Thereby, this
domain has accumulated a diverse set of terminology, as feature selection (our second
problem) (STORCHEUS; ROSTAMIZADEH; KUMAR, 2015). Fundamentally, a high
ratio between the number of predictive features and the number of instances is behind
the curse of dimensionality problem. A term initially coined by Bellman (BELLMAN,
1961) when considering dynamic optimization problems. This term comes from the fact
that the instances become so similar that it becomes challenging to induce models with
high predictive accuracy. Thus, when the number of features increases substantially, the
predictive performance of the models induced by ML algorithms decreases.

An alternative to deal with this problem is to reduce the number of features,
removing redundant and irrelevant attributes (DY; BRODLEY, 2004), e.g., feature selection
techniques. According to Xue et al. (2016), the feature selection is an essential task in
ML since it reduces the feature extraction and model induction computational costs.
Additionally, it can increase predictive performance. That is, as the extraction of each
feature also has an economical cost, it can reduce the financial cost of an ML-based
predictive tool, making it available to a more significant number of users.

Therefore, all these problems make the process of biological sequence analysis a
challenging task. As a consequence, there is a growing need to develop new methods for
analyzing sequences efficiently. Mainly, structures that address joint solutions. Thereby,
this dissertation proposes to analyze feature selection and extraction methods for biological
sequence analysis, addressing two critical phases of building a predictive model (feature
extraction and selection), using metaheuristics and mathematical models. As a case study,
we use lncRNA sequences, which are fundamentally unable to produce proteins (ABBAS et
al., 2016) and, recently, have been remitting several doubts about its functionality (AMIN;
MCGRATH; CHEN, 2019). These sequences present several classification challenges that
will help in all experiments of this dissertation.

Finally, it is important to emphasize that we divided this work into two parts:
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Experimental Test I (see Chapter 3) and Experimental Test II (see Chapter 4). Thus,
in our first experiment, we applied metaheuristic models in the most used features for
lncRNAs classification, to verify the efficiency of the proposed pipeline. Based on this,
in the second experiment, we proposed feature extraction strategies with mathematical
models.

1.1 Biological Sequence
Biological sequences usually refer to nucleotides or amino acid sequences, such as

DNA, RNA, or protein (HAN; KAMBER; PEI, 2012). The DNA (deoxyribonucleic acid)
is formed from the union of chemical compounds called nucleotides (ZAHA; FERREIRA;
PASSAGLIA, 2014). Each nucleotide is composed of three substances: a nitrogenous base,
a phosphate group, a five-carbon sugar (deoxyribose). The nitrogenous bases may be
purines (Adenine (A) and Guanine (G)) and pyrimidines (Cytosine (C) and Thymine (T))
(ZAHA; FERREIRA; PASSAGLIA, 2014). In contrast, an RNA molecule (ribonucleic acid)
is a polymer of ribonucleotide units, and its structure is identical to the single-stranded
DNA, but with two central differences. The five-carbon sugar is ribose, and the nucleobase
Uracil (U) is used in RNA instead of the nucleobase T (ABU-JAMOUS; FA; NANDI,
2015).

Different types of RNA are present in cells and have specific functions. Finally,
proteins are long linear polymers of amino acids (in the case of DNA and RNA, the links
of the chain are nucleotides) that are linked with peptide bonds and belong to the family
of molecules known as polypeptides (ABU-JAMOUS; FA; NANDI, 2015). While DNA
and RNA are composed of four different nucleotides, the proteins have a repository of 20
common amino acids (ALLISON, 2007).

1.2 Long Non-Coding RNAs
Fundamentally, ncRNAs are unable to produce proteins. However, these ncRNAs

contain unique information that produces other functional RNA molecules (EDDY, 2001;
ABBAS et al., 2016). Moreover, they demonstrate essential roles in cellular mechanisms,
playing regulatory roles in a wide variety of biological reactions and processes (EDDY,
2001). The ncRNAs can be classified by length into two classes: Long Non-Coding RNA
(lncRNA - 200 nt or more) and short ncRNA (less than 200 nucleotides) (KAPRANOV
et al., 2007; ZHANG; TAO; LIAO, 2017). The lncRNAs are a new type of Non-Coding
RNA (ncRNA) with a length greater than 200 nucleotides (LI et al., 2016), and according
to recent studies, play essential roles in several critical biological processes (WANG et
al., 2014; WANG et al., 2018; ZHANG et al., 2018), including transcriptional regulation
(ZHOU et al., 2016), epigenetics (HASSAN et al., 2015), cellular differentiation (CIAUDO
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et al., 2009), and immune response (PENG et al., 2010). Also are correlated with some
complex human diseases, such as cancer and neurodegenerative diseases (PASTORI;
WAHLESTEDT, 2012; ZHANG et al., 2017).

In plants, according to Wang and Chekanova (2017), the lncRNAs act in gene
silencing, flowering time control, organogenesis in roots, photomorphogenesis in seedlings,
stress responses (DI et al., 2014; WANG et al., 2017), and reproduction (ZHANG et al.,
2014). Further, lncRNAs are present in large numbers in genome (FANG; FULLWOOD,
2016) and have similar sequence characteristics with protein-coding genes, such as 5’ cap,
alternative splicing, two or more exons (DERRIEN et al., 2012), and polyA+ tails (CHENG
et al., 2005). They are also observed in almost all living beings, not only in animals and
plants but also yeasts, prokaryotes, and even viruses (MA; BAJIC; ZHANG, 2013; HU;
SUN, 2016). According to Fang and Fullwood (2016), lncRNAs do not possess functional
Open Reading Frames (ORFs). However, recent studies have found bifunctional RNAs
(CHOONIEDASS-KOTHARI et al., 2004), raising the possibility that many protein-coding
genes may also have non-coding functions. Furthermore, lncRNAs can be grouped into
five broad categories. The classification occurs according to the genomic location, that is,
where they are transcribed, concerning well-established markers, like protein-coding genes.
Among the categories are (HE et al., 2014; DERRIEN et al., 2012):

• (a) sense: overlapping one or more exons of another transcript on the same strand;

• (b) antisense: overlapping one or more exons of another transcript on the opposite
strand;

• (c) bidirectional: when lncRNA and a coding transcript are expressed together but
are in opposite strands;

• (d) intronic: when derived from an intron of a second transcript;

• (e) intergenic: when it is between two genes.

The genomic context does not necessarily provide some information about the
lncRNAs function or evolutionary origin; nevertheless, it can be used to organize these
broad categories (KUNG; COLOGNORI; LEE, 2013).

1.3 Problem Definition and Proposal
This section describes problems addressed in this dissertation in two subsections: (1)

Curses of Dimensionality and The Feature Selection Problem and (2) Feature Extraction
Problem. Moreover, we will briefly describe our proposals that will be presented with
greater emphasis in Chapter 3 and Chapter 4.
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1.3.1 Curse of Dimensionality and The Feature Selection Problem

ML algorithms and pattern recognition are subject to the so-called curse of di-
mensionality, which refers to analyzing and organizing data in high dimensional spaces.
This problem causes performance loss in classification methods when the number of fea-
tures increases substantially. Fundamentally, dimensionality presents several obstacles to
the efficiency of most ML algorithms (ROKACH; MAIMON, 2015). Thereby, the high
dimensionality of the input features expands the size of the search space exponentially.

Hence, the fundamental motivation for feature selection is the curse of dimensionality
(DY; BRODLEY, 2004). The feature selection is a concrete way to deal with this problem.
Therefore, the feature selection problem is defined as follows according to Jain and Zongker
(1997): "given a set of candidate features, select a subset that performs the best under some
classification system." In other words, this method is used to find an “optimal” subset of
relevant features, so that accuracy increased as the attributes are reduced. Nevertheless, it
is necessary to define what would be a relevant feature. In this line, the literature presents
several definitions; e.g., (KOHAVI; JOHN, 1997) proposed two degrees of relevance (strong
and weak) for features, being the relevance defined in absolute terms with an ideal Bayes
classifier. The definitions below were described by Rudnicki, Wrzesień and Paja (2015).

• Definition 1: "A feature X is strongly relevant when removal of X alone from the
data always results in deterioration of the prediction accuracy of the ideal Bayes
classifier."

• Definition 2: "A feature X is weakly relevant if it is not strongly relevant and there
exists a subset of features S, such that the performance of ideal Bayes classifier on
S is worse than the performance on S ∪ {X}."

• Definition 3: "A feature X is irrelevant if it is neither strongly nor weakly relevant."

Blum and Langley (1997) defined "relevant with respect to an objective." John,
Kohavi and Pfleger (1994) include two notions of relevance, being: "strong relevance with
respect to sample" and "strong relevance with respect to the distribution." Despite this,
some authors concentrated on using relevance as a complexity measure relative to the goal.
For example, relevance as a complexity measure (BLUM; LANGLEY, 1997), incremental
usefulness (CARUANA; FREITAG, 1994), entropic relevance (WANG; WANG; CHANG,
2016). Nevertheless, in this work, we apply terms of Nilsson et al. (2007), which motivated
by applications within bioinformatics, established the concepts of weak and strong features
formally in two problems.

• All-relevant problem:Which consists of finding all features that bring information,
regardless if the same information is contained in multiple inputs.
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• Minimal optimal problem: Which consists of finding the smallest subset of input
variables that contains all information.

Therefore, our approach focus on minimal optimal problem, whose purpose is to
find the smallest subset of features that contains all information. Moreover, we proposed a
pipeline-based approach using metaheuristics (See Chapter 3). We choose metaheuristics
because they use different mechanisms to explore the search space and different strategies
to deal with exploration vs. exploitation in its search for an optimal solution.

1.3.2 Feature Extraction Problem

The feature extraction seeks to generate a feature vector, optimally transforming
the input data (STORCHEUS; ROSTAMIZADEH; KUMAR, 2015). This procedure is
exceptionally relevant to the success of the ML application. Another primary goal of
feature extraction is to extract important features from input data compactly, as well
as removing noise and redundancy to increase the accuracy of machine learning models
(GUYON et al., 2008; STORCHEUS; ROSTAMIZADEH; KUMAR, 2015). Furthermore,
the feature extraction is an inevitable method, especially in the stage of biological sequences
preprocessing (SAIDI et al., 2012). Considering this, we propose to work with mathematical
models for feature extraction (e.g., Fourier, Numerical Mappings, and Entropy - See Chapter
4), based on the excellent results presented by Machado, Costa and Quelhas (2011), Ito et
al. (2018), Bonidia et al. (2019). These mathematical approaches have an advantage in
terms of generalization to distinct biological sequence classification problems.

1.4 Research Questions and Hypotheses
As emphasized in the introduction, we use lncRNA sequences as a case study.

Thereby, we developed an in-depth study of the lncRNAs classification methods/techniques,
in which we will analyze seven questions (these questions will be answered in Chapter 2):

• Question 1 (Q1): What is the current research landscape?

• Question 2 (Q2): What are the most commonly used classification algorithms?

• Question 3 (Q3): What are the feature extraction methods?

• Question 4 (Q4): What databases are used by the works?

• Question 5 (Q5): Which articles use feature selection techniques?

• Question 6 (Q6): What are the feature selection algorithms?

• Question 7 (Q7): What are the evaluation metrics for predictive models?
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Therefore, considering all previously discussed problems and our research questions,
we assume the following hypotheses for the feature selection (PB1) and extraction (PB2)
problems in biological sequences (these hypotheses will be answered in Chapter 5):

• Hypothesis 1 (H1-PB1): Can metaheuristics select a subset of predictive features
able to improve the predictive performance of a classification model, when compared
with the use of all original features, in biological sequence classification?

• Hypothesis 2 (H2-PB1): Are metaheuristic models more efficient than non-
heuristic models for biological sequence classification?

• Hypothesis 3 (H3-PB2): Are mathematical models efficient for feature extraction
from biological sequences?

• Hypothesis 4 (H4-PB2): Do mathematical models present competitive classifica-
tion performance in distinct biological sequence analysis problems?

• Hypothesis 5 (H5-PB2): Are mathematical models more generalist than biological
models in sequences classification?

1.5 Objectives
Considering our hypotheses, the general objective of this dissertation is to analyze

features selection and extraction methods, to generate a generic ML pipeline for biological
sequence analysis. Specifically, we concentrated our work on the study of dimensionality
reduction and feature extraction techniques, using transcribed sequences of Long Non-
Coding RNAs. Thus, as specific objectives, can be highlighted:

• To conduct a systematic literature review in the field of features extraction, selection,
and classification in lncRNA;

• To study, analyze and apply metaheuristic optimization methods for the feature
selection problem;

• To evaluate features extraction strategies, using mathematical models, for biological
sequences classification;

• To apply samples selection strategies for classification;

• Validation and results analysis;

• To report and discuss the computational contribution;
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• To publish results through articles (conference and journal) and writing of this
dissertation.

We chose lncRNA sequences, because it is a new and relevant problem in the
literature, in which, recently, it has presented several works, mainly with ML. Moreover,
we will focus only on plant sequences, because it is the least addressed field by the works
(see Chapter 2), consequently presenting more challenges. Finally, we chose metaheuristics
and mathematical models, because our review reported several studies with biological bias
features and few metaheuristic approaches, as can be seen in Chapter 2.

1.6 Justification
As previously mentioned, the ability to process and analyze biological data has

advanced significantly in bioinformatics (CAO et al., 2018). However, data continues to grow
not only in terms of the abundance of patterns but also of the dimensionality of attributes
(features) (WANG; WANG; CHANG, 2016). Considering this, developing or finding an
appropriate approach to effectively represent a biological sequence becomes one of the most
challenging tasks (LIU et al., 2014). For this reason, recently, some ML pipelines have been
developed to help in the biological sequence analysis (LIU, 2017), such as: PseKNC (CHEN
et al., 2014a), PseKNC-General (CHEN et al., 2014b), repDNA (LIU et al., 2014), Pse-in-
One (LIU et al., 2015), BioSeq-Analysis (LIU, 2017), pysster (BUDACH; MARSICO, 2018),
FeatureSelect (MASOUDI-SOBHANZADEH; MOTIEGHADER; MASOUDI-NEJAD,
2019), Seq2Feature (NIKAM; GROMIHA, 2019) and PyFeat (MUHAMMOD et al., 2019).
Based on these tools, we can generate five considerations (C).

• C1: PseKNC, PseKNC-General, Pse-in-One, repDNA and PyFeat are specific toolkit
to generate features of DNA/RNA sequences.

• C2: Pysster generates predictive models with convolutional neural network, in which
sequences are classified by learning sequence and motifs.

• C3: FeatureSelect is an application for feature selection based on wrapper approaches.

• C4: Seq2Feature is a comprehensive web-based feature extraction tool for protein
and DNA sequences.

• C5: BioSeq-Analysis is a platform for biological sequences analysis which can do
feature extraction, predictor construction and performance evaluation.

Therefore, we can say that our proposal is innovative when compared to available
ML pipelines in the literature for the following reasons (R):
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• R1: Some tools have been proposed to build predictors of biological sequence analysis
(BioSeq-Analysis and Pysster), but most focus only on individual steps, while our
approach addresses two key steps (Feature Extraction and Feature Selection).

• R2: The feature extraction tools have a bias in biological features, while our approach
proposes to work with mathematical models (e.g., Fourier, Entropy, and Complex
Network).

• R3: The only pipeline that uses metaheuristics is FeatureSelect. However, it focuses
only on this individual step using wrapper approaches. In contrast, we develop filter
approaches.

• R4: Although BioSeq-Analysis contemplates all steps proposed in this dissertation;
it does not use metaheuristics and mathematical models.

1.7 Dissertation Organization/Outline

• Chapter 2, which follows this introduction, covers a literature review of related works
to lncRNA classification. This chapter is designed to answer questions raised in
Section 1.4.

• Chapter 3 describes methodological procedures used to achieve the proposed objec-
tives in our first problem (feature selection).

• Chapter 4 analyzes mathematical models for feature extraction, to propose efficient
and generalist techniques for biological sequence analysis problems.

• Chapter 5 discusses our findings in terms of whether they support our hypotheses.

• Finally, Chapter 6 presents the conclusions of this dissertation and discusses the
final considerations and suggestions for future studies.
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2 RELATED WORK

This chapter covers a literature review of related works to lncRNA classification,
as well as algorithms and methods applied. Moreover, this chapter is designed to answer
questions raised in Section 1.4. Thereby, our search string was run on five electronic
databases (IEEE Xplore Digital Library, ACM Digital Library, Science Direct, Semantic
Scholar, and PubMed). We considered published papers in journals in the English language.
Nevertheless, beyond our review, we used as reference Han et al. (2016), Han et al. (2018),
and Antonov et al. (2018), who published surveys on the subject in question.

2.1 The Landscape of lncRNA Classification (Q1, Q2)
For a better understanding, we divide this section into six parts: General Application

Methods (Section 2.1.1), Specific Methods for Plants (Section 2.1.2), Feature Extraction
(Section 2.1.3), lncRNA Databases (Section 2.1.4), Feature Selection of lncRNA (Section
2.1.5), and Evaluation Metrics (Section 2.1.6).

2.1.1 General Application Methods

In this section, our review selected methods that were applied in more than one
species or specific to animal and human systems, as shown in Table 1. Furthermore, we
report each algorithm used in Table 2. Thus, the methods reviewed were: CPC (KONG et al.,
2007), CPAT (WANG et al., 2013), CNCI (SUN et al., 2013), PLEK (LI; ZHANG; ZHOU,
2014), lncRNA-MFDL (FAN; ZHANG, 2015), LncRNA-ID (ACHAWANANTAKUN et al.,
2015), lncRScan-SVM (SUN et al., 2015), LncRNApred (PIAN et al., 2016), DeepLNC
(TRIPATHI et al., 2016), BASiNET (ITO et al., 2018), and LncFinder (HAN et al., 2018).

The method CPC (Coding Potential Calculator - 2007) evaluates the protein-coding
potential of a transcript based on two features categories. The extent and quality of the
Open Reading Frame (ORF), and derivation of BLASTX search. As a prediction method,
the authors used the LIBSVM package to train a Support Vector Machine (SVM) model,
using the standard radial basis function kernel (RBF kernel) (KONG et al., 2007). CPAT
(Coding-Potential Assessment Tool - 2013) classifies transcripts of coding and non-coding
using Logistic Regression (LR). This model uses four sequence features: ORF coverage,
ORF size, hexamer usage bias, and Fickett TESTCODE statistic (WANG et al., 2013).
CNCI (Coding-Non-Coding Index - 2013) was modeled with SVM and used profiling
Adjoining Nucleotide Triplets (ANT - 64*64) and most-like CDS (MLCDS) (SUN et al.,
2013).
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Table 1 – Methods that were applied in more than one species or specific to animal and
human systems.

Method Published year Species Prediction
CPC 2007 Multi-Species ncRNA
CPAT 2013 Human; mouse; fly; zebrafish lncRNA
CNCI 2013 Animals; plants lncRNA
PLEK 2014 Multi-Species lncRNA

lncRNA-MFDL 2015 Human lncRNA
LncRNA-ID 2015 Human; mouse lncRNA

lncRScan-SVM 2015 Human; mouse lncRNA
LncRNApred 2016 Human lncRNA
DeepLNC 2016 Human lncRNA
BASiNET 2018 Multi-Species lncRNA; sncRNA
LncFinder 2018 Multi-Species lncRNA

Source – Elaborated by the author.

Table 2 – Query file format and prediction algorithm.

Method Query file format Prediction Algorithm
CPC FASTA SVM
CPAT BED; FASTA LR
CNCI FASTA; GTF SVM
PLEK FASTA SVM

lncRNA-MFDL - DL
LncRNA-ID BED; FSATA RF

lncRScan-SVM GTF SVM
LncRNApred FASTA RF
DeepLNC FASTA DNN
BASiNET FASTA J48; RF
LncFinder FASTA LR; SVM; RF; ELM; DL

Source – Elaborated by the author.

In contrast, PLEK (2014) is based on the k-mer scheme (k = 1, 2, 3, 4, 5) to predict
lncRNA, also applying the SVM classifier (LI; ZHANG; ZHOU, 2014). lncRNA-MFDL
(2015) uses Deep Learning (DL) and multiple features, among them: ORF, K-mer (k =
1, 2, 3), secondary structure (minimum free energy), and MLCDS (FAN; ZHANG, 2015).
LncRNA-ID (2015) predicts lncRNAs with Random Forest (RF) through of ORF (length
and coverage), sequence structure (Kozak motif), ribosome interaction, alignment (profile
Hidden Markov Mode - profile HMM), and protein conservation (ACHAWANANTAKUN
et al., 2015).

lncRScan-SVM (2015) uses stop codon count, GC content, ORF (txCdsPredict -
score, CDS length and CDS percentage), transcript length, exon count, exon length, and
alignment (PhastCons scores) (SUN et al., 2015). LncRNApred (2016) classified lncRNAs
with RF and features based on ORF, signal to noise ratio, k-mer (k = 1, 2, 3), sequence
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length, and GC content (PIAN et al., 2016). DeepLNC (2016) uses only the k-mer scheme
(k = 2, 3, 4, 5) and Deep Neural Network (DNN) (TRIPATHI et al., 2016).

BASiNET (BiologicAl Sequences NETwork - 2018) classify sequences based on
the feature extraction from complex network measurements (ITO et al., 2018). Finally,
LncFinder (2018) uses five classifiers (LR, SVM, RF, Extreme Learning Machine (ELM)
and DL) to apply the algorithm that obtains the highest accuracy. Moreover, the authors
use features of ORF, secondary structural, and electron-ion interaction (HAN et al., 2018).

2.1.2 Specific Methods for Plants

This section presents specific works for plants, according to Table 3. The methods
reviewed were: PlantRNA_Sniffer (VIEIRA et al., 2017), PLncPRO (SINGH et al.,
2017), RNAplonc (NEGRI et al., 2018), and Ensemble (SIMOPOULOS; WERETILNYK;
GOLDING, 2018). Essentially, our review revealed there is a lack of specific approaches
to predict lncRNAs in plants when compared to the previous section. For example,
PlantRNA_Sniffer was developed in 2017 to predict Long Intergenic Non-Coding RNAs
(lincRNAs). The method applied SVM and extracted features from ORF (proportion and
length) and nucleotide patterns.

Table 3 – Specific methods for plants.

Method Year File format Algorithm
PlantRNA_Sniffer 2017 FASTA SVM

PLncPRO 2017 FASTA RF
RNAplonc 2018 FASTA REPtree
Ensemble 2018 FASTA SGB; RF

Source – Elaborated by the author.

PLncPRO (2017) is based on machine learning and uses RF. The features include
ORF quality (score and coverage), number of hits, significance score, total bit score,
and frame entropy. RNAplonc (2018) considered 5468 features (ORF, GC content, K-
mer (k = 1, 2, 3, 4, 5, 6), sequence length, and minimum free energy), besides classifying
sequences with the REPtree algorithm.

Finally, Simopoulos, Weretilnyk and Golding (2018) applied Stochastic Gradient
Boosting (SGB) and RF models. Features include mRNA length, ORF (length), GC
content, Fickett score, hexamer score, alignment identity in SwissProt database, length of
alignment in SwissProt database, the proportion of alignment length and mRNA length,
proportion of alignment length and ORF length, transposable element, and sequence
percent divergence from a transposable element.
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2.1.3 Feature Extraction (Q3)

The feature extraction is one of the most critical steps in the elaboration of
a predictor (FAN; ZHANG, 2015). Therefore, we map all extracted features by the
methods previously exposed (see Section 2.1.1 and 2.1.2), as shown in Table 4 and Table
5. The features were divided into five groups: ORF, codon, sequence structure, alignment,
Ribosome, and Protein. Essentially, the most commonly used group is sequence structure,
followed by ORF, Codon, and Alignment. Moreover, for better understanding, we elaborate
definitions of the main features, among them:

• k-mer: According to Sievers et al. (2017), a k-mer analysis is defined as extraction
and counting of each DNA word with length k (k bases along one strand), using a
"sliding window" approach to eliminate the arbitrary point influence. Li, Zhang and
Zhou (2014) define a k-mer analysis on Equation (2.1).

fi = ci

sk

wk,

k = 1, 2, 3, 4, 5, 6; i = 1, 2, ..., 5460,
sk = l − k + 1,

wk = 1
46−k

.

(2.1)

Where ci denotes the number of the segments; i is the number of the patterns; sk

total of the segments along sequence with size of k. Moreover, fi is the frequency
of use multiplied by a factor of wk, used to facilitate discrimination (LI; ZHANG;
ZHOU, 2014; HAN et al., 2016).

• GC content: The GC content (guanine-cytosine content) is the percentage of
nitrogenous bases in a DNA or RNA molecule that is guanine or cytosine (AMR;
FUNKE, 2015), represented by Equation (2.2).

C +G

A+ C +G+ T
(2.2)

• Sequence length (SL): It is the number of amino acids in the sequence. For
example, SL = A+ C +G+ T .

• Minimum free energy (MFE): MFE is a feature that evaluates the stability of
the secondary structure in transcripts (FAN; ZHANG, 2015). An example of software
to calculate MFE is the RNAfold (LORENZ et al., 2011).

• ORF: The term ORF is of central importance to gene discovery. According to Sieber,
Platzer and Schuster (2018), "an ORF is a sequence that has a length divisible by
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Table 4 – Summary of the extracted features in each method (ORF, Codon and Sequence
structure).

Method ORF Codon Sequence
structure

CPC Quality; Coverage;
Integrit

No No

CPAT Length; Coverage No Fickett score; Hexa-
mer Score

CNCI No ANT; Codon-bias MLCDS

PLEK No No k-mer (k = 5)

lncRNA-MFDL Length; Coverage No k-mer (k = 3); Mini-
mum free energy; ML-
CDS

LncRNA-ID Length; Coverage No Kozak motif

lncRScan-SVM Score, CDS length;
CDS percentage

Distribution of stop
codon

GC content; Tran-
script length; Exon
count; Exon length

LncRNApred Length; Coverage No Signal to noise ra-
tio; k-mer (k =
3); GC content; Se-
quence length

DeepLNC No No k-mer (k = 2, 3, 4, 5)

BASiNET No No Nucleotide pattern
(3)

LncFinder ORF - DFT + EIIP, Mini-
mum free energy, sec-
ondary structure

PlantRNA-Sniffer Proportion;
Length

No Nucleotide pattern
(10)

PLncPRO Score; Coverage No Number of hits;

RNAplonc Score, CDS Sizes;
CDS starts, CDS
stop, CDS percent

No k-mer (k = 6); GC
content; Sequence
length; Minimum free
energy

Ensemble Length No mRNA length; GC
content; Hexamer
Score; Fickett score

Source – Elaborated by the author.
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Table 5 – Summary of the extracted features in each method (Alignment, Ribosome and
Protein).

Method Alignment Ribosome Protein

CPC BLASTX No No

CPAT No No No

CNCI No No No

PLEK No No No

lncRNA-MFDL No No No

LncRNA-ID Profile HMM Ribosome interaction Protein conservation

lncRScan-SVM PhastCons scores No No

LncRNApred No No No

DeepLNC No No No

BASiNET No No No

LncFinder - - -

PlantRNA-
Sniffer

No No No

PLncPRO BLASTX No No

RNAplonc No No No

Ensemble BLASTX No No
Source – Elaborated by the author.

three and begins with a translation start codon (ATG) and ends at a stop codon." The
literature presents several tools for prediction of ORF, among them: txCdsPredict,
ORFfinder, and OrfPredictor.

• MLCDS: The authors Sun et al. (2013) and Fan and Zhang (2015) used this feature
to discover the MLCDS region of a transcript. They applied the sliding window
method to analyze each transcript. The technique was applied six times, generating
six reading frames. The purpose was to find sub-sequences with greater coding
capacity.

• Codon-bias: This feature evaluates the coding-non-coding bias for each of the 61
codon types (discarding three stop codons) (SUN et al., 2013).
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• Hexamer Score: This metric determines the hexamer usage bias in a specific
sequence. Essentially, positive values report a coding sequence and negative values
a non-coding sequence (WANG et al., 2013). Equation (2.3) shows the calculation
used by Wang et al. (2013):

HexamerScore = 1
m

m∑
i=1

log
(
F (Hi)
F ′(Hi)

)
(2.3)

Where the probability of a sequence is calculated, and then the logarithm of the ratio
of these probabilities is used as the potential coding score. The authors used F (hi)
(i = 0, 1, ..., 4095) and F ′(hi) (i = 0, 1, ..., 4095) to represent the frame hexamer
frequency for a given hexamer sequence S = H1, H2, ...Hm (WANG et al., 2013).

• Fickett score: It is a feature that distinguishes protein-coding RNA and ncRNA,
which uses a combinatorial effect of nucleotide composition and codon usage bias
(WANG et al., 2013), as explained in Equation (2.4):

FickettScore =
8∑

i=1
piwi (2.4)

Where the Fickett score is obtained by computing four-position values and composi-
tion (nucleotide content - eight values in total) of a given sequence, these values are
converted into probabilities (p) of coding. Each probability is multiplied by a weight
(w). This value reflects the probability of each parameter alone, detecting coding or
non-coding sequences (WANG et al., 2013).

• Kozak motif: The Kozak motif has an impact on the protein translation efficiency
and is found in the region around of the start codon and has an optimal sequence of
GCCRCCAUGG (R represents purine) (XU et al., 2010).

• BLAST: Basic Local Alignment Search Tool (BLAST) is a widely applied algorithm
in the search to proteins and DNA databases for sequence similarity (ALTSCHUL
et al., 1997).

• Profile HMM: Achawanantakun et al. (2015) used HMM to measure the conser-
vation of transcripts. According to Eddy (1996), "the key idea is that an HMM is
a finite model that describes a probability distribution over an infinite number of
possible sequences."

2.1.4 lncRNA Databases (Q4)

The advancement of new experimental techniques and sequencing technology has
increased the development of multiple databases to exploit potential functions of lncRNA.
Therefore, we mapped the main databases, as shown in Table 6.
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Table 6 – Summary of lncRNA Databases.

Database Year Species Reference
LncRNAdb 2010 Eukaryote Amaral et al. (2010)
NONCODE 2011 17 species Bu et al. (2011)
DIANA-LncBase 2012 Human, mouse Paraskevopoulou et al. (2012)
LncRNADisease 2012 lncRNA-disease

association
Chen et al. (2012)

LNCipedia 2012 Human Volders et al. (2012)
LncRNome 2013 Human Bhartiya et al. (2013)
Linc2GO 2013 Human Liu et al. (2013)
PLncDB 2013 Plant species Jin et al. (2013)
LncRBase 2014 Human, mouse (CHAKRABORTY et al., 2014)
lncRNAWiki 2014 Human Ma et al. (2014)
lncRNAMap 2014 Human Chan, Huang and Chang (2014)
lncRNAtor 2014 5 species Park et al. (2014)
LncRNA2Function 2015 Human Jiang et al. (2015)
GreeNC 2015 37 plant species Gallart et al. (2015)
PLNlncRbase 2015 Plant species Xuan et al. (2015)
CANTATAdb 2015 Plant species Szcześniak, Rosikiewicz and

Makałowska (2015)
lncRInter 2017 15 Species Liu et al. (2017)
DLREFD 2017 Disease Sun et al. (2017)

Source – Adapted from Fritah, Niclou and Azuaje (2014) and Chen et al. (2018).

After analyzing the main existing databases for lncRNA, we decided to revise
datasets used by each method covered in this review, according to Table 7. This table
aims to map which sequences the methods use as negative data to predict lncRNAs.

Table 7 – Summary of the sequences and databases used by each method.

Method Sequences and Database

CPC ncRNA (Rfam and RNADB); protein-coding (EMBL)

CPAT lncRNA (GENCODE); protein-coding (RefSeq)

CNCI lncRNA (GENCODE and Ensembl); protein-coding (RefSeq
and Ensembl)

PLEK lncRNA (GENCODE); protein-coding (RefSeq)

lncRNA-MFDL lncRNA (GENCODE); protein-coding (RefSeq)

LncRNA-ID lncRNA (GENCODE); protein-coding (GENCODE)

lncRScan-SVM lncRNA (GENCODE); protein-coding (GENCODE)
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LncRNApred lncRNA (NONCODE); protein-coding (UCSC database)

DeepLNC lncRNA (LNCipedia); protein-coding (RefSeq)

BASiNET ncRNA and lncRNA (GENCODE and Ensembl); protein-
coding (RefSeq)

LncFinder lncRNA (GENCODE and Ensembl); protein-coding (GEN-
CODE and Ensembl)

PlantRNA-Sniffer lncRNA (CANTATAdb); protein-coding (Ensembl)

PLncPRO lncRNA (CANTATAdb); protein-coding (Phytozome, GEN-
CODE)

RNAplonc lncRNA (PLNlncRbase and GreeNC); protein-coding (Phy-
tozome)

Ensemble lncRNA (lncRNAdb, lncRNAdisease, Ensembl, PNRD, and
RNAcentral); protein-coding (Phytozome)

Source – Elaborated by the author.

Thereby, we observed that all methods reviewed used protein-coding genes as a
negative weight to train classifiers in the detection of lncRNAs, which justified the high
amount of features to find coding sequences (e.g., ORF and MLCDS). Regarding databases,
the most used by the methods were GENCODE, RefSeq, Ensembl, and Phytozome.

2.1.5 Feature Selection of lncRNAs (Q5, Q6)

In Bioinformatics, data are becoming bigger not only in terms of the abundance of
patterns but also in the dimensionality of features. Thus, lncRNA detection is no different,
since the reviewed works present a high number of input attributes. According to Wang,
Wang and Chang (2016), this fact can significantly degrade the accuracy of learning
algorithms, especially when there is the presence of irrelevant or redundant features. Based
on this problem, some lncRNAs researchers have applied feature selection methods, as
presented in Table 8. We found eight papers, among them: Wang et al. (2014) applied
Genetic Algorithm (GA); Lertampaiporn et al. (2014) Correlation-Based Feature Selection
(CFS) and GA; Pian et al. (2016) Feature Score Criterion (FSC).

Tripathi et al. (2016) combined Forward Selection and Backward Elimination
(FSBE); Ventola et al. (2017) used several feature selection approaches and algorithms,
such as Filter (Wilcox test (WT), Information Gain (IG), Gain Ratio (GR), and Recursive
Feature Elimination (RFE)); Wrapper (RFE and Greedy Forward Selection (GFS));
Embedded (Lasso regression (LR), Elastic Net (EN), and Random Forest (RF)). Yang et
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al. (2018) applied Minimal-Redundancy-Maximal-Relevance (mRMR); Han et al. (2018)
used RFE; and finally, Negri et al. (2018) analyzed methods present in Weka, such as IG,
and GR.

Table 8 – Feature Selection in lncRNAs.

Reference Method Application

Wang et al. (2014) Heuristic Human

Lertampaiporn et al.
(2014)

Heuristic Multi-Species

Pian et al. (2016) Statistical Human

Tripathi et al. (2016) Heuristic Human

Ventola et al. (2017) Heuristic and Statistical Human; Mouse; Zebrafish

Yang et al. (2018) Heuristic Human; Mouse

Han et al. (2018) Heuristic Multi-Species

Negri et al. (2018) Statistical Plant
Source – Elaborated by the author.

Essentially, our review showed that, again, most of the works that used feature
selection methods are applied in animal and human systems (87.50%) and only a specific
article for plants (12.50%). We also note that many papers did not conduct an in-depth
study of features, using this method only as a means to reduce dimensionality, but without
understanding the efficiency of its attributes. Lastly, although the heuristic algorithms are
more applied, only two works used meta-heuristic.

2.1.6 Evaluation Metrics (Q7)

After feature extraction, selection, and classification, the next step is to analyze the
efficiency of the developed model. Therefore, we report the primary metrics used by the
reviewed articles, as exposed in Table 9. Different performance metrics were applied, among
them: Sensitivity (SE), Specificity (SPC), Accuracy (ACC), F1-score, Positive Predictive
Value (PPV), Negative Predictive Value (NPV), Matthews Correlation Coefficient (MCC),
Area Under the Curve (AUC), and Receiver Operating Characteristic (ROC) Curve.

It is important to highlight that all metrics used are associated with the confusion
matrix, which is one of the most intuitive and easy methods applied to find the Accuracy
and Precision of a model. Thereby, True Positive (TP) estimator measures the correctly
predicted positive class; True Negative (TN) estimator represents the negative class
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Table 9 – Performance metrics used by each method.

Method SE SPC ACC F1-score PPV NPV MCC AUC ROC

CPC - - V - - - - - -

CPAT V V V - V - - V V

CNCI V V V - - - - - V

PLEK V V V - V V - - -

lncRNA-
MFDL

V V V - - - V - -

LncRNA-ID V V V V V - - V V

lncRScan-
SVM

V V V - - - V V V

LncRNApred V V V - - - V - V

DeepLNC V V V - - V V V V

BASiNET - - V - - - - - -

LncFinder V V V V - - - V V

PlantRNA-
Sniffer

- - V - - - - - -

PLncPRO V V V - - - V - V

RNAplonc V V V V V V V V V

Ensemble V V V - - - - V -
Source – Elaborated by the author.

correctly classified; False Positive (FP) estimator describes all those negative entities that
are incorrectly classified as positive, and False Negative (FN) estimator represents all
positive that are incorrectly classified as negative. Finally, we elaborate a brief definition
of each measure (WITTEN; FRANK; HALL, 2011):

• SE: Also known as Recall and true positive rate, measures the proportion of actual
positive cases that are correctly identified (see Equation 2.5).

SE = TP

TP + FN
(2.5)
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• SPC: Also called the true negative rate, measures the proportion of actual negative
cases which are correctly identified (see Equation 2.6).

SPC = TN

TN + FP
(2.6)

• ACC: Accuracy is the proportion of the total number of predictions that were
correct (see Equation 2.7).

ACC = TP + TN

TN + FP + TP + FN
(2.7)

• F1-Score: Also called F-measure, can be interpreted as a weighted average of the
precision and recall (see Equation (2.8).

F1− Score = 2× TP
2× TP + FP + FN

(2.8)

• PPV: Also called Precision, measures the proportion of positive cases that were
correctly identified (see Equation 2.9).

PPV = TP

TP + FP
(2.9)

• NPV: Measures the proportion of negative cases that were correctly identified (see
Equation 2.10).

NPV = TN

TN + FN
(2.10)

• MCC: It is a quality measure of two binary classifications. Basically, it returns a
value between -1 and +1, where a coefficient +1 represents a perfect prediction, 0 a
mean random prediction, and -1 a reverse prediction (see Equation 2.11) (BALDI et
al., 2000).

MCC = TP × TN − FP × FN√
(TP + FP )× (TP + FN)× (TN + FP )× (TN + FN)

(2.11)

• ROC: ROC curves depict the performance of a classifier without regard to class
distribution or error costs (WITTEN; FRANK; HALL, 2011).

• AUC: This metric provides an aggregate measure of performance across all possible
classification limits.
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Finally, it is essential to emphasize that, according to Valverde-Albacete and
Peláez-Moreno (2014), "predictive models with a given level of accuracy may have greater
predictive power than models with higher accuracy." Therefore, we decided to apply all
metrics used in the literature (see Table 9), as high accuracy is not entirely an indicator
of high classifier performance (VALVERDE-ALBACETE; PELÁEZ-MORENO, 2014).

2.2 Considerations
In this chapter, we review computational methods for lncRNAs classification. In

which, we observe a considerable amount of research in humans, followed by animals and
plants. Moreover, all authors apply supervised learning methods using binary classification
(two classes), and protein-coding genes as a negative weight for the datasets. Among the
most commonly used classification algorithms are support vector machines, followed by
random forest and deep learning. Regarding feature extraction, we observed a full domain
of ORF features and sequence structure (features with biological bias). Due to a high
number of attributes extracted by the authors, we reviewed works that performed feature
selection methods for the lncRNAs problem. However, we note a lack of computational
methods related to the systematic study of robust attributes, as well as the application of
metaheuristic techniques and mathematical models for feature selection and extraction,
respectively.
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3 EXPERIMENTAL TEST I: FEATURE SE-
LECTION PROBLEM

This chapter describes the methodological procedures used to achieve the proposed
objectives in our first problem (feature selection). Fundamentally, each stage of study
is described, as well as information about the process adopted for the development and
application of the research. Thus, based on our systematic review presented in Chapter
2, we select the most used feature extraction methods for lncRNAs classification (ORF,
sequence length, GC content, and k-mer), to apply metaheuristic models for feature
selection. We design experiments to answer the hypotheses shown in Section 1.4 (H1-PB1
and H2-PB1). Therefore, this chapter is divided into two parts: Experimental Methodology
and Results. Discussions will be presented in Section 5.

3.1 Experimental Methodology
We divided this first experiment into seven stages: (1) preprocessing of FASTA

files, removing redundant sequences and less than 200 nucleotides; (2) Split sequences into
training, and test; (3) Feature extraction; (4) Feature Selection; (5) Training; (6) Test;
(7) Performance analysis. For a better understanding, Figure 1 summarizes the adopted
methodological approach. Furthermore, it is necessary to emphasize that we denote a
biological sequence S = (S[0], S[1], . . . , S[N − 1]) such that S ∈ {A,C,G, T}N . Finally,
we denote all sequences of our dataset (mRNA/lncRNA) by SeqRNA.

3.1.1 Training Set Construction

We built a training set with sequences from 5 plant species (Arabidopsis thaliana,
Cucumis sativus, Glycine max, Oryza sativa and Populus trichocarpa - see Table 10),
adopting the datasets used in Negri et al. (2018). Two classes were defined for the datasets:
positive class, with lncRNAs, and negative class, with protein-coding genes (mRNAs).
The lncRNA data were extracted from two public databases, PLNlncRbase (defined by
BP LN) (XUAN et al., 2015) and GreeNC (version 1.12 - defined by BGree) (GALLART et
al., 2015).

The mRNA transcript data were collected from Phytozome (defined by BP hy)
(GOODSTEIN et al., 2011) database version 11. The choice of the mentioned databases
was based on their impact and in the number of species available. In both lncRNA and
mRNA datasets, we used only sequences longer than 200nt, and we removed sequence
redundancy at 80% of identity (LERTAMPAIPORN et al., 2014; SU et al., 2018) using
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 Training Dataset
lncRNA = 9020 seq
mRNA = 9020 seq

Split Data

Feature Extraction

 Test Dataset
lncRNA = 40299 seq
mRNA = 40299 seq

Feature Selection

Training

Prediction Results

Performance Evaluation

Length > 200

CD-HIT-EST

lncRNA

mRNA

Attribute Evaluator:
CFS

Search Method:
GA - EA

ABC - ACO
PSO

Model (REPtree)

Optimal Features Subset

Figure 1 – Proposed Workflow for the Feature Selection Problem in lncRNAs. 1

Source – Elaborated by the author.

CD-HIT-EST tool (v4.6.1) (LI; GODZIK, 2006). We selected randomly 1, 804 sequences for
each species, due to the amount of data, to balance the number of samples in each species.
Therefore, a total of 9, 020 lncRNA sequences and 9, 020 mRNA sequences were obtained
after filtering steps.
1 Note: The FASTA format files (lncRNA - positive dataset and mRNA - negative dataset) were filtered

to find sequences larger than 200 nucleotides (size > 200), and we removed redundant sequences with
80% of identity (CD-HIT-EST). This dataset was divided into training (9020 lncRNA and 9020 mRNA)
and testing (40299 lncRNA and 40299 mRNA). Features were extracted from each sequence. Filters
were applied to the training set to select a subset of features (see Table 12). Next, for each selected
feature set, ML algorithms were applied to the data to induce predictive models. The models induced
for each filter were applied to the test set, using the same selected features in the training set. Finally,
the predictions of the model induced for each filter was evaluated.



Chapter 3. EXPERIMENTAL TEST I: FEATURE SELECTION PROBLEM 41

Table 10 – Species used to create the training set.

lncRNA mRNA
Species BP LN BGree #used BP hy #used
A. thaliana 119 3010 1804 35386 1804
C. sativus 8 1935 1804 30364 1804
G. max 1 6693 1804 88647 1804
O. sativa 38 5238 1804 52424 1804
P. trichocarpa 15 5574 1804 73013 1804
Total 181 22450 9020 279834 9020

3.1.2 Test Set Construction

To assess the performance of the algorithms used in this study, we use eight
datasets of plant species (Amborella trichopoda, Brachypodium distachyon, Citrus sinensis,
Manihot esculenta, Ricinus communis, Solanum tuberosum, Sorghum bicolor and Zea
mays), summarized in Table 11.

Table 11 – Species used to create the test set.

Species lncRNA # used mRNA # used
A. trichopoda 5698 3823 26846 3823
B. distachyon 5584 4868 52972 4868
C. sinensis 2562 2292 46147 2292
M. esculenta 3468 3017 41381 3017
R. communis 4198 4080 31221 4080
S. tuberosum 6680 5607 51472 5607
S. bicolor 5305 4541 47205 4541
Z. mays 18154 12071 88760 12071
Total 51649 40299 386004 40299

Test sets followed the same steps as the training set (sequences longer than 200nt,
and removed sequence redundancy at 80% of identity with CD-HIT-EST). The lncRNA
sequences were extracted from GreeNC, and mRNA sequences from Phytozome.

3.1.3 Feature Extraction

The extraction of relevant features plays an essential role in this issue. Thus, feature
extraction is one of the most critical steps in the induction of a robust predictor/classifier
(FAN; ZHANG, 2015). It were extracted features considering four feature groups (ORF,
sequence length, GC content, and k-mer) to distinguish lncRNA from mRNA. Basically,
four sets of values were extracted from the sequences, creating four vectors, described next.
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GC content descriptor

According to the literature, when we compare lncRNAs with mRNAs, the lncRNAs
have low GC content (NIAZI; VALADKHAN, 2012). The GC content (guanine-cytosine
content - denoted by fGC), represented by Equation (2.2), is the percentage of nitrogenous
bases in a DNA or RNA molecule that is guanine or cytosine (AMR; FUNKE, 2015).

k-mer descriptor

As lncRNAs normally have a low potential for protein-coding (FAN; ZHANG,
2015), the frequency of neighboring bases k (k-mer) may contain statistical information
to distinguish lncRNAs from mRNAs. The k-mer is denoted in this work by fkmer,
corresponding to Equation (3.1).

fkmer(S) = ck
i

N − k + 1 =
 c1

1
N − 1 + 1 , . . . ,

c1
4

N − 1 + 1 ,

c2
4+1

N − 2 + 1 , . . . ,
c6

5460
N − 6 + 1

 k = 1, 2, . . . , 6.
(3.1)

This equation is applied to each sequence with frequencies of k = 1, 2, 3, 4, 5, 6.
Where, ck

i is the number of substring occurrences with length k in a sequence S with
length N , in which the index i ∈ {1, 2, . . . , 41 + . . .+ 4k} represents the analyzed substring.

Sequence length descriptor

We also used as feature the sequence length (denoted by fSL), since the lncR-
NAs were shown to be considerably shorter than mRNAs (NIAZI; VALADKHAN, 2012;
WUCHER et al., 2017).

Open Reading Frame (ORF) descriptor

Identifying candidate ORFs in the transcripts is an important guideline for distin-
guishing lncRNAs from mRNA (NIAZI; VALADKHAN, 2012; FRITH et al., 2006; BAEK
et al., 2018). For such, we analyze the three frames in the forward strand of our sequences
using the txCdsPredict program from the UCSC genome browser (KENT et al., 2002) 2.
We used this program, which predicts potential ORFs from a given sequence w, to extract
the following features:

• txCdsPredict Score: This attribute measures the probability that a sequence is a
protein. In which, a score above 1000 is likely to be a protein. The scores above 800
have 90% chance;

2 (https://genome.ucsc.edu/ (KENT et al., 2002))
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• cdsStarts: nt position for the CDS start within the transcript, zero-based;

• cdsStop: nt position for the CDS end, noninclusive;

• cdsSizes: cdsStop nt position− cdsStart nt position;

• cdsPercent: cdsStop nt position+cdsStart nt position
total nt sequence size

.

The features were passed as a vector for the function that we denote by fORF ,
corresponding Equation (3.2).

fORF (S) = (Score, cdsStarts, cdsStop, cdsSizes, cdsPercent). (3.2)

The txCdsPredict has been used in several studies ((SUN et al., 2013; SUN et
al., 2015; LI et al., 2018)), to determine if a transcript is protein-coding and, if so, the
locations of the start and stop codons. The algorithm uses ORF length, the presence of a
Kozak consensus sequence at the start codon, the presence of upstream ORFs, homology
in other species, and nonsense-mediated decay (KENT et al., 2002). Furthermore, several
tools have used ORF features, among them: CPC, CPAT, lncRNA-MFDL, LncRNA-ID,
lncRScan-SVM, LncRNApred, PlantRNA-Sniffer, PLncPRO, RNAplonc, and LncFinder.

Concatenate Feature Vectors

According to Fan and Zhang (2015), a concatenated feature vector can keep the most
discriminatory information from original multi-feature sets and eliminate the redundant
information from the correlation between distinct feature sets, resulting in models with
robust predictive performance. To represent each transcribed sequences in the datasets, we
concatenate the previously mentioned features in a new feature vector, defined as follows
(Equation (3.3)):

Vf = {(Xi, Yi)| ∀Si ∈ SeqRNA,
Xi = (fGC(Si), fkmer(Si), fSL(Si), fORF (Si)),
Yi = Label(Si)}.

(3.3)

Where the feature vector Vf contains the elements Xi and Yi for every sequence
Si belonging to SeqRNA, such that Xi is formed by the functions (fGC(Si), fkmer(Si),
fSL(Si), fORF (Si)) and Yi by the labels 0 (mRNA); 1 (lncRNA). Therefore, we collected
5,467 genomic characteristics for each sequence relative to the training set (see Table 10):
GC content (1 feature), k-mer (1-6 k-mer length = 5, 460 features), Sequence length (1
feature), and ORF metrics (5 features).
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3.1.4 Data Preprocessing

Data normalization is a preprocessing technique frequently applied to a dataset
before feature selection and modeling. Essentially, features can have different numeric
ranges. Thus, features with a larger range which can have a stronger effect in the induction
of a predictive model, mainly for distance-based ML algorithms. The application of a
normalization procedure makes the ranges similar, reducing this problem (SINGH; VERMA;
THOKE, 2015). We used in this work the min-max method, which reduces the data range
to 0 and 1 (or -1 to 1, if there are negative values). The general formula is given as
(Equation (3.4)) (SOUTO et al., 2008):

x′ij = xij −Min(j)
Max(j)−Min(j) . (3.4)

Where x is the original value and x′ij is its re-scaled version. Further, Min(j) and
Max(j) are, respectively, the smallest and the largest values of a feature j (SOUTO et al.,
2008).

3.1.5 Feature Selection Techniques

Feature selection techniques are typically categorized as filters, wrappers, or embed-
ded approaches (STAŃCZYK, 2015). Filters are applied independent of the ML algorithm
used (DASH; LIU, 2003), considered as a preprocessing stage for a subsequent learning
(KRIZEK, 2008). They exploit the information present in the predictive features of a
dataset, assessing their relevance using measures like information gain, entropy, and consis-
tency (DASH; LIU, 2003; STAŃCZYK, 2015). Wrappers evaluate the relevance of subsets
of predictive features using an ML algorithm as an oracle (KOHAVI; JOHN, 1997), i.e.,
they use the accuracy of predictive models to guide the selection of an optimal subset
of features (KRIZEK, 2008). The embedded approach is implemented as part of an ML
algorithm that has an internal feature selection mechanism (GUYON; ELISSEEFF, 2003;
LAL et al., 2006).

Table 12 – Applied Algorithms and Methods.

ID Attribute Evaluator Filter (Metaheuristic)
M1-GA CFS GA
M2-EA CFS (µ+ λ)EA
M3-ABC CFS ABC
M4-ACO CFS ACO
M5-PSO CFS PSO

In this dissertation, we applied Filters, to select subsets of features in a preprocessing
step, independently of the ML algorithm used later. According to Guyon et al. (GUYON;
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ELISSEEFF, 2003), there are several justifications for the use of filters, among them: (1)
filters were successfully reported in several previous works. (2) Compared to wrappers,
filters are faster. (3) Filters provide a generic selection of variables, i.e., the choice of
features is not adjusted to an ML algorithm. In this study, we have used metaheuristics as
filters. Also, we have worked with WEKA (Waikato Environment for Knowledge Analysis
- Version 3.8 - (HALL et al., 2009)) to execute the algorithms in our study (see Table 12).
Also, we have used Perl (Version 5.24.1) and Python (Version 3.5) in all experiments.

3.1.6 Objective Function

The CFS algorithm (HALL, 1999) was used to evaluate the feature subsets selected
by the metaheuristics. This algorithm analyzes the predictive capacity and degree of
redundancy of the subset. It looks for a subset that is highly correlated with the target
class and has a low correlation with other features (SELVAKUBERAN; INDRADEVI;
RAJARAM, 2008; FONG; BIUK-AGHAI; MILLHAM, 2018). For such, it uses a correlation-
based heuristic evaluation function (see Equation 3.5). The chances of a feature to be
selected depending on how well the feature can predict the correct class when other features
cannot (HALL, 1999).

MS = krcf√
k + k(k − 1)rff

(3.5)

Where MS is the merit of a feature subset S containing k features, rcf is the mean
feature-class correlation (f ∈ S), and rff is the average feature-feature inter-correlation
(HALL, 1999). Therefore, we investigate the performance of five metaheuristics for feature
selection (see Table 12).

3.1.7 Metaheuristics

We have chosen the traditional metaheuristics considering the excellent performance
for the feature selection reported in different areas of the literature (DOERING et al.,
2019; NAYAR; AHUJA; JAIN, 2019; GUPTA; SHENG, 2019). Moreover, we have also
previously validated the EA and ACO algorithms against five other state-of-the-art
approaches (RNAplonc, CPC, CPC2, CNCI, PLEK) (Parmezan Bonidia et al., 2019). The
results obtained in (Parmezan Bonidia et al., 2019) are very interesting, and support the
quality of metaheuristic in the search process of dimensionality reduction and feature
selection. For that reason, we extended this discussion and studied performance among
five efficient metaheuristics (GA, (µ+ λ)EA, ABC, ACO, PSO). Also, we propose here to
investigate not only the selected feature subsets but also the quality of each feature.
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M1-GA: Genetic Algorithm

GA was developed by John Holland, his colleagues, and his students at the Uni-
versity of Michigan. It is a general stochastic search algorithm that effectively exploits
large search spaces, which is generally required in case of feature selection. Moreover, GAs
conduct global research and are based on the mechanics of natural selection. Essentially,
they simulate the processes in natural systems for evolutions based on the principle of
"survival of the fittest" (Charles Darwin) (GOLDBERG, 1989). Also, they work with the
coding of the parameter set and use reward information (objective function). Therefore,
GA applied in this dissertation is defined by Goldberg (1989), composed of three basic
operators: reproduction, crossing, and mutation. The chromosome consists of binary bits,
1 to represent the attribute selection, and 0 to eliminate it.

M2-EA: Evolutionary Algorithm

The EA used in this work applies the fitness ranking selection procedure. In other
words, at the end of each evolution cycle, the whole population is renewed according
to generational substitution scheme. Furthermore, elitism and tournament are applied,
in which the fittest individual of the population is kept in the new generation. The
chromosomes (Binary encoding) are manipulated using standard genetic operators of
mutation and crossover (single-point crossover, bit flip mutation). However, the EA
has an extra component (a) that represents the interval width of the mutation even,
where the modification has a uniform probability [−a, a]. Thus, for each individual, the
parameter is adjusted adaptively through random mutation events (FOGEL, 1995; PHAM;
CASTELLANI, 2009).

M3-ABC: Artificial Bee Colony

The ABC is bio-inspired in the food foraging behavior of bees to seek the best
solution to an optimization problem. Each point in the search space is considered as a food
source. The "Scout Bees" randomly sampled the space and through the fitness function,
they report the quality of the visited places. The solutions are then ranked, and other
"bees" are recruited to search the fitness landscape in the neighborhood of the highest
ranking locations. The neighborhood of a solution is called a "flower patch". Therefore, the
algorithm searches the most promising solutions and selectively explores its neighborhoods
looking for the global minimum of the objective function (PHAM; CASTELLANI, 2009).

M4-ACO: Ant Colony Optimization

The ACO is a bio-inspired algorithm by the foraging behavior of some species
of ants, developed by Dorigo, Maniezzo and Colorni (1996). This technique applies the
pheromone method that ants deposit to demarcate a more favorable path and that must
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be followed by other members of the colony (DORIGO; MANIEZZO; COLORNI, 1996;
DORIGO; BIRATTARI, 2011; BONIDIA et al., 2018). Fundamentally, each agent (ants)
initially follows a random way, and after some time they tend to follow a single way,
considered significant. They use indirect communication to indicate the best route for the
other members of the colony. For this, they spread a substance called pheromone. That is,
computationally, the algorithm presents a graph with n vertices and places an artificial
ant in each of these. Thereby, each ant traces a path following a probabilistic equation
in function of the "deposited" pheromone at each edge of the graph. Finally, after the
construction of all routes, the pheromone intensity in each edge is increased according to
the quality of the generated solution.

M5-PSO: Particle Swarm Optimization

It is a bio-inspired computational algorithm in the social behavior metaphor about
the interaction between individuals (particles) of a group (swarm), developed in 1995 by
Kennedy and Eberhart. This algorithm was implemented based on the observation of
flocks of birds and shoals of fish in search of food in a certain region (MORAGLIO et al.,
2008; KENNEDY, 2011; BONIDIA et al., 2018). The PSO is a population-based stochastic
global optimization algorithm (KENNEDY, 2006). The version applied in this research
uses the geometric framework, where it presents an intimate relation between a simplified
form of PSO (without the inertia term) and evolutionary algorithms. This framework
enables to generalize, in a natural, rigorous, and automatic way, PSO for any search space
for which a geometric crossover is known (MORAGLIO et al., 2008). This algorithm was
developed using theoretical tools of evolutionary algorithms, that is, geometric crossing
and geometric mutation. Basically, there is no velocity, the equation of position update
is the convex combination, there is mutation and the parameters w1, w2, and w3 are
non-negative and add up to one (KENNEDY, 2011).

3.1.8 Execution Rounds

At this stage, we proposed a new metaheuristic execution pipeline, as shown in
Figure 2. In which, each metaheuristic was submitted to five different trails (called here as
round). Also, for each round, the algorithm was run 10 times (empirically chosen value
with different seeds), where the best individual found in each run is selected, generating a
ranking of best candidates. Then, considering the ranking of candidates, we have selected
most voted features (vote = 100%, i.e., features incident to all candidates). So, we start a
new round considering only the selected features from previous round. This process was
repeated five times (five rounds), totaling 50 runs.
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Feature Selection 
(Execution = 10)

Feature Subsets Most Voted
Features

Execution
Round  

Round = 5
No

Yes

Selected Features
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New Features
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Yes
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Selected

No

Feature Selected

All Features

Vote = 100% 

Figure 2 – Metaheuristic Execution Pipeline.

Source – Elaborated by the author.

3.1.9 Evaluation Metrics

The methods were evaluated with seven measures (FAN; ZHANG, 2015; DUDA;
HART; STORK, 2012): Sensitivity (SE), Specificity (SPC), Accuracy (ACC), F1-score,
Positive Predictive Value (PPV), Negative Predictive Value (NPV), and Matthews Corre-
lation Coefficient (MCC). These measures were used to evaluate the models’ predictive
performance. These measures use True Positive (TP), True Negative (TN), False Positive
(FP) and False Negative (FN) values, where: TP measures the correctly predicted lncRNAs;
TN represents the correctly classified mRNAs; FP describes all those negative entities
that are incorrectly classified as lncRNAs and; FN represents the true lncRNAs that are
incorrectly classified as mRNAs. Nevertheless, these metrics were applied only in the test
sets, which are essential for the analysis of the proposed models. Thus, the metrics used
to evaluate the training set were Accuracy (ACC) and Error Rate (ER).
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3.2 Results
This section shows experimental results from experiments conducted with 5,467

genomic characteristics for each sequence relative to the training and test sets, as well as
a systematic study on the optimal feature subsets chosen by the metaheuristic methods in
the feature selection process.

3.2.1 Hyperparameters of the algorithms

To apply the dimensionality reduction (feature selection) with algorithms exposed
in Table 12, the following hyperparameter values were defined:

• M1-GA: Crossover Operator (single-point), Crossover Probability (0.6), Generations
(20), Mutation Operator (bit-flip), Mutation Probability (0.033), Population Size
(20), Selection Operator (roulette wheel);

• M2-EA: Generations (20), Crossover Operator (single-point), Crossover Probability
(0.6), Mutation Operator (bit-flip), Mutation Probability (0.1), Population Size (20),
Selection Operator (tournament);

• M3-ABC: Iterations (20), Population Size (30), Number of Selected Sites (15),
Number of Elite Sites (8), Number of Selected Site Bee (15), Number of Elite Site
Bee (30);

• M4-ACO: Evaporation (rho = 0.9), Pheromone (α = 2.0), Heuristic (β = 0.7), Q
(30), tau0 (0.1), Iterations (20), Population Size (20);

• M5-PSO: Iterations (20), Social Weight (0.33), Population Size (20), Mutation
Operator (bit-flip), Mutation Probability (0.01), Individual Weight (0.34), Inertia
Weight (0.30).

3.2.2 Feature Selection

At this stage, methods presented in Table 12 were applied in training set with the
purpose of reducing the dimensional space of the extracted features, as shown in Table 13.
For each one of the five runs, each metaheuristic selected a feature subset of decreasing
size, as illustrated by Table 13. At each new run, the metaheuristic was applied to the
previously selected subset, in order to further reduce the number of features. When the
number of features was not reduced, we put the symbol "−". Among the selected features
subsets by methods (see Table 14), two found the least amount of features (M2-EA and
M3-ABC), returning a subset with 5 attributes, followed by M4-ACO (6 features), M5-PSO
(7 features) and M1-GA (10 features).
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Table 13 – Execution Rounds (e.g. R1 = First round).

ID Initial Features R1 R2 R3 R4 R5
M1-GA 5,467 85 32 14 10 -
M2-EA 5,467 569 115 17 5 -
M3-ABC 5,467 12 6 5 - -
M4-ACO 5,467 164 16 6 - -
M5-PSO 5,467 59 11 7 - -

Source – Elaborated by the author.

Table 14 – Optimal features subsets selected by each method.

M1-GA M2-EA M3-ABC M4-ACO M5-PSO
ATCCCC CCGGCA AGCGGA AGCACT CGCGGA
CCGGCA GACTAG GGGCTA CCGGGG CTCGAC
CGCCTC GAGGGC GTCGTC GAGCCC GCACGC
CGGAGT score score GTCGTA GGGGGG
CGTTAG cdsSizes cdsSizes score TGACGG
CTAGGT cdsSizes score
GGGGGG cdsSizes
TGACGG
score
cdsSizes

Source – Elaborated by the author.

Another fact that can be observed at the methods intersection is that everyone
selected two equal features (txCdsPredict score and cdsSizes). The rest of the methods
demonstrated by the one or two intersections, such as M1-GA ∩ M2-EA (CCGGCA), and
M1-GA ∩ M5-PSO (GGGGGG, TGACGG). We will explore more about the features
obtained soon.

3.2.3 Models Training

To induce predictive models that can be interpreted, we applied three decision tree
induction algorithms (Random Forest, J48, REPTree) to the training set. We performed
experiments to evaluate the performance of selected features in each round by each
metaheuristic. This experiment investigated if the predictive performance was maintained,
as the feature sets were reduced (see Table 15). In which, J48 and REPtree algorithms
presented similar performance, an average of 92.77% and 92.76% (ACC), respectively. In
contrast, Random Forest had the worst performance (ACC ≈ 91,19%). Therefore, it was
decided to use the same algorithm applied in (NEGRI et al., 2018), REPtree. Furthermore,
it was observed that the methods preserved performance as the features were reduced.
Thus, the optimal features subsets selected by the metaheuristics (see Table 14) were
applied to construct the prediction models.
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3.2.4 Performance Testing

The predictive models induced by REPTree were applied to the test sets (see
Test Set Construction Method), producing the results shown in Table 16. As can be
seen, the results obtained using the selected feature sets were similar. The best predictive
performance regarding SE and ACC were obtained by feature set selected by M1-GA
(SE: 100% and ACC: 91.29%), followed by M3-ABC (SE: 99.95% and ACC: 91.27%), and
M4-ACO (SE: 99.94% and ACC: 91.27%). Regarding specificity, the best methods were
M2-EA (82.61%) and M4-ACO (82.61%).

Evaluating the individual performance of the metaheuristics for different species, we
noticed that the models obtained high accuracy in six datasets, among them: C. sinensis
(ACC: 94.09% - M2-EA), M. esculenta (ACC: 93.30% - M2-EA), B. distachyon (ACC:
92.60% - M1-GA), S. bicolor (ACC: 92.47% - M1-GA), R. communis (ACC: 90.74% -
M1-GA, M3-ABC and M4-ACO), and Z. mays (ACC: 90.73% - M1-GA). Regarding the
individual sensitivity (to detect lncRNA), we achieved the best results with all species
and methods, on the other hand, we reduced the specificity (to detect mRNA), especially
in two sets (A. trichopoda and S. tuberosum). Therefore, to better understand the results
and features, we decided to analyze the contribution of the selected features subsets, as
reported in the next sections.

3.2.5 Our Approach Against All Features

In this section, we compare the best and worst model in the performance test (see
Table 16), respectively, M1-GA and M5-PSO, against a model without feature selection
(Full features (5,467)). In the overall average, our approach represented a gain of 4.68%
(M1-GA) and 4.62% (M2-PSO) in the ACC. However, in some species, we reached an
increase in the ACC of 6.40% (S. bicolor), 5.92% (B. distachyon), and 4.85% (C. sinensis).
Fundamentally, these results expose the high efficiency of metaheuristics for feature
selection in lncRNAs. These results will be discussed with greater emphasis in Chapter 5.

3.2.6 Influence and Contribution of the Selected Features

According to Zhu et al. (2010), when confronted with high-dimensional bioinfor-
matics problems, it is important to examine and compare the contributions of different
features. To better understand the influence and contribution of the features and models,
we first consider the analysis of all features selected in the last run of each metaheuristic
(see Table 14). For such, we plot the correlation matrix with attributes that presented at
least one intersection, according to Figure 3. The chart shows the variables paired with all
others.
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CCGGCA GGGGGG TGACGG score cdsSizes
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Figure 3 – Correlation matrix. The chart reports the correlation coefficients of the training
data to features that presented at least one intersection: CCGGCA, GGGGGG,
TGACGG, txCdsPredict score, and cdsSizes.

Source – Elaborated by the author.

The graph presents that ORF features (txCdsPredict score and cdsSizes) have a
positive correlation, whereas the k-mers do not present any correlation. Therefore, we now
looked only for the best-performing methods (M1-GA, M2-EA, M3-ABC, and M4-ACO)
with all features from each one of them (see Figure 4 and Table 14 - 19 attributes). We
trained a new model with REPTree algorithm, in which it obtained an ACC: 92.76% and
ER: 7.24%. After, we applied tests, in which it obtained SE: 99.87%, SPC: 82.63% and
ACC: 91.25% (see Table 17).

M2-EA

M
1-
GA

M3-ABC

M
4-ACO

7

2 3

4

1 0 0

0 0

0 2 0

0 0

0

Figure 4 – Union of the best models. M1-GA: 8 features of k-mer and 2 of ORF; M2-EA:
3 features of k-mer and 2 of ORF; M4-ABC: 3 features of k-mer and 2 of ORF;
M6-ACO: 4 features of k-mer and 2 of ORF.

Source – Elaborated by the author.
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Table 17 – The performance with union of the best models - See Figure 4.

Species TP FP TN FN SE SPC ACC
Amborella trichopoda 3822 878 2945 1 99.97 77.03 88.50

Brachypodium distachyon 4859 719 4149 9 99.82 85.23 92.52
Citrus sinensis 2290 272 2020 2 99.91 88.13 94.02

Manihot esculenta 3012 404 2613 5 99.83 86.61 93.22
Ricinus communis 4079 755 3325 1 99.98 81.50 90.74
Solanum tuberosum 5596 1346 4261 11 99.80 75.99 87.90
Sorghum bicolor 4527 681 3860 14 99.69 85.00 92.35

Zea mays 12061 2229 9842 10 99.92 81.53 90.73
Overall Average - - - - 99.87 82.63 91.25

Source – Elaborated by the author.

Then, we apply the same idea (training and testing) only using these two common
features (txCdsPredict score and cdsSizes - see Table 18). Thereby, It is possible to notice
that with only two features, the model obtained a similar result to the best method (M1-
GA), with SE: 99.96%, SPC: 82.59%, and ACC: 91.27%. These two analyses demonstrated
that ORF features are strongest in common for all methods, besides presenting a great
classification in all sets. To confirm this hypothesis, we decided to apply new experiments
looking for other features, as explained in the next section.

Table 18 – Feature Intersecting Performance - See Figure 4.

Species TP FP TN FN SE SPC ACC
Amborella trichopoda 3821 879 2944 2 99.95 77.01 88.48

Brachypodium distachyon 4867 720 4148 1 99.98 85.21 92.59
Citrus sinensis 2292 272 2020 0 100 88.13 94.07

Manihot esculenta 3017 405 2612 0 100 86.58 93.29
Ricinus communis 4075 755 3325 5 99.88 81.50 90.69
Solanum tuberosum 5606 1352 4255 1 99.98 75.89 87.93
Sorghum bicolor 4536 684 3857 5 99.89 84.94 92.41

Zea mays 12068 2235 9836 3 99.98 81.48 90.73
Overall Average - - - - 99.96 82.59 91.27

Source – Elaborated by the author.

3.2.7 Analysis of ORF Features

Our next investigation was to remove the two strong ORF attributes (txCdsPredict
score and cdsSizes). The hypothesis was to confirm if these attributes are robust enough
for proper classification, and maybe to find for new efficient features. The new dataset
contained 5,465 features (GC content (1 feature), k-mer (1-6 k-mer length = 5,460 features),
Sequence length (1 feature), and ORF metrics (3 features)). Therefore, we re-apply five
rounds of optimal feature subsets selection with the best-performing methods (top three
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in this experiment), including M1-GA, M3-ABC, and M4-ACO. The process followed the
same methodology, as illustrated in Figure 1. The results can be seen in Table 19.

Table 19 – Optimal features subsets selected by the experiments with methods M1-GA,
M3-ABC, and M4-ACO.

M1-GA M3-ABC M4-ACO
CCAGG, TCTGC GGGTCG CCGGA, CCTGG

CATCAA, CTCATG cdsStop GTTGC, TGCGG
CTGCAG, GAAGGA cdsPercent AAGGCC, ACCTCC
CCGGGG, GGAATT ACGGAG, ACTGGG
GGACCC, cdsStop AGAGCT, AGCTGG

cdsPercent ATCTGG, CAAGGA
CAGAGT, CTTGAC
GACAGC, GAGGGG
GGGTGC, GGTTAT
TGCTGC, TGGGCT
GCTGTT, GCTCTG
GCCTTC, GATGAG
TTCTGG, cdsStop

cdsPercent
Source – Elaborated by the author.

Essentially, M1-GA method selected 11 features (9 k-mer, 2 ORF), M3-ABC
3 (1 k-mer, 2 ORF), and M4-ACO 27 (25 k-mer, 2 ORF). Again, two ORF features
(cdsStop, cdsPercent) presented intersection between all the models, as shown in Figure
5. For a better analysis, Table 21 demonstrates performance data with the new features.
Essentially, the new models also presented an excellent result when compared to the first
tests (see Table 16), in which M1-GA again obtained the best performance in overall
average (ACC: 89.03%, SE: 97.74% and SPC: 80.31%), followed by M3-ABC (ACC: 88.76%,
SE: 97.43% and SPC: 80.10%) and M4-ACO (ACC: 88.76%, SE: 97.50% and SPC: 80.03%).

9

25

1
0

0 0

2

M1-GA M3-ABC

M4-ACO

Figure 5 – Union of cardinalities. This figure shows the union of the selected features by
the new experiments (M1-GA, M3-ABC and M4-ACO).

Source – Elaborated by the author.
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It should be noted that if we compare the best features in the two tests, the loss
in accuracy is approximately 2.26%. Therefore, there are other features with efficacy in
the classification. Nevertheless, again, beyond to k-mers, the methods choose other ORF
features, which indicates the high efficiency of these attributes. Thus, for better analysis,
we plotted again a scatter chart with the features that presented intersection between all
methods in the two experiments (Table 14 and 19), according to Figure 6.

Figure 6 – The scatter chart reports the propagation of training data to features that
presented intersection between all methods in the two experiments: (1) txCd-
sPredict score and cdsSizes; (2) cdsStop and cdsPercent.

Source – Elaborated by the author.

We can observe that most features show a positive correlation, which explains its
performance in all tests. Finally, to verify if only the previously mentioned attributes have
high efficiency, we performed the last experiments with the k-mer descriptor.

3.2.8 k-mer Descriptor Analysis

In our preliminary analysis, we have noticed the high frequency of the ORF
descriptor in the experiments. For that reason, we have proposed a different analysis
exploring the effect of k-mers on predictive performance. In that case, we have induced
the REPTree algorithm into three different feature sets (1: k-mer (1-6 (5,460 features)), 2:
k-mer + ORF (all features), 3: Only ORF (txCdsPredict score and cdsSizes)). Thus, the
induced models were applied to the test sets (see Table 20), where we assessed the ACC
and SE (to classify lncRNAs).

The final classification did not present robust results with only k-mer features (SE:
77.73% and ACC: 75.15%) when compared with k-mer + ORF (SE: 88.38% and ACC:
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Table 20 – Comparative Performance between three models, k-mer (1-6), k-mer + ORF,
only ORF.

Species Model SE ACC
A. trichopoda K-mer (1-6) 96.34 76.31

K-mer (1-6) + ORF 89.88 84.51
Only ORF 99.95 88.48

B. distachyon K-mer (1-6) 51.50 69.35
K-mer (1-6) + ORF 85.62 86.68
Only ORF 99.98 92.59

C. sinensis K-mer (1-6) 86.82 80.78
K-mer (1-6) + ORF 89.18 89.22
Only ORF 100 94.07

M. esculenta K-mer (1-6) 81.01 78.55
K-mer (1-6) + ORF 89.56 88.96
Only ORF 100 93.29

R. communis K-mer (1-6) 95.00 76.96
K-mer (1-6) + ORF 91.05 87.11
Only ORF 99.88 90.69

S. tuberosum K-mer (1-6) 84.48 70.93
K-mer (1-6) + ORF 88.41 83.90
Only ORF 99.98 87.93

S. bicolor K-mer (1-6) 52.85 69.98
K-mer (1-6) + ORF 85.16 86.07
Only ORF 99.89 92.41

Z. mays K-mer (1-6) 73.81 78.31
K-mer (1-6) + ORF 88.21 86.40
Only ORF 99.98 90.73

Overall Average K-mer (1-6) 77.73 75.15
K-mer (1-6) + ORF 88.38 86.61
Only ORF 99.96 91.27

Source – Elaborated by the author.

86.61%) and especially when compared with ORF (SE: 99.96% and ACC: 91.27%). These
additional experiments again support the efficiency of the ORF features.

3.2.9 Evaluation against other classifier tools

Lastly, the several experiments performed in this work pointed to the great efficiency
of the ORF descriptor. Thus, in a final analysis, we compare the two best features (tx-
CdsPredict score and cdsSizes) against other five state-of-the-art programs: RNAplonc
(NEGRI et al., 2018) (specifically for plants - 16 features), CPC (KONG et al., 2007)
(Multi-Species - 6 features), CPC2 (KANG et al., 2017) (Multi-Species - 4 features), CNCI
(SUN et al., 2013) (Animals and Plants - 5 features), PLEK (LI; ZHANG; ZHOU, 2014)
(Multi-Species - 1, 364 features), as shown in Table 22.
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We randomly chose 5 species for evaluation. In which, our model (with two features)
reported the best performance of ACC in three species, B. distachyon = 92.59% (M2-
ACO), M. esculenta = 93.29% (M1-EA), and S. bicolor = 92.41% (M2-ACO). In contrast,
the RNAplonc tool obtained the best ACC in A. trichopoda (88.50%) and C. sinensis
(94.13%). However, with only a difference of 0.02% and 0.06% of our model, respectively.
Moreover, we use 14 features unless RNAplonc in this experiment. In relation to SE (to
predict lncRNAs), our models were the best in four species, with the exception of A.
trichopoda, in which three tools also achieved the best result (RNAplonc, CPC, PLEK).
However, in SPC (to predict mRNA), the best tool was CPC2 (A. trichopoda, C. sinensis,
M. esculenta) and CNCI (B. distachyon, S. bicolor). In the overall average, our model
had an ACC of 92.17% across all datasets, that is, 0.37%, 10.17%, 7.28%, 18.07%, and
17.46% more than RNAplonc (91.80%), CPC (82.00%), CPC2 (84.89%), CNCI (74.10%),
and PLEK (74.71%), respectively. Finally, these results indicate the great efficiency of the
ORF descriptor, especially the features txCdsPredict score and cdsSizes.
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4 EXPERIMENTAL TEST II: FEATURE EX-
TRACTION PROBLEM

Regarding feature extraction in lncRNAs (see Chapter 2), we observed a full domain
of ORF features and sequence structure. Despite a large number of new approaches, with
excellent results for the problem in question, there is the frequent use of biological features
(e.g., ORF, GC content, alignment, among others). As presented in the previous chapter,
the ORF descriptor, after several experiments, proved to be the most efficient attribute for
lncRNAs classification. Thus, this chapter is dedicated to analyzing mathematical models
for feature extraction in order to propose efficient and generalist techniques for biological
sequence analysis problems.

In our case study (lncRNAs), some works have explored mathematical models for
feature extraction, such as Genomic Signal Processing (GSP) and DNA Numerical Repre-
sentation (DNR) (PIAN et al., 2016; HAN et al., 2018) techniques and Complex Networks
(ITO et al., 2018). Nevertheless, the authors used these approaches in conjunction with
other features (e.g., ORF, GC content, alignment, among others) or without testing other
mathematical models. Therefore, at this stage, as a starting point, nine mathematical
models for feature extraction will be analyzed: six numerical mapping techniques with
Fourier transform; Tsallis and Shannon entropy; Graphs (complex networks). Fundamen-
tally, this chapter elaborates experiments to answer the hypotheses presented in Section
1.4 (H3-PB2, H4-PB2, and H5-PB2), divided into two parts: Experimental Methodology
and Results. Discussions will be presented in Section 5.

4.1 Experimental Methodology
We divided our approach into five stages, as shown in Figure 7: (1) Data selection

and preprocessing; (2) Feature extraction; (3) Training; (4) Test; (5) Performance analysis.

4.1.1 Data Selection

As previously mentioned, our central hypothesis is to demonstrate the efficiency of
mathematical models in biological sequence classification problems using the same pipeline
(see Figure 7). For this, we chose as a case study the lncRNAs classification problem, which
is much addressed in the literature. However, we will also use other datasets to evaluate
the generalization of mathematical models. Therefore, we divided this chapter into two
case studies.



Chapter 4. EXPERIMENTAL TEST II: FEATURE EXTRACTION PROBLEM 66
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Figure 7 – Proposed Pipeline for the Feature Extraction Problem. Essentially, (1) datasets
are preprocessed; (2) Feature extraction techniques are applied to each dataset;
(3) Machine learning algorithms are applied to the training set to induce
predictive models; (4) Induced models are applied to the test set; Finally, (5)
the models are evaluated.

Source – Elaborated by the author.

Case Study I

This experiment is our main approach. Thus, sequences of five plant species were
adopted in order to assess the proposed method. The summary of the dataset construction
can be seen in Table 23. Following the literature methods, this work also adopts two classes
for the datasets: positive class, with lncRNAs, and negative class, with protein-coding
genes (mRNAs).

Table 23 – Species used to create the training set.

Species Sequences Amount Preprocessing Selected
A. trichopoda lncRNA 5698 4556 4556

mRNA 26846 22326 4556
A. thaliana lncRNA 2540 2540 2540

mRNA 13973 13973 2540
C. sinensis lncRNA 2562 2215 2215

mRNA 46147 45846 2215
C. sativus lncRNA 1929 1730 1730

mRNA 30364 29829 1730
R. communis lncRNA 4198 3487 3487

mRNA 31221 29042 3487
Source – Elaborated by the author.

The mRNA data of the Arabidopsis thaliana (obtained from CPC2 (KANG et
al., 2017)) were built from the RefSeq database with protein sequences annotated by
Swiss-Prot (KANG et al., 2017), and lncRNA data from the Ensembl (v87) and Ensembl
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Plants (v32) database. The mRNA transcript data of the Amborella trichopoda, Citrus
sinensis, Cucumis sativus and Ricinus communis were extracted from Phytozome (version
13) (GOODSTEIN et al., 2011). The lncRNAs data from these species were extracted from
GreeNC (version 1.12) (GALLART et al., 2015). Basically, as preprocessing, we used only
sequences longer than 200nt (LI; ZHANG; ZHOU, 2014), and we also removed sequence
redundancy. Moreover, the sampling method was adopted in our dataset, since we are faced
with the imbalanced data problem. Thus, we applied random majority under-sampling,
which consists of removing samples from the majority class (to adjust the class distribution)
(LIU, 2004). Finally, we follow the same prepossessing of the Experimental Test I, but we
changed the sequences, in order to generate a different dataset.

Case Study II

In this second case study, we will apply the best mathematical models of the
case study I to different classification problems with lncRNAs in order to test their
generalization. Thus, we divided into four problems:

• Problem 1 (lncRNA vs. sncRNA): Dataset with only non-coding sequences (lncRNA
and Small non-coding RNAs (sncRNAs), also obtained from CPC2 (KANG et al.,
2017))

– lncRNA: 1291 sequences

– sncRNA: 1291 sequences

• Problem 2 (mRNA vs. sncRNA): Dataset with mRNA and sncRNA sequences
(sncRNA obtained from CPC2 (KANG et al., 2017)). This problem was proposed
based on Kang et al. (2017) and (ITO et al., 2018).

– mRNA: 1291 sequences

– sncRNA: 1291 sequences

• Problem 3 (Antisense vs. lncRNA): Dataset with lncRNAs and long noncoding
antisense transcripts (obtained from Chen et al. (2011)).

– lncRNA: 57 sequences

– Antisense: 57 sequences

• Problem 4 (circRNA vs. lncRNA): Dataset with lncRNA and circular RNAs
(cirRNAs) sequences (circRNA obtained from PlantcircBase (CHU et al., 2017). This
problem was proposed based on Pan and Xiong (2015) and Chen et al. (2018), in
order to classify circRNA from other lncRNAs.

– circRNA: 2540 sequences
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– lncRNA: 2540 sequences

It is important to emphasize that we used in this second case study only sequences
from Arabidopsis thaliana because it is the best-noted model species.

4.1.2 Feature Extraction

According to (STORCHEUS; ROSTAMIZADEH; KUMAR, 2015), the feature
extraction seeks to generate a feature vector by optimally transforming the input data.
This procedure is extremely relevant to the success of the machine learning application.
Another major goal of feature extraction is to extract important features from the input
data, as well as remove noise and redundancy (STORCHEUS; ROSTAMIZADEH; KUMAR,
2015; GUYON et al., 2008). Considering this, the feature extraction methods are shown,
in which nine mathematical models will be analyzed: six numerical mapping techniques
with Fourier transform (see Section 4.1.3), Tsallis and Shannon entropy (see Section 4.1.4),
Complex Networks (see Section 4.1.5). Nevertheless, it is necessary to emphasize that we
denote a biological sequence S = (S[0], S[1], . . . , S[N − 1]) such that S ∈ {A,C,G, T}N .

4.1.3 Fourier Transform and Numerical Mappings

To generate features based in a Fourier approach, we apply the Discrete Fourier
Transform (DFT), widely used for digital signal processing (here GSP), that can reveal
hidden periodicities after the transformation of time domain data to frequency domain
(YIN; CHEN; YAU, 2014). According to Yin and Yau (YIN; YAU, 2005), the DFT of
a signal with length N , x[n] (n = 0, 1, . . . , N − 1), at frequency k, can be defined by
Equation (4.1):

X[k] =
N−1∑
n=0

x[n] e−j 2π
N

kn, k = 0, 1, . . . , N − 1. (4.1)

This method is extensively studied in bioinformatics, mainly for analysis of peri-
odicities and repetitive elements in DNA sequences (ANASTASSIOU, 2001) and protein
structures (MARSELLA et al., 2009). This approach is shown in Figure 8 and was based
on Bonidia et al. (2019).

To calculate DFT, we use the Fast Fourier Transform (FFT), which is a highly
efficient procedure for computing the DFT of a time series (COCHRAN et al., 1967).
However, to use GSP techniques, it is necessary to apply a numeric representation for
the transformation or mapping of genomic data. In literature, distinct DNR techniques
have been developed (ABO-ZAHHAD; AHMED; ABD-ELRAHMAN, 2012). According
to Mendizabal-Ruiz et al. (MENDIZABAL-RUIZ et al., 2017), these representations
can be divided into three categories: single-value mapping, multidimensional sequence
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Figure 8 – Fourier Transform and Numerical Mapping Pipeline. (1) Each sequence is
mapped to a numerical sequence; (2) DFT is applied to the generated sequence;
(3) The spectrum power is calculated; (4) The feature extraction is performed;
Finally, (5) the features are generated.

Source – Elaborated by the author.

mapping, and cumulative sequence mapping. Therefore, we study 6 numerical mapping
techniques (or representations), which will be presented below: Voss (VOSS, 1992), Integer
(MENDIZABAL-RUIZ et al., 2017; CRISTEA, 2002), Real (CHAKRAVARTHY et al.,
2004), Z-curve (ZHANG; ZHANG, 1994), EIIP (NAIR; SREENADHAN, 2006) and
Complex Numbers (ABO-ZAHHAD; AHMED; ABD-ELRAHMAN, 2012; Anastassiou,
2001; YU; LI; YU, 2018).

Voss Representation

This representation can use single or multidimensional vectors. Fundamentally,
this approach transforms a sequence S ∈ {A, C, G, T}N into a matrix V ∈ {0, 1}4×N

such that V = [v1, v2, v3, v4]T , where T is the transpose operator and each vi array is
constructed according to the following relation:

vi[n] =
1, S[n] = α[i]

0, S[n] 6= α[i]
, where α = (A, C, G, T ), n = 0, 1, . . . , N − 1. (4.2)

As a result, each row of matrix V may be seen as an array that marks each base
position such that the first row denotes the presence of base A, row two for base C, row three
base G and the last row for base T . For example, let S = (G,A,G,A,G, T,G,A,C,C,A)
be a sequence that needs to be represented using Voss representation. Therefore, v1 =
(0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1), which represents the locations of bases A, v2 = (0, 0, 0, 0, 0, 0, 0,
0, 1, 1, 0) for bases C, v3 = (1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0) for the G bases, v4 = (0, 0, 0, 0, 0, 1, 0,
0, 0, 0, 0) for T bases. Then, using the DFT in the indicator sequences shown above, we
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obtain (see Equation 4.3):

Vi[k] =
N−1∑
n=0

vi[n]e−j 2π
N

kn, ∀ i ∈ [1, 4], k = 0, 1, . . . , N − 1. (4.3)

The power spectrum of a biological sequence can be obtained by Equation (4.4):

PV [k] =
4∑

i=1
|Vi[k]|2 , k = 0, 1, . . . , N − 1. (4.4)

Integer Representation

This representation is one-dimensional (CRISTEA, 2002; MENDIZABAL-RUIZ et
al., 2017). This mapping can be obtained by substituting the four nucleotides (T, C, A,
G) of a biological sequence for integers (0, 1, 2, 3), respectively, e.g., let S = (G, A, G, A,
G, T, G, A, C, C, A), thus, d = (3, 2, 3, 2, 3, 0, 3, 2, 1, 1, 2), as exposed in Equation
(4.5). The DFT and power spectrum are exposed in Equation (4.6).

d[n] =



3, S[n] = G

2, S[n] = A

1, S[n] = C

0, S[n] = T

, n = 0, 1, . . . , N − 1. (4.5)

D[k] =
N−1∑
n=0

d[n]e−j 2π
N

kn, PD[k] = |D[k]|2, k = 0, 1, . . . , N − 1. (4.6)

Real Representation

In this representation, Chakravarthy et al. (CHAKRAVARTHY et al., 2004) use real
mapping based on the complement property of the complex mapping of (ANASTASSIOU,
2001). This mapping applies negative decimal values for the purines (A,G), and positive
decimal values for the pyrimidines (C, T ), e.g., let S = (G,A,G,A,G, T,G,A,C,C,A),
thus, r = (-0.5, -1.5, -0.5, -1.5, -0.5, 1.5, -0.5, -1.5, 0.5, 0.5, -1.5), as Equation (4.7) and
Equation (4.8).

r[n] =



−0.5, S[n] = G

−1.5, S[n] = A

0.5, S[n] = C

1.5, S[n] = T

, n = 0, 1, . . . , N − 1. (4.7)

R[k] =
N−1∑
n=0

r[n]e−j 2π
N

kn, PR[k] = |R[k]|2, k = 0, 1, . . . , N − 1. (4.8)



Chapter 4. EXPERIMENTAL TEST II: FEATURE EXTRACTION PROBLEM 71

Z-curve Representation

The Z-curve scheme is a three-dimensional curve presented by (ZHANG; ZHANG,
1994), to encode DNA sequences with more biological semantics. Essentially, we can inspect
a given sequence S[n] of length N , taking into account the n-th element of the sequence
(n = 1, 2, . . . , N). Then, we denote the cumulative occurrence numbers An, Cn, Gn and Tn

for each base A, C, G and T , as the number of times that a base occurred from S[1] up
until S[n]. Fundamentally, this method reduces the number of indicator sequences from
four (Voss) to three (Z-curve) in a symmetrical way for all four components (SHAO; YAN;
SHAO, 2013). Therefore:

An + Cn +Gn + Tn = n (4.9)

Where the Z-curve consists of a series of nodes P1, P2, . . . , PN , whose coordinates
x[n], y[n], and z[n] (n = 1, 2, . . . , N) are uniquely determined by the Z-transform, shown
in Equation (4.10):

P [n] =


x[n] = (An +Gn)− (Cn + Tn) ≡ Rn − Yn

y[n] = (An + Cn)− (Gn + Tn) ≡Mn −Kn

z[n] = (An + Tn)− (Cn +Gn) ≡ Wn − Sn

,

x[n], y[n], z[n] ∈ [−n, n], n = 1, 2, . . . , N.

(4.10)

Where R, Y , M , K , W and S denote the bases of purine (R = A,G), pyrimidine
(Y = C, T ), amino (M = A,C), keto (K = G, T ), weak hydrogen bonds (W = A, T ) and
strong hydrogen bonds (S = G,C), respectively (SHAO; YAN; SHAO, 2013; ZHANG,
1997). The coordinates x[n], y[n], and z[n] represent three independent distributions
that completely describe a sequence (ABO-ZAHHAD; AHMED; ABD-ELRAHMAN,
2012). Therefore, we will have three distributions with definite biological significance: (1)
x[n] = purine/pyrimidine, (2) y[n] = amino/keto, (3) z[n] = strong hydrogen bonds/weak
hydrogen bonds (ZHANG; ZHANG, 1994), e.g., let S = (G, A, G, A, G, T, G, A,
C, C, A), thus, x = (1, 2, 3, 4, 5, 4, 5, 6, 5, 4, 5); y = (-1, 0, -1, 0, -1, -2, -3, -2, -1, 0,
1); z = (−1, 0,−1, 0,−1, 0,−1, 0,−1,−2,−1). Essentially, the difference between each
dimension at the n-th position and the previous (n− 1) position can be either 1 or −1
(ZHANG; ZHANG, 1994). Therefore, we may define the following set of equations in order
to update the values of each dimension array considering that x[−1] = y[−1] = z[−1] = 0:

x[n] =
x[n− 1] + 1, S[n] = A or G
x[n− 1]− 1, S[n] = C or T

. (4.11)
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y[n] =
y[n− 1] + 1, S[n] = A or C
y[n− 1]− 1, S[n] = G or T

, n = 1, 2, . . . , N. (4.12)

z[n] =
z[n− 1] + 1, S[n] = A or T
z[n− 1]− 1, S[n] = G or C

. (4.13)

Finally, the DFT and the power spectrum of the Z-Curve representation may be
defined as (ZHANG, 1997):

X[k] =
N∑

n=1
x[n]e−j 2π

N
kn, Y [k] =

N∑
n=1

y[n]e−j 2π
N

kn, Z[k] =
N∑

n=1
z[n]e−j 2π

N
kn. (4.14)

PC [k] = |X[k]|2 + |Y [k]|2 + |Z[k]|2, k = 1, 2, . . . , N. (4.15)

EIIP Representation

Nair and Sreenadhan (NAIR; SREENADHAN, 2006) proposed EIIP values of
nucleotides to represent biological sequences and to locate exons. According to the authors,
a numerical sequence representing the distribution of free electron energies can be called
"EIIP indicator sequence", e.g., let S = (G, A, G, A, G, T, G, A, C, C, A), thus, b =
(0.0806, 0.1260, 0.0806, 0.1260, 0.0806, 0.1335, 0.0806, 0.1260, 0.1340, 0.1340, 0.1260),
as shown in Equation (4.16). The DFT and power spectrum of this representation are
presented in Equation (4.17).

b[n] =



0.0806, S[n] = G

0.1260, S[n] = A

0.1340, S[n] = C

0.1335, S[n] = T

, n = 0, 1, . . . , N − 1. (4.16)

E[k] =
N−1∑
n=0

b[n]e−j 2π
N

kn, PE[k] = |E[k]|2, k = 0, 1, . . . , N − 1. (4.17)

Complex Number Representation

This numerical mapping has the advantage of better translating some of the
nucleotides features into mathematical properties (YU; LI; YU, 2018) and represents the
complementary nature of AT and CG pairs (ABO-ZAHHAD; AHMED; ABD-ELRAHMAN,
2012); e.g., let S = (G, A, G, A, G, T, G, A, C, C, A), thus, cr = (−1− j, 1 + j, −1− j,



Chapter 4. EXPERIMENTAL TEST II: FEATURE EXTRACTION PROBLEM 73

1 + j, −1− j, 1− j, −1− j, 1 + j, −1 + j, −1 + j, 1 + j), as shown in Equation (4.18).
The DFT and power spectrum of this representation are presented in Equation (4.19).

cr[n] =



−1− j, S[n] = G

1 + j, S[n] = A

−1 + j, S[n] = C

1− j, S[n] = T

, n = 0, 1, . . . , N − 1. (4.18)

CR[k] =
N−1∑
n=0

b[n]e−j 2π
N

kn, PCR[k] = |CR[k]|2, k = 0, 1, . . . , N − 1. (4.19)

Features

Finally, we apply the feature extraction in each representation with Fourier, adopting
Signal to Noise Ratio (SNR) (SHAO; YAN; SHAO, 2013), average power spectrum, median,
maximum, minimum, sample standard deviation, population standard deviation, percentile
(15/25/50/75), amplitude, variance, interquartile range, semi-interquartile range, coefficient
of variation, skewness and kurtosis. The SNR uses the statistical phenomenon known as
period-3 behavior or 3-base periodicity (YIN; YAU, 2007). Therefore, let Ē denote the
average, then (see Equation (4.20)):

Ē = 1
N

N−1∑
k=0

P [k], k = 0, 1, . . . , N − 1. (4.20)

SNR =
P (N

3 )
Ē

. (4.21)

Several studies have demonstrated (SHAO; YAN; SHAO, 2013; YIN; YAU, 2007)
that there is a peak in the frequency N/3 of the Fourier power spectrum in coding
sequences, in contrast, this 3-base periodicity does not exist in most non-coding sequences.

4.1.4 Entropy

Information theory has been widely applied in bioinformatics (VINGA, 2013;
BARROS-CARVALHO; SLUYS; LOPES, 2017; PRITIŠANAC et al., 2019). Based on
this, we consider the study of (MACHADO; COSTA; QUELHAS, 2011), which applied an
algorithmic and mathematical approach to DNA code analysis using entropy and phase
plane. Fundamentally, according to (VINGA, 2013), entropy is a measure of the uncertainty
associated with a probabilistic experiment. Thus, to generate a probabilistic experiment,
we use a known method in bioinformatics, the k-mer (our pipeline is shown in Figure 9).
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or

Biological 
Sequence

Absolute
Frequency

Features
Shannon Entropy

Tsallis Entropy

Extract k-mer Relative
Frequency

For each k

Figure 9 – Entropy Pipeline. (1) Each sequence is mapped in k-mers; (2) The absolute
frequency of each k is calculated; (3) Based on absolute frequency, the relative
frequency is calculated; (4) A Tsallis or Shannon entropy is applied to each k;
Finally, (5) features are generated.

Source – Elaborated by the author.

In this method, each sequence is mapped in the frequency of neighboring bases k,
generating statistical information. The k-mer is denoted in this work by Pk, corresponding
to Equation (4.22).

Pk(S) = ck
i

N − k + 1 =
 c1

1
N − 1 + 1 , . . . ,

c1
4

N − 1 + 1 ,

c2
4+1

N − 2 + 1 , . . . ,
ck

i

N − k + 1

 k = 1, 2, . . . , 24.
(4.22)

This equation is applied to each sequence with frequencies of k = 1, 2, . . . , 24.
Where, ck

i is the number of substring occurrences with length k in a sequence S with
length N , in which the index i ∈ {1, 2, . . . , 41 + . . .+ 4k} represents the analyzed substring.
For a better understanding, Figure 10 demonstrated an example with k = 6 and k = 9.

T G A C C A G A G A 
TGA-CCA

GAC-CAG

ACC-AGA

CCA-GAG

T G A C C A G A G A 
TGA-CCA-GAG

GAC-CAG-AGA

k = 6

k = 9

Figure 10 – k-mer Workflow. Example with k = 6 and k = 9.

Source – Elaborated by the author.
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Basically, histograms with short bins are adopted, such as [{A}, {C}, {G}, {T}],
that occur for k = 1, up to histograms with long sequence counting bins such as
[{GGGGGGGGGGGG}, . . . , {AAAAAAAAAAAA}], that result for k = 12. Where, after
counting the absolute frequencies of each k, we generate relative frequencies (see Equation
(3.1)), and then apply Shannon and Tsallis entropy to generate the features.

Shannon and Tsallis Entropy

For a discrete random variable F taking values in {f [0], f [1], f [2], . . . , f [N − 1]}
with probabilities {p[0], p[1], p[2], . . . , p[N − 1]}, represented as P (F = f [n]) = p[n]. The
Shannon (Equation 4.23) and Tsallis (Equation 4.24) entropy associated with this variable
is given by the following expressions:

ESh[k] = −
N−1∑
n=0

p[n] log2 p[n] k = 1, 2, . . . 24. (4.23)

ET s[k] = 1
q − 1

(
1−

N−1∑
n=0

p[n]q
)

k = 1, 2, . . . 24. (4.24)

Where k represents the analyzed k-mer, N the number of possible events and p[n]
the probability that n occurs.

4.1.5 Complex Networks

Complex networks are widely used in mathematical modeling and have been an
extremely active field in recent years (COSTA; RODRIGUES; CRISTINO, 2008), as well
as becoming an ideal research area for mathematicians, computer scientists, and biologists.
Based on this, we consider the study of Ito et al. (2018), in which, we propose a feature
extraction model based on complex networks, as shown in Figure 11. Here, we represent
our structure of complex networks by undirected weighted graphs. According to Costa,
Rodrigues and Cristino (2008), a graph G = {V,E} is structured by a set V of vertices
(or nodes) connected by a set E of edges (or links).

Each edge reflects a link between two vertices, e.g., ep = (i, j) connection between
the vertices i and j. The elements aij are equal to 1 whenever there is an edge connecting
the vertices i and j, and equal to 0 otherwise. In our case, the graph is undirected, that is,
the adjacency matrix A is symmetric, i.e., elements aij = aji for any i and j. Finally, like
features, several network characterization measures were obtained, based on Wang (2002),
among them: betweenness, assortativity, average degree, average path length, minimum
degree, maximum degree, degree standard deviation, frequency of motifs (size 3 and 4),
clustering coefficient.
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Biological Sequence

GAGAGTGACCA G A G A G T G A C C A

Extracting k = 3

Adjacency Matrix
0 2 1 0 0 0 0 0
2 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0
0 0 1 0 1 0 0 0
0 0 0 1 0 1 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 0

A =

GAG
AGA
GAG
AGT
GTG
TGA
GAC
ACC
CCA

Feature Extraction

Betweenness
Assortativity

Average Degree
Average Path Length

Minimum degree
Maximum degree

 Frequency of Motifs
Clustering Coefficient

Features

Figure 11 – Complex Networks Pipeline. (1) Each sequence is mapped in the frequency of
neighboring bases k (k = 3); (2) This mapping is converted to a undirected
graph represented by an adjacency matrix; (3) The feature extraction is
performed; Finally, (4) the features are generated.

Source – Elaborated by the author.

4.1.6 Normalization, Training and Evaluation Metrics

Data normalization is a preprocessing technique frequently applied to a dataset.
Essentially, features can have different dynamic ranges. Thus, features with a larger
range which can have a stronger effect in the induction of a predictive model, mainly
for distance-based ML algorithms. The application of a normalization procedure makes
the ranges similar, reducing this problem (SINGH; VERMA; THOKE, 2015). We used
in this work the min-max method, which reduces the data range to 0 and 1 (or -1 to 1,
if there are negative values - see Equation (3.4)). Next, we investigate four classification
algorithms, like Random Forest (RF) (BREIMAN, 2001), AdaBoost (HASTIE et al., 2009)
and CatBoost (DOROGUSH; ERSHOV; GULIN, 2018). To induce our models, we used
70% of samples for training (with 10-fold cross-validation) and 30% for testing, as exposed
in Table 24. The methods were evaluated with four measures: Sensitivity (SE - Equation
2.5), Specificity (SPC - Equation 2.6), Accuracy (ACC - Equation 2.7), and Cohen’s kappa
coefficient (COHEN, 1960) (Equation 4.25).

Kappa = po − pe

1− pe

(4.25)

These measures use True Positive (TP), True Negative (TN), False Positive (FP)
and False Negative (FN) values, where: TP measures the correctly predicted lncRNAs;
TN represents the correctly classified mRNAs; FP describes all those negative entities
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Table 24 – Number of sequences used for training and testing in each dataset.

Case Study Dataset Amount Training Testing
A. trichopoda 9112 6378 2734
A. thaliana 5080 3556 1524

I C. sinensis 4430 3101 1329
C. sativus 3460 2422 1038
R. communis 6974 4881 2093
lncRNA vs. sncRNA 2582 1807 775

II mRNA vs. sncRNA 2582 1807 775
Antisense vs. lncRNA 114 79 35
circRNA vs. lncRNA 5080 3556 1524

Source – Elaborated by the author.

that are incorrectly classified as lncRNAs and; FN represents the true lncRNAs that are
incorrectly classified as mRNAs.

4.2 Results
This section shows experimental results from 9 mathematical models for biological

sequence feature extraction, divided into two parts: Case Study I and Case Study II.

4.2.1 Case Study I

Initially, we induced our models with the RF, AdaBoost, and CatBoost classifiers
in the training set of three datasets (A. trichopoda, A. thaliana, and R. communis). Our
initial goal is to choose the best classifier to follow in the testing phases. Then, to estimate
the real accuracy of this set, we used 10-fold cross-validation, as exposed in Table 25.

Table 25 – Real accuracy estimates for the training set (A. trichopoda, A. thaliana, and R.
communis) using 10-fold cross-validation.

Dataset Model RF AdaBoost CatBoost
Z-curve 0.90 (± 0.03) 0.91 (± 0.02) 0.92 (± 0.02)
Binary 0.92 (± 0.02) 0.94 (± 0.02) 0.94 (± 0.02)
Real 0.91 (± 0.02) 0.93 (± 0.02) 0.94 (± 0.02)
Integer 0.91 (± 0.02) 0.93 (± 0.02) 0.94 (± 0.02)

A. trichopoda EIIP 0.92 (± 0.02) 0.94 (± 0.02) 0.94 (± 0.02)
Complex 0.92 (± 0.03) 0.94 (± 0.02) 0.94 (± 0.02)
Graphs 0.92 (± 0.02) 0.94 (± 0.02) 0.94 (± 0.02)
Shannon 0.92 (± 0.02) 0.94 (± 0.02) 0.94 (± 0.02)
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Tsallis 0.92 (± 0.02) 0.94 (± 0.02) 0.94 (± 0.02)
Z-curve 0.95 (± 0.02) 0.93 (± 0.03) 0.94 (± 0.02)
Binary 0.94 (± 0.02) 0.94 (± 0.02) 0.94 (± 0.02)
Real 0.95 (± 0.02) 0.94 (± 0.02) 0.95 (± 0.02)
Integer 0.94 (± 0.02) 0.94 (± 0.02) 0.94 (± 0.02)

A. thaliana EIIP 0.95 (± 0.02) 0.94 (± 0.02) 0.95 (± 0.03)
Complex 0.94 (± 0.02) 0.94 (± 0.02) 0.94 (± 0.01)
Graphs 0.94 (± 0.02) 0.94 (± 0.02) 0.95 (± 0.02)
Shannon 0.94 (± 0.02) 0.94 (± 0.02) 0.95 (± 0.02)
Tsallis 0.94 (± 0.02) 0.94 (± 0.02) 0.94 (± 0.02)
Z-curve 0.93 (± 0.02) 0.92 (± 0.02) 0.93 (± 0.02)
Binary 0.95 (± 0.01) 0.95 (± 0.02) 0.95 (± 0.02)
Real 0.95 (± 0.02) 0.94 (± 0.02) 0.94 (± 0.02)
Integer 0.94 (± 0.01) 0.94 (± 0.01) 0.94 (± 0.02)

R. communis EIIP 0.95 (± 0.02) 0.95 (± 0.02) 0.95 (± 0.01)
Complex 0.95 (± 0.02) 0.95 (± 0.01) 0.95 (± 0.01)
Graphs 0.95 (± 0.01) 0.95 (± 0.01) 0.95 (± 0.02)
Shannon 0.95 (± 0.02) 0.95 (± 0.02) 0.95 (± 0.01)
Tsallis 0.95 (± 0.01) 0.95 (± 0.01) 0.95 (± 0.01)

Evaluating each classifier individually, we observed that the best performance was
of the CatBoost for all mathematical models in A. trichopoda, followed by AdaBoost (6 best
results) and RF (no better results). In A. thaliana, CatBoost kept the best performance
(7 best results), followed by RF (6 best results) and AdaBoost (3 best results). In contrast,
the RF classifier obtained the best results (6) in R. communis, followed by CatBoost (5
best results) and AdaBoost (3 best results). Based on this, we continue testing the models
with CatBoost classifier. Thus, in Table 26, we present results of all mathematical models
using 4 evaluation metrics.

Table 26 – Performance analysis. This table compares the sensitivity, specificity, accuracy
and kappa metrics for each model in the test sets using CatBoost classifier.

Dataset Model SE SPC ACC Kappa
Z-curve 0.9744 0.8566 0.9155 0.8310
Binary 0.9795 0.9005 0.9400 0.8800
Real 0.9802 0.8837 0.9320 0.8639
Integer 0.9773 0.8822 0.9298 0.8595

A. trichopoda EIIP 0.9781 0.8990 0.9386 0.8771
Complex 0.9802 0.9012 0.9407 0.8815
Graphs 0.9737 0.9020 0.9378 0.8756
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Shannon 0.9781 0.9020 0.9400 0.8800
Tsallis 0.9795 0.9005 0.9400 0.8800
Z-curve 0.9777 0.9383 0.9580 0.9160
Binary 0.9619 0.9449 0.9534 0.9068
Real 0.9803 0.9409 0.9606 0.9213
Integer 0.9698 0.9436 0.9567 0.9134

A. thaliana EIIP 0.9646 0.9449 0.9547 0.9094
Complex 0.9724 0.9409 0.9567 0.9134
Graphs 0.9685 0.9423 0.9554 0.9108
Shannon 0.9738 0.9462 0.9600 0.9200
Tsallis 0.9764 0.9409 0.9587 0.9173
Z-curve 0.9021 0.8707 0.8864 0.7728
Binary 0.8901 0.8707 0.8804 0.7607
Real 0.9142 0.8571 0.8856 0.7713
Integer 0.8825 0.8692 0.8758 0.7517

C. sinensis EIIP 0.8840 0.8526 0.8683 0.7367
Complex 0.9081 0.8496 0.8789 0.7577
Graphs 0.9006 0.8632 0.8819 0.7637
Shannon 0.9172 0.8586 0.8879 0.7758
Tsallis 0.9262 0.8541 0.8901 0.7803
Z-curve 0.8979 0.8478 0.8728 0.7457
Binary 0.9056 0.8459 0.8757 0.7514
Real 0.9268 0.8439 0.8854 0.7707
Integer 0.9056 0.8536 0.8796 0.7592

C. sativus EIIP 0.8979 0.8459 0.8719 0.7437
Complex 0.9326 0.8343 0.8834 0.7669
Graphs 0.9075 0.8536 0.8805 0.7611
Shannon 0.9326 0.8382 0.8854 0.7707
Tsallis 0.9403 0.8401 0.8902 0.7803
Z-curve 0.9446 0.9140 0.9293 0.8586
Binary 0.9417 0.9589 0.9503 0.9006
Real 0.9589 0.9408 0.9498 0.8997
Integer 0.9465 0.9456 0.9460 0.8920

R. communis EIIP 0.9455 0.9551 0.9503 0.9006
Complex 0.9398 0.9561 0.9479 0.8958
Graphs 0.9455 0.9542 0.9498 0.8997
Shannon 0.9388 0.9589 0.9489 0.8978
Tsallis 0.9417 0.9608 0.9513 0.9025
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As we can see, all models presented excellent results, with the worst performance
(ACC) of 0.8901 (C. sinensis) and the best of 0.9606 (A. thaliana). That is, all models
were robust in different datasets without a high loss of performance. Assessing each metric
individually, we realized that in SE, the best performance was from Real representation (3
datasets), followed by Tsallis (2 datasets) and Complex numbers (1 dataset). In SPC, the
best results were from Entropy (3 datasets), followed by Graphs (2 datasets). In ACC,
Tsallis presented the best performance (3 datasets), followed by Real representation and
Complex numbers (1 dataset). For each dataset, we can see in A. trichopoda the best ACC
was 0.9407 (Complex); A. thaliana with 0.9606 (Real); C. sinensis with 0.8901 (Tsallis);
C. sativus with 0.8902 (Tsallis); and R. communis with 0.9513 (Tsallis).

4.2.2 Case Study II

After evaluating all methods in 5 different datasets (lncRNA from different species)
and observing their robust results, we applied a second case study, where we used only
three mathematical models for generalization analysis, including GSP (Fourier + complex
numbers), entropy (Tsallis) and graphs (complex networks). Here, our objective was to
analyze how each model behaved in different biological sequence classification problems.
For this, we tested four new problems established in Section 4.1.1, as exposed in Table 27.

Table 27 – Performance analysis of three mathematical models, GSP (Fourier + com-
plex numbers), entropy (Tsallis) and graphs (complex networks), for different
problems.

lncRNA vs. sncRNA mRNA vs. sncRNA
Models SE SPC ACC Models SE SPC ACC
GSP 1.0000 1.0000 1.0000 GSP 1.0000 1.0000 1.0000
Entropy 0.9974 0.9974 0.9974 Entropy 1.0000 1.0000 1.0000
Graphs 1.0000 1.0000 1.0000 Graphs 1.0000 1.0000 1.0000

Antisense vs. lncRNA circRNA vs. lncRNA
Models SE SPC ACC Models SE SPC ACC
GSP 0.9412 0.8889 0.9143 GSP 0.7139 0.8727 0.7933
Entropy 1.0000 1.0000 1.0000 Entropy 0.7467 0.8701 0.8084
Graphs 0.9412 1.0000 0.9714 Graphs 0.7822 0.8793 0.8307

Again, all showed excellent results. In which, graph-based models are best in three
of the four problems analyzed, followed by entropy and GSP. Our methods achieved
maximum accuracy in three problems. Furthermore, in the last problem (circRNA vs.
lncRNA), our approaches were excellent when compared to other works that reached ACC
of 0.7780 (PAN; XIONG, 2015) and 0.7890 (CHEN et al., 2018) in their datasets against
0.8307 of our best model (graphs). However, these works use different datasets, only using
these comparisons as an (indirect) reference indicator.
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4.2.3 Statistical Significance Tests

We assessed the statistical significance in the two case studies (difference in accu-
racy), using Friedman’s statistical test and the Conover post-hoc test. Thereby, our null
hypothesis (H0 = A(1) = A(2) = . . . = A(k)), is tested against the alternative hypothesis
(HA), at least one algorithm has statistical significance (α = 0.05, p < α). First, we
apply the global test in the case study I, in which the Friedman test indicates significance
(χ2(8) = 17.34, p-value = 0.0268), that is, we can reject H0, since that p < 0.05. Thus, if
there are significant differences, we conclude that a post-hoc statistical analysis is necessary.
Conover statistics values were obtained, as well as p-values (see Table 28), using 95% of
significance (α = 0.05).

Table 28 – Conover statistics values - The accepted alternative hypothesis is in bold
(p-values for α = 0.05).

Z-curve Binary Real Integer EIIP Complex Graphs Shannon
Binary 0.5580 - - - - - - -
Real 0.1416 0.3671 - - - - - -
Integer 0.7896 0.3956 0.0852 - - - - -
EIIP 0.9574 0.5230 0.1284 0.8309 - - - -
Complex 0.3671 0.7489 0.5580 0.2451 0.3399 - - -
Graphs 0.5580 1.0000 0.3671 0.3956 0.5230 0.7489 - -
Shannon 0.0687 0.2057 0.7089 0.0390 0.0616 0.3399 0.2057 -
Tsallis 0.0146 0.0550 0.2898 0.0075 0.0128 0.1050 0.0550 0.4892

According to the Conover post-hoc test, entropy-based models have highly signif-
icant differences to Z-curve (p < 0.0146), Integer (p < 0.0075 - Tsallis and p < 0.0390 -
Shannon), and EIIP (p < 0.0128). Possibly, these results indicate that entropy has a more
significant performance when compared to representations with Fourier. However, the other
mathematical models in the case study I do not differ significantly, indicating the efficiency
of all models in different datasets. Now, evaluating case study II, we realized that the
global test with Friedman’s statistical test is not significant, in which we get χ2(2) = 1.64,
p-value = 0.4412, indicating that the three feature extraction techniques show similar
performance in the problems, again, confirming the effectiveness and robustness of all
mathematical models.



82

5 DISCUSSION

This chapter discusses our findings in terms of whether they support our hypotheses.
Overall, two experimental tests were assumed in this research, and our findings fully support
four hypotheses out of five raised, one being partially accepted. Thus, H1-PB1 and H2-PB1
are discussed in Section 5.1 and H3-PB2, H4-PB2, H5-PB2 in Section 5.2.

5.1 Experimental Test I

H1-PB1: Can metaheuristics select a subset of predictive features able to
improve the predictive performance of a classification model ...?

Our findings fully support this hypothesis. To prove it, we compared the best and
worst model in the performance test (see Table 16), respectively, M1-GA and M5-PSO,
against a model without feature selection, as shown in Table 29. In the overall average,
our approach represented a gain of 4.68% (M1-GA) and 4.62% (M2-PSO) in the ACC.
However, in some species, we reached an increase in the ACC of 6.40% (S. bicolor), 5.92%
(B. distachyon), and 4.85% (C. sinensis). Fundamentally, these results expose the high
efficiency of metaheuristics for feature selection in lncRNAs.

Table 29 – Our approach against all features.

Species Method - ID ACC Species Method - ID ACC
All Features (5,467) 84.51 All Features (5,467) 86.68

A. trichopoda M1-GA (10) 88.50 B. distachyon M1-GA (10) 92.60
M5-PSO (7) 88.49 M5-PSO (7) 92.47
All Features (5,467) 89.22 All Features (5,467) 88.96

C. sinensis M1-GA (10) 94.07 M. esculenta M1-GA (10) 93.29
M5-PSO (7) 94.04 M5-PSO (7) 93.27
All Features (5,467) 87.11 All Features (5,467) 83.90

R. communis M1-GA (10) 90.74 S. tuberosum M1-GA (10) 87.94
M5-PSO (7) 90.70 M5-PSO (7) 87.88
All Features (5,467) 86.07 All Features (5,467) 86.40

S. bicolor M1-GA (10) 92.47 Z. mays M1-GA (10) 90.73
M5-PSO (7) 92.34 M5-PSO (7) 90.65
All Features (5,467) 86.61

Overall Average M1-GA (10) 91.29
M5-PSO (7) 91.23

In Table 30, we also compared two random metaheuristics (M1-EA and M2-ACO)
against a model without feature selection using more evaluation metrics (SE, SPC, and
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Table 30 – Comparative performance between M1-EA, M2-ACO and all features for three
plant species.

Species Technique - ID Features SE SPC ACC
R. communis M1-EA 5 99.95 81.47 90.71

M2-ACO 6 99.95 81.52 90.74
All features 5,467 91.05 83.16 87.11

S. tuberosum M1-EA 5 99.95 75.89 87.92
M2-ACO 6 99.96 75.91 87.93
All features 5,467 88.41 79.40 83.90

Z. mays M1-EA 5 99.91 81.49 90.70
M2-ACO 6 99.92 81.50 90.71
All features 5,467 88.21 84.58 86.40

ACC). In the overall average, this comparison represented a gain of 3.99% (M2-ACO) in
the ACC and 10.72% (M2-ACO) in the SE (to detect lncRNAs).

H2-PB1: Are metaheuristic models more efficient than non-heuristic models for
biological sequence classification?

To answer this hypothesis, we compare two best features (txCdsPredict score and
cdsSizes) against other five non-heuristic state-of-the-art programs: RNAplonc (NEGRI et
al., 2018) (specifically for plants - 16 features, statistics feature selection), CPC (KONG
et al., 2007) (Multi-Species - 6 features), CPC2 (KANG et al., 2017) (Multi-Species - 4
features), CNCI (SUN et al., 2013) (Animals and Plants - 5 features), PLEK (LI; ZHANG;
ZHOU, 2014) (Multi-Species - 1, 364 features), as shown in Table 22. In which, our model
(with two features) reported the best performance of ACC in three species of the five
analyzed. Thus, we assessed the statistical significance of the difference in accuracy, using
Friedman’s statistical test and the post-hoc test of Nemenyi, Conover, and Siegel-Castellan.
According to Pohlert (2014), Friedman test is the non-parametric alternative for this type
of approach with equal sample sizes.

Fundamentally, this test ranks the algorithms separately for each dataset, in which
the best performance gets the rank of 1, the second best rank 2 . . . (DEMŠAR, 2006).
Thus, our null hypothesis (H0 = A(1) = A(2) = . . . = A(k)), is tested against the
alternative hypothesis (HA), at least one metaheuristic has statistical significance (α
= 0.05, p < α). Firstly, we apply the global test, in which the Friedman test indicates
significance (χ2(6) = 27.25, p-value = 1.301 × 10−4), that is, we can reject H0, since
that p < 0.01. Thus, if there are significant differences, we conclude that a post-hoc
statistical analysis is necessary. Nemenyi, Conover and Siegel-Castellan statistic values
were obtained, as well as p-values (see Table 31 - our models vs. tools), using 95% of
significance (α = 0.05).
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Table 31 – Nemenyi, Conover and Siegel-Castellan statistics values - The accepted null
hypothesis are in bold (p-values for α = 0.05).

Tools Nemenyi Conover Siegel-Castellan
Our approach vs. RNAplonc 0.9999 0.1890 0.7697
Our approach vs. CPC 0.3391 7.2× 10−10 0.0338
Our approach vs. CPC2 0.6272 5.2× 10−8 0.0923
Our approach vs. CNCI 0.0104 3.1× 10−14 0.0006
Our approach vs. PLEK 0.0172 8.0× 10−14 0.0010

According to the Nemenyi post-hoc test, our approach has highly significant
differences (p < 0.02) to CNCI and PLEK, but do not differ significantly (p > 0.05)
to CPC and CPC2. Nevertheless, in the overall average, our model had an ACC of
92.17% across all datasets, hat is, 0.37%, 10.17%, 7.28%, 18.07%, and 17.46% more
than RNAplonc (91.80%), CPC (82.00%), CPC2 (84.89%), CNCI (74.10%), and PLEK
(74.71%), respectively. On the other hand, in the Conover post-hoc test, our models showed
significant differences (p < 0.01) to CPC, CPC2, CNCI, PLEK. The Siegel-Castellan test
also obtained statistical significance, p < 0.01, p < 0.01, and p < 0.04, for CNCI, PLEK
and CPC, respectively. As expected, our metaheuristic approach and RNAplonc tool, do
not differ significantly in all tests. Nevertheless, we only use 2 features, that is, a difference
of 14 attributes unless RNAplonc. Therefore, our results also fully support this hypothesis,
since our approach provides competitive classification performance with non-heuristic
literature programs using the smallest number of features.

5.2 Experimental Test II

H3-PB2: Are mathematical models efficient for feature extraction from biological
sequences?

Our findings fully support this hypothesis, since all mathematical models showed
excellent results in the two case studies, as can be seen in Table 26 and Table 27. That is,
all models were robust in different datasets/problems without loss of performance.

H4-PB2: Do mathematical models present competitive classification perfor-
mance in distinct biological sequence analysis problems?

Our findings also fully support this hypothesis. Because, after evaluating all models
in five different datasets and observing their great results, we applied a second case study,
where we used only three mathematical models for generalization analysis, including GSP
(Fourier + complex numbers), entropy (Tsallis) and graphs (complex networks). Again, all
showed excellent results. In which, graph-based models were the best in three of the four
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problems analyzed, followed by entropy and GSP. In the first three datasets, our methods
achieved maximum accuracy. Furthermore, if we look at the last problem (circRNA vs.
lncRNA), our approaches were excellent when compared to our references that reached an
ACC of 0.7780 (PAN; XIONG, 2015) and 0.7890 (CHEN et al., 2018) in their datasets
against 0.8307 of our best model (graph). Thus, we can say that all models maintained
excellent performance in different sequence classification problems.

H5-PB2: Are mathematical models more generalist than biological models in
biological sequences classification?

To answer this hypothesis, we compared the performance of the three mathematical
models shown in Table 27 in relation to a model with biological bias characteristics, in
four datasets ((lncRNA vs. mRNA (case study I)); (lncRNA vs. sncRNA; Antisense vs.
lncRNA; circRNA vs. lncRNA (case study II)). For fair analysis, we only use datasets of A.
thaliana. Thus, we generate our biological model using features provided by CPC2 (KANG
et al., 2017), for being a widely used tool in the literature. However, we eliminated the
sequence length descriptor provided by CPC2 and also any attribute that would generate
this information in our approach, since that any explicit bias to this feature may facilitate
the prediction. The features used in the biological model were Fickett TESTCODE score
(see Equation 2.4), isoelectric point, open reading frame (ORF) length, ORF integrity.
Therefore, we applied new experiments according to the same methodology (70% training
and 30% test) and using CatBoost classifier, as shown in Table 32.

Table 32 – Performance analysis of three mathematical models against a biological bias
model for different sequence classification problems.

lncRNA vs. mRNA lncRNA vs. sncRNA
Models SE SPC ACC Models SE SPC ACC
GSP 0.9724 0.9409 0.9567 GSP 1.0000 1.0000 1.0000
Entropy 0.9764 0.9409 0.9587 Entropy 0.9974 0.9974 0.9974
Graphs 0.9685 0.9423 0.9554 Graphs 1.0000 1.0000 1.0000
Biological Model 0.9869 0.9764 0.9816 Biological Model 0.7855 0.8273 0.8065

Antisense vs. lncRNA circRNA vs. lncRNA
Models SE SPC ACC Models SE SPC ACC
GSP 0.9412 0.8889 0.9143 GSP 0.7139 0.8727 0.7933
Entropy 1.0000 1.0000 1.0000 Entropy 0.7467 0.8701 0.8084
Graphs 0.9412 1.0000 0.9714 Graphs 0.7822 0.8793 0.8307
Biological Model 0.9412 0.8889 0.9143 Biological Model 0.6024 0.7612 0.6818

As can be seen, the biological model (0.9816) reported the best performance in
the first dataset (lncRNA vs. mRNA), followed by our mathematical model (Entropy -
0.9587), with only a difference of 0.0229. Nevertheless, it is important to emphasize that
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this biological model uses the ORF descriptor, a highly employed feature for discovering
coding sequences and which, according to Baek et al. (BAEK et al., 2018) is an essential
guideline for distinguishing lncRNAs from mRNA. In other words, this explains the great
result, but, as mentioned at the beginning of this dissertation, this type of feature with a
biological bias is often difficult to reuse or adapt to another specific problem. Thereby, our
approach has an advantage in terms of generalization, since this would not be possible
only with the ORF. This hypothesis is proven in the other three datasets, where our
mathematical models perform much better than the biological model, mainly in the fourth
dataset (circRNA vs. lncRNA), in which we obtained a gain of 0.1489 in ACC. Therefore,
our pipeline is robust in terms of generalization to distinguish lncRNA from mRNA, as well
as other biological sequence classification problems. We also assessed the static significance
of the mathematical versus biological model in the previously applied tests, in which
entropy (p < 0.0480) and graphs (p < 0.0200) indicated significant results in relation to
the biological model. Despite the great results, to fully support this hypothesis, we still
need to develop more experiments with biological bias characteristics. Thus, we partially
accept this hypothesis.
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6 CONCLUSION

This dissertation proposed to analyze features selection and extraction methods for
biological sequence classification, addressing two key phases of building a predictive model
(feature extraction and selection). Specifically, we concentrated our work on the study
of dimensionality reduction and feature extraction techniques, using metaheuristics and
mathematical models. As a case study, we use lncRNA sequences, which are fundamentally
unable to produce proteins, and, recently, have been remitting several doubts about its
functionality. Moreover, we divided this work into two parts: Experimental Test I and
Experimental Test II.

In Experimental Test I, we select the most used feature for lncRNAs classification
(ORF, sequence length, GC content, and k-mer), in order to apply metaheuristic models
for feature selection. Thus, we build a training set of transcript data from five plant species
(Arabidopsis thaliana, Cucumis sativus, Glycine max, Populus trichocarpa, and Oryza
sativa), divided into lncRNA samples and protein-coding genes (mRNA). Further, we
assemble a feature vector using GC content, k-mer (1-6), sequence length, Open Reading
Frame (score, cdsStarts, cdsStop, cdsSizes, and cdsPercent - generated by txCdsPredict).
The features predictive capacity was evaluated with REPTree classifier in eight datasets
of different plant species (Amborella, Brachypodium, Citrus, Manihot, Ricinus, Solanum,
Sorghum, and Zea). Each metaheuristic algorithm underwent five execution rounds to
return an optimal features subset.

From the obtained results in our experiments, two algorithms selected the least
amount of features, M2-EA and M3-ABC returned a great set with 5 attributes, followed
by M4-ACO (6 features), M5-PSO (7 features), and M1-GA (10 features). Regarding the
performance tests, M1-GA reported the best result of SE (100%) and ACC (91.29%),
followed by M3-ABC (SE: 99.95% and ACC: 91.27%), and M4-ACO (SE: 99.94% and
ACC: 91.27%). Regarding specificity, the best methods were M2-EA and M4-ACO with
82.61%, respectively. Furthermore, in the overall average, our approach reached a gain of
4.68% (M1-GA) and 4.62% (M5-PSO) in the ACC when compared to a model without
feature selection (all features). We also observed a high dependency of ORF-derived
features (e.g., txCdsPredict score, cdsStop, cdsSizes, and cdsPercent) on methods that
classify coding/lncRNAs. Based on this, we compare the two best features (txCdsPredict
score and cdsSizes) against other five state-of-the-art programs: RNAplonc, CPC, CPC2,
CNCI, and PLEK. In which, our model showed an average ACC of 92.17% (only with two
features) across all datasets, that is, 0.37%, 10.17%, 7.28%, 18.07%, and 17.46% more
than RNAplonc (91.80%), CPC (82.00%), CPC2 (84.89%), CNCI (74.10%), and PLEK
(74.71%), respectively.
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In Experimental Test II, we analyze mathematical models for feature extraction
in order to propose efficient and generalist techniques for biological sequence analysis
problems. Therefore, at this stage, as a starting point, nine mathematical models for feature
extraction were analyzed: six numerical mapping techniques with Fourier transform; Tsallis
and Shannon entropy; Graphs (complex networks). Thereby, several lncRNA classification
problems were adopted in order to validate the proposed approach. As a result, all models
presented excellent results, with the worst performance (ACC) of 89.01% and the best
of 96.06% in the first case study. In the second case study, again, all showed excellent
results. In which, graph-based models indicated the best performance in three of the four
problems analyzed, followed by entropy and GSP. Furthermore, to assess our study, we
compared the performance of three mathematical models against a biological bias model,
in four different datasets. In which, our models achieved suitable results, being superior or
competitive and robust in terms of generalization.

Based on this, our findings fully support four hypotheses out of five raised, one
being partially accepted. Therefore, this dissertation contributes to the area of computer
science and bioinformatics. Specifically, it introduces new ideas and analysis for the feature
selection and extraction problem in biological sequences, using lncRNAs as a case study.
Thus, we present:

• Contributions to the feature selection problem in biological sequences:

1. A new pipeline with metaheuristics, using a voting scheme and execution rounds;

2. Application of five metaheuristics to the feature selection problem in biological
sequences;

3. An in-depth analysis of 5,467 features in lncRNAs;

4. The metaheuristic efficiency in selecting relevant features, providing competitive
classification performance;

5. A lncRNA classification tool using the best features selected by the pipeline 1.

• Contributions to the feature extraction problem in biological sequences:

1. A feature extraction pipeline in biological sequences using mathematical models;

2. Analysis of nine different mathematical models;

3. Analysis of six numerical mappings with Fourier, proposing statistical charac-
teristics;

4. The generalization and robustness of mathematical models for the feature
extraction in biological sequence.

1 https://github.com/Bonidia/FeatureSelection_lncRNAs
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Finally, the general contribution of this dissertation is a generic pipeline for biological
sequence classification, which addresses two main phases of generating predictive models,
feature extraction and selection, using metaheuristics and mathematical models.

6.1 Publications
Some works have been published during the development of the research for this

dissertation. Hence, part of the results can be found in these publications:

• Parmezan Bonidia, R.; Negri, T.; Alves, W.; Domingues, D. S.; Kashiwabara, A.;
Rossi Paschoal, A.; and Sipoli Sanches, D. Feature Selection of Long Non-
Coding RNAs in Plants: A Heuristic Approach with Particle Swarm Op-
timization. In: X-meeting, 2018, São Pedro -SP. Proceedings X-meeting 2018, 2018.
Abstract.

• Bonidia, R. P., Sampaio, L. D. H., Lopes, F. M., and Sanches, D. S. (2019a).
Feature Extraction of Long Non-Coding RNAs: A Fourier and Numerical
Mapping Approach. In Nyström, I., Hernández Heredia, Y., and Milián Núñez,
V., editors, Progress in Pattern Recognition, Image Analysis, Computer Vision, and
Applications, pages 469–479, Cham. Springer International Publishing. Conference,
B1.

• Parmezan Bonidia, R., Ponce de Leon Ferreira de Carvalho, A. C., Rossi Paschoal,
A., and Sipoli Sanches, D. (2019). Selecting the most relevant features for
the identification of long non-coding RNAs in plants. In 2019 8th Brazilian
Conference on Intelligent Systems (BRACIS), pages 539–544. Conference, B2.

• Parmezan Bonidia, R.; Negri, T.; Alves, W.; Domingues, D. S.; Kashiwabara, A.;
Ponce de Leon Ferreira de Carvalho, A. C.; Rossi Paschoal, A.; and Sipoli Sanches,
D. (2019). Feature Selection of Biological Sequences: A Case Study with
Metaheuristic Models in Long Non-Coding RNAs. Expert Systems. In writ-
ing, journal.

• Bonidia, R. P.; Sampaio, L. D. H.; Lopes, F. M.; Ponce de Leon Ferreira de Car-
valho, A. C.; and Sanches, D. S. (2019a). Mathematical or Biological Feature
Extraction Models: Which one is More Generalist in RNA Sequences
Classification? Applied Soft Computing. In writing, journal, A1.
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6.2 Future Works
As future work, we will continue to investigate the hypotheses of this dissertation

in other problems of biological sequence analysis. However, our ultimate goal is to develop
a generic machine learning toolkit/pipeline for classification of biological sequences, ad-
dressing three key phases of building a predictive model (feature extraction, selection,
and classification) and using metaheuristics, mathematical, and ensemble models. Funda-
mentally, we will increase a phase of our pipeline, studying new algorithms and techniques,
such as:

• Feature Extraction: we will also study wavelet-based feature extraction techniques,
complex networks, mapping with nucleotides triplets and amino acid features, chaos
game representation, among others.

• Feature Selection: we will apply hybrid and wrapper feature selection approaches
with metaheuristics.

• Classification: we will propose an ensemble model using metaheuristics, modeling
the combination of classifiers as an optimization problem, where the weights of
the confidence levels of each classifier are determined by evolutionary optimization
techniques.
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