Use este identificador para citar ou linkar para este item: http://repositorio.utfpr.edu.br/jspui/handle/1/26568
Título: Controle de velocidade baseado em modelo dinâmico com restrições para um robô diferencial escalador magnético
Título(s) alternativo(s): Velocity control based on dynamic model with constraints for a differential magnetic climbing robot
Autor(es): Santos, Higor Barbosa
Orientador(es): Arruda, Lucia Valeria Ramos de
Palavras-chave: Controle preditivo
Robôs - Sistemas de controle
Adesão
Robôs - Velocidade - Controle
Robótica
Predictive control
Robots - Control systems
Adhesion
Robots - Speed - Control
Robotics
Data do documento: 25-Ago-2021
Editor: Universidade Tecnológica Federal do Paraná
Câmpus: Curitiba
Citação: SANTOS, Higor Barbosa. Controle de velocidade baseado em modelo dinâmico com restrições para um robô diferencial escalador magnético. 2021. Tese (Doutorado em Engenharia Elétrica e Informática Industrial) - Universidade Tecnológica Federal do Paraná, Curitiba, 2021.
Resumo: Os robôs escaladores são caracterizados por um acoplamento seguro à superfície, projetado para evitar quedas. A capacidade de acoplamento do robô é conferida por um método de adesão que leva a modelos dinâmicos não-lineares com parâmetros variáveis no tempo que afetam a mobilidade do robô. Além disso, o atrito da roda e a força da gravidade também são forças relevantes que podem comprometer a capacidade de escalada se não forem bem modeladas. Este trabalho apresenta um controlador preditivo baseado no modelo dinâmico para rastreamento de velocidade em um robô escalador de quatro rodas magnéticas especialmente projetado para inspecionar tanques industriais de armazenamento. O controle preciso da velocidade é muito importante para garantir a efetividade da inspeção, o que exige a compensação dos distúrbios dinâmicos presentes na navegação do robô escalador. O controlador preditivo baseado em modelo (MPC) compensa os efeitos das não-linearidades devido às forças inerciais, gravidade, atrito e de adesão por meio da modelagem dinâmica e cinemática do robô escalador. A modelagem dinâmica é baseada na abordagem de Lagrange-Euler, que permite um melhor entendimento de como as forças e torques afetam o movimento do robô. Além disso, é proposta uma análise da força de interação entre o robô e a superfície de contato, uma vez que essa força afeta o movimento do robô escalador de acordo com a orientação espacial. Como a grande maioria dos robôs comerciais utilizam a velocidade de suas rodas como sinal de entrada, uma transformação de torque em velocidade é realizada gerando nova formulação dinâmica para o comportamento do robô. Desse modo, dois modelos dinâmicos para robôs escaladores são propostos, pois o modelo dinâmico clássico utiliza o torque como sinal de entrada. Dado os modelos dinâmicos baseados no torque e na velocidade, implementa-se um controlador MPC para cada um dos tipos de sinal de entrada. Por fim, são realizadas simulações para examinar a dinâmica do robô durante o movimento de escalada, e os controladores MPC são validados através do simulador de robô V-REP e experimentos práticos com um robô real em ambiente de laboratório. Os resultados simulados e práticos dos controladores demonstram a compensação dos distúrbios modelados, não modelados e variantes no tempo na navegação do robô escalador. A partir dos modelos cinemáticos e dinâmicos desenvolvidos, obteve-se um bom desempenho nas predições, o que permitiu a compensação da dinâmica do robô durante a escalada e fez com que os controladores apresentassem uma boa performance (tempo de resposta e erro insignificante) no rastreamento da velocidade. Portanto, as principais contribuições desta tese são a análise cinemática e dinâmica e o desenvolvimento de controladores preditivos baseados no modelo dinâmico para o rastreamento de velocidade de robôs escaladores.
Abstract: Climbing robots are characterized by a secure surface coupling designed to prevent falls. The robot’s coupling capacity is ensured by an adhesion method that leads to dynamic non-linear models with time-varying parameters that affect the robot’s mobility. Besides, the friction of the wheel and the force of gravity are also relevant issues that can compromise the ability to climb if they are not well modeled. This work presents a predictive controller based on the dynamic model for speed tracking in a four-wheel magnetic climbing robot specially designed to inspect industrial storage tanks. Precise speed control is essential to guarantee the effectiveness of the inspection, which requires the compensation of dynamic disturbances present in the climbing robot’s navigation. The proposed model-based predictive controller (MPC) compensates for nonlinear effects due to inertial forces, gravity, friction, and adhesion through dynamic and kinematic modeling of the climbing robot. Dynamic modeling is based on the Lagrange-Euler approach, which allows a better understanding of how forces and torques affect the robot’s movement. Also, an analysis of the interaction force between the robot and the contact surface is carried out since this force affects the climbing robot’s movement according to the spatial orientation. As the vast majority of commercial robots use the speed of their wheels as an input signal, a transformation of torque into speed is performed, generating a new dynamic formulation for the robot’s behavior. Thus, two dynamic models for climbing robots are proposed, as the classic dynamic model uses torque as an input signal. Given the dynamic models based on torque and speed, an MPC controller is implemented for each type of input signal. Finally, simulations are performed to examine robot dynamics during the climbing movement, and MPC controllers are validated using the V-REP robot simulator and practical experiments with a real robot in a laboratory environment. The simulated and practical results of the controllers demonstrate the compensation of modeled, unmodeled and time-varying disturbances in the climbing robot navigation. From the kinematic and dynamic models developed, a good performance in the predictions was obtained, which compensated the robot’s dynamics during the climb and made the controllers present a good performance (response time and insignificant error) in the speed tracking. Therefore, the main contributions of this thesis are the kinematic and dynamic analysis and the development of predictive controllers based on the dynamic model for speed tracking of climbing robots.
URI: http://repositorio.utfpr.edu.br/jspui/handle/1/26568
Aparece nas coleções:CT - Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
controlevelocidaderoboescalador.pdf18,03 MBAdobe PDFThumbnail
Visualizar/Abrir


Este item está licenciada sob uma Licença Creative Commons Creative Commons