Use este identificador para citar ou linkar para este item:
http://repositorio.utfpr.edu.br/jspui/handle/1/37787
Título: | A collaborative approach to fault tolerance in cyber-physical systems |
Título(s) alternativo(s): | Uma abordagem colaborativa para tolerância a falhas em sistemas ciber-físicos |
Autor(es): | Piardi, Luis Fernando |
Orientador(es): | Oliveira, Andre Schneider de |
Palavras-chave: | Objetos cooperativos (sistemas de computador) Tolerância a falha (Computadores) Sistemas multiagentes Indústria 4.0 Confiabilidade (Engenharia) Cooperating objects (Computer systems) Fault-tolerant computing Multiagent systems Industry 4.0 Reliability (Engineering) |
Data do documento: | 26-Jun-2025 |
Editor: | Universidade Tecnológica Federal do Paraná |
Câmpus: | Curitiba |
Citação: | PIARDI, Luis Fernando. A collaborative approach to fault tolerance in cyber-physical systems. 2025. Tese (Doutorado em Engenharia Elétrica e Informática Industrial) - Universidade Tecnológica Federal do Paraná, Curitiba, 2025. |
Resumo: | A confiabilidade e a robustez dos sistemas ciber-físicos são aspectos críticos no cenário industrial atual. O elevado nível de autonomia e distribuição dos componentes, associado à ampla variedade de dispositivos, torna esses sistemas suscetíveis a falhas. Nesse contexto, e alinhado à era atual da Indústria 4.0, a tolerância a falhas torna-se essencial para manter a robustez e a resiliência dos sistemas diante de perturbações imprevistas ou indesejáveis. Apesar de sua importância e dos benefícios oferecidos, as abordagens tradicionais de tolerância a falhas, como as estratégias locais ou centralizadas monolíticas, não acompanham o ritmo acelerado da evolução tecnológica das últimas duas décadas. Impulsionadas pelo advento de tecnologias digitais, como a Internet das Coisas, computação em nuvem e edge, e inteligência artificial, associadas a capacidades elevadas de processamento computacional e comunicação, as abordagens tradicionais de tolerância a falhas mostram-se defasadas em relação aos sistemas contemporâneos e futuros. Como consequência, tais abordagens apresentam limitações para alcançar os benefícios máximos proporcionados pela integração dessas tecnologias, como maior robustez, precisão na tolerância a falhas e melhorias de desempenho, mantendo a flexibilidade e escalabilidade fundamentais para a operação dos sistemas ciber-físicos. Diante disso, esta tese propõe uma abordagem colaborativa de tolerância a falhas em sistemas ciber-físicos, denominada Collaborative Fault-Star (CF*), um termo unificado que engloba a colaboração nos estágios de detecção, diagnóstico e recuperação de falhas. A abordagem proposta explora as capacidades inerentes de análise de dados e comunicação dos componentes ciber-físicos, fundamentando-se nos princípios de sistemas multiagente, nos quais os componentes são autônomos para tolerar falhas e adotam comportamento colaborativo e inteligência distribuída quando necessário, a fim de superar as limitações de suas capacidades individuais. Esta tese apresenta a infraestrutura e a espinha dorsal do CF*, destacando os componentes, comportamentos dos agentes, funcionalidades e protocolos de interação, de modo a explorar os benefícios da comunicação e colaboração entre agentes para aprimorar a tolerância a falhas. O CF* constitui uma abordagem genérica, passível de instanciação para diferentes domínios e aplicações de sistemas ciber-físicos. Experimentos foram conduzidos num armazém em escala laboratorial desenvolvido, com foco nos estágios de detecção e diagnóstico de falhas em sensores de temperatura e umidade instalados nas estantes do armazém. Os resultados experimentais confirmaram melhorias em termos de precisão e desempenho da abordagem CF* em comparação com a abordagem local e competitividade em relação à abordagem centralizada. |
Abstract: | The reliability and robustness of cyber-physical systems are critical aspects of the current industrial landscape. The high level of autonomous and distributed components associated with many devices makes cyber-physical systems prone to faults. With this in mind and contextualized with the current era of Industry 4.0, fault tolerance is essential for maintaining the robustness and resilience of systems facing unforeseen or undesirable disturbances. Despite their importance and benefits, traditional approaches for fault tolerance, such as local or monolithic centralized, do not correspond with the accelerated technological evolution pace over the past two decades. Driven by the advent of digital technologies such as the Internet of Things, cloud and edge computing, and artificial intelligence associated with enhanced computational processing and communication capabilities, the traditional fault tolerance approaches are out of sync with contemporary and future systems. Consequently, these approaches are limited in achieving the maximum benefits enabled by integrating these technologies, such as robustness related to fault tolerance accuracy and performance improvements, maintaining the flexibility and scalability fundamental for cyberphysical systems operations. Accordingly, this thesis proposes a collaborative fault tolerance approach for cyber-physical systems called Collaborative Fault-Star (CF*), a unified term that refers to the collaboration on the detection, diagnosis, and recovery stages of fault tolerance. The proposed approach takes advantage of cyber-physical components’ inherent data analysis and communication capabilities and is based on multi-agent system principles, where components are self-fault tolerant and adopt collaborative and distributed intelligence behavior when necessary to transcend their individual fault tolerance capabilities. This thesis introduces the backbone and infrastructure of CF*, highlighting the components, agent behavior, functionalities, and interaction protocols to explore the benefits of communication and collaboration between agents to enhance fault tolerance. The CF* is a generic approach, and can be instantiated for diverse cyber-physical system domains as well as for different applications. Experiments were conducted on a developed laboratory-scale warehouse, focusing on the fault detection and diagnosis stage for temperature and humidity sensors in the warehouse racks. The experimental results confirmed the accuracy and performance improvements under CF* compared with the local approach and competitiveness compared to a centralized approach. |
URI: | http://repositorio.utfpr.edu.br/jspui/handle/1/37787 |
Aparece nas coleções: | CT - Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
collaborativeapproachfaulttolerance.pdf | 44,88 MB | Adobe PDF | ![]() Visualizar/Abrir |
Este item está licenciada sob uma Licença Creative Commons